Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2017 NİSAN Cilt 60 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
New Findings of Existence Anthropocene in Recent Sediments at Marmara and Black Sea Coast
Akin Alak Ökmen Sümer
View as PDF

Abstract: With each passing day, industrialization, the use of fossil fuels, uncontrolled agriculture and similarhuman activities are increasing. As a results of these activities, the nature is impacted by a number of changesand anthropogenic pollution. In this study, drilling core samples from the Izmit Bay (IZC-01) in the Sea ofMarmara, Surmene (SC-01) and Hopa (HC-01) coasts in the Black Sea have been investigated with lithological,sedimentological, paleontological and geochemical perspectives. The concentrations of heavy metals as Ba, As, Pb,Cd, Cr, Ni, Ti and Zn were considered from total of 45 samples which are covering 15 samples from each three cores.PLI (Pollution load index) values are calculated by using the results of As, Ba, Pb, Cr, Ni, and Zn elements, standout 3.255 for the Gulf of Izmit, 2,195 and 1,706 for Surmene and Hopa in respectively. PLI values indicate acceptedlevel of pollution above for the Gulf of Izmit and despite being dirty Sürmene and Hopa relatively less polluted. Inaddition, EF values indicate a significant enrichment of the As, Ni and Cr and moderate enrichment of Pb and Znelements at Izmit Gulf. In locations Hopa and Sürmene; As, Ba and Cr elements showing insufficient enrichment and Ni, Pb and Zn was observed a significant enrichment. Besides, pollution related gypsum crystallization isalso remarkable for Maramara core. The abundance and diversity of paleontological records in the cores are alsocompatible in line with the decreasing and increasing rate of pollution. Towards the deepest part of the all 3 cores, areduction in the concentrations of elements such as Pb, Zn, Cr and As is seen. Radiocarbon dates obtained from theshells of these reduction levels are mesured in Sürmene 420±55 (BP) and Hopa 500±50 (BP). In addition, results ofthe other previous studies based on sedimentation rate and these ages are compatible. These specified age rangeswere compared with opinions in the literature which are related to the beginning of Anthropocene and because ofthe overlaping, these clearly observed levels have been interpreted as the limit of the possible Anthropocene time.

  • Anthropocene

  • anthropogenic pollution

  • Black Sea

  • Heavy metal analysis

  • Sea of Marmara


  • Abrahim, G. M. S. ve Parker, R. J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

  • Adamo, P., Arienzo, M., Imperato, M., Naimo, D., Nardi, G., ve Stanzione, D., 2005. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 61(6), 800-809.

  • Aksu, A. E., Hiscott, R. N., Kaminski, M. A., Mudie, P. J., Gillespie, H., Abrajano, T. ve Yaşar, D., 2002. Last glacial–Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Marine Geology, 190(1), 119-149.

  • Aksu, A. E., Yaşar, D. ve Uslu, O., 1998. Assessment of marine pollution in Izmir Bay: Heavy metal and organic compound concentrations in surficial sediments. Turkish Journal of Engineering and Environmental Sciences, 22(5), 387-416.

  • Andersson, A. J., Mackenzie, F. T. ve Lerman, A., 2005. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. American Journal of Science, 305(9), 875-918.

  • Aslan-Yılmaz, A., Okuş, E. ve Övez, S., 2004. Bacteriological indicators of anthropogenic impact prior to and during the recovery of water quality in an extremely polluted estuary, Golden Horn, Turkey. Marine Pollution Bulletin, 49(11), 951-958.

  • Atalar, M., Kucuksezgin, F., Duman, M., ve Gonul, L. T., 2013. Heavy metal concentrations in surficial and core sediments from Izmir Bay: an assessment of contamination and comparison against sediment quality benchmarks. Bulletin of Environmental Contamination and Toxicology, 91(1), 69-75.

  • Balkıs, N., Aktan, Y. ve Balkıs, N., 2012. Toxic metal (Pb, Cd and Hg) levels in the nearshore surface sediments from the European and Anotolian Shores of Bosphorus, Turkey. Marine Pollution Bulletin, 64 (9), 1938-1939.

  • Bampton, M., 1999. Anthropogenic transformation. In Environmental Geology (pp. 22-27). Springer Netherlands.

  • Bermejo, J. S., Beltrán, R. ve Ariza, J. G., 2003. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29 (1), 69-77.

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B. ve Suzuki, S., 2010. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173 (1), 384-392.

  • Birch, G., Siaka, M. ve Owens, C., 2001. The source of anthropogenic heavy metals in fluvial sediments of a rural catchment: Coxs River, Australia. Water, Air, and Soil Pollution, 126 (1-2), 13-35.

  • Buat-Menard, P. Ve Chesselet, R., 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42 (3), 399-411.

  • Certini, G. ve Scalenghe, R., 2011. Anthropogenic soils are the golden spikes for the Anthropocene. The Holocene, 21, 1269-1274.

  • Charola, A. E., Pühringer, J. ve Steiger, M., 2007. Gypsum: a review of its role in the deterioration of building materials. Environmental Geology, 52(2), 339-352.

  • Crossland, C. J., Kremer, H. H., Lindeboom, H., Crossland, J. I. M. ve Le Tissier, M. D., 2005. Coastal fluxes in the Anthropocene: the landocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme. Springer Science & Business Media, Berlin, 232 s.

  • Crutzen P. J. ve Stoermer, E. F., 2000. The Anthropocene. Global Change Newsl. 41, 17-18.

  • Crutzen, P.J., 2002. Geology of mankind. Nature, 415, 23.

  • Crutzen, P.J., 2006. The “Anthropocene”. Ehlers E. Ve Krafft T. (Eds.), Earth System Science in the Anthropocene. Springer Berlin Heidelberg, Heidelberg, 273 s.

  • Çağatay, M.N., Saltoğlu, T. ve Gedik, A., 1987. Karadeniz’in güncel çökellerinin jeokimyası. Geological Engineering, 30-31, 47-64.

  • Davis, R.V., 2011. Inventing the present: historical roots of the Anthropocene. Earth Science History, 30, 63-84.

  • Demirbağ, E., Rangin, C., Le Pichon, X. ve Celal, A.M.C., 2003. Investigation of the tectonics of the Main Marmara Fault by means of deep-towed seismic data. Tectonophysics, 361, 1-19.

  • Eichler, A., Tobler, L., Eyrikh, S., Malygina, N., Papina, T. ve Schwikowski, M., 2014. Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union. Environmental science ve technology, 48(5), 2635-2642.

  • Ellis, E. C. ve Ramankutty, N., 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439-447.

  • Ellis, E. C., 2011. Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369 (1938), 1010-1035.

  • Ergi̇n, M., Bodur, M. N., Yildi̇z, M., Edi̇ger, D., Edi̇ger, V., Yemeniciog, S. ve Yücesoy, F., 1994. Sedimentation rates in the sea of Marmara: a comparison of results based on organic carbonprimary productivity and 210 Pb dating. Continental Shelf Research, 14(12), 1371-1387.

  • Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E. ve Yörük, R., 1991. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269-285.

  • Essien, J. P., Antai, S. P. ve Olajire, A.A., 2009. Distribution, seasonal variations and ecotoxicological significance of heavy metals in sediments of cross river estuary mangrove swamp. Water, Air, and Soil Pollution, 197(1-4), 91-105.

  • Evans, G., Erten, H., Alavi, S. N., Von Gunten, H. R. ve Ergin, M., 1989. Superficial deep-water sediments of the eastern Marmara basin. Geo-marine Letters, 9(1), 27-36.

  • Fischer-Kowalski, M., Krausmann, F. ve Pallua, I., 2014. A sociometabolic reading of the Anthropocene: Modes of subsistence, population size and human impact on Earth. The Anthropocene Review, 1, 8-33.

  • Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T. ve Talamo, S., 2006. Santorini Eruption Radiocarbon Dated to 1627–1600 B.C. Science, 312, 548.

  • Galuszka, A., Migaszewski, Z. M. ve Zalasiewicz, J., 2014. Assessing the Anthropocene with geochemical methods. Geological Society, London, Special Publications, 395(1), 221-238.

  • Gomez-Heras, M., Smith, B. J. ve Viles, H. A., 2008. Laboratory modelling of gypsum crust growth on limestone related to soot pollution and gaseous sulphur: implications of ‘cleaner’environments for stone decay. In Lukaszewicz, J.W., Niemcewicz, P. (Editors), 11th International Congress on Deterioration and Conservation of Stone (2 volumes). Wydawnictwo Naukowe Universytetu Mikolaja Kopernika, Torun. pp. 105-112

  • Gökmen, A., Yıldız, M., Erten, H. N. ve Salihoǧlu, İ., 1996. Dating the Sea of Marmara sediments by a uniform mixing model. Journal of Environmental Radioactivity, 33(1), 91-104

  • Guichard, F., Carey, S., Arthur, M.A., Sigurdsson, H., Arnold, M., 1993. Tephra from the Minoan eruption of Santorini in sediments of the Black Sea, Nature, 363, 610-612.

  • Güler, C., Kurt, M. A., Alpaslan M. ve Akbulut, C., 2012. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414, 435-451.

  • Gürbüz, A. ve Gürer, Ö.F., 2008. Anthropogenic affects on lake sedimentation process: a case study from Lake Sapanca, NW Turkey. Environmental Geology, 56(2), 299-307.

  • Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, 975–1001.

  • Hall, K.J., 2002. Bathymetric compilations of the seas around Israel I: the Caspian and Black seas. Geological Survey of Israel Current Research, 13, 105-108.

  • Halstead, M. J., Cunninghame, R. G. ve Hunter, K. A., 2000. Wet deposition of trace metals to a remote site in Fiordland, New Zealand. Atmospheric Environment, 34(4), 665-676.

  • Hammer, C.U., Clausen, H.B., Friedrich, W.L. ve Tauber, H., 1987. The Minoan eruption of Santorini in Greece dated to 1864 BC? Nature, 328, 517-519.

  • Huerta-Diaz, M. A., Delgadillo-Hinojosa, F., Hernández-Ayón, M., Segovia-Zavala, J. A., García-Esquivel, Z., López-Zárate, H., SiqueirosValencia. A. ve Galindo-Bect, S., 2008. Diagnosis of trace metal contamination in sediments: the example of Ensenada and El Sauzal, two harbors in Baja California, Mexico. Marine Environmental Research, 66(3), 345-358.

  • Kahvecioğlu, Ö., Kartal, G., Güven, A. ve Timur, S., 2003. Metallerin çevresel etkileri-I. Metalurji Dergisi, 136, 47-53.

  • Kaska, Y., Başkale, E., Urhan, R., Katılmış, Y., Gidiş, M., Sarı, F., Sözbilen, D., Canbolat, A.F., Yılmaz, F., Barlas, M., Özdemir, N. ve Özkul, M., 2010. Natural and anthropogenic factors affecting the nest-site selection of Loggerhead Turtles, Caretta caretta, on Dalaman-Sarıgerme beach in Southwest Turkey: (Reptilia: Cheloniidae). Zoology in the Middle East, 50(1), 47-58.

  • Koreneva, E.V., 1971. Spores and pollen in Mediterranean bottom sediments. In: Funnell, B.M., Riedel, W.R. (Eds.), The Micropaleontology of the Oceans. Cambridge University Press, Cambridge, 828 s.

  • Kurt, H. ve Yücesoy, E., 2009. Submarine structures in the Gulf of İzmit, based on multichannel seismic reflection and multibeam bathymetry. Marine Geophysical Researches, 30(2), 73-84.

  • Kwiecien, O., Arz, H.W., Lamy, F., Wulf, S., Bahr, A., Röhl, U. ve Haug, G.H., 2008. Estımated reservoır ages of the Black Sea since the last glacial. Radiocarbon, 50, 99-118.

  • Lamy, F., Arz, H.W., Bond, G., Bahr, A. ve Pätzold, J., 2006. Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography, 21, PA1008.

  • Londeix, L., Herreyre, Y., Turon, J. L. ve Fletcher, W., 2009. Last Glacial to Holocene hydrology of the Marmara Sea inferred from a dinoflagellate cyst record. Review of Palaeobotany and Palynology, 158(1), 52-71.

  • Loska, K. ve Wiechuła, D., 2003. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723-733.

  • Marsh, G.P., 1865. Man and nature, physical geography as modified by human action. Charles Scribner, New York, 593 s.

  • Marszałek, M., Alexandrowicz, Z. ve Rzepa, G., 2014. Composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment. Environmental Science and Pollution Research, 21(24), 14023-14036.

  • McHugh, C. M., Gurung, D., Giosan, L., Ryan, W. B., Mart, Y., Sancar, U., Burckle, L. ve Cagatay, M. N., 2008. The last reconnection of the Marmara Sea (Turkey) to the World Ocean: a paleoceanographic and paleoclimatic perspective. Marine Geology, 255(1), 64-82.

  • MGDS (Marine Geocience Data System), 2016. http:// www.marine-geo.org, 01 April 2016.

  • Mohiuddin, K. M., Zakir, H. M., Otomo, K., Sharmin, S. ve Shikazono, N., 2010. Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal of Environmental Science ve Technology, 7(1), 17-28.

  • Moore, F., Attar, A. ve Rastmanesh, F., 2011. Anthropogenic sources of heavy metals in deposited sediments from runoff and industrial effluents, Shiraz, SW Iran. International Proceedings of Chemical, Biological ve Environmental Engineering, 6, 215-219.

  • Morillo, J., Usero, J., ve Gracia, I., 2002. Heavy metal fractionation in sediments from the Tinto River (Spain). International Journal of Environmental & Analytical Chemistry, 82(4), 245-257.

  • Mudie, P. J., Rochon, A. ve Aksu, A. E., 2002. Pollen stratigraphy of Late Quaternary cores from Marmara Sea: land–sea correlation and paleoclimatic history. Marine Geology, 190(1), 233-260.

  • Omgbu, J.A. ve Kokogbo, M.A., 1993. Determination of Zn, Pb, Cn and Hg in soils of Ekpan, Nigeria. Environ Int, 19, 611-612.

  • Owen, R. B. ve Sandhu, N., 2000. Heavy metal accumulation and anthropogenic impacts on Tolo Harbour, Hong Kong. Marine Pollution Bulletin, 40(2), 174-180.

  • Palanques, A. ve Diaz, J. I., 1994. Anthropogenic heavy metal pollution in the sediments of the Barcelona continental shelf (Northwestern Mediterranean). Marine Environmental Research, 38(1), 17-31.

  • Ramsey, C. B., ve Lee, S., 2013. Recent and planned developments of the program OXCAL. Radiocarbon, 55, 720–730.

  • Rashed, M.N., 2010. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178(1), 739-746.

  • Ray, A.K., Tripathy, S.C., Patra, S. ve Sarma, V.V., 2006. Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environment International, 32(2), 219-223.

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869– 1887.

  • Riemann, L., Steward, G. F., ve Azam, F., 2000. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Applied and Environmental Microbiology, 66(2), 578-587.

  • Ross, D.A., 1970. Black Sea: Recent Sedimentary History. Science, 170 (3954), 163-165.

  • Ruddiman, W.F., 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3), 261-293.

  • Sağlam, N. ve Cihangir, N., 1995. Ağır metallerin biyolojik süreçlerle biyosorbisyonu çalışmaları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 11(11).

  • Schiff, K. C. ve Weisberg, S. B., 1999. Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.

  • Skripkin, V. V. ve Kovaliukh, N. N., 1998. Recent developments in the procedures used at the SSCER laboratory for the routine preparation of lithium carbide. Radiocarbon, 40(1), 211-214.

  • Spencer, K. L., Cundy, A. B., ve Croudace, I. W., 2003. Heavy metal distribution and early-diagenesis in salt marsh sediments from the Medway Estuary, Kent, UK. Estuarine, Coastal and Shelf Science, 57, 43–54,

  • Stanley, D. J. ve Blanpied, C., 1980. Late Quaternary water exchange between the eastern Mediterranean and the Black Sea. Nature, 285, 537-541.

  • Steffen, W., Crutzen, P. J. ve McNeill, J. R., 2007. The Anthropocene: are humans now overwhelming the great forces of nature. AMBIO: A Journal of the Human Environment, 36(8), 614-621.

  • Sutherland, B. R., 2000. Internal wave reflection in uniform shear. Quarterly Journal of the Royal Meteorological Society, 126(570), 3255-3286.

  • Szefer, P., Kusak, A., Szefer, K., Glasby, G. P., Jankowska, H., Wołowicz, M. ve Ali, A. A. 1998. Evaluation of the anthropogenic influx of metallic pollutants into Puck Bay (southern Baltic). Applied Goechemistry, 13, 293–304.

  • Şener, Ş., Davraz, A. ve Karagüzel, R., 2013. Evaluating the anthropogenic and geologic impacts on water quality of the Eğirdir Lake, Turkey. Environmental Earth Sciences, 70(6), 2527-2544.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R. ve Jeffrey, D. W., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1-4), 566-575.

  • Török, Á., Siegesmund, S., Müller, C., Hüpers, A., Hoppert, M. ve Weiss, T. 2007. Differences in texture, physical properties and microbiology of weathering crust and host rock: a case study of the porous limestone of Budapest (Hungary). Geological Society, London, Special Publications, 271(1), 261-276.

  • Turekian, K. K. ve Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth›s crust. Geological Society of America Bulletin, 72(2), 175-192.

  • Valdés, J., Vargas, G., Sifeddine, A., Ortlieb, L., ve Guinez, M., 2005. Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23o S), Northern Chile: geochemical and statistical approach. Marine Pollution Bulletin, 50(12), 1558-1568.

  • Van Driessche, A. E. S., García-Ruíz, J. M., Tsukamoto, K., Patiño-Lopez, L. D. ve Satoh, H., 2011. Ultraslow growth rates of giant gypsum crystals. Proceedings of the National Academy of Sciences, 108(38), 15721-15726.

  • Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill, J.R., Richter, D.D., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N. ve Wolfe, A.P.,2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), aad2622,1-10.

  • Wilkinson, I. P., Poirier, C., Head, M. J., Sayer, C. D. ve Tibby, J., 2014. Microbiotic signatures of the Anthropocene in marginal marine and freshwater palaeoenvironments. Geological Society, London, Special Publications, 395(1), 185-219.

  • Wolfe, A. P., Hobbs, W. O., Birks, H. H., Briner, J. P., Holmgren, S. U., Ingólfsson, Ó., Kaushal. S.S., Miller, G.H., Pagani, M., Saros, J.E. ve Vinebrooke, R. D., 2013. Stratigraphic expressions of the Holocene–Anthropocene transition revealed in sediments from remote lakes. Earth-Science Reviews, 116, 17-34.

  • Yang, K., Nam, T., Nam, K. ve Kim, Y. J., 2016. Characteristics of heavy metal contamination by anthropogenic sources in artificial lakes of urban environment. KSCE Journal of Civil Engineering, 20(1), 121-128.

  • Yaşar, D., Aksu, A. E. ve Uslu, O., 2001. Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish Journal of Engineering and Environmental Sciences, 25(4), 299-313.

  • Yatkin, S. ve Bayram, A., 2008. Determination of major natural and anthropogenic source profiles for particulate matter and trace elements in Izmir, Turkey. Chemosphere, 71(4), 685-696.

  • Zalasiewicz, J., Waters, C. N., Williams, M., Barnosky, A. D., Cearreta, A., Crutzen, P., Ellis, E., Ellis, A. M., Fairchild, J.I., Grinevald J., Haff, K.P., Hajdas. I., Leinfelder, R., McNeill, J., Odada, E.O., Poirier, C.,Richter D., Steffen, W., Summerhayes, C., Syvitski, P.M.J., Vidas, D., Wagreich, M., Wing, S.L., Wolfe, S.L.A., Zhisheng. A. ve Oreskes, N., 2015. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, 383, 196-203.

  • Zhang, C., Qiao, Q., Piper, J. D. ve Huang, B., 2011. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159(10), 3057-3070.

  • Alak, A , Sümer, Ö . (2017). Marmara ve Karadeniz Kıyılarındaki Güncel Sedimanlar İçinde Antroposen’in Varlığına Ait Yeni Bulgular . Türkiye Jeoloji Bülteni , 60 (2) , 145-168 . DOI: 10.25288/tjb.300672

  • Geologic, Geomorphologic and Geodetic Analyses of Surface Deformations Observed in Bolvadin (Afyon-Akşehir Graben, Afyon)
    Çağlar Özkaymak Hasan Sözbilir İbrahim Tiryakioğlu Tamer Baybura
    View as PDF

    Abstract: One of the prominent examples of the surface deformations that have been formed without destructiveearthquake failure since last 10-20 years in the west Anatolian extensional province, observed in Bolvadin settlementarea located at the middle part of the Afyon-Akşehir Graben. In this area, some linear surface deformations thatstarts on the southwestern side of the town and can be followed until the northwestern side have been observed sincelast 4 years. During the field studies in Bolvadin area, progressive surface deformations such as surface faults andearth fissures whose length varies between 300 meters and 2 kilometers and strike varies between N15°E and N70°Eare mapped. The northernmost one of the surface deformations mapped in settlement area of Bolvadin have thecharacteristics of the southwestern continuation of Bolvadin Fault. Besides this, qeologic and morphological analysisindicate that the southeastern block is a down-dropped block and vertical displacements along the deformation zoneare varies between 10-40 cm. According to geodesic data, measured rates of vertical offset in the Bolvadin is 7.1 cm/year. In order to find out the effect of active tectonism on formation of surface deformations, further trench basedpalaeosismological studies are necessary.

  • Active tectonics

  • aseismic surface deformations

  • Bolvadin

  • western Anatolia


  • Akyüz, S., Uçarkuş, G., Şatır, D., Dikbaş, A. ve Kozacı, Ö., 2006. 3 Şubat 2002 Çay depreminde meydana gelen yüzey kırığı üzerinde paleosismolojik araştırmalar. Yerbilimleri, 27 (1), 41-52.

  • Aydar, E., Bayhan, H. ve Gourgaud, A., 2003. The lamprophyres of Afyon Stratovolcano, Western Anatolia, Turkey: Description and genesis. C.R. Geoscience, 335, 279-288.

  • Blumenthal, M., 1963. Le systeme structural du Taurus sud-Anatolien. In Livre a memoire du Proffesseur P. Fallot. Memoire de la Societe Geologique de France, 2, 611-662.

  • Bozkurt, E. ve Oberhanslı, R., 2001. Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution - a synthesis. International Journal Earth Sciences, 89, 679-708.

  • Carpenter, M.C., 1999. South-Central Arizona. Earth fissures and subsidence complicate development of desert water resources. In: Galloway, D., Jones, D.R., Ingebritsen, S.E. (Eds.), Land Subsidence in the United States. U.S. Geological Survey. Circular, 1182. U.S. Department of the Interior, Reston, Virginia, U.S.A.

  • Çevikbaş A., Ercan, T. ve Metin, S., 1988. Geology and Regional Distribution of Neogene Volcanics Between Afyon-Şuhut. Journal of Pure and Applied Sciences, METU, 21 (1-3), 479-499.

  • Demirtaş, R., Iravul, Y., ve Yaman M. 2002. 3 Şubat 2002 Eber ve Çay depremleri ön raporu. Jeoloji Mühendisliği Haber Bülteni, (1 ─ 2), 58 ─ 63.

  • Demirtaş, R., Ercan, S., Demir, B. ve Aktan., M., 2008a. Ege Çöküntü Bölgesi’nde Alüvyal Havzalarda Son 20 Yılda Oluşmuş Yüzey Deformasyonlarının Oluşum Mekanizması. ATAG 12 Bildiri Özleri Kitabı, 42-44.

  • Demirtaş, R., Yavuz, M.A. ve Şahin, B. 2008b. Manisa ili, Sarıgöl ilçesi İmar Planı Sınırları içerisinde geçen Gediz Çöküntüsüne ait fay zonunun Paleosismolojik ve Yüzey Faylanması Tehlike Zonu Açısından Değerlendirilmesi. Afet İşleri Genel Müdürlüğü Raporu. 17s (yayınlanmamış).

  • Emre, Ö., Duman, T.Y., Doğan, A., Özalp, S., Tokay, F. ve Kuşcu, İ., 2003. Surface Faulting Associated with the Sultandağı Earthquake (Mw 6.5) of 3 February 2002, Southwestern Turkey. Seismological Research Letters 74 (4), 382-392.

  • Emre, Ö., Duman, T. Y., Özalp, S., Olgun, Ş. ve Elmacı, H., 2011. 1:250.000 scale active fault map series of Turkey, Afyon (NJ 36-5) Quadrangle. Serial number: 16, General Directorate of Mineral Research and Exploration, Ankara, Turkey.

  • EMSC (European-Mediterranean Seismological Centre), 2016. http://www.emsc-csem.org, 3 June 2016.

  • Ergin, K., Güçlü, U. ve Uz, Z., 1967. Türkiye ve Civarının Deprem Kataloğu (MS. 11-1964).

  • İstanbul: İstanbul Teknik Üniversitesi Maden Fakültesi Arz Fiziği Enstitüsü yayınları, No 28.

  • Hernández-Madrigal, V. M., Muñiz-Jauregui, J. A., Garduño-Monroy, V. H, Flores-Lázaro, N. ve Figueroa-Miranda, S. 2014. Depreciation factor equation to evaluate the economic losses from ground failure due to subsidence related to groundwater withdrawal. Natural Science, 6 (3), 108-113.

  • Holzer, T.L., 1978. Results and Interpretation of Exploratory Drilling Near the Picacho Fault, South-Central Arizona: U.S. Geological Survey Open- File Report 78-1016, 17 p.

  • Holzer, T.L., 1980. Faulting Caused by Ground-Water Level Declines, San Joaquin Valley, California. Water Resources Research, 16 (6), 1065- 1070.

  • Holzer, T.L., 1984. Ground failure induced by groundwater withdrawal from unconsolidated sediment. In: Holzer Holzer, T.H., Ed., ManInduced Land Subsidence, VI. Geological Society of America. Reviews in Engineering Geology, Colorado, 67-105.

  • Holzer, T.L. ve Galloway, D.L., 2005. Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Geological Society of America, Reviews in Engineering Geology, 16, 87-99.

  • Gürsoy, H., Temiz, H., Tatar, O. ve Barka, A., 1997. Gediz grabeni güney kenarındaki güncel deformasyon verileri. II. İzmir ve Çevresinin Jeoteknik ve Deprem Sorunları Sempozyumu, Bildiri Özetleri, s.14.

  • KANDİLLİ (Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü), 2011. http://www.koeri. boun.edu.tr/, 3 June 2016.

  • Kaymakcı, N., 2006. Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): Implications of spatial variation of relative paleostress magnitudes and orientations. Journal of Asian Earth Sciences, 27, 207–222.

  • Kibici, Y., Dinç, D., ve Uçar, A., 2012. Afyonkarahisar Yöresi Volkanik Kayaçlarının Mineralojik ve Petrografik Özellikleri. Dumlupınar Ü. Fen Bilimleri Enstitüsü Dergisi, 29, 53-70.

  • Koca, M. Y., Sözbilir, H. ve Uzel, B., 2011. Sarıgöl Fay Zonu Boyunca Meydana Gelen Deformasyonların Nedenleri Üzerine bir araştırma. Jeoloji Mühendisliği Dergisi 35 (2), 151-173.

  • Koçyiğit, A., 1984. Güneybatı Türkiye ve yakın dolayında levha içi yeni tektonik gelişim. Türkiye Jeoloji Kurumu Bülteni, 27 (1), 1- 15.

  • Koçyiğit, A., Ünay, E. ve Saraç, G. 2000. Episodic graben formation and extensional neotectonic regime in west Central Anatolia and the Isparta Angle: a case study in the Akşehir-Afyon Graben, Turkey. Geological Society of London Special Publication, 173, 405-421.

  • Koçyiğit, A., Bozkurt, E., Kaymakçı, N. ve Şaroğlu, F., 2002. 3 Şubat 2002 Çay (Afyon) Depreminin Kaynağı ve Ağır Hasarın Nedenleri: Akşehir Fay Zonu, ODTÜ Tektonik Araştırma Birimi Ön Raporu, 19 s.

  • Koçyiğit, A. ve Özacar, A. 2003. Extensional neotectonic regime through the NE edge of outer Isparta Angle, SW Turkey: new field and seismic data. Turkish Journal of Earth Sciences 12, 67–90.

  • Okay, A.I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. ve Akyüz S., 1996. Paleo- and NeoTethyan events in northwest Turkey: geological and geochronological constraints. in Tectonics of Asia (ed. A. Yin ve M. Harrison), Cambridge University Press, 420-441.

  • Okay, A.I. ve Tüysüz, O., 1999. Tethyan sutures of northern Turkey. In «The Mediterranean Basins: Tertiary extension within the Alpine orogen» (eds. B. Durand, L. Jolivet, F. Horváth and M. Séranne). Geological Society, London, Special Publication 156, 475-515.

  • Özdemir, T., 2016. Kişisel Görüşme. Bolvadin, Afyon, Türkiye.

  • Özden, S., Kavak, K.Ş., Koçbulut, F., Över, S. ve Temiz, H., 2002. 3 Şubat 2002 Çay (Afyon) Depremleri, Türkiye Jeoloji Bülteni, 45 (2), 49-56.

  • Özkaymak, Ç., 2015. Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27 (2-3), 110-129.

  • Özkaymak, Ç., Sözbilir, H. ve Uzel B., 2013. Neogene– Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics Special issue: Tethyan Evolution, Anatolia. 65, 117-135

  • Özkaymak, Ç., Yıldız, A., Sarıkaya, H., Başaran, C., Dumlupınar, İ., Akman, İ., 2014. Bolvadin Fayı boyunca meydana gelen yüzey deformasyonları, Batı Anadolu-Türkiye. Aktif Tektonik Araştırma Grubu Çalıştayı Onsekizinci Çalıştayı (ATAG18), Bildiri Özleri Kitabı, s. 52.

  • Özkaymak, Ç., Sözbilir, H., Tiryakioğlu, İ., Baybura, T., 2015. Sarıgöl (Gediz Grabeni, Manisa) ile Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Oluşum ve Kökensel Açıdan Karşılaştırılması. TMMOB Jeoloji Mühendisleri Odasi 68. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, s. 464-465.

  • Pacheco-Martínez, J., Hernandez-Marín M., Burbey., T. J., González-Cervantes, N., Ortíz-Lozano, J.Á., Zermeño-De-Leon, M.E. ve Solís-Pinto, A., 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México. Engineering Geology 164, 172– 186.

  • Pankratz, L. W., Ackermann, H. D., ve Jachens, R. C., 1978. Results and Interpretation of Geophysical Studies Near the Picacho Fault, South-Central Arizona: U.S. Geological Survey Open-File Report 78-1106, 17 p.

  • Pewe, 1990. Land subsidence and earth-fissure formation caused by groundwater withdrawal in Arizona; A review. Groundwater Geomorphology The role of subsurface water in Earth-surface processes and Landforms, edited by Charles G. Higgins, Donald Robert Coates, Geological Society of America pub. p.252.

  • Pınar, N. ve Lahn, E., 1952. Türkiye Depremleri İzahlı Kataloğu. Bayındırlık Bakanlığı, Yapı ve İmar İşleri Reisliği, No. 6, Ankara.

  • Poyraz, F., Tatar, O., Hastaoğlu, K.Ö., Tiryakioğlu, İ., Gürsoy Ö., Koçbulut F., Türka, T., Demirel, M., Duman, H., Ciğer, A.F. ve Güle, D., 2015. Gediz Grabeninin Doğu Kesimindeki Güncel Tektonik Hareketlerin GPS ve Ps-InSAR Yöntemleri Kullanılarak Belirlenmesi; İlk Sonuçlar. Harita Teknolojileri Elektronik Dergisi 7(1), 17-28.

  • Tiryakioğlu, İ., Baybura, T., Özkaymak, Ç., Sözbilir, H., Sandıkçıoğlu, A., Erdoğan, S., Yılmaz, İ., Uysal, M., Yılmaz, M., Yıldız, A., Dereli, M.A., Yalçın, M., Dumlupınar, İ., M., Yalım, H., Ertuğrul, O., 2015. Sultandağı Fayı Batı Kısmı Fay Aktivitelerinin Multidisipliner Çalışmalarla Belirlenmesi. Harita Teknolojileri Elektronik Dergisi, 7(1), 7-16.

  • Turan, N., 2002.Geological map of Turkey in 1:500.000 scale: Ankara sheet.Publication of Mineral Research and Explaniton Direction of Turkey (MTA), Ankara.

  • Ulusay, R., Aydan, Ö., Erken, A., Tuncay, E., Kumsar, H. ve Kaya, Z., 2004. An overview of geotechnical aspects of the C ay-Eber (Turkey) earthquake. Engineering Geology 73, 51–70.

  • Van Siclen, D. C., 1967. The Houston Fault Problem, in Proceedings, American Institute of Professional Geologists, Texas Section, Annual Meeting, 3rd, Dallas, p. 9-31.

  • Yürür, T., Köse, O., Demirbağ, H., Özkaymak, Ç. ve Selçuk, L. 2003. Could the coseismic fractures of a lake ice reflect the earthquake mechanism? (Afyon earthquakes of 2 March 2002, Central Anatolia, Turkey). Geodinamica Acta 16, 83-87.

  • Özkaymak, Ç , Sözbilir, H , Tiryakioğlu, İ , Baybura, T . (2017). Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Jeolojik, Jeomorfolojik ve Jeodezik Analizi . Türkiye Jeoloji Bülteni , 60 (2) , 169-189 . DOI: 10.25288/tjb.302914

  • Mineralogy and Geochemistry of Clayey Rocks Intercalated with Coal Seams in the Neogene Alpu Basin, Eskişehir, Central Turkey
    Hülya Erkoyun
    View as PDF

    Abstract: The Miocene-Pliocene lacustrine units comprises bituminous shale, coal seam, conglomerate, siltstone,sandstone and claystone were deposited in a graben developed along the Eskişehir Fault Zone at the east ofEskişehir. The geological, mineralogical and geochemical analyses were performed on samples obtained fromES4 and ES7 core drilling holes at the Alpu coal basin. Abundant smectite associated with kaolinite, illite, quartz,feldspar, dolomite, siderite, accessory amphibole, gypsum, alunite and pyrite. The muscovite, chlorite, feldspar,serpantine crystals and their groundmass are partly to completely argillized in host rocks. Micromorphologically,development of smectite flakes and platy illite crystals on relicts of feldspar suggest dissolution and a precipitationmechanism under alkaline micro-environmental conditions during diagenesis. Enrichment of light rare-earthelements relative to middle rare-earth elements and heavy rare-earth elements and positive Eu anomalies reflectalteration of feldspar. Alteration of feldspar, biotite and serpentine resulted in the concentration of Al, F, and Mg ina stagnant envrionment and precipitation smectite and in an alkaline environment. The low to moderate Ni/Co andhigh V/(V+Ni) ratios are indicative of oxic to dysoxic and anoxic to dysoxic conditions, respectively. TiO2/Ni andSiO2 versus (Al2O3+K2O+Na2O) discrimination diagram show that weathered samples is indicative of formationfrom the locally basic igneous rocks and alteration formed predominantly via sedimentation process under arid andsemiarid conditions and formation of clay minerals.

  • Alpu coal deposit

  • illite

  • kaolinite

  • smectite

  • Turkey


  • Abayazeed, S.D., 2012. The geochemistry of some Egyptian smectitic clays. Australian Journal of Basic and Applied Sciences, 6(3), 589-599.

  • Ahmed, W., 2002. Effects of heat-flow and hydrothermal fluids from volcanic intrusions on authigenic mineralization in sandstone formations. Bull. Chem. Soc. Ethiop., 16(1), 37-52.

  • Akinyemi, S.A., Adebayo, O.F., Ojo, O.A., Fadipe, O.A. ve Gitari, W.M., 2013. Mineralogy and geochemical appraisal of paleo-redox indicators in Maastrichtian outcrop shales of Mamu Formation, Anambra Basin, Nigeria. Journal of Natural Sciences Research, 3 (10), 48-64.

  • Al-Momani, T.M., 2007. Occurrences and origin of alunite, south Jordan. Journal of Applied Sciences 7(8), 1230-1234.

  • Bal Akkoca, D. ve Baytaşoğlu, Z. 2013. The mineralogy and geochemistry of Neogene sediments from the eastern Turkey, southeast of Arapgir (Malatya). Turkish Journal of Earth Science, 22, 645–663.

  • Baş, H., Akıncı, H., Dinçel, A., Okumuş, A., Kıral, K. ve Şen, M.A., 1983. Domaniç Tavşanlı Gediz Kütahya yörelerinin Tersiyer jeolojisi ve volkanitlerinin petrolojisi. MTA Derleme No: 7293, 83s.

  • Bjørlykke, K., 1994. Fluid flow and diagenesis in sedimentary basins. Pp. 127-140 in: Geofluid: Origin, Migration and Evolution of fluids in Sedimentary Basins (J. Parnell, editor). Geol. Soc. London Spec. Publ. 78.

  • Chen, B., Lıu, G., Wu, D. ve Sun, R., 2016. Comparative study on geochemical characterization of the Carboniferous aluminous argillites from the Huainan Coal Basin, China. Turkish Journal of Earth Science, 25, 274–287.

  • Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Deschamps, C.M., Vucetich, M.G., Verzi, D.H.ve Olivares, A.I., 2012. Biostratigraphy and correlation of the Monte Hermoso Formation (early Pliocene, Argentina): The evidence from caviomorph rodents. Journal of South American Earth Sciences, 35, 1-9.

  • Ehrlich, H.I. ve Newman, D.K., 2009. Geomicrobiology, 5th edn. CRC Press Taylor and Francis Group: Boca Raton, FL, 606 s.

  • Floyd, P.A., Winchester, J.A. ve Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research. 45, 203–214.

  • Fulignati, P., Gioncada, A. ve Sbrana, A., 1999. Rareearth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 88, 325–342.

  • Gözler, Z., Cevher, F., Ergül, E. ve Asutay, J.H., 1996. Orta Sakarya ve güneyinin jeolojisi. MTA Derleme No: 9973 (yayınlanmamış).

  • Gromet, L.P., Dymek, R.F., Haskin, L.A. ve Korotev, R.L., 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.

  • Gürel, A. 1991. Veränderung im Stoffbestand der Verwitterungsdecke als Folge natürlicher Bodenbildungsprozesse und anthropogener atmosphärischer Deposition (Säure, Schwermetalle). Ber. Forsch. Zent. Waldökosyst. Reihe A., Bd. 82.

  • Haskin, L.A., Wildeman, T.R. ve Haskin, M.A., 1968. An accurate procedure for the determination of the rare earths by neutron activation. Journal of Radioanalytical and Nuclear Chemistry, 1, 337- 348.

  • Jones, B. ve Manning, D.C., 1994. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in Ancient mudstones. Chemical Geology, 111, 111-129.

  • Kosiewicz, S.T., 1973. Rare-earth elements in U.S.G.S. rocks SCo-1 and STM-1, basalts from the Servilleta and Hindale formations, and rocks from the Stilwater and Muskox intrusions. University of Wisconsin, Madison, Wisc., Ph.D. Thesis (unpublished).

  • Kříbek, B., Strnad, M., Boháček, Z., Sýkorová, I., Čejka, J. ve Sobalik, Z., 1998. Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic). International Journal of Coal Geology, 37, 207-233.

  • Lackschewitz, K.S., Singer, A., Botz, R., GarbeSchönberg, D., Stoffers, P. ve Horz, K., 2000. Formation and transformation of clay minerals in the hydrothermal deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Economic Geology, 95, 361–390.

  • Lee, S.G., Lee, D.H. Kim, Y., Chae, B.G., Kim, W.Y. ve Woo, N. Ch., 2003. Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracturefilling calcite. Applied Geochemistry, 18, 135-143.

  • Leea, S.G., Kima, Y., Chae, B.G., Koha, D.C. ve Kimb, K.H., 2004. The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Applied Geochemistry, 19, 1711-1725.

  • Mongelli, G., 1997. Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140, 69–79.

  • Moore, D.M. ve Reynolds, R.C., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford (Oxford University Press), 332 s.

  • Nyakairu, G.W.A. ve Koeberl, C., 2001. Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, 35, 13-28.

  • Ocakoğlu, F., 2007. A re-evaluation of the Eskişehir Fault Zone as a recent extensional structure in NW Turkey. Journal of Asian Earth Science, 31(2), 91- 103.

  • Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206, 373–391.

  • Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. John Wiley and Sons, New York.

  • Siyako, F., 1982. Eskişehir Mihalıççık Koyunağılı linyit kömürü sahası jeoloji raporu. MTA Derleme No: 7111 (yayınlanmamış).

  • Siyako, F., Coşar, N., Çokyaman, S. ve Coşar, Z., 1991. Bozüyük-İnönü-Eskişehir-Alpu-BeylikovaSakarya çevresinin Tersiyer jeolojisi ve kömür olanakları. MTA Derleme No: 9281, 42 s (yayınlanmamış).

  • Steffens, P., 1970. Eskişehir bölgesinin linyit olanakları hakkında rapor. MTA Derleme No: 6532 (yayınlanmamış).

  • Sun, S.S. ve McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: implications of for mantle compositions and processes. In: Magmatism in the Ocean Basins (A.D. Saunders and M.J. Nory, editors). Geological Society Special Publication, 42, 313–345, 1989.

  • Suttner, L.J. ve Dutta, P.K. 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. International Journal of Sediment Research, 56, 329–345.

  • Şengüler, İ. 2009, Eskişehir Havzasındaki Kömürlerin Kökenine İlişkin Bir Değerlendirme. 62. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, 13-17 Nisan 2009, Ankara, 342.

  • Şengüler, İ. 2011. Eskişehir Sivrihisar havzası Neojen kompilasyonu ve kömür potansiyeli. MTA Derleme No: 11473 (yayınlanmamış).

  • Şengüler, İ. 2013. Geology and stratigraphy of the Eskişehir-Alpu coal basin. MTA (Doğal Kaynaklar ve Ekonomi Bülteni), National Research Economy Bulletin, 16, 89-93 (in Turkish).

  • Şengüler, İ ve Izladı, E. 2013. Eskişehir grabeninin Neojen stratigrafisi ve sismik yansıma etüdü ile kömür çökelim alanının araştırılması. MTA Dergisi, 146, 105-116.

  • Tazaki, K., 2006. Clays, Microorganisms, and Biomineralization. In: Bergaya, F., Theng, B.K.G., Lagaly, G., (eds), Handbook of Clay Science. Elsevier, The Netherlands, 1224 s.

  • Tirumalesh, K., Ramakumar, K.L., Chidambaram, S., Pethaperumal, S. ve Singh, G., 2012. Rare earth elements distribution in clay zones of sedimentary formation, Pondichery, South India. Journal of Radio-analytical and Nuclear Chemistry, 294, 303-308.

  • Toprak, S., Cicioğlu Sütçü, E. ve Şengüler, İ., 2015. A fault controlled, newly discovered Eskişehir Alpu coal basin in Turkey, its petrographical properties and depositional environment. International Journal of Coal Geology, 138, 127-144.

  • Usta, K. 2013. Alpu – Eskişehir linyitlerinin jeolojisi, palinolojisi, fiziksel ve kimyasal özellikleri ve benzer linyit havzaları ile karşılaştırılması. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü., Eskişehir, Yüksek Lisans Tezi, 210 s.

  • Usta, K. ve Kutluk, H. 2014. Eskişehir-Alpu linyitlerinin fiziksel ve kimyasal özellikleri. Bilim ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik, 15(1), 51-67.

  • Whitney, D.L ve Evans, B.W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.

  • Yuan, Y., She, G., Yang, M. Wu, Y., Zhang, Z., Huang, A. ve Zhang, J., 2014. Formation of a hydrothermal kaolinite deposit from rhyolitic tuff in Jiangxi China. Journal of Earth Science, 25, 495–505.

  • Zaid, S.M. ve Al Gahtani, F., 2015. Provenance, diagenesis, tectonic setting and geochemistry of Hawkensbury Sandstone (Middle Triassic), southern Sydney Basin, Australia. Turkish Journal of Earth Sciences, 24, 72–98.

  • Erkoyun, H . (2017). Eskişehir Neojen Alpu Havzasındaki Kömürle Ara Katkılı Killi Kayaçların Mineralojisi ve Jeokimyası . Türkiye Jeoloji Bülteni , 60 (2) , 190-208 . DOI: 10.25288/tjb.303018

  • A Comparative Study on Computing Horizontal Derivatives of Gravity Data for Geological Contact Mapping
    Yunus Levent Ekinci
    View as PDF

    Abstract: Computations of x- and y-components of the horizontal derivatives (gradients) from an anomaly grid (withx- and y-axes directed east and north, respectively) still take an important place in potential field data-processingtechniques. These techniques may successfully bring out some significant subtle details that are masked in theanomaly maps. Particularly abrupt lateral changes in densities and magnetizations effectively aid geological mappingand these changes may be traced by some derivative-based techniques without specifying any prior informationabout the nature of the potential field source bodies. Hence derivative-based techniques are regularly used inthe visual interpretation of potential field anomalies. It is well known that computation of horizontal derivativescan be performed through either fast Fourier transform (i.e. in wave number domain) or simple finite-differenceequations (i.e. in space domain) to outline the geological source boundaries (edges). Numerous studies includingthe use of either one have been recorded in the literature so far. In this study, comprehensive comparisons of thesolutions obtained from those techniques have been made using both synthetically produced and real gravity datasets. Synthetic applications have been performed using both noise-free and noisy gravity data sets for two differentdepth-to-source scenarios. Thus not only the signal-to-noise ratios but also the depth-to-source conditions have beenanalyzed to test the performance of those approaches. Additionally, a real data experiment has been achieved usingregional Bouguer gravity anomalies from a portion of a well-known geological setting, the Aegean Graben System(Western Anatolia, Turkey). 

  • Fast Fourier transform

  • Finite-differences

  • First-order horizontal derivatives

  • Geological contact mapping

  • Gravity anomalies


  • Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.

  • Blakely, R.J. and Simpson, R.W., 1986. Approximating edge of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494–1498.

  • Boschetti, F., 2005. Improved edge detection and noise removal in gravity maps via the use of gravity gradients. Journal of Applied Geophysics, 57, 213–25.

  • Bozkurt, E., 2003. Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16, 61–81.

  • Cooper, G.R.J., 2002. An improved algorithm for Euler deconvolution of potential field data. Leading Edge, 21, 1197–1198.

  • Cooper, G.R.J. and Cowan, D.R., 2006. Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32, 1585–1591.

  • Cooper, G.R.J. and Cowan, D.R., 2008. Edge enhancement of potential-field data using normalized statistics. Geophysics, 73, H1–H4.

  • Cooper, G.R.J. and Cowan, D.R., 2009. Terracing potential field data. Geophysical Prospecting, 57, 1067–1071.

  • Cooper, G.R.J. and Cowan, D.R., 2011. A generalized derivative operator for potential field data. Geophysical Prospecting, 59, 188–194.

  • Cordell, L. and Grauch, V.J.S., 1982. Reconciliation of the discrete and integral Fourier transform. Geophysics, 47, 237–243.

  • Cordell, L. and Grauch, V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, In: W.J., Hinze, (ed.), The utility of regional gravity and magnetic anomaly maps: Society Exploration Geophysics, Tulsa, Oklahoma, 181–197.

  • Çiftçi, N.B. and Bozkurt, E., 2009. Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216, 49–79.

  • Ekinci, Y.L., 2010. A Matlab-based interactive data processing and interpretation software package for gravity and magnetic anomalies: GMINTERP, 19th International Geophysical Congress and Exhibition, Ankara, Turkey, 60.

  • Ekinci, Y.L. and Yiğitbaş, E., 2012. A geophysical approach to the igneous rocks in the Biga Peninsula (NW Turkey) based on airborne magnetic anomalies: Geological implications. Geodinamica Acta, 25, 267–285.

  • Ekinci, Y.L., Ertekin, C. and Yiğitbaş, E., 2013. On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: Synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey). Journal of Geophysics and Engineering, 10, 035005.

  • Ekinci, Y.L., Balkaya, Ç., Şeren, A., Kaya, M.A. and Lightfoot, C.S., 2014. Geomagnetic and geoelectrical prospection for buried archaeological remains on the Upper City of Amorium, a Byzantine city in Midwestern Anatolia, Turkey. Journal of Geophysics and Engineering, 11, 015012.

  • Ekinci, Y.L. and Yiğitbaş, E., 2015. Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey). Geodinamica Acta, 27 (4), 300–319.

  • Fedi, M. and Florio, G., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49, 40–58.

  • Helvacı, C., 2015. Geological features of Neogene basins hosting borate deposits: an overview of deposits and future forecast, Turkey. Bulletin of the Mineral Research and Exploration, 151, 169– 215.

  • Li, Z.G. and Ma, Z.H., 2014. A new approach for filtering and derivative estimation of noisy signals. Circuits, Systems, and Signal Processing, 33, 589–598.

  • Li, L., Huang, D., Han, L. and Ma, G., 2014. Optimised edge detection filters in the interpretation of potential field data. Exploration Geophysics, 45, 171–176.

  • Menke, W., 1984. Geophysical Data Analysis: Discrete Inverse Theory: Academic Press Inc, New York.

  • Miller, H.G and Singh, V., 1994. Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

  • MTA (General Directorate of Mineral Research and Exploration of Turkey), 2002. Geological map of Turkey, MTA Publications scale: 1/500000, Ankara, Turkey

  • MTA (General Directorate of Mineral Research and Exploration of Turkey), 2006. Bouguer gravity anomaly map of Turkey, MTA Publications scale: 1/2000000, Ankara, Turkey.

  • Plouff, D., 1976. Gravity and magnetic fields of polygonal prisms and application to magnetic terrain correction. Geophysics, 41, 727–741.

  • Purvis, M. and Robertson, A., 2005. Miocene sedimentary evolution of the NE–SW-trending Selendi and Gördeş Basins, W Turkey: implications for extensional processes. Sedimentary Geology, 174, 31–62.

  • Roest, W.R., Verhoef, J. and Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57, 116–125.

  • Roy, I.G., 2013. On computing gradients of potential field data in the space domain. Journal of Geophysics and Engineering, 10, 035007.

  • Salem, A., Williams, S., Fairhead, D., Smith, R. and Ravat, D., 2008. Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73, L1– L10.

  • Sarı, C. and Şalk, M., 2002. Analysis of gravity anomalies with hyperbolic density contrast: an application to the gravity data of western Anatolia. Journal of Balkan Geophysical Society, 5, 87–96.

  • Sarı, C. and Şalk, M., 2006. Sediment thickness of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data. Journal of Asian Earth Sciences, 26, 39–48.

  • Seyitoğlu, G., 1997. Late Cenozoic tectono-sedimentary development of the Selendi and Uşak-Güre basins: a contribution to the discussion on the development of east–west and north trending basins in western Turkey. Geological Magazine, 134, 163–175.

  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö. and Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research, 23, 423–448.

  • Verduzco, B., Fairhead, J.D., Green, C.M. and MacKenzie, C., 2004. The meter reader–New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.

  • Wanyin, W., Yu, P. and Zhiyun, Q., 2009. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data. Applied Geophysics, 6, 226–33.

  • Wang, Z., Krebes, E.S. and Ravat, D., 2008. High precision potential field and gradient-component transformations and derivative computations using cubic B-splines. Geophysics, 73, I35–I42.

  • Wang, J., Meng, X.H. and Li, F., 2015. Improved curvature gravity gradient tensor with principal component analysis and its application in edge detection of gravity data. Journal of Applied Geophysics, 118, 106–114.

  • Wijns, C., Perez, C. and Kowalczyk, P., 2005. Theta map: Edge detection in magnetic data. Geophysics, 70, L39–L43.

  • Yuan, Y., Gao, J. and Chen L., 2016. Advantages of horizontal directional Theta method to detect the edges of full tensor gravity gradient data. Journal of Applied Geophysics, 130, 53–61.

  • Zhang, H.L., Tian-You, L. and Yu-Shan, Y., 2011. Calculation of gravity and magnetic source boundaries based on anisotropy normalized variance. Chinese Journal of Geophysics 54, 560– 567.

  • Zuo, B. and Hu, X., 2015. Edge detection of gravity field using eigenvalue analysis of gravity gradient tensor. Journal of Applied Geophysics, 114, 263– 270.

  • Ekinci, Y . (2017). A Comparative Study on Computing Horizontal Derivatives of Gravity Data for Geological Contact Mapping . Türkiye Jeoloji Bülteni , 60 (2) , 209-222 . DOI: 10.25288/tjb.303025

  • 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV
    İnan Ulusoy Erdal Şen Alaettin Tuncer Harun Sönmez Hasan Bayhan
    View as PDF

    Abstract: Digital elevation models have been evolved in decades, their resolution and accuracy have improvedvividly. Geological, structural and geomorphological benefits of those high-quality digital elevation models enhancedthe quality of the research and engineering and unfold the visibility of the data. Modern techniques such as laserscanners provide a quantum leap on digital modelling, however the cost of those methods limits their widespreadusage. Improvements in stereo-photogrammetry did not decelerate. On the contrary, the evolution of Structure fromMotion–Multi-view stereo-photogrammetry (SfM-MVS) method is accelerated by the continuous developments indigital photography and computer vision technologies. We have used a lightweight drone to acquire digital aerialphotographs of an open mine pit for an ultimate purpose of modelling the terrain using SfM-MVS procedure. Wehave been able to derive a high resolution (0.3 m/pixel) DEM and a very high resolution (0.04 m/pixel) orthorectifiedaerial image. Both datasets are representing the topography with high sample point densities. Elevation model datasethas been compared with the regular topographic point measurements of the mine pit and the accuracy of the aeriallyderived model have been investigated. Sources of modelling errors, the effect of temporal physical changes in theterrain, effect and importance of geo-referencing have been discussed in detail. SfM-MVS is a cost-effective, rapidand promising technique for digital mapping, modelling and monitoring in various spatial scales of Geology.

  • 3D modelling

  • Aerial imaging

  • DEM

  • Drone

  • High-resolution

  • Open pit mine


  • Abdullah, Q., Bethel, J., Hussain, M., Munjy, R., 2013. Photogrammetric project and mission planning. In Manual of Photogrammetry, in: McGlone, J.C. (Ed.), American Society for Photogrammetry and Remote Sensing: Bethesda. MD, pp. 1187–1220.

  • Agisoft [WWW Document], 2016. URL http://www. agisoft.com/ (accessed 1.30.16).

  • Barazzetti, L., Scaioni, M., Remondino, F., 2010. Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. The Photogrammetric Record 25, 356–381. doi:10.1111/j.1477-9730.2010.00599.x

  • Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology 69, 163–178. doi:10.1016/j. jsg.2014.10.007

  • Bennet, M.J., 2015. Evaluating the Creation and Preservation Challenges of Photogrammetry based 3D Models. UConn Libraries Published Works. Paper 52.

  • Brothelande, E., Lénat, J.-F., Normier, A., Bacri, C., Peltier, A., Paris, R., Kelfoun, K., Merle, O., Finizola, A., Garaebiti, E., 2015. Insights into the evolution of the Yenkahe resurgent dome (Siwi caldera, Tanna Island, Vanuatu) inferred from aerial high-resolution photogrammetry. Journal of Volcanology and Geothermal Research 299, 78. doi:10.1016/j.jvolgeores.2015.04.006

  • Burns, J.H.R., Delparte, D., Gates, R.D., Takabayashi, M., 2015. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3:e1077. doi:10.7717/peerj.1077

  • Calakli, F., Ulusoy, O.A., Restrepo, M., Taubin, G., Mundy, L.J., 2012. High resolution surface reconstruction from multi-view aerial imagery [WWW Document]. Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT). doi:10.1109/3DIMPVT.2012.54

  • Esposito, S., Fallavollita, P., Wahbeh, W., Nardinocchi, C., Balsi, M., 2014. Performance evaluation of UAV photogrammetric 3D reconstruction, in: Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Quebec City, QC, pp. 4788– 4791. doi:10.1109/IGARSS.2014.6947565

  • Etimaden [WWW Document], 2016. URL http://www. etimaden.gov.tr/tr/page/uretim-emet (accessed 1.29.16).

  • Fan, L., Smethurst, J.A., Atkinson, P.M., Powrie, W. 2015. Error in target-based georeferencing and registration in terrestrial laser scanning. Computers and Geosciences 83, 54-64.

  • Forte, M., 2014. 3D ARCHAEOLOGY New Perspectives and Challenges – The Example of Çatalhöyük. Journal of Eastern Mediterranean Archaeology and Heritage Studies 2(1).

  • Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview stereopsis. IEEE transactions on pattern analysis and machine intelligence. 8.

  • Gimenez, R., Marzolff, I., Campo, M., Seeger, M., Ries, J., Casali, J., Alvarez-Mozos, J., 2009. Accuracy of high-resolution photogrammetric measurements of gullies with contrasting morphology. Earth Surface Processes and Landforms 34, 1915–1926. doi:10.1002/esp.1868

  • Gomez, C., Purdie, H., 2014. High-resolution monitoring of glacier and valley with combined ground- and UAV-based Photogrammetry: Study of fox valley, New Zealand, in: IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). Indonesia.

  • Gong, Y., Wang, Y.-F., 2011. Multi-view stereo point clouds visualization. Lecture Notes in Computer Science 281–290. doi:10.1007/978-3-642-24028- 7_26

  • Granshaw, S.I., 1980. Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record 10, 181–207. doi:10.1111/j.1477-9730.1980.tb00020.x

  • Haukaas, C., 2015. New opportunities in digital archaeology: The use of low-cost Photogrammetry for 3D documentation of archaeological objects from Banks island, NWT (Electronic Thesis and Dissertation Repository No. Paper 2117.).

  • Helvacı, C., 2015. Geological Features of Neogene Basins Hosting Borate Deposits: An Overview of Deposits and Future Forecast, Turkey. Bulletin of The Mineral Research and Exploration 151, 169– 215. doi:10.19111/bmre.05207

  • James, M.R., Robson, S., 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research 117, F03017. doi:10.1029/2011jf002289

  • James, M.R., Robson, S., 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms 39, 1413–1420. doi:10.1002/esp.3609

  • James, M.R., Varley, N., 2012. Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophysical Research Letters 39, L22303. doi:10.1029/2012gl054245

  • Javernick, L., Brasington, J., Caruso, B., 2014. Modeling the topography of shallow braided rivers using structure from motion photogrammetry. Geomorphology 213, 166–182. doi:10.1016/j. geomorph.2014.01.006

  • Kraus, K., 1993. Photogrammetry, Vol. 1: Fundamentals and standard processes. Dümmlers.

  • Lewis, A., Hilley, G.E., Lewicki, J.L., 2015. Integrated thermal infrared imaging and structure-frommotion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at mammoth mountain, CA, USA. Journal of Volcanology and Geothermal Research 303, 16– 24. doi:10.1016/j.jvolgeores.2015.07.025

  • Lowe, D.G., 2004. Distinctive image features from scale-invariant Keypoints. International Journal of Computer Vision 60, 91–110. doi:10.1023/ b:visi.0000029664.99615.94

  • Mackenzie, D., Elliott, J.R., Altunel, E., Walker, R.T., Kurban, Y.C., Schwenninger, J.-L., Parsons, B., 2016. Seismotectonics and rupture process of the MW 7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening. Geophysical Journal International, 206 (1), 501-524.

  • McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Wang, L., Elder, J.H., 2013. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-PIT mine. Geomatica, 67(3), 173-180.

  • Niethammer, U., Rothmund, S., James, M.R., Travelletti, J., Joswig, M., 2010. UAV-Based Remote Sensing of Landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Commission V Symposium, Newcastle upon Tyne, UK. Vol. XXXVIII, Part 5.

  • Remondino, F., 2006. Detectors and descriptors for photogrammetric applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Symposium of ISPRS Commission III Photogrammetric Computer Vision PCV ’06, Int. Soc. for Photogramm. and Remote Sens., Bonn, Germany. 36, 49–54.

  • Rosnell, T., Honkavaara, E., 2012. Point cloud generation from aerial image data acquired by a Quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12, 453–480. doi:10.3390/s120100453

  • Shahbazi, M., Sohn, G., Théau, J. and Ménard, P., 2015. UAV-based point cloud generation for openpit mine modelling. The international archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XL-1W4, 313-320.

  • Skarlatos, D., Kiparissi, S., 2012. Comparison of Laser Scanning, Photogrammetry and SfM-MVS Pipeline Applied in Structures and Artificial Surfaces, in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress. Melbourne, Australia.

  • Tong, X., Liu, X., Chen, P., Liu, S., Jin, Y., Li, L., Xie, H., Luan, K., 2015. Integration of UAV-Based Photogrammetry and terrestrial laser scanning for the Three-Dimensional mapping and monitoring of open-pit mine areas. Remote Sensing 7, 6635– 6662. doi:10.3390/rs70606635

  • Tonkin, T.N., Midgley, N.G., Cook, S.J., Graham, D.J., 2016. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology (in press). doi:10.1016/j. geomorph.2015.12.019

  • Tuffen, H., James, M.R., Castro, J.M., Schipper, C.I., 2013. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communications 4. doi:10.1038/ ncomms3709

  • Ullman, S., 1979. The interpretation of structure from motion. Proceedings of the Royal Society of London B: Biological Sciences 203, 405–426. doi:10.1098/rspb.1979.0006

  • Van Damme, T., 2015. Computer Vision Photogrammetry For Underwater Archaeological Site Recording In A Low-Visibility Environment, in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Underwater 3D Recording and Modeling. Piano di Sorrento, Italy. doi:10.5194/isprsarchives-XL5-W5-231-2015

  • Vepakomma, U., Cormier, D., Thiffault, N., 2015. Potential of Uav based Convergent Photogrammetry in monitoring regeneration standards, in: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Toronto, Canada, pp. 281–285. doi:10.5194/isprsarchives-XL1-W4-281-2015

  • Yücel, M.A., Turan, R.Y., 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using HighResolution Unmanned Aerial Vehicle Images. Arabian Journal for Science and Engineering, 41(12), 4867-4878.

  • Ulusoy, İ , Şen, E , Tuncer, A , Sönmez, H , Bayhan, H . (2017). 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV . Türkiye Jeoloji Bülteni , 60 (2) , 223-242 . DOI: 10.25288/tjb.303032

  • Geology and Hydrogeochemistry of Güre (Balıkesir) Geothermal Field and its Relationship with Active Tectonic
    Belgin Kaçar Süha Özden Özkan Ateş
    View as PDF

    Abstract: Güre geothermal field is located in NW Anatolia within the boundaries of Balıkesir. This study attemptsto determine the geologic and hydrogeochemical characteristics of the field and close surroundings and theircorrelation with active tectonism. The basement of Güre geothermal field is rocks of the Paleozoic-age KazdağGroup. Above the basement, the Triassic-age Karakaya Formation lies above an unconformity. The CretaceousÇetmi melange tectonically overlies this basement. The Upper Oligocene-Lower Miocene Hallaçlar volcanics andOligo-Miocene granodiorites were emplaced by cutting all older units. Quaternary alluvium unconformably overliesall units in the study area. The Güre geothermal field located on the east section of the Edremit Fault Zone, markedas an active fault on the Active Fault Map of Turkey, is controlled by a nearly ENE-WSW oriented, south-dippingnormal fault. In the instrumental period from September 2013 to August 2014, nearly 12 earthquakes occurred inthis region and close surroundings with M=3.0 or more. Geothermal water from four hot-water wells in the Güregoethermal field had monitoring studies performed in 12 different periods from 21.09.2013-16.08.2014. Physicochemical measurements and experimental studies of water from Güre geothermal field were compared simultaneousto earthquakes in the region. Before and after earthquakes changes were observed in these thermal waters, especially T0C, pH and EC values. Additionally chemical analysis of the water identified increases or reductions in manyelemental levels, especially Cl-, Na+ and SO4-2. It was concluded that these variations were directly related to theactive tectonic regime in the region.  

  • Active Fault

  • Earthquake

  • Geothermal

  • Güre

  • Hydrogeochemisty


  • Akkuş, İ., Akıllı, H., Ceyhan, S., Dilemre, A. ve Tekin, Z., 2005. Türkiye Jeotermal Kaynakları Envanteri, MTA Genel Müdürlüğü Envanter Serisi-201, 849 s.

  • Alpar, B. and Yaltırak, C., 2002. Characteristic features of the North Anatolian Fault in the eastern Marmara region and its tectonic evolution, Marine Geology, Vol. 190, No. 1-2, s. 329-350, ISSN: 0025-3227, Elsevier B.V.

  • Ateş, Ö. ve Tutkun, S.Z., 2014. Simav (Kütahya) Depremlerinin Jeotermal Sistemlerdeki Hidrojeokimyasal Değişimleri, Türkiye jeoloji Bülteni, Cilt 57, Sayı 32, 25-40.

  • Ateş, 2014. Kütahya ve Simay Fayları Arasında Kalalan Jeotermal Alanların Hidrojeokimyası ve Aktif Tektonik İle İlişkisi, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 81 s.

  • Bingöl E., 1968. Contribution a L’ e’ tude ge’ologiue de la Partir Centrale et sud-est du Massif de Kazdağ (Turquei). PhD Dissertation (Doktora Tezi). Nancy Univ. Fransa.

  • Bingöl, E., 1975. 1:2 500 000 ölçekli Türkiye metamorfizma haritası ve bazı metamorfik kuşakların jeotektonik evrimi üzerinde tartışmalar. M.T.A. Derg., no. 83, Ankara.

  • Bingöl E., Akyürek B., Korkmazer B., 1973. Biga Yarımadasının Jeolojisi ve Karakaya Formasyonun Bazı Özellikleri. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi, Ankara, 70-76.

  • Duru, M.,Ilgar, A., Dönmez M., Atabey, E., Pehlivan, Ş., Akçay, A.E., Şentürk, Y., Sezen Demirci, E., Ilgar, Y., Demirci, Ö., Bilgin, R., Eyüpoğlu, M., Kar, H., Özata, A., Sakitaş, A., Okay, A., Genç, Ş.C., Altunkaynak, Ş., 2007. Türkiye Jeoloji Haritaları İ17 Paftası, 1:100000, M.T.A, Ankara.

  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoglu, E., Adis, C., Walter, H.-J., Yıldırım, T., 1995. Biga Yarımadası ile Gökçeada, Bozcaada ve Tavsan adalarındaki (KB Anadolu) Tersiyer volkanızmasının ozellikleri. MTA Dergisi 117, 55–86 (in Turkish).

  • Eroğlu, A. ve Aksoy, N., 2003. Jeotermal Suların Kimyasal Analizi, VI. Ulusal Tesisat Kongresi, Jeotermal Enerji Semineri Kitapçığı, 149-183.

  • Nicholson, K.,1993, Geothermal fluids: chemistry and exploration techniques, Springer-Verlag Berlin Heidelberg New York.

  • Okay, A.İ., 1987. The oxygen fugacity stability of deerite: an alternative view. Journal of Metamorphic Geology, 5, 553-555.

  • Okay A.İ., Siyako M., Bürkan K.A., 1990. Biga Yarımadasının Jeolojisi ve Tektonik Evrimi. TPJD Bült., 2/1: 83-121.

  • Şimşek, Ş., 2003, Hydrogeological and isotopic survey of geothermal fields in the Büyük Menderes Graben, Geothermics, 23, 669-478

  • Şimşek, Ş. ve Yıldırım, N., 2000. Termal Kaynaklar: Depremin habercisi, 17 Ağustos ve 12 Kasım 1999 deprem bölgelerindeki termal kaynaklarda gözlenen değişimler ve önemi, Cumhuriyet, Bilim Teknik, 01 Temmuz 2000.

  • Yüzer E. ve Tunay G., 2012. Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, 28: 19-59.

  • http://udim.koeri.boun.edu.tr/ (Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Ulusal Deprem İzleme Merkezi)

  • Kaçar, B , Özden, S , Ateş, Ö . (2017). Güre (Balıkesir) Jeotermal Alanının Jeolojisi, Hidrojeokimyası ve Aktif Tektonikle İlişkisi . Türkiye Jeoloji Bülteni , 60 (2) , 243-258 . DOI: 10.25288/tjb.302968

  • ISSUE FULL FILE
    View as PDF