Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2016 OCAK Cilt 59 Sayı 1
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Tectonic setting and structural evolution of post-Late Cretaceous the Oltu-Balkaya basin (NE Turkey)
Hüseyin Yilmaz Ali Yilmaz
View as PDF

Abstract: The Oltu-Balkaya basin has started to open by the collision (soft-collision) between Pontide Arc andAnatolide-Tauride Platform since late Maastrihtian and was evolved as collisional foreland basins duringUpper Maastrihtian and Eocene time. At this period, turbiditic continental deposits intercalated withcarbonates, marine deltaic deposits and marine detritics are deposited, from bottom to top, respectively.Middle-Late Eocene shallow marin clastic deposits and high-K volcanics which may be attributed topost collisional magmatism lie on this basin fill characterizing the collisional phase. At the begining ofOligocene time, a molas consisting of continental clastics and shallow marine units with interlayeres ofgypsum and high-K volcanics were deposited on a regional unconformity at the Oligocene-Late Mioceneinterval in the region which was a completely emergent land (hard-final collision) at the end of Eocene.After deposition of the sequence characterizing this period, the region has completely become a land in theMiocene time by compression. Normal faults with NW-SE striking and in the direction of NE - SWdipping are observed in Late Miocene-Early Pliocene units consisting of fluvial to lacustrine completelycontinental deposits and volcanics. A widespread andesitic and dasitic volcanism occured at this periodreflecting an extensional tectonic regime. Late Pliocene-Quaternary semi-consolidated continental clasticdeposits cover these units by ungular unconformity.The Oltu-Balkaya basin is characterized by dominant folding with approximately NE-SW trending axisand a thrust fault striking NE-SW, which dips about 40o northward. These structures as a whole representNW-SW-directed compressional tectonic regime prevailed in the basin at least during Late OligoceneMiocene time. As for the Late Pliocene-Quaternary beds rest on an angular unconformity over the olderunits and this sequence which have not been folded represents Neotectonic period.As a result, the Oltu-Balkaya basin represents a superimposed basin which is syn-collisional in UpperMaastrictian-Middle Eocene, post-collisional in Middle Eocene-Early Pliocene and where the strike-sliperegime dominant since the Late Pliocene to present time (Neotectonic Period).

  • Collision

  • Oltu-Balkaya Basin

  • post-collision

  • structural evolution


  • Adamia, Sh. Belov, A., Kekelia, M. Shavishvili I., 1987. Palaeozoic tectonic development of the Caucasus and Turkey (Geotraverse G)H. Flugel, F.P. Sassi, P. Grecula (Eds.), Pre-Variscan and Variscan Events in the Alpine-Mediterranean Mountain Belts, Mineralia Slovaca, Alta Bratislava ( ), pp. 28–50

  • Akalın, L., 1978, Balkaya ve Sütküns (Erzurum) linyit sahaları etüdü: M.T.A. Rap. No: 224, Ankara.

  • Akin, H., 1979. Geologie, magmatismus und Lagerstattenbildung im ostpontischen Gebirge/ Türkei aus der Sicht der Plattentektonik. Geologische Rundschau 68, 253–283.

  • Altınlı, İ.E., 1969, Oltu-Olur-Narman dolayının Jeolojik İncelemesi: TPAO Rap. No: 449, (yayımlanmamış).

  • Arslan, M., Aslan, Z., 2006. Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey Journal of Asian Earth Sciences 27,177–193

  • Aydin, F., Karslı, O., Chen, B., 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos 104, 249– 266.

  • Baykal, F., 1950, Oltu-Göle-Ardahan-Çıldır bölgesinin jeolojik ana çizgisi:MTA Rap. No: 1928 (yayımlanmamış).

  • Bayraktutan, S., 1994, Narman-Gaziler bölgesinin Tersiyer›deki volkano-tektonik evrimi: 47. Türkiye Jeoloji Kurultayı, Bildiri Özleri, s. 104.

  • Bektaş¸, O., Yılmaz, C., Taslı, K., Akdağ, K., Özgür, S., 1995. Cretaceous rifting of the eastern Pontides carbonate platform (NE Turkey): the formation of the carbonate breccias and turbidites as evidence of a drowned platform. Giornale di Geologia 57, 233–244.

  • Benda, L., 1971, Grundzüge einer pollenanalytischen Gliederung des Türkischen Jungtertiars. Beih. Geol. Jb., 113.

  • Bilgiç, T., Alişan, C, Tulu, N., 1995. The age and the microflora of the coal beds in the Balkaya region (Erzurum-Oltu), Second International Turkish Geology Workshop, Sivas, Turkey.

  • Bozkuş, C., 1990, Oltu-Narman Tersiyer havzası kuzeydoğusunun (Kömürlü) stratigrafisi. Türkiye Jeoloji Bull., 33, 47-56.

  • Bozkuş, C., 1993. Oltu-Narman Tersiyer Havzası Kuzeydoğusunun (Kömürlü) Tektoniği. Akdeniz Üniv. Müh. Fak. Dergisi 7, 65-80.

  • Bozkuş, C., 1998, Kuzeydoğu Anadoluda (OltuNarman Arası) Pontid / Anatolid Kenet Kuşağının Stratigrafisi ve Yapısal Evrimi. Pamukkale Üniversitesi Mühendislik Fakültesi, Mühendislik Bilimleri Dergisi, 4/1-2, 487-499.

  • Boztuğ, D., Erçin, A.İ, Göç, D., Er, M., İskenderoğlu, A., Kuruçelik, M.K., Kömür, İ., 2001. Petrogenesis of the composite Kaçkar batholith along a north south geotraverse between Ardeşen (Rize) and İspir (Erzurum) towns, eastern Black Sea region, Turkey. Fourth International Turkish Geology Symposium (ITGS IV), Adana/Turkey, September 24 28, 2001, Abstracts, p. 210.

  • Boztuğ, D., Wagner, G.A., Erçin, A.İ., Göç, D., Yeğingil, Z., İskenderoğlu, A., Kuruçelik, M.K., Kömur, İ., Güngör, Y., 2002. Sphene and zircon fission-track geochronology unravelling subduction-and collision-related magma surges in the composite Kaçkar Batholith, Eastern Black Sea region, Turkey. 1st International Symposium of the Faculty of Mines (İTÜ) on Earth Sciences and Engineering, İstanbul, Turkey, May 16 18, 2002, Abstracts, p. 121.

  • Boztuğ, D., Kusçu, I., Erçin, A.I., Avcı, N., Şahin, S.Y., 2003. Mineral deposits associated with the pre-, syn- and post-collisional granitoids of the neoTethyan convergence system between the Eurasian and Anatolian plates in NE and Central Turkey. In: Eliopoulos, D. (Ed.), Mineral Exploration and Sustainable Development. Millpress, Rotterdam, pp. 1141–1144.

  • Boztuğ, D., Jonckheere, R., Wagner, G.A., Yeğingil, Z., 2004. Slow Senonian and fast Palaeocene— Early Eocene uplift of the granitoids in the Central Eastern Pontides, Turkey: apatite fission-track results.Tectonophysics 382, 213–228.

  • Boztuğ, D., Erçin, A.I., Kuruçelik, M.K., Göç, D., Kömür, I., Iskenderoğlu, A.,2006. Geochemical characteristics of the composite Kaçkar batholith generate. Journal of Asian Earth Sciences 27, 286–302

  • Bulut, Y., Öğün,Y., Dümenci, S., Bozkuş, C., Taka, M. ve Öner, A., 1989, Tortum-Narman-Oltu-Olur dolayının jeolojisi ve kömür olanakları: MTA Rap. No: 8889 (yayımlanmamış).

  • Cater, J.M.L., Hanna, S.S., Ries, A.C., Turner, P., 1991. Tertiary evolution of the Sivas Basin, Central Turkey. Tectonophysics 195, 29–46.

  • Dickinson, W.R., 1974. Plate tectonics and sedimentation. In: Dickinson, W.R. (Ed.), Tectonics and Sedimentation. Society of Economic Paleontologists and Mineralogists, pp. 1–27. Special Publications.

  • Draut, A.E., Clift, P.D., 2001. Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland. Geology 29 (6), 543–546.

  • Engin, O., Engin, T., 1964, Hanege köyü (ErzurumOltu) ve civarındaki linyit ihtiva eden sahanın jeolojisi hakkında rapor: MTA Rap. No: 3548 (yayımlanmamış).

  • Ercan, T., Gedik, A., 1983. Pontidlerdeki volkanizma. Jeoloji Mühendisliği 18, 3–22.

  • Erdoğan, B., Akay, E., Uğur, M.Ş. 1996. Geology of the Yozgat region and evolution of collisional Çankırı Basin. International Geology Review: 38, 788 – 806.

  • Erentöz, C., 1954, Oltu 31/4, Kars 32/3 ve Hasankale 48/2 1/100.000 ölçekli jeolojik paftalara ait memuar: MTA Rap. No: 2159 (yayımlanmamış).

  • Erentöz, C. ve Ketin, İ., 1974, 1/500.000 ölçekli Türkiye Jeoloji Haritası izahnamesi, Kars paftası: MTA yayını.

  • Eyuboglu, Y., Santosh M., Yi, K., Bektaş, O., Kwon, S., 2012. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region, Lithos 146-147, 218–232

  • Fenerci, M. 1994. Rudists from Maden (Bayburt) area, NW Turkey. Turkish Journal of Earth Sciences 3, 1–11.

  • Gattinger, T.E., 1955, Kuzeydoğu Türkiye’de Çoruh ile Erzurum arasındaki bölgede yapılan jeolojik harita çalışmaları hakkında rapor: MTA Rap. No: 2379 (yayımlanmamış).

  • Gedikoğlu, A., 1979. Harşit (Giresun–Doğankent) granit karmaşığının jeokronolojik etüdü. Türkiye Jeoloji Bilimsel ve Teknik Kurultayı Bildiri Özleri Kitabı 33, 59–60.

  • Genç, Ş.C., Yılmaz, Y., 1995. Postcollisional Eocene magmatic activity of NW Anatolia: EUG VII, Strasbourg, Terra Abstracts, Terra Nova, 7, 1995, p. 181.

  • Gökten, E., 1993. Ulaş (Sivas) doğusunda Sivas havzası güney kenarının jeolojisi; Neotetis’in kuzey kolunun kapanması ile ilgili tektonik gelişim. In: 46th Geology Congress of Turkey, Abstracts, Ankara, p. 68.

  • Görgün, E., Kalafat, D., Kekovalı, K., 2011. Doğu Anadolu’nun sismotektonik yapısının deprem odak mekanizmalari yardımıyla yorumlanması. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 11-14 Ekim 2011, ODTÜ, Ankara.

  • Görür, N., Oktay, F.Y., Seymen, I., Şengör, A.M.C., 1984. Paleo-tectonic Evolution of the Tuzgölü Basin Complex, Central Turkey: Sedimentary Record of a Neo-Tethyan Closure. The Geological Evolution of the Eastern Mediterranean In: Dixon, J.E., Robertson, A.H.F. (Eds.),, vol.17. Geological Society, London, pp. 455–466. Special Publications.

  • Görür, N., Tüysüz, O., and Şengör, A. M. C., 1998. Tectonic Evolution of the Central Anatolian Basins. International Geology Review 40, 831- 850.

  • Görür, N., Tüysüz, O. 2001. Cretaceous to Miocene Palaeogeographic evolution of Turkey: implications for hydrocarbon potential. Journal of Petroleum Geology 24, 1–28.

  • Gürsoy, H., 1989. Tectonics and stratigraphy of the Kelkit (Gümüşhane) region. Ph.D. thesis, Cumhuriyet University, Sivas, Turkey, 140p (in Turkish)

  • Kelling, G., Gökçen, S.L., Gökçen, N.S., Gökten, E., Bromley, A.J., 1989. Tectono-Sedimentary Evolution of a Neo-Tethyan Collisional Trough:Sivas-Refahiye Basin Central Turkey, 28th International Geological Congress, Washington, DC, USA, Abstracts, 2(3), pp. 171–172.

  • Koçyiğit, A., 1991. An example of an accretionary forearc basin from northern central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geological Society of America Bulletin 103, 22–36.

  • Koçyiğit, A., 1996, Superimposed basins and their relations to the recent strike-sliop fault zone: a case study of the Refahiye superimposed basin adjacent to the North Anatolian Transform Fault, northeastern Turkey. International Geology Review, 38, 701-713.

  • Koçyiğit, A., Yılmaz, Y., Adamia, S., Kuloshvili, S., 2001. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implications of transition from thrusting to strike-slipe faulting. Geodinamica Acta 14 (1-3), 177-195.

  • Konak, N., Hakyemez, H.Y., Bilgin, Z.R. and Bilgiç, T., 1995, Oltu-Olur-Şenkaya (Doğu Pontidler) jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (yayımlanmamış).

  • Konak, N., Hakyemez, H.Y., Bilgiç, T., Bilgin, R., Hepşen, N. ve Ercan, T. 2001. Kuzeydoğu Pontidlerin (Oltu-Olur-Şenkaya-NarmanUzundere-Yusufeli) Jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 10489, Ankara (yayımlanmamış).

  • Konak N, Hakyemez Y.,2008. Geological map of Turkey in scale 1:100.000, Tortum H47 sheet (in Turkish). MTA publication, p. 95, Ankara.

  • Lahn, E. ve Romber, H., 1939, Balkaya linyit zuhuratının jeolojik tetkikatı ile mezkur havzada yapılan araştırma işleri ve işletme teklifleri hakkında rapor: MTA Rap. No: 765 (yayımlanmamış).

  • Lange, S., 1967, Erzurum-Oltu-Balkaya linyit havzasına ait jeolojik rapor: MTA. Rap. No: 122, Ankara. Lordkipanidze, M., Meliksetian, B., Djarbashian, R. 1989. Mesozoic-Cenozoic magmatic evolutionof the Pontiancrimean-Caucasus region. Memoires de la Geologia France, Nouvella serie, 154,103-124.

  • Miall, A.D., 1981.Tectonic Setting and Basin Architecture Sedimentation and Tectonics in Alluvial Basins. In: Alluvial Sedimentary Basins, Miall, A.D. (Ed.), Special Publications, vol. 23. Geological Assocciations of Canada, London, pp. 1–33.

  • Nebert, K., 1963a, Kömür ihtiva eden Sütkans bölgesinin (Vilayet Erzurum-Kaza Oltu) jeolojik yapısı ve kömür yataklarının jeolojisi hakkında rapor: MTA Rap. No:3232 (yayımlanmamış).

  • Nebert, K., 1963b, Henege köyü (Kaza Oltu, Vilayet Erzurum) bölgesinde yapılan kömür prospeksiyonu sonuçları hakkında rapor: MTA Rap. No: 3344. (yayımlanmamış).

  • Okay, A.I., Leven, E.J., 1996. Stratigraphy and paleontology of the Upper Paleozoic sequence in the Pulur (Bayburt) region, eastern Pontides.Turk. J. Earth Sci. 5, 145–155.

  • Okay A.I., Şahintürk, Ö., 1997. Geology of the Eastern Pontides. In: A.G. Robinson (ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region. Association of American Petroleum Geologists Memoir 68, 291–311.

  • Özdemir, İ., 1981, Oltu-Balkaya (Erzurum) kömürlü Neojen havzasının ekonomik jeolojisi: Ankara University Department of Engineering Geology, MS thesis, Ankara (Unpublished in Turkish).

  • Özsayar, T., Pelin, S., Gedikoğlu, A., 1981. Doğu Pontidler’de Kretase. KTÜ Yer Bilimleri Dergisi 1, 65–114.

  • Pelin,S., 1977, Alucra (Giresun) güneydoğusu yoresinin petrol olanakları bakımından jeolojik incelemesi: KTÜ yayını, No:87, 105 s., Trabzon.

  • Robinson, A.G., Banks, C.J., Rutherford, M.M., Hirst, J.P.P., 1995.Stratigraphic and structural development of the Eastern Pontides,Turkey. Journal of Geological Society London 152, 861– 872.

  • Sosson, M., Rolland, Y., Danelian, T., Muller, C., Melkonyan, R., Adamia, S, Kangarli, T., Avagyan, A., Galoyan, G., 2010. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. In: Sosson, M., Kaymakci, N., Stephanson, R., Bergarat, F., Storatchenoko, V. (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform, vol. 340. Geological Society of London Special Publication, pp.329–352.

  • Şengör, A.M.C. and Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.Tendam, A., 1951, Balkaya linyit yatağının jeolojik haritasının revizyonuna ait rapor: M.T.A. Rap.No: 1887, Ankara.

  • Tokel, S., 1977. Eocene calc-alkaline andesites and geotectonism in the Eastern Black Sea region (in Turkish). Türkiye Jeoloji Kurumu Bülteni 20, 49–54.

  • Topuz, G., Altherr, R., Kalt, A., Satir, M., Werner, O., Schwarz, W.H., 2004. Aluminous granulites from the Pulur complex, NE Turkey: a case of partial melting, efficient melt extraction and crystallisation. Lithos 72, 183–207.

  • Topuz, G., Altherr, R., Schwarz, W.H., Siebel, W., Satir, M., Dokuz, A., 2005. Post-collisional plutonism with adakite-like signatures: the Eocene Saraycik granodiorite (Eastern Pontides, Turkey). Contributions to Mineralogy and Petrology 150, 441–455.

  • Wedding, H., 1956, Balkaya linyit zuhuru, vilayet Erzurum, kaza Oltu, Pafta 31/2: MTA Rap. No: 2947 (yayımlanmamış).

  • Yılmaz, A., Adamia, S., Chabukiani, A., Chkhotua, T., Erdoğan, K., Tuzcu, S., Karabıyıkoğlu, M., 2000, Structural correlation of the southern Transcaucasus (Georgia)-eastern Pontides (Turkey). Geological Society, London, Special Publication 173, 171–182.

  • Yılmaz, A. and Yılmaz, H., 2006. Characteristic features and structural evolution of a post-collisional basin: the Sivas basin, Central Anatolia, Turkey. J Asian Earth Sci 27:164–176.

  • Yılmaz, A., Adamia, SH., Yılmaz, H., 2014. Comparisons of the suture zones along a geotraverse from the Scythian Platform to the Arabian Platform. Geoscience Frontiers 5, 855- 875.

  • Yılmaz, S. and Boztuğ, D., 1996, Space and time relations of three plutonic phases in the. Eastern Pontides, Turkey. International Geology Review 38, 935–956.

  • Yılmaz, Y., 1972. Petrology and structure of the Gümüşhane granite and surrounding rocks, North-eastern Anatolia. PhD Thesis, University of London, 260p.

  • Yılmaz, Y., 1981. Sakarya kıtası güney kenarının tektonik evrimi. İstanbul Yerbilimleri 1 (1–2), 33–52.

  • Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş.C., Şengör, A.M.C., 1997. Geology and tectonic evolution of the Pontides. In: Robinson, A.G.(Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region AAPG Memoir 68, pp. 183–226.

  • Yılmaz, H , Yılmaz, A . (2016). Oltu-Balkaya havzasının (KD Türkiye) tektonik konumu ve Geç Kretase sonrası jeolojik evrimi . Türkiye Jeoloji Bülteni , 59 (1) , 1-26 . DOI: 10.25288/tjb.298254

  • Satellite Imagery Supported GIS Methodologies on Geological Analysis: Example from Yeni Foça (İzmir)
    Bekir Murat Tekin Enis Kemal Sagular
    View as PDF

    Abstract: Study area covers Ilıpınar Village and its surrounding area between Aliağa, Menemen and Foça districts,NW of İzmir city. This region is located on İzmir-Ankara Zone (Brinkmann,1966) which is an importanttectonic structure of Paleotectonic era between Sakarya Continent in the North and Menderes Massif in theSouth East. Stratigraphic and structural relations between volcanic/volcanoclastic rocks and terrestrialsediments (mainly river and lake deposits) were studied within approximately 72 km² area. 1/25.000scaled geological map of the area prepared by previous researchers was revised by using GeographicInformation Technologies (GIS) and petrographic/petrologic investigations of hand specimens were alsoanalysed.Within this study, previous geological maps underwent changes, stratigraphical column was revised andlocal stratigraphy was re-evaluated. Accordingly, it was determined that; there happened a terrestrial/lacustrine sedimentation with extensive volcanic activity in Early/Mid Miocene. In Mid-Miocene, lacustrinesedimentation was completed with the sedimentation of limestones of Lacustrine origin. Besides, it wasdetermined that all these units were cut by basalts which is a product of Mid-Miocene volcanism.Benefits of Remote Sensing and Geographic Information Systems (GIS), which is very popular tool inearth sciences, were extensively used. When determining boundaries of different stratigraphic units ingeological mapping, tectonic discontinuities and their interpretation, in addition to GIS applications,different resolution satellite images and Google Earth were widely used

  • Foça Tuf

  • Geographic information system

  • Menderes Massif

  • satellite images


  • Akay, E., 2000. Magmatic and Tectonic Evolution of The Yuntdağ Volcanic Complex Western Anatolia. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 128s, İzmir.

  • Altunkaynak, Ş., Yılmaz, Y., 2000. Foça Yöresinin Jeolojisi ve Aktif Tektoniği, Batı Anadolu. Batı Anadolu’nun Depremselliği Sempozyumu, 24-27 Mayıs, İzmir, 160-165.

  • Altunkaynak, Ş., Rogers, N.W., Kelley, S.P., 2010. Causes and Effects of Geochemical Variations in Late Cenozoic Volcanism of the Foça Volcanic Centre, NW Anatolia, Turkey. International Geology Review, 52(4-6), 579-607.

  • Brinkmann, R., 1966. Geotektonische Gliederung von Westanatolien. NeusJahrb. Geol. Palaontol, Monatsh, 603-618.

  • Dehandschutter, B., 2001. Study of The Recent Structural Evolution of Continental Basins in AltaiSayan Central Asia. Erişim Tarihi: 20.10.2011. http://users.pandora.be/boris.dehandschutter.

  • Dönmez, M., Türkecan, A., Akçay, A.E., Hakyemez, Y., Sevin, D., 1998. İzmir ve Kuzeyinin Jeolojisi, Tersiyer Volkanizmasının Petrografik ve Kimyasal Özellikleri. MTA Rapor No: 10181, 120s.

  • Emre, T., Sözbilir, H., 2005. Küçük Menderes Grabeni Doğu Ucundaki Andezitlerin Başova-Kiraz/ İzmir Jeolojisi, Petrografisi ve Jeokimyası. MTA Dergisi, 131, 1-19.

  • Ercan, T., Satır, M., Sevin, D., Türkecan, A., 1996. Batı Anadolu’daki Tersiyer ve Kuvaterner Yaşlı Volkanik Kayaçlarda Yeni Yapılan Radyometrik Yaş Ölçümleri Yorumu. MTA Dergisi, 119, 103- 112.

  • Erdoğan, B., 1990. İzmir-Ankara Zonu’nun İzmir ile Seferihisar Arasındaki Bölgede Stratigrafik Özellikleri ve Tektonik Evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2, 1-20.

  • Erkül, F., Helvacı, C., Sözbilir, H., 2005. Evidence for Two Episodes of Volcanism in the Bigadiç Borate Basin and Tectonic Implications for Western Turkey. Geological Journal, 40, 545-570.

  • Kaya, O., 1979. Ortadoğu Ege Çöküntüsünün Neojen Stratigrafisi ve Tektoniği. Türkiye Jeoloji Kurumu Bülteni, 22, 35-58.

  • Kaymakçı, N., 2000. Tectono-Stratigraphical Evolution of the Çankırı Basin Central Anatolia, Turkey. Geologica Ultaiectina, Mededelingen van de Faculteit Aardwetenschappen Universiteit, Phd. Thesis, 247s, Utrecht.

  • Kuterdem, N.K., 2005. Eskipazar (Karabük Güneyi) ve Kuzey Anadolu Fay Zonu (KAFZ) Arasındaki Bölgenin Morfo-Tektonik Özelliklerinin Coğrafi Bilgi Sistemleri ile Belirlenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 94s, Ankara.

  • Lang, L., 2001. Managing Natural Resources with GIS, ESRI Press, USA.

  • Okay, A.İ., Satır, M., 2000. Coeval Plutonism and Metamorphism in a Latest Oligocene Metamorphic Core Complex in Northwest Turkey. Geological Magazine, 137, 495-516.

  • Savaşcın, M.Y., Güleç, N., 1990. Relation Between Magmatic and Tectonic Activities in West Turkey. International Earth Sciences Colloquium on the Aegean Region, İzmir, 300-313.

  • Seyitoğlu, G., Anderson, D., Nowell, G., Scott, B., 1997. The Evolution From Miocene Potassic to Quaternary Sodic Magmatism in Western Turkey: Implications for Enrichment Processes in the Lithospheric Mantle. Journal of Volcanology and Geothermal Research, 76, 127-147.

  • Süzen, M. L., 2012. Sözlü ve yazılı görüşme. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Laboratuarı Jeoloji Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi (ODTÜ), Ankara.

  • Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics, 75, 181-241.

  • Türkecan, A., Ercan, T., Sevin, D., 1998. Karaburun Yarımadası’nın Neojen Volkanizması. MTA Rapor No: 10185, 28s.

  • Uysal, K., 2011. Eğirdir-Burdur Gölleri Çevrelerindeki Pliyo-Kuvaterner Çökellerinin Stratigrafik, Sedimantolojik ve Bazı Tektonik Özellikleri. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 267s, Isparta.

  • Yılmaz, Y., 1997. Geology of Western Anatolia. In Schindler, C., Pfister, M. (Ed.) Active Tectonics of Northwestern Anatolia The Marmara Poly Project; A Multidisciplinary Approach by Space Geodesy, Geology, Hydrogeology, Geothermics and Seismology (31-53). Vdf. Hochschuler, an der ETH Zurich.

  • Yılmaz, Y., Genç, Ş.C., Karacık, Z., Altunkaynak, Ş., 2001. Two Contrasting Magmatic Associations of NW Anatolia and Their Tectonic Significance. Journal of Geodynamics, 31, 243-271.

  • Tekin, B , Sagular, E . (2016). Jeolojik Çözümlemelerde Uydu Görüntüleri Destekli Coğrafi Bilgi Sistemi (CBS) Yöntemleri; Yeni Foça (İzmir) Yöresi Örneği . Türkiye Jeoloji Bülteni , 59 (1) , 27-54 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28087/298268

  • Phlogopite Occurrences within Limestone-Ophiolite-Granitoid Triple Contact from Sivas-Divriği Iron Deposit
    Hüseyin Yalçin Ömer Bozkaya
    View as PDF

    Abstract: Alteration minerals determined in the ultramafic rocks of Güneş Ophiolite were divided in  three maingroups as pre-, syn- and post-serpentinization. Of these, phlogopite from pre-serpentinization mineralsis one of the main components of mica-peridotites and is contemporaneous with the formation of theophiolitic sequence. Listwaenitization and pyrometasomatism from later alterations caused an increase ingrain size and accumulation of phlogopites in certain zones and also mixed-layer phlogopite-vermiculite(P-V) and vermiculite transformations in local. Syn-serpentinization alterations cover the conversionsfrom felsic and mafic minerals to various clay and/or phyllosilicates. Post-serpentinization alterationcovers the occurrences of ophicarbonate (commonly calcite and dolomite, rarely siderite and hydrotalcite),ophioxide-hydroxide (hematite, goethite, pyrite, marcasite and brucite) and locally ophisilicate (quartz) thatrefers to listwaenitization. Phlogopite, actinolite, epidote, johannsenite, scapolite, schorl and Fe-minerals(magnetite, hematite, pyrite, marcasite) form of the products of metasomatism in the pyrometasomaticrocks, and pyroxene and feldspar are residual primary magmatic phases. Divriği phlogopites differ partlyin respect to end-member of theoretical oxide compositions of phlogopite-biotite series. Biotite componentof phlogopites is low (8-14 %) and they are called as Fe-Al phlogopite according to their average unit-cellcomposition. The main cation of P-V in the ultramafic-hosted rocks is Mg and this mineral is partiallyrich in Fe and poor in Al. Serpentines have tetrahedral and octahedral Fe substitutions which indicateFe-lizardite. The concentrations of total trace element in the phyllosilicate minerals decrease fromserpentine–phlogopite to P-V, whereas their rare earth element contents increase in the same directionin the Divriği area. δ18O and δD values (SMOW) are determined as ‰ +10.6-11.8 and ‰ −64 - −102 forphlogopites, ‰ +14.2 and ‰ −121 for P-V, and ‰ +14.4 and ‰ −129 for serpentine. Phlogopites areplot hypogene and supergene fields, but P-V and serpentine are found under kaolinite weathering line onthe basis of δ18O and δD values. Formation temperatures as ~ 130-150 °C for phlogopite and ~ 100 °Cfor P-V are obtained on the comparison of minimum isotopic value of granitic water. Additionally, stableisotopic values showed that serpentinization, phlogopitization and vermiculitization formed with differentsubsequent processes.

  • Major-trace and isotope geochemistry

  • phyllosilicate

  • XRD


  • Abu-Jaber, N.S., Kimberley, M.M., 1992. Origin of ultramafic-hosted vein magnesite deposits. Ore Geology Review, 7, 155-191.

  • Bailey, S.W., 1980. Structure of layer silicates. In: Crystal Structures of Clay Minerals and their X-ray Identification, G.W. Brindley and G. Brown (eds.), Mineralogical Society, London, 1-123.

  • Bailey, S.W., 1988. X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays and Clay Minerals, 36, 193-213.

  • Bayhan, H., Baysal, O., 1982. Güneş-Soğucak (Divriği-Sivas) yöresinin petrografik-mineralojik incelenmesi. Türkiye Jeoloji Kurumu Bülteni, 25, 1-14.

  • Birsoy, R., 2002. Formation of sepiolite-palygorskite and related minerals from solution. Clays and Clay Minerals, 50, 736-745.

  • Bozkurt, E., 2001. Neotectonics of Turkey – a synthesis. Geodinamica Acta, 14, 3-30.

  • Boztuğ, D., 2000. S-I-A- type intrusive associations: geodynamic significance of synchronism between metamorphism and magmatishm in Central Anatolia, Turkey. In: Tectonics and Magmatism and the Surrounding area, E. Bozkurt, J. A. Winchester and J.D.A. Piper (eds.), Geological Society, London, Special Publications, 173, 441- 458.

  • Brookins, D.G., 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlag, New York, 176 p.

  • Coleman, R.G., 1977. Ophiolites: Ancient Oceanic Lithosphere. Springer-Verlag, Berlin, 229 p.

  • Coleman, R.G., Jove, C., 1992. Geological origin of serpentinites. In: The vegetation of Ultramafic (Serpentine) Soils, First International Conference on Serpentine Ecology, Proceedings, A.J.M. Baker, J. Proctor and R.D. Revees (eds.), Intercept Ltd., Andover, United Kingtom, 1-17.

  • Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702-1703.

  • Deer, W.A., Howie, R.A., Zussman, J., 1992. An Introduction to the Rock-forming Minerals. Longman, Hong Kong, 696 p.

  • Eiler, J.M., Schiano, P., Kitchen, N., Stolper, E., 2000. Oxygen isotope evidence for recycled crust in the sources of mid-ocean ridge basalts. Nature, 403, 530-534.

  • Ercan, T., 1987. Orta Anadolu’daki Senozoyik volkanizması. Maden Tetkik Arama Dergisi, 107, 119-140.

  • Evans, B.W., Guggenheim, S., 1988. Talc, pyrophyllite, and related minerals. In: Hydrous Phyllosilicates (Exlusive of Micas), S.W. Bailey (ed.), Mineralogical Society of America, Washington, Reviews in Mineralogy, 19, 225-294.

  • Feldstein, S.N., Lange, R.A., Vennemann, T., O’Neil, J.R., 1996. Ferric-ferrous rations, H2 O contents and D/H ratios of phlogopite and biotite from lavas of different tectonic regimes. Contributions to Mineralogy and Petrology, 126, 51-66.

  • Fleet, A.J., 1984. Aqueous and sedimentary geochemistry of the rare earth elements. In: Rare Earth Elements, P. Henderson (ed.), EIsevier, Amsterdam, Developments in Geochemistry 2, 343-373.

  • Garrels, R.M., Christ, C.L., 1965. Solutios, Minerals and Equilibria. Harper and Row, New York, 435 p.

  • Göncüoğlu, M.C., Dirik, K., Kozlu, H., 1997. Pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the Terrane Map of Turkey, D. Papanikolaou and F.P.Sassi(eds.), IGCP Project No:276 Final Volume, Terrane Maps and Terrane Descriptions Annales, Geologique Pays Helléniques, 37, 515- 536.

  • Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.

  • Gupta, A.K., Chattopadhyay, B., Fyfe, W.S., Powell, M., 2002. Experimental studies on three potassiumrich ultramafic rocks from Damodar Valley, East India. Mineralogy and Petrology, 74, 343-360.

  • Harris, C., Faure, K., Diamond, R.E., Scheepers, R., 1997. Oxygen and hydrogen isotope geochemistry of S- and I-type granitoids: the Cape Granite suite, South Africa. Chemical Geology, 143, 95-114.

  • Haskin, L.A., Haskin, M.A., Frey, F.A., Wildeman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements, L.H. Ahrens (ed.), Pergamon Press, 889-912

  • J.C.P.D.S., 1990. Powder Diffraction File, Alphabetical Indexes Inorganic Phases, Swarthmore, United States of America, 871 p.

  • Krasnova, N.I., 2001. The Kovdor phlogopite deposit, Kola Peninsula, Russia. The Canadian Mineralogist, 39, 33-44.

  • Krumm, S., 1996. WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of WINFIT 1.0: a public domain program for interactive profile-analysis under WINDOWS. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994, Acta Universitatis Carolinae Geologica, 38, 253-261.

  • Kyser, T.K., 1986. Stable isotope variations in the mantle, In: Stable Isotopes in High Temperature Geological Processes, J.W. Valley, H.P.Jr. Taylor and J.R. O’Neil (eds.), Mineralogical Society of America, Chelsea, Reviews in Mineralogy, 141- 164.

  • Lambert, S.J., Epstein, S., 1992. Stable-isotope studies of rocks and secondary minerals in a vapor-dominated hydrothermal system at The Geysers, Sonoma County, California. Journal of Volcanology and Geothermal Research, 53, 199- 226.

  • Luth, W.C.,1967. Studies in the systems KAlSiO4 - Mg2 SiO4 -SiO2 -H2 O: I. Inferred phase relations and petrologic applications. Jornal of Petrology, 8, 372-416.

  • Mader, D., Montanari, A.,Gattacceca, J., Koeberl, C., Handler, R., Coccioni, R., 2001. 40Ar/39Ar dating of a biotite-rich clay in the pelagic sequence of the Conero Riviera, Ancona, Italy. Earth and Planetary Science Letters, 194, 111-126.

  • McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Geochemistry and Mineralogy of Rare Earth Elements, B.R. Lipin and G.A. McKay (eds.), Mineralogical Society of America, Reviews in Mineralgy, 169-200.

  • Mittwede, S.K., 1996. Serpentinite-related mineralization. In: Serpentinites: Records of Tectonic and Petrological History, D.S. O’Hanley (ed.), Oxford Monographs on Geology and Geophysics, 34, 142, 144-148

  • MTA., 2002. 1:500 000 Ölçekli Türkiye Jeoloji Haritaları, Sivas Paftası. MTA Genel Müdürlüğü, Ankara.

  • Murakami, T., Kasama, T., Sato, M., 2002. Biotitization of vermiculite under hydrothermal condition. Journal of Mineralogical and Petrological Sciences, 97, 263-268.

  • Otlu, N., Yalçın, H., Bozkaya, Ö., Şakar, İ, Yeşildağ, H., 2010. Yıldızeli (Sivas) yöresi Karakoç mafik/ ultramafik plütoniklerinin mineraloji-petrografi ve jeokimyası. C.Ü.Müh. Fakültesi Dergisi Seri A-Yerbilimleri, 27, 31-54.

  • Özgül, N., Turşucu, A., Özyardımcı, N., Şenol, M., Bingöl, İ., Uysal, Ş., 1981. Munzur dağlarının jeolojisi. MTA Rapor No: 6995 Ankara, (yayımlanmamış).

  • Peabody, C.E., Einaudi, M.T., 1992. Origin of petroleum and mercury in the Culver-Baer cinnabar deposit, Mayacmas district, California. Economic Geology, 87, 1078-1103.

  • Reynolds, R.C., Jr. (1985). NEWMOD© A Computer Program for the calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays, R.C. Reynolds, Jr., 8 Brook Rd., Hanover, NH.

  • Rizzo, G., Piluso, E., Morten, L., 2001. Phlogopite from the ultramafic rocks, Central Calabria, Southern Italy. European Journal of Mineralogy, 13, 1139-1151.

  • Schandl, E.S., Wicks, F.J., 1993. Carbonates and associated alteration of ultramafic and rhyolitic rocks at the Hemingwat property, Kidd Creek volcanic complex, Timmins, Ontario. Economic Geology, 88, 1615-1635.

  • Schreyer, W., Abraham, K., Kulke, H., 1980. Natural sodium phlogopite coexisting with potassium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contributions to Mineralogy and Petrology, 74, 223-233.

  • Sheppard, S.M.F. (1986). Characterization and isotopic variations in natural waters. In: Stable Isotopes in High-temperature Geological Processes, J.W. Valley, Jr H.P. Taylor and J. O’Neil (eds.), Mineralogical Society of America, Washington DC, Reviews in Mineralogy 16, 165-184.

  • Sheppard, S.M.F., Gilg, H.A., 1996. Stable isotope geochemistry of clay minerals, Clay Minerals, 31, 1-24.

  • Sheppard, S.M.F., Nielsen, R.L., Taylor H.P.Jr., 1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 64, 755-777.

  • Singer, A., Galan, E., 1984. Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Amsterdam, Elsevier, Developments in Sedimentology, 37, 352 p.

  • Sun, S.S., McDonough, W.E., 1989. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In: Magmatism in the Ocean Basins, A.D. Saunders and M.J. Norry (eds.), Geological Society of London, London, 42, 313-345.

  • Taylor, H.P., Jr., 1968. The oxygen isotope geochemistry of igneous rocks, Contribution to Mineralogy and Petrology, 19, 1-71.

  • Toksoy-Köksal, F., Türkmenoglu, A.G., Göncüoğlu, M.C., 2001. Vermiculitization of phlogopite in metagabbro, central Turkey. Clays and Clay Minerals, 49, 81-91.

  • Weaver, C.E., Pollard, L.D., 1973. The Chemistry of C1ay Minerals. Developments in Sedimentology, 15, 213 p.

  • Wenner, D.B., Taylor, H.P.Jr., 1974. D/H and O18/O16 studies of serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 38, 1255- 1286.

  • Whalen, J.B., Jenner, G.A., Longstaffe, F.J., Robert, F., Gariepy, C., 1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 376, 7-60.

  • Wicks, F. J., O’Hanley, D. S., 1988. Serpentine minerals: structures and petrology: In: Hydrous Phyllosilicates (Exlusive of Micas), S.W. Bailey (ed.), Mineralogical Society of America, Washington, Reviews in Mineralogy, 19, 91-167.

  • Wicks, F.J., Plant, A.G., 1979. Electron-microprobe and X-ray microbeam studies of serpantine textures. Canadian Mineralogist, 17, 785-830.

  • Wicks, F.J., Whittaker, E.J.W., 1977. Serpentine textures and serpentinization. Canadian Mineralogist, 15, 459-488.

  • Wones, D.R., Gilbert, M.C., 1982. Amphiboles in the igneous environment. Mineralogical Society of America, Reviews in Mineralogy, 9B, 355-390.

  • Yalçın, H., Bozkaya, Ö., 1997. Kangal-Alacahan yöresi (Sivas) Üst Paleozoyik yaşlı meta-sedimanter kayaçlarda gömülme ve bindirme ile ilişkili çok düşük dereceli metamorfizma. Türkiye Jeoloji Bülteni, 40, 1-16.

  • Yalçın, H., Bozkaya, Ö., 2002. Hekimhan (Malatya) çevresindeki Üst Kretase yaşlı volkaniklerin alterasyon mineralojisi ve jeokimyası, deniz suyu-kayaç etkileşimine bir örnek, Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi Seri A-Yerbilimleri, 19, 81-98.

  • Yalçın, H., Bozkaya, Ö., 2004. Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara ophiolitic mélange, Central Anatolia, Turkey. Clays and Clay Minerals, 52, 227-239.

  • Yalçın, H., Bozkaya, Ö., 2006. Mineralogy and geochemistry of ultramafic- and sedimentary hosted talc deposits of Paleocene in the southern part of the Sivas basin, Turkey. Clays and Clay Minerals, 54, 333-350.

  • Yalçın, H., Yeşildağ, H., 2009. Yıldızeli (Sivas) Flogopit Oluşumlarının Mineralojik-Petrografik ve Jeokimyasal İncelenmesi. Cumhuriyet Üniversitesi Bilimsel Araştırma Projesi, No: M-333, 107 s.

  • Yalçın, H., Bozkaya, Ö., Başıbüyük, Z., 2004. Kangal Havzası (Sivas Tecer Dağı güneyi) Mg-kil ve Mg–karbonat oluşumlarının incelenmesi. C.Ü. Mühendislik Fakültesi Dergisi Seri A-Yerbilimleri, 21, 1-30.

  • Yalçın, H., Bozkaya, Ö., Hozatlıoğlu, D., 2009. Malatya-Kuluncak yöresinde serpantinit-yan kayaçlı Kretase yaşlı flogopit oluşumları. 14. Ulusal Kil Sempozyumu, Karadeniz Teknik Üniversitesi, Trabzon, 1-3 Ekim, Bildiriler Kitabı, s. 174-192.

  • Yılmaz, A. (1985). Yukarı Kelkit çayı ve Munzur dağları arasının temel jeoloji özellikleri ve yapısal evrimi. Türkiye Jeoloji Kurumu Bülteni, 28, 79- 92.

  • Yılmaz, A. (1998). Sivas havzasının jeodinamik evrimi. Ofiyolit-Granitoyid İlişkisi ile Gelişen Demir Yatakları Sempozyumu, 10-13 Eylül, Sivas, Bildiriler Kitabı, 66-82.

  • Yılmaz, H., Yılmaz, A., 2004. Divriği (Sivas) yöresinin jeolojisi ve yapısal evrimi. Türkiye Jeoloji Bülteni, 47, 13-45.

  • Yılmaz, H., Arıkal, T., Yılmaz, A., 2001. Güneş Ofiyoliti’nin (Divriği-Sivas) jeolojisi. 54. Türkiye Jeoloji Kurultayı Bildiriler CD si, 54-65.

  • Zheng, Y.F., 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates, Earth and Planetary Science Letters, 120, 247-263.

  • Yalçın, H , Bozkaya, Ö . (2016). Sivas-Divriği Demir Yatağı Kireçtaşı-Ofiyolit-Granitoyid Üçlü Dokanağında Flogopit Oluşumları . Türkiye Jeoloji Bülteni , 59 (1) , 55-86 . DOI: 10.25288/tjb.298291

  • Geology-Mineralogy and Isotope (O-D, S, Cu And Ar/Ar) Geochemistry of Sisorta High Sulfidation Epithermal Gold Deposit (Koyulhisar-Sivas)
    Çiğdem Şahin-Demir Ali Uçurum
    View as PDF

    Abstract: This study presents geological and geochemical features of gold deposit located in Sisorta area nearEvliya Tepe, Güzelyurt village. The investigation area covers 42 km2 land and located in 200 km NW ofSivas province in Sisorta. .δ 34S ‰ isotope values are ranging from -0,4 and ‰ ‰ 22, in Sisorta gold deposit. At the early stage ofmineralization S isotope value number is light and later S isotope value shows heavy numbers. This isindicating that the S isotope was originated from magma and changed due to temperature variations inthe last stages of the hydrothermal process.δ18O isotope values of gangue minerals are ranging from; ‰ 7,1 and ‰ 15,6 however, δD value is rangingfrom ‰ -77 to ‰ -25,3 Combining δ18O with δD from Sisorta samples, demonstrates meteoric waters wereimportant in the formation of the alteration silicate minerals analyzed. This is common in high sulfidationsilicate alteration minerals.40Ar/ 39Ar age dating is ranging from 78,85±0,94 Ma and 76,59±2,19 Ma as a plateau age and 78,25±0,42Ma and 75,30±0,90 Ma as isochron age in K-alunite, 80,44±0,84 in hornblende minerals from unalteredandesitic volcanic rocks. This shows that hydrothermal gold mineralization is deposited 3 Ma later thanthe volcanic host rock eruption.δ 65Cu ‰ values from copper-bearing minerals associated with Sisorta gold deposits are ranging from-5.502 ‰ to +3.032 ‰. The copper isotope values closest to the intrusions (deepest part of the system) donot show significant copper isotope variations (<1 per mil), in contrast the upper parts of the system showlarge copper isotope variations and indicate enrichment of copper due to supergene processes.

  • Ar/Ar Dating

  • High Sulphidation Epithermal Gold Deposit

  • Sisorta

  • Stable Isotopes


  • Bedi, Y., 1998, Geology of the region between Mesudiye (Ordu)-Ortakent (Koyulhisar-Sivas) and the Petrographical-Geochemical analysis of the magmatic rocks, Ph. D. Thesis, Selçuk University, 193 s.

  • Braxton, D., ve Mathur, R., 2011, Exploration Applications of Copper Isotopes in the Supergene Environment: A Case Study of the Bayugo Porphyry Copper-Gold Deposit, Southern Philippines: Economic Geology, v. 106, p. 1447- 1463.

  • Chadwick, T., 2005, Geology of Sisorta prospect, Eurasian Minerals Inc. report.

  • Chambers, L.A., 1982, Sulfur isotope study of a modern intertidal environment and the interpretation of ancient sulfides. Geochim. Cosmochim. Acta, 46, 721-728.

  • Chaussidon, M., Albarede, F., and Sheppard, S.M.F., 1989, Sulphur isotope variations in the mantle from ion microprope analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett., 92, 144-156.

  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geol., 28, 199-260

  • Coleman, M.L., 1977, Sulpfur isotopes in petrology. J. Geol. Soc. Lond., 133, 593-608.

  • Corbett, G.J., and Leach, T.M., 1988, Southwest Pasific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization: SEG Special Publication, No. 6, Chapter 3, p.31-67.

  • Craig, H., 1961, Isotopic variations in meteoric waters. Science v. 133, p, 1702-1703.

  • Garofali, K., Robinson, R., Thoennessen, M., 2012, Discovery of Chromium, Manganese, Nickel, and Copper Isotopes: Atomic Data and Nuclear Data Tables, 98, p. 356-372.

  • Graham, S., Pearson, N., Jackson, S., Griffin, W., O’Reilly, S.Y., 2004, Tracing Cu and Fe from Source to Porphyry: in Situ Determination of Cu and Fe Isotope Ratios in Sulfides from the Grasberg Cu-Au Deposit: Chemical Geology, 207, p. 147-169.

  • Ikehata, K., ve Hirata, T., 2012, Copper Isotope Characteristics of Copper-Rich Minerals from the Horoman Peridotite Complex, Hokkaido, Northhern Japan: Economic Geology, v. 107, p. 1489-1497.

  • Jebrak, M., 1997, Hydrothermal breccias in veintype ore deposits: A review of mechanisms, morphology and size distribution: Ore Geology Reviews v.12, p. 111-134.

  • Kerridge, J.F., Haymon, R.M., and Kastner M., 1983, Sulfur isotope systematics at the 21oN site, East Pasific Rise. Earth Planet. Sci. Lett., 66, 91-100.

  • Larson, B.P., Maher, K., Ramos, F.C., Chang, Z., Gaspar, M., Meinert, L.D., 2003, Copper Isotope Ratios in Magmatic and Hydrothermal Oreforming Environments: Chemical Geology, 201, p. 337-350.

  • Lawless, J.V., White, P.J., 1990, Ore-Related Breccias: A Reviesed Genetic Classification with Particular Reference to Epithermal Deposits: 12th New Zealand Geothermal Workshop, p. 197-201.

  • Li, W., Jackson, S.E., Pearson, N.J, Graham, S., 2010, Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia: Geochimica et Cosmochimica Acta v. 74, p. 4078- 4096.

  • Liu, S-A., Huang, J., Liu, J., Wörner, G., Yang, W., Tang, Y.C., Tang, L., Zheng, J., Li, S., 2015, Copper isotopic composition of the silicate Earth: Earth and Planetary Science Letters, v. 427, p.95- 103.

  • Mathur, R., Dendas, M., Titley, S., ve Phillips, A., 2010, Patterns in the Copper Isotope Composition of Minerals in Porphyry Copper Deposits in Southwestern United States, Economic Geology, 105, p. 1457-1467.

  • Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J., Hart, G., 2009a, Exploration Potential of Cu Isotope Fractionation in Porphyry Copper Deposits: Journal of Geochemical Exploration, 102, p. 1-6.

  • Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J., Hart, G., 2009b, Copper Isotope Fractionation Used to Identify Supergene Processes: Societyy of Economic Geologists, Special Publication 14, p. 45-49.

  • Mirnejad, H., Mathur, R., Einali, M., Dendas, M., ve Alirezaei, S., 2010, A Comparative Copper Isotope Study of Porphyry Copper Deposits in Iran: Geochemistry: Exploration, Environment, Analysis, v.10 , p. 413-418.

  • Ollier, C.D., 2007, Breccia-Filled Pipes: Distinguishing Between Volcanic And Non-Volcanic Origins: Geogr. Fis. Dinam. Quat. 30, p. 63-76.

  • Picot, P., ve Johan, Z., 1982, Atlas of Ore Minerals, Elsevier, Amsterdam, 458 pp.

  • Şahin Demir, Ç., 2015, Sisorta (Ortakent-KoyulhisarSivas) yöresi altın yatağının jeolojik ve jeokimyasal özellikleri: Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, doktora tezi, 270 s, yayımlanmamış.

  • Sakai H., Casadevall T.J. and Moore, J.G., 1982, Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta, 46,729-738.

  • Sakai H., Des Maris, D.J., Ueda, A., and Moore, J.G., 1984, Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts and volcanic gases at Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta,48, 2433-2441.

  • Tamaş, C.G., Milesi, J.P., 2002, Hydrovolcanic Breccia Pipe Structures - General Features And Genetic Criteria - I. Phreatomagmatic Breccias: Studia Universitatis Babeş-Bolyai, Geologia, Xlvii, 1, p. 127-147.

  • Tamaş, C.G., Milesi, J.P., 2003, Hydrothermal Breccia Pipe Structures – General Features And Genetic Criteria – II. Phreatic Breccias: Studia Universitatis Babeş-Bolyai, Geologia, Xlviii, 1, p. 55-66.

  • Taylor, J.r., H. P., 1997, Oxygenand and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits, Geochemistry of Hydrothermal Ore Deposit, 3rd Edition ed. Barnes, H.L. John Wiley &Sons, New York, p. 229-302.

  • Uçurum A., Lechler, P.J., Arehart, G.B., Molnar, F., 2007, Platinum-Group Element, Stable Isotope, and Fluid Inclusion Investigation of the Ultramafic Rock-Hosted Gunes-Sogucak Ni-Cu-Sulfide Mineralization, Gunes Ophiolite, East-Central Turkey: International Geology Review, v.49, p.169-192.

  • Ueda, A., and Sakai, H., 1984, Sulfur isotope study of Quaternary volcanic rocks from the Japanese island arc. Geochim. Cosmochim. Acta, 48, 1837- 1848.

  • Yetkin, E., 2009, Alteration identification by hyperspectral remote sensing in Sisorta Gold Prospect (Sivas-Turkey): unpublished PhD thesis, Middle East Technical University, 129 p.

  • Şahin Demir, Ç , Uçurum, A . (2016). Sisorta (Koyulhisar-Sivas) Yüksek Sülfidasyon Epitermal Altın Yatağının Jeoloji-Mineralojisi ve İzotop (O-D, S, Cu ve Ar/Ar) Jeokimyası . Türkiye Jeoloji Bülteni , 59 (1) , 87-114 . DOI: 10.25288/tjb.298300

  • ISSUE FULL FILE
    View as PDF