Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2021 AĞUSTOS Cilt 64 Sayı 3
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Holocene Palynology and Pollen-Based Palaeoclimate Reconstruction of Lake Erçek (Eastern Anatolia); Short-Term Climatic Fluctuations and their Relation with Global Palaeoclimatic Change; Results of Cores E1 and E10
Güldem Kamar
View as PDF

Abstract: This study is a palynological and stratigraphical investigation of E1 and E10 core samples from thesouthern part of Lake Erçek (Eastern Anatolia, Turkey). Core samples were taken by a gravity corer from differentwater depths. Deposits in the core samples include mostly laminated rhythmic sediments, massive and gradedlayers and a tephra layer from E10 core, representing different time spans because of the faulted ground of thelake. Tentative time scales of the core samples are based on pollen and tephra correlation with Lake Van deposits.According to the palynological investigations, palaeovegetation of Greenlandian is represented by Amaranthaceaedominant halophytic vegetation and semi-arid palaeoclimate conditions based on pollen analysis around Lake Erçek.The Meghalayan stage is mainly characterized by Poaceae-dominated steppe vegetation and increasing humanimpact according to anthropogenic pollen indicators. The Meghalayan palaeoclimate of Lake Erçek was more humidthan Greenlandian and is represented by maximum deciduous Quercus expansion in recent times around the LakeErçek area. 

  • Greenlandian

  • Holocene

  • Lake Erçek

  • Meghalayan

  • palaeoclimate

  • palynology

  • Alan, H., Bozkurt, E., Çaglan, D., Dirik, K., Özkaymak, Ç., Sözbilir, H. ve Topal, T. (2011). Report of Van Earthquakes (Tabanlı-Edremit). TMMOB Society of Geological Engineering, Publication, 110, Ankara.

  • Beug, H.J. (2004). Leitfaden der Pollenbestimmung. Verlag dr. Friedrich Pfeil (München) Germany

  • Behre, K.E. (1981). The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores, 23, 235-247.

  • Biltekin, D., Eriş, K. K., Çağatay, M. N., Akçer-Ön, S. & Akkoca, D. B. (2018). Late Pleistocene Holocene environmental change in eastern Turkey: a multiproxy palaeoecological data of vegetation and lake-catchment changes. Journal of Quaternary Science, 33(5) 575-585. https://doi. org/10.1002/jqs.3037

  • Çağatay, M. N., Öğretmen, N., Damcı, E., Stockhecke, M., Sancar, Ü., Eriş, K. K. & Özeren, S. (2014). Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quaternary Science Reviews, 104, 97-116. https://doi.org/10.1016/j.quascirev.2014.09.027

  • Dean, J. R., Jones M. D., Leng, M. J., Stephen R. Noble, S. R., Metcalfe, S. E., Sloane, H. J., Sahy, D., Eastwood, W. J. & Roberts, C. N. (2015). Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar Lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary International, 124, 162-174.

  • Djamali, M., de Beaulieu, J-L., Andrieu-Ponel, V., Berberian, M., Miller, NF., Gandouin, E., Lahijani, H., Shah-Hosseini, M., Ponel, P., Salimian, M. & Guiter, F. (2009). A late Holocene pollen record from Lake Almalou in NW Iran: evidence for changing land-use in relation to some historical events during the last 3700 years. Journal Archaeological Science, 36, 1364–1375.

  • Ediger, V. S. (1986). Sieving techniques in palynological sample processing with special reference to the MRA system. Micropaleontology, 32(3), 256-270.

  • Eken, G., Bozdoğan, M., İsfendiyaroğlu, S., Kılıç, D.T. & Lise, Y. (editörler) (2006). Türkiye’nin Önemli Doğa Alanları. Doğa Derneği.

  • Erdtman, G. (1943). An Introduction to Pollen Analysis. Chronica Botanica, New York.

  • Eriş, K. K. (2013). Late Pleistocene Holocene sedimentary records of climate and lake-level changes in Lake Hazar, Eastern Anatolia, Turkey. Quaternay International, 302, 123-134.

  • Faegri, K. & Iversen, J. (1989). Textbook of Pollen Analysis, fourth ed. Wiley, New York.

  • Fiłoc M, Kupryjanowicz M, Szeroczyńska K, Suchora, & Rzodkiewicz, M. (2017). Environmental changes related to the 8.2 ka event and other climate fluctuations during the Middle Holocene: evidence from two dystrophic lakes in NE Poland. The Holocene, 27, 1550–1566. https://doi. org/10.1177/0959683617702233

  • Hayrapetyan, N., Hakobyan, E., Kvavadze, E., Gabrielyan, I., Brunch A. A. (2018). Late Holocene environmental changes in the Lake Sevan basin– implications from palynological and carpological analyses of peatbog sediments from Tsovinar-1, Armenia. PRIDE-RCMNS conference Ecosystem isolation and connection: rise and demise of biota in the Pontocaspian-Caucasian region (48).

  • İpek, S. & Sarı, M. (1998). Erçek Gölü’nün Batimetrik Özelliklerinin Belirlenmesi (Determination of the bathymetric features of Lake Erçek), (YDABÇAG–609-A). Project of Scientific and Technical Research Council of Turkey

  • Kamar, G. (2018). Palynology of Lake Arin (Eastern Anatolia, Turkey) deposits and its relation with water level change of Lake Van: Preliminary findings. Quaternary International, 486, 83-88.

  • Kaplan, G. (2010). Van Gölü Kuzey Havzası’nın Geç Holosen Palinolojisi [Yayımlanmamış Doktora tezi]. Yüzüncü Yıl University.

  • Kaplan, G., Örçen, S. (2011). Late Holocene Paleoflora of Lake Van Northern Basin. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 32(2) 139-150.

  • Kaplan, G. (2013a). Palynological analysis of the Late Pleistocene terrace deposits of Lake Van, eastern Turkey: Reconstruction of paleovegetation and paleoclimate. Quaternary International, 292, 168- 175.

  • Kaplan, G. (2013b). Van Gölü Geç Holosen Polenleri. Yerbilimleri (Bulletin of Turkish Earth Sciences), 34(1), 37-52.

  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A.Ü., Karabıyıkoğlu, M., Köse, O. & Froger, J. L. (2005). Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the caldera formation. Turkish Journal of Earth Science, 14,123–143.

  • Kılıç, N. K., Caner, H., Erginal, A. E., Ersin, S., Selim, H, H. & Kaya, H. (2018). Environmental changes based on multi-proxy analysis of core sediments in Lake Aktaş, Turkey: Preliminary results. Quaternary International, 486, 89-97.

  • Koçyiğit, A., Yılmaz, A., Adamia, S. & Kuloshvili, S. (2001). Neotectonics of east Anatolian plateau (Turkey) and lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14(1-3), 177-195.

  • Landmann, G., Reimer, A., Lemcke, G. & Kempe, S. (1996a). Dating Late Glacial abrupt climate changes in the 14, 570 years long continuous varve record of Lake Van/ Turkey. Palaeogeography Palaeoclimatology Palaeoecology, 2, 107-118.

  • Landmann, G., Reimer, A. & Kempe, S. (1996b). Climatic induced lake level changes of Lake Van/Turkey during the transition Pleistocene/ Holocene. Global Biogeochemical Cycles, 10(4), 797-808.

  • Landmann, G., Steinhauser, G., Sterba, J.H, Kempe, S. & Bichler, M. (2011). Geochemical fingerprints by activation analysis of tephra layers in Lake Van sediments, Turkey. Applied Radiation Isotopes, 69, 929-935.

  • Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., Franz, S. O., Ülgen, U. B. & Niessen, F. (2009). ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews, 28, 1555-1567.

  • Litt, T., Pickarski, N. & Heumann, G. (2014). A 600,000 Year Long Continental Pollen Record from Lake Van, Eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41.

  • Makaroğlu, Ö., Çağatay, M. N., Nowaczyk, N. R., Pesonen, L. J. & Orbay, N. (2018). Discrimination of Holocene tephra units in Lake Van using mineral magnetic analysis. Quaternary International, 486, 44–56.

  • Mayewski, P.A.; Rohling, E.E.; Stager, J.C., …, Steig, E. J. (2004). Holocene climate variability. Quaternary Research, 62(3), 243-255. https://doi. org/10.1016/j.yqres.2004.07.001

  • Migowski, C., Stein, M., Prasad, S., Negendank, J. & Agnon, A. (2006) Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research, 66, 421-431.

  • Moore, P. D. & Webb, J. A. & Collinson, M. E. (1991). Pollen Analysis, second edition. Blackwell, Oxford UK.

  • Muradoğlu, F. ve Balta, F. (2010). Ahlat (Bitlis) Yöresinden Selekte Edilen Cevizlerin (Juglans regia L) Bazı Fiziksel ve Kimyasal Özellikleri. YYÜ Journal of Agricultural Science, 20(1), 41- 45.

  • Ocakoğlu, F., Kır, O., Yılmaz, İ. Ö., Açıkalın, S., Erayık, C., Tunoğlu, C. & Suzanne Leroy, S.A.G. (2013). Early to Mid-Holocene Lake level and temperature records from the terraces of Lake Sünnet in NW Turkey. Quaternay International, 369, 175-184.

  • Okuldaş, C. ve Üner, S. (2013). Alaköy Fayı’nın Jeomorfolojik Özellikleri ve Tektonik Etkinliği (Van Gölü Havzası – Doğu Anadolu). Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 34(3), 161-176.

  • Ön, Z. B., & Özeren, M. S. (2019). Temperature and precipitation variability in eastern Anatolia: Results from independent component analysis of Lake Van sediment data spanning the last 250 kyr BP. Quaternary International, 514(2019) 119- 129.

  • Ön, Z., Özeren, M., Akçer Ön, S. & Çağatay, M. (2017) Spectral Features of 250 kyr Long Lake Van Sediments: Milankovitch Cycles and Their Harmonics. Geological Bulletin of Turkey, 60(4) 471-488. https://doi.org/10.25288/tjb.360604

  • Park, J., Park, J., Yi, S., Kim, J. C., Lee, E. & Jin, Q. (2018). The 8.2 ka cooling event in coastal East Asia: High-resolution polen evidence from southwestern Korea. Scientific Reports, 8, 12423.

  • Pickarski, N., Kwiecien, O., Djamali, M. & Litt, T. (2015). Vegetation and environmental changes during the last interglacial in eastern Anatolia (Turkey): a new high-resolution polen record from Lake Van. Palaeogeography Palaeoclimatology Palaeoecology. 435, 145–158.

  • Ramezani, E., Mrotzek, A., Mohadjer, M. R. M., Kakroodi, A.A., Kroonenberg, B. S. & Joosten, H. (2016). Between the mountains and the sea: Late Holocene Caspian Sea level fluctuations and vegetation history of the lowland forests of northern Iran. Quaternary International, 408, 52- 64.

  • Sağlam Selçuk. A. (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology, 270, 9-21.

  • Schmincke, H.U. & Sumita, M. & Paleovan scientific team (2014). Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: periodic (Nemrut) vs. episodic (Süphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka. Journal of Volcanology and Geothermal Research, 285, 195- 213.

  • Sumita, M. & Schmincke, H.-U. (2013). Impact of volcanism on the evolution of Lake Van II: temporal evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past ca. 0.4 Ma. Journal of Volcanology and Geothermal Research, 253, 15-34.

  • Şarolğu, F. ve Yılmaz, Y. (1986). Doğu Anadolu`da neotektonik dönemdeki jeolojik evrim ve havza modelleri. Bulletin of the Mineral Research and Exploration, 107, 73–94.

  • Şengör, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75,181–190 (193–199, 203–241).

  • Şensoy, S., Demircan, M., Ulupınar, Y. (2021). Climate of Turkey. Turkish State Meteorological Service. http://www.emcc.mgm.gov.tr/files/ climateofturkey.pdf

  • Talebi, T., Ramezani, E., Djamali, M., Lahijani H. A. K., Naqinezhad, A., Alizadeh, K. & AndrieuPonel, V. (2016). The Late-Holocene climate change, vegetation dynamics, lake-level changes and anthropogenic impacts in the Lake Urmia region, NW Iran. Quaternary International, 408, 40-51.

  • Tatlı, A., 2004. Türkiye Vejetasyonu (Vegetation of Turkey) 2. Baskı. Bizim Büro Basımevi Kütahya, 142 s.

  • Toker, M., Pınar, A. & Tur, H. (2017). Source mechanisms and faulting analysis of the aftershocks in the Lake Erçek area (Eastern Anatolia, Turkey) during the 2011 Van event (Mw 7.1): implications for the regional stress field and ongoing deformation processes. Journal of Asian Earth Science, 150, 73–86.

  • Toker, M. & Tur, H. (2018). Structural patterns of the Lake Erçek Basin, Eastern Anatolia (Turkey): evidence from single-channel seismic interpretation. Marine Geophysical Research, 39, 567-588.

  • Ülgen, U. B., Franz, S. O., Biltekin, D., Cagatay, M. N., Roeser, P. A., Doner, L. & Thein, J., (2012). Climatic and environmental evolution of Lake İznik (NW Turkey) over the last similar to 4700 years. Quaternary International, 274, 88-101.

  • Weninger, B., Alram-Stern, E., Bauer, E., Clare, L., Danzeglocke, U., Jöris, O., Kubatzki, C., Rollefson, G., Todorova, H. & van Andel, T. (2006). Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the eastern Mediterranean. Quaternary Research, 66, 401–420.

  • Wick, L., Lemcke, G. & Sturm, M. (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van. The Holocene, 13, 665-675.

  • Wodehouse, R. P. (1935.) Pollen. Their Structure, Identification and Significance in Science and Medicine. McGraw-Hill Book Company, New York and London.

  • van Zeist, W. & Woldring, H. (1978). A polen Profil From Lake Van: A Preliminary Report. In E.T. Degens & F. Kurtman (Eds.), The Geology of Lake Van, (pp. 115-123). MTA Enstitüsü Yayınları no: 169.

  • Yılmaz, Y., Şaroǧlu, F. & Güner, Y. (1987). Initiation of the neomagmatism in East Anatolia. Tectonophysics, 134, 177–199.


  • Kamar, G. (2021). Holocene Palynology and Pollen-Based Palaeoclimate Reconstruction of Lake Erçek (Eastern Anatolia); Short-Term Climatic Fluctuations and their Relation with Global Palaeoclimatic Change; Results of Cores E1 and E10 . Türkiye Jeoloji Bülteni , 64 (3) , 253-266 . DOI: 10.25288/tjb.927117

  • The First Report of Gangamopteris Rajaensis from Rajmahal Gondwana Basin (Jharkhand, India)
    Arun Joshi Raj Kumar Priya
    View as PDF

    Abstract: The present study deals with the systematic description of macro and miofloral analysis of Gangamopterisrajaensis and Glossopteris indica from the carbonaceous shale-coal bearing sequences of the Rajmahal Open CastMine, Rajmahal Basin, Jharkhand, India. The floral diversity, age correlation, and the paleoenvironment of the BarakarFormation were well described. Morphological analysis revealed the reticulate venation pattern, anastomosingof veins, and the absence of the midrib in Gangamopteris rajaensis. The recovered megafloral assemblages ofGangamopteris rajaensis and Glossopteris indica suggest a late early Permian (Artiskian-Kungurian) age for theBarakar strata of Rajmahal coal mine and the prevalence of a moderately warm climate during their deposition.Earlier the species was reported from the Barakar Formation of Damodar and Mahanadi Gondwana basins in India.However, this is the first detailed systematic investigation of this species from the Rajmahal Gondwana Basin,Jharkhand, India.

  • Barakar Formation

  • Early Permian

  • Gangamopteris rajaensis

  • Rajmahal Gondwana Basin


  • Ball, V. (1877). Geology of Rajmahal Hills. Mem. Geol. Surv. India, 13(2), 1- 94.

  • Brongniart, A. (1828). Histoire des Vegetaux Fossiles ou Recherches Botaniques sur les Vegetaux Renfermes dans les Diverses Couches du Globe. Paris 1, 1-136.

  • Chandra, S. & Chandra, A. (1988). Vegetational changes and their climatic implications in coalbearing Gondwana. Palaeobotanist, 36, 74-86.

  • Chandra, S. & Surange, K. R. (1979). Revision of the Indian Species of Glossopteris. Monograph 2. Birbal Sahni Institute of Palaeobotany, Lucknow, pp. 1- 291.

  • Dolianiti, E. (1954). A flora de Gondwana inferior em Santa Catarina 5, O. Genero Gangamopteris –Div. De. Geol. E. Min. Notas Preliminares E Estudos, 8, 1-12.

  • Feistmantel, O. (1890). Coal and plant bearing beds of Paleozoic and Mesozoic in Eastern Australia and Tasmania with special reference to fossil flora. Mem. Geol. Surv. New South Wales. Palaeontology, 3, 1-183.

  • Goswami, S. (2006). Record of Lower Gondwana megafloral assemblage from Lower Kamthi Formation of lb River Coalfield, Orissa, India. Indian Academy of Sciences, Journal of Bioscience, 31(1), 115-128.

  • Goswami, S., Singh, K.J. & Chandra, S. (2006). Palaeobotany of Gondwana basins of Orissa State, India: A bird’s eye view. Journal of Asian Earth Sciences, 28, 218-233.

  • Joshi A.,Tewari R. & Agnihotri D. (2014). Plant diversity of the Kamthi Formation of India- A review. The Palaeobotanist, 63(2), 127-136.

  • Joshi, A., Tewari R., Agnihotri D., Pillai S. S. K. & Jain R. K. (2015). Occurrence of Vertebrariaindica (Unger) Feistmantel, 1877 – an evidence for coalforming vegetation in Kothagudem area, Godavari Graben, Telangana. Current Science, 108 (3), 330- 333.

  • Joshi, A. (2018a). In situ occurrence of Vertebrariaindica from the Rajmahal Open Cast Mine, Rajmahal Basin, India: an evidence for coal forming vegetation. Journal of Terrestrial and Marine Research, 2(1), 12-16.

  • Joshi, A. (2018b). Singhisporites rajmahalensis sp. nov. - A new megaspore species from Barakar Formation, Rajmahal Basin, Jharkhand. Species, 19, 36-40.

  • Joshi A. (2020). Dispersed Permian megaspores from Rajmahal Basin, Jharkhand. Species, 21, 281-285.

  • Lawrence, G. H. M. (1955). An Introduction to plant Taxonomy. The Macmillan Company New York.

  • Lele, K. M. (1976). Palaeoclimatic implications of Gondwana flora. Geophytology, 6, 207-229.

  • Maheshwari, H. K. & Bajpai, U. (1992). Ginkgophyte leaves from the Permian Gondwana of Rajmahal Basin. Palaeontographica, 224B, 131–149.

  • Maheshwari, H. K. & Prakash, G. (1965). Studies in the Glossopteris flora of India 21. Plant megafossils from the Lower Gondwana exposures along Bansloi River in Rajmahal hills, Bihar. Palaeobotanist,13, 115–128.

  • McCoy, F. (1847). On the fossil Botany and Zoology of rocks associated with the coal of Australia; The Annals and Magazine of Natural History, 20(1), 145-147; 20: (3-4), 298-312.

  • Melville, R. (1969). Leaf venation patterns and the origin of the angiosperms. Nature, 224, 121–125.

  • Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M. & Parui, P. K. (2010). Stratigraphic correlation between different Gondwana basins of India. Journal of the Geological Society of India, 76, 251-266. https:// doi.org/10.1007/s12594-010-0097-6

  • Pant, D. D. & Singh, K. B. (1968) On the genus Gangamopteris McCoy. Palaeontographica, 124B, 83-101.

  • Pant, D. D. & Singh, R. S. (1974). On the stem and attachment of Glossopteris and Gangamopteris leaves. Part II. Structural features. Palaeontographica, 147, 42–73.

  • Pillai, S. S. K., Mathews, R., Murthy, S., Goswami, S., Agrawal, S., Sahoo, M. & Singh, R. K. (2020). Palaeofloral Investigation Based on Morphotaxonomy, Palyno- morphs, Biomarkers and Stable Isotope from Lalmatia Coal Mine of Rajmahal Lower Gondwana Basin, Godda District, Jharkhand: An Inclusive Empirical Study. Journal of the Geological Society of India, 96(1), 43-57. https://doi.org/10.1007/s12594-020-1503- 3

  • Prasad, B., Shukla, V. D. & Maithy, P. K. (1987). Megafossils of the lower Gondwana succession in Pachhwara Coalfield, Bihar. Gondwana Geological Magazine, 2, 17-29.

  • Prasad, B. & Pundir, B.S. (2017). Gondwana biostratigraphy of the Purnea Basin (eastern Bihar, India), and its correlation with Rajmahal and Bengal Gondwana basins. Journal of the Geological Society of India, 90, 405-427. https:// doi.org/10.1007/s12594-017-0735-3

  • Prasad, B. & Pundir, B. S (2020) Gondwana biostratigraphy and geology of West Bengal Basin, and its correlation with adjoining Gondwana basins of India and western Bangladesh. Journal Earth System Science, 129, 22.

  • Schimper, W. P. (1869). Traite de Paleontologie Vegetal ou la Flore du Monde Primitif dans ses rapports avec les formations Geologiques et la Flore du Monde Actual. Balliere, Paris, 1-740.

  • Singh, S. M. (2000). Glossopteris flora from the Early Permian of Karanpura and Bokaro Coalfields, India. Geophytology, 29, 69-80.

  • Singh, K. J., Goswami, S. & Chandra, S. (2006). First Report of Genus Gangamopteris from Gondwana Sediments of Ib- River Coalfield, Orissa. Journal of the Geological Society of India, 68: 251-266.

  • Srivastava, A. K. (1992). Plant fossil assemblages from the Barakar Formation of Raniganj Coalfield, India. Palaeobotanist, 39, 281–302.

  • Srivastava, A. K. (1997). Late Palaeozoic floral succession in India. In: Proceeding XIII, International Congress of Carboniferous and Permian (pp. 264–272). Krakow, Poland.

  • Srivastava, A. K. & Agnihotri, D. (2010). Morphological consequence of Gangamopteris McCoy in Glossopteris flora. Journal of Asian Earth Sciences, 39(6), 760-769. https://doi. org/10.1016/j.jseaes.2010.04.033

  • Tewari, R. (2007) The Glossopteris flora from the Kamptee Coalfield, Wardha Basin, Maharashtra, India. Palaeontographica, 277(B), 43–64.

  • Tewari, R. (2008) The genus Glossopteris Brongniart from the Kamthi Formation of Camp IV area, Wardha Valley Coalfield, Wardha Basin, Maharashtra, India. Journal of the Palaeontological Society of India, 53(1), 19–30.

  • Tewari, R. & Srivastva, A. K. (2000). Plant fossils assemblage from the Talchir Formation, Auranga Coalfield, Bihar, India. Palaeobotanist, 49, 23–30.

  • Tewari R., Chatterjee S., Agnihotri D. & Pandita S. K. (2015). Glossopteris flora in the Permian Weller Formation of Allan Hills, South Victoria Land, Antarctica: Implications for paleogeography, paleoclimatology and biostratigraphic correlation. Gondwana Research, 28, 905–932.

  • Tewari R., Joshi A. & Agnihotri D. (2017). The Glossopteris flora of Manuguru Area, Godavari Graben, Telangana, India. Palaeobotanist, 66 (1), 17-36.

  • Joshı, A. & Prıya, R. K. (2021). The First Report of Gangamopteris rajaensis from Rajmahal Gondwana Basin (Jharkhand, India) . Türkiye Jeoloji Bülteni , 64 (3) , 267-276 . DOI: 10.25288/tjb.854704

  • Mineralogical, Geochemical Properties and Origin of Phosphate Formations in the Upper Cretaceous Karababa Formation (Mardin-Mazıdağı)
    Sema Tetiker Mesude Yildirim
    View as PDF

    Abstract: The study investigated phosphate-rich sedimentary rocks in the Late Cretaceous Karababa Formation inthe Mardin-Mazıdağ region, which represents the northern part of the Arabian Plate. The stratigraphic successionis divided in three members as i) Karataş: ellipsoidal gray-colored, largely weathered, fossiliferous shelly micriticlimestone, ii) Ekinciler: dolomitic cherty limestone interbedded with marls, and iii) Evciler: argillaceous limestonewith common phosphatic horizons. Large numbers of hand samples, collected from the outcrop successions, werecarefully studied with optic microscopy (OM) and scanning electron microscopy (SEM). They indicate the presenceof optical isotropic pelletic apatite minerals (37% P2O5), bone fragments, fish teeth, and invertebrate fossil fragmentslike brachiopod shells in phosphorite rocks and micritic limestone. The phosphorites in the Karababa Formation areinterpreted to have been deposited in a very shallow, near-shore low energy environment. The X-ray diffraction  (XRD) method confirmed the presence of apatite (carbonate fluorapatite: CFA), calcite, quartz, rare feldspar,dolomite, and clay (smectite, palygorskite, illite, kaolinite, chlorite, sepiolite, mixed layered illite-vermiculite, andchlorite-vermiculite) in phosphatic, silicic and other carbonate rocks. Total trace element concentrations in apatiteminerals range from 2436 ppm to 2456 ppm, with total concentrations normalized to chondrite (ppm) higher thanNorth America Shale Composite (NASC) at 664.98 ppm for P, 208.33 ppm for Sr and 33.66 ppm for Y. Commonoccurences of apatite, palygorskite/sepiolite, and smectite clay minerals in various sections of the KarababaFormation were interpreted as authigenic minerals in the marine environment. However, occurrences of mixedlayered clay minerals were interpreted as a result of neoformation and/or transformation processes. The phosphateoccurences in the Karababa Formation are considered to form due to mineral formation processes occurring viabiogenic and biogeochemical activities that developed with the changes in sea level linked to tectonic movementsassociated with the evolution of the Neotethyan ocean during the Upper Cretaceous period.

  • Arabian Plate

  • Authigenic

  • Carbonate fluorapatite (CFA)

  • Palygorskite

  • Phospate

  • REE


  • Abou, El-Anwar, E. A., Mekky, H. S., Abd El Rahim, S. H. & Aita, S. K. (2017). Mineralogical, geochemical characteristics and origin of Late Cretaceous phosphorite in Duwi Formation (Geble Duwi Mine), Red Sea region, Egypt. Egyptian Journal of Petroleum, 26, 157-169.

  • Alvarez, L.W., Alvarez, W. & Asaro, F. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095-1110.

  • Arda, O., Saltoğlu, T., Alparslan, E. ve Akyüz, T. (1976). Uranyum, Vanadyum, Flüor ve diğer tali elementleri içeren Mazıdağı fosfatlarında jeosismik ve mineralojik tetkikler ile uranyumun kazanılması olasılığı hakkında görüşler. Maden Tetkik ve Arama Enstitüsü Dergisi, 87, 39-54.

  • Arthur, M.A. & Jenkyns, H. C. (1981). Phosphorites and paleooceanography. Oceanologica Acta, Proceedings 26th International Geological Congress, Paris, 83-96.

  • Ayışkan, Ö. (1970). Akras fosfat yatağının çeşitli seviyelerinden alınan numunelerin zenginleştrime etüdü. Maden Tetkik ve Arama Enstitüsü Raporu.

  • Bardet, N., Cappetta, H., Pereda Suberbıola X., Mouty, M., Al Maleh A. K., Ahmad, A. M. Khrata, O. & Gannoum., N. (2000). The marine vertebrate faunas from the Late Cretaceousphosphates of Syria. Geological Magazine, 137(3), 269-290.

  • Beer, H. (1966). Mardin-Derik-Mazıdağı çevresindeki fosfatlı tabakaların jeolojisi. Maden Tetkik ve Arama Enstitüsü Dergisi, 66, 104-120.

  • Beer, H. (1967). Güneydoğu Türkiye Üst Kretase Fosfat Bölgesinin Paleocoğrafyası ve Fasiesi. Maden Tetkik ve Arama Enstitüsü Dergisi, 68, 84-88.

  • Benni, T. (2013). Phosphate Deposits of Iraq. Geological Survey of Iraq UNFC Workshop, Santiago, Chile.

  • Berker, E. (1972). Türkiye Fosfat Yatakları. Madencilik, Maden Mühendisleri Odası Dergisi, 11(4), 77-82.

  • Brindley, G. W. (1980). Quantitative X-Ray Mineral Analysis Of Clays. In: G.W. Brindley & G. Brown (Eds.), Crystal Structures Of Clay Minerals And Their X-Ray Identification (p.: 411-438). Mineralogical Society, London.

  • Choquette, P. W. & James, N. P. (1990). Limestone-the burial diagenetic environment. In: I.A Mcllreath, & D.W. Morrow, (Eds.), Diagenesis. Geoscience Canada Reprint Series, 4.

  • Cobb, R. E. (1957). Columnar Section BedinanKanisorik Paleozoic (Rapor No.576). TPAO Arama Grubu.

  • Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Cook, P. J. & McElhinny, M. W. (1979). A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonic. Economic Geology, 74, 315-330.

  • Cook, P. J. & Cook, J. R. (1985). Marine biological change and phosphogenesis around the CretaceousTertiary boundry. Science Geologiques Memoire, 77, 105-108.

  • Çoban, H. (1987). Derik Mazıdağı (Mardin) Fosfat yataklarının Sedimantolojisi [Yayımlanmamış Yüksek Lisans Tezi]. Ankara Üniversitesi Fen Bilimleri Enstitüsü.

  • Çoruh, T. (1991). Adıyaman civarında (XI. Bölge kuzeybatısı ve XII. Bölge) yüzeyleyen Kampaniyen-Tanesiyen istifinin biyostratigrafisi ve paleocoğrafik evrimi (Rapor no. 1656). Türkiye Petrolleri Anonim Ortaklığı, Araştırma Grubu.

  • Çoruh, T., Yakar, H. ve Ediger, V. Ş. (1997). Güneydoğu Anadolu Bölgesi otokton istifinin biyostratigrafi atlası. Türkiye Petrolleri Anonim Ortaklığı, Araştırma Merkezi Grubu Başkanlığı Eğitim Yayınları, No: 30.

  • Duran, O. (1991). Beşikli, Tokaris ve Bakacak sahalarının stratigrafisi, sedimantolojisi ve rezervuar özellikleri (Rapor No.1586). Türkiye Petrolleri Anonim Ortaklığı Arama Grubu

  • Erenler, M. (1989). XI-XII. Bölge güney alanlarındaki kuyularda Mesozoyik çökel istifinin mikropaleontolojik incelenmesi (Rapor No:1364). Türkiye Petrolleri Anonim Ortaklığı.

  • Folk, R. L. (1962). Spectral subdivision of limestone types. The American Association of Petroleum Geologists, 1, 62–84.

  • Gossage, D. W. (1956). Compiled progress report on the geology of part of Petroleum District VI, Southeast Turkey (Report no. GRT. 2). N. V. Turkse Shell.

  • Göncüoğlu, M. C., Dirik, K. & Kozlu, H., 1997. General chracteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique de Pays Hellenique, 37, 515-536.

  • Göncüoğlu, M.C. ve Turhan, N., 1984. Geology of the Bitlis Metamorphic Belt. Conference: Geology of the Taurus Belt 1, (237-244). Ankara.

  • Gromet, L. P., Dymek, R. F., Haskin, L .A. & Korotev, R. L. (1984). The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.

  • Güven, A., Dinçer, A., Tuna, M. E. ve Çoruh, T. (1991a). Güneydoğu Anadolu KampaniyenPaleosen otokton istifinin stratigrafisi (Rapor no. 2828). Türkiye Petrolleri Anonim Ortaklığı.

  • Güven, A., Dinçer, A., Tuna, M. E. & Çoruh, T. (1991b). Sratigraphic evolution of the CampanianPaleocene authouctonous succesion of the Southeast Anatolia. Ozan Sungurlu Sympossium Proceedings, 238-261.

  • Handfield, R. W., Bryant, G.F. & Keskin, C. (1959). Measured section, Korudağ (American Overseas Petroleum) (Rapor No:523). Türkiye Petrolleri Anonim Ortaklığı.

  • Haskin, L. A., Haskin, M. A., Frey, F. A. & Wildeman, T. R. (1968). Relative and absolute terrestrial abundances of the rare earths. In L.H. Ahrens (Ed.), Origin and Distribution of the Elements. Pergamon Press, 889-912.

  • İmamoğlu, Ş., Nathan, Y., Çoban, H., Soudry, D. & Glenn, C. (2009). Geochemical, mineralogical and isotopic signatures of the Semikan. West Kasrık Turkish phosphorites from the Derik–Mazıdağı– Mardin area, SE Anatolia. International Journal of Earth Sciences, 98, 1679-1690.

  • J.C.P.D.S. (1990). Powder Diffraction File. Alphabetical Indexes Inorganic Phases. Swarthamore, U.S.A.

  • Kellogg, H. E. (1960). Stratigraphic report, DerikMardin area Petroleum District V, Southeast Turkey (Rapor no: 1367). Türkiye Petrolleri Anonim OrtaklığıArama Raporu.

  • Ketin, İ. (1964). Güneydoğu Anadolu Paleozoyik teşekküllerinin jeolojik etüdü hakkında rapor (I. Kısım: Derik-Bedinan, Penbeğli-Tut ve Hazro bölgesi), (Rapor no. 287). Türkiye Petrolleri Anonim Ortaklığı.

  • Lucas, J. & Prevot-Lucas, L. (1996). Tethyan phosphatesand bioproductites. In A.E.M. Nairn, L.E. Ricou, B. Vrielynck, J. Dercourt J. (Eds.), The Ocean Basins and Margins, Volume 8, The Tethys Ocean, (pp.367–391). Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1558- 0_12

  • Meissner, C. R. & Ankary, A. (1970). Geology of phosphate deposits in the Sirhan-Turayf Basin, Kingdom of Saudi Arabia. United States Department of the Interior U.S. Geological Survey Special report.

  • Monod, O., Kozlu, H., Ghienne, J.-F., Dean, W. T., Günay, Y., Le Hérissé, A., Paris, F. & Robardet, M. (2003). Late Ordovician glaciation in southern Turkey. Terra Nova, 15, 249–257.

  • Moses, H. F. (1934). Geological report on the MardinCizre region. Southeastern Turkey. Maden Tetkik ve Arama Genel Müdürlüğü, Derleme No:212.

  • Mülayim, O., Mancini, E., Çemen, İ. 6 Yılmaz, İ. Ö. (2016). Upper Cenomanian-Lower Campanian Derdere and Karababa formations in the Çemberlitaş oil field, southeastern Turkey: their microfacies analyses, depositional environments, and sequence stratigraphy. Turkish Journal of Earth Sciences, 25, 46-63.

  • Orris, G. & Chernoff, C.B. (2004). Review of world sedimentary phosphate deposits and occurrences, Chapter 20. In J. R. Hein (Ed.), Life cycle of the Phosphoria Formation, Handbook of Exploration and Environmental Geochemistry. Elsevier Science B.V. https://doi.org/10.1016/S1874- 2734(04)80022-6

  • Schmidt, K. (1935). First report over geological and paleontological (Derleme No: 1532). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Simandl, G. J., Fajber, R. & Paradis, S. (2012). Sedimentary Phosphate Deposits Mineral Deposit Profile F07. British Columbia Geological Survey, 217-222.

  • Soudry, D., Glenn, C. R., Nathan, Y., Segal, I. & Vonder Haar, D. L. (2006). Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the CretaceousEocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth-Science Reviews, 78, 27-57.

  • Sun, S. S. & McDonough W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, & M. J. Norry, (Eds.), Magmatism in the Ocean Basins, Special Publication, v. 42 (313-345). Geological Society of London.

  • Sungurlu, O. (1973). VI. Bölge Gölbaşı-Gerger arasındaki sahanın jeolojisi (Rapor no. 802). Türkiye Petrolleri Anonim Ortaklığı.

  • Şengündüz, N. ve Aras, M. (1986). XI ve XII bölgelerde Mardin grubu karbonatlarının ve Karaboğaz Formasyonunun fasiyes dağılımları, diyajenez özellikleri ve çökelme modeli (Rapor no. 1005). Türkiye Petrolleri Anonim Ortaklığı.

  • Taylor, P. B. (1955). Stratigraphie studies Bozova (Urfa) area (Mobil Exploration Mediterranean Inc. Report). Petrol İşleri Genel Müdürlüğü Teknik Arşivi Kutu no. 332, Rapor no. 1).

  • Tuna, D. (1973). VI. Bölge litostratigrafı birimleri adlamasının açıklayıcı raporu (Rapor no. 813). Türkiye Petrolleri Anonim Ortaklığı.

  • Umut, M. (2011). 1/100.000 ölçekli Türkiye Jeoloji Haritası, Diyarbakır N 44 paftası. Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Uygur, K. ve Aydemir, V. (1988). Bölükyayla-Çukurtaş sahalarında (XII.Bölge) Derdere, Karababa, Karaboğaz ve Sayındere formasyonlarının yer altı jeolojisi (Rapor no. 2454). Türkiye Petrolleri Anonim Ortaklığı.

  • Varol, B. (1989). Mazıdağ-Derik (Mardin) fosfat pelloidlerinin sedimanter petrografisi ve kökeni. Maden Tetkik ve Arama Dergisi, 109, 119-126.

  • Wagner, C. & Tuna, E. (1988). Campanian cycle IV carbonates in Southeast Turkey depositional environments and paleogeography (Rapor no. 252). Türkiye Petrolleri Anonim Ortaklığı.

  • Weaver, C.E. & Pollard, L. D. (1973). The Chemistry of Clay Minerals. In Developments in Sedimentology 15, Elsevier.

  • Wilson, H. H. & Krummenacher, R. (1959). Geology and oil prospects of the Gaziantep Region, Southeast Turkey (N. V. Turkse Shell Report) (Rapor no: 839). Petrol İşleri Genel Müdürlüğü Teknik Arşivi, Kutu no. 351, Türkiye Petrolleri Anonim Ortaklığı.

  • Yalçın, H. ve Bozkaya, Ö. (2002). Hekimhan (Malatya) çevresindeki Üst Kretase yaşlı volkaniklerin alterasyon mineralojisi ve jeokimyası: deniz suyu-kayaç etkileşimine bir örnek. Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi Seri A-Yerbilimleri, 19, 81-98.

  • Yıldırım, M. (2019). Güneydoğu Anadolu Otoktonu (Mardin-Mazıdağı) Apsiyen-Alt Kampaniyen Yaşlı Karababa Formasyonunun Litolojik, Mineralojik ve Jeokimyasal Özelliklerinin İncelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Batman Üniversitesi Fen Bilimleri Enstitüsü, Batman.

  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of American Bulletin, 105, 251-271.

  • Yılmaz, E. ve Duran, O. (1997). Güneydoğu Anadolu bölgesi otokton ve allokton birimler stratigrafi adlama sözlüğü (Lexicon). Türkiye Petrolleri Anonim Ortaklığı Genel Müdürlüğü, Eğitim Yayınları, No:31.

  • Tetiker, S. & Yıldırım, M. (2021). Üst Kretase Yaşlı Karababa Formasyonu Fosfat Oluşumlarının Mineralojik, Jeokimyasal Özellikleri ve Kökeni (Mardin-Mazıdağı) . Türkiye Jeoloji Bülteni , 64 (3) , 277-308 . DOI: 10.25288/tjb.892186

  • Lithological Mapping of the Ayhan Basin (Central Anatolia) and Geological Implications: An Integration of Remote Sensing and Field Surveys
    Ayten Koç
    View as PDF

    Abstract: The Central Anatolian Crystalline Complex (CACC), consisting of metamorphic rocks, ophiolites, andmagmatic intrusions, is the largest metamorphic complex in Turkey. It is also one of the key areas for reconstructionof the subduction zones, accommodating the Africa-Europe convergence since the Cretaceous in the EasternMediterranean.The Ayhan Basin, chosen as the study area, is a supra-detachment basin that developed on the CACC. Ithas basin infill with an age ranging from Paleocene to Quaternary, interrupted by angular unconformities, and is expected to contain the whole geological record of tectonic mechanisms which have affected the region fromPaleocene to Recent times. Producing a well-defined lithological map showing the structural elements of the basinis very important to understand the geological evolution of the Ayhan Basin and also to determine the spatialand temporal effects of the triggering mechanisms which deform the CACC. For this purpose, optical satelliteimage (Landsat TM and ASTER) processing techniques (pan-sharpening, resampling, principal component analysis,decorrelation stretching, and band combination), which have a widespread application, were used in determinationof the lineaments and lithological units, having different reflectance values. After this, detailed lithostratigraphy andgeological mapping of the Ayhan Basin were created by field verification.Considering the reconstructed stratigraphy and the geological map of the Ayhan Basin based on field observationand remotely sensed data, it has a depositional system that starts with continental deposits before Lutetian, thencontinues with marine sediments during the Eocene, and again ends with continental deposits. When the deformationprocesses are evaluated based on the trigger mechanisms of the Central Anatolian Crystalline Complex’s (CACC)evolution, the northern and southern part of the CACC show clearly different processes. Accordingly, the boundaryof the impact zone of the subduction zones in the north and south of the CACC is located between the Çiçekdağ andAyhan basins.

  • ASTER

  • Ayhan Basin

  • Central Anatolia

  • Kırşehir Block

  • Landsat TM

  • Remote Sensing


  • Advokaat, E. L., van Hinsbergen, D. J., Kaymakcı, N., Vissers, R. L. & Hendriks, B. W. (2014). Late Cretaceous extension and Palaeogene rotationrelated contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. International Geology Review, 56(15), 1813-1836.

  • Akgün, F., Olgun, E., Kuşçu, İ., Toprak, V. ve Göncüoğlu, M. C. (1995). Orta Anadolu Kompleksinin “OligoMiyosen” örtüsünün stratigrafisi, çökelme ortamı ve gerçek yaşına ilişkin yeni bulgular. Türkiye Petrol Jeologları Derneği Bülteni, 6(1), 51- 68.

  • Atabey, E. (1989). 1/100.000 Ölçekli Türkiye Jeoloji Haritaları. Kayseri-K33 (H19) Paftası. Maden Tetkik ve Arama Genel Müdürlüğü (MTA), Jeoloji Etüdleri Dairesi, Ankara, 18 s.

  • Aydın, N. (1985). Geological evolution of Gümüşkent town and it’s surrounding in the Middle Anatolian Massif. Communications: de La Faculté des Sciences de l’Université d’Ankara, série C1 Géologie, 31, 43–56.

  • Boztuğ, D., Turksever, E. Heizler, M., Jonckheere, R. C. & Tichomirowa, M. (2009a). 207Pb206Pb, 40Ar-39Ar and apatite fission-track geothermochronology revealing the emplacement, cooling and exhumation history of the Karacayır Syenite (N Sivas), East-Central Anatolia, Turkey. Turk. J. Earth Sci., 18, 109–125. https://doi. org/10.3906/sag-1202-18

  • Boztuğ, D., Jonckheere R. C., Heizler, M., Ratschbacher L., Harlavan Y. & Tichomirova, M. (2009b). Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics 473, 223–233.

  • Çağlayan, A. Y. (2010). Savcılı fay zonunun (Kırşehir) yapısal analizi [Doktora tezi]. Ankara Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı.

  • Demirtaşlı, E., Bilgin, A.Z., Erenler, F., Işıklar, S., Sanlı, D.Y., Selim, M. ve Turhan, N. (1975). Bolkardağları’nın Jeolojisi. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi (42-57). MTA Özel Yayını, Ankara.

  • Fayon, A. K., Whitney, D. L., Teyssier, C., Garver, J. I. & Dilek, Y. (2001). Effects of plate convergence obliquity on timing and mechanisms of exhumation of a mid-crustal terrain, the Central Anatolian Crystalline Complex. Earth and Planetary Science Letters, 192(2) 191–205. https://doi.org/10.1016/ S0012-821X(01)00440-X

  • Fujisada, H., Sakuma, F., Ono, A. & Kudoh, M. (1998). Design and preflight performance of ASTER instrument protoflight model. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1152- 1160.

  • Gautier, P., Bozkurt, E., Hallot, E. & Dirik, K. (2002). Dating the exhumation of a metamorphic dome: geological evidence for pre-Eocene unroofing of the Niğde Massif (Central Anatolia). Geological Magazine, 139(5), 559-576. https://doi. org/10.1017/S0016756802006751

  • Gautier, P., Bozkurt, E., Bosse, V., Hallot, E. & Dirik, K. (2008). Coeval extensional shearing and lateral underflow during Late Cretaceous core complex development in the Niğde Massif, Central Anatolia, Turkey. Tectonics, 27(1), https://doi. org/10.1029/2006TC002089

  • Genç, Y. & Yürür, M. T. (2010). Coeval extension and compression in Late Mesozoic–Recent thinskinned extensional tectonics in central Anatolia. Turkey. Journal of Structural Geology, 32(5), 623-640.

  • Gökten, E. & Floyd, P. A. (1987). Geochemistry and tectonic environment of the Şarkışla area volcanic rocks in Central Anatolia, Turkey. Mineralogical Magazine, 51, 553-559.

  • Göncüoğlu, M.C, Erler, A., Toprak, G.M.V., Yalınız, K., Kuşçu, I., Köksal, S. ve Dirik, K. (1993). Orta Anadolu Masifin batı bölümünün jeolojisi, Bölüm 3: Orta Kızılırmak Tersiyer Baseninin jeolojik evrimi (Rapor no: 3313). T.P.A.O. (yayımlanmamış).

  • Görür, N., Oktay, F. Y., Seymen, I. & Şengör, A. M. C. (1984). Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. Geological Society, London, Special Publications, 17(1), 467- 482.

  • Görür, N., Tüysüz, O. & Celal Şengör, A. M. (1998). Tectonic evolution of the central Anatolian basins. International Geology Review, 40(9), 831-850.

  • Gradstein, F., Ogg, J., & Smith, A. (Eds.). (2005). A Geologic Time Scale 2004. Cambridge: Cambridge University Press. https://doi. org/10.1017/CBO9780511536045

  • Gülyüz, E., Kaymakci, N., Meijers, M. J., van Hinsbergen, D. J., Lefebvre, C., Vissers, R. L., Hendriks, B. W. H. & Peynircioğlu, A. A. (2013). Late Eocene evolution of the Çiçekdağı Basin (central Turkey): Syn-sedimentary compression during microcontinent–continent collision in central Anatolia. Tectonophysics, 602, 286-299.

  • Gürbüz, E., Seyitoğlu, G. & Güney, A. (2020). Late Cenozoic tectono-sedimentary evolution of the Ulukışla Basin: progressive basin development in south-central Turkey. International Journal of Earth Sciences, 109(1), 345-371.

  • Gürer, D., van Hinsbergen, D. J., Matenco, L., Corfu, F. & Cascella, A. (2016). Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey). Tectonics, 35(10), 2385-2416.

  • Idleman, L., Cosca, M. A., Heizler, M. T., Thomson, S. N., Teyssier, C. & Whitney, D. L. (2014). Tectonic burial and exhumation cycles tracked by muscovite and K-feldspar 40Ar/39Ar thermochronology in a strike-slip fault zone, central Turkey. Tectonophysics, 612–613, 134–146. https://doi. org/10.1016/j.tecto.2013.12.003

  • Innocenti, F., Mazzuoli, R., Pasquare, G., Di Brozolo, F. R. & Villari, L. (1975). The Neogene calcalkaline volcanism of Central Anatolia: geochronological data on Kayseri-Niğde area. Geological Magazine, 112(4), 349-360.

  • Işık, V., Lo, C.-H., Göncüoğlu, C. & Demirel, S. (2008). 39Ar/40Ar ages from the Yozgat Batholith: Preliminary data on the timing of Late Cretaceous extension in the Central Anatolian Crystalline Complex. Turkey. The Journal of Geology, 116(5), 510–526. https://doi.org/10.1086/590922

  • Işık, V. (2009). The ductile shear zone in granitoid of the Central Anatolian Crystalline Complex, Turkey: Implications for the origins of the Tuzgölü basin during the Late Cretaceous extensional deformation. Journal of Asian Earth Sciences, 34(4), 507–521. https://doi.org/10.1016/j. jseaes.2008.08.005

  • Işık, V., Uysal, I. T., Caglayan, A. & Seyitoglu, G. (2014). The evolution of intraplate fault systems in central Turkey: Structural evidence and Ar-Ar and Rb-Sr age constraints for the Savcili Fault Zone. Tectonics, 33(10), 1875-1899.

  • Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc.

  • Kaymakci, N., Duermeijer, C. E., Langereis, C., White, S. H. & Van Dijk, P. M. (2003a). Palaeomagnetic evolution of the Çankırı Basin (central Anatolia, Turkey): Implications for oroclinal bending due to indentation. Geological Magazine, 140(3), 343–355. https://doi.org/10.1017/ S001675680300757X

  • Kaymakci, N., White, S. H., Vandijk, P. M. (2003b). Kinematic and structural development of the Çankırı Basin central Anatolia, Turkey): a paleostress inversion study. Tectonophysics, 364(1–2), 85–113.

  • Kaymakci, N., Özmutlu, Ş., van Dijk, P.M. & Özçelik, Y. (2010). Surface and subsurface characteristics and hydrocarbon potential of the Çankiri Basin (Central Anatolia, Turkey): integration of remote sensing, seismic interpretation and gravity . Turkish Journal of Earth Sciences 19, 79-100.

  • Köksal, S. & Göncüoğlu, M. C. (1997). Geology of the İdiş Dağı-Avanos Area (Nevşehir-Central Anatolia). Maden Tetkik ve Arama Dergisi, 119(119), 41-58.

  • Köksal, S., Göncüoglu, M.C., Floyd, P.A. (2001). Extrusive members of Postcollisonal A-Type Magmatism in Central Anatolia: Karahıdır volcanics, Idis Dagı – Avanos Area, Turkey. International Geology Review, 43, 683-694.

  • Lefebvre, C., Barnhoorn, A., van Hinsbergen, D. J. J., Kaymakci, N. & Vissers, R. L. M. (2011). Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, Central Turkey. Journal of Structural Geology, 33(8), 1220–1236. https://doi. org/10.1016/j.jsg.2011.06.002

  • Lefebvre, C., Meijers, M. J. M., Kaymakci, N., Peynircioğlu, A., Langereis, C. G. & van Hinsbergen, D. J. J. (2013). Reconstructing the geometry of central Anatolia during the late Cretaceous: Large-scale Cenozoic rotations and deformation between the Pontid es and Taurides. Earth and Planetary Science Letters, 366, 83–98. https://doi.org/10.1016/j.epsl.2013.01.003

  • Lefebvre, C., Peters, K., Wehrens, P., Brouwer, F. M. & Van Roermund, H. L. M. (2015). Thermal and extensional exhumation history of a hightemperature crystalline complex (Hırkadağ Massif, Central Anatolia). Lithos, 238, 156–173.

  • Le Pennec, J. L., Bourdier, J. L., Froger, J. L., Temel, A., Camus, G. & Gourgaud, A. (1994). Neogene ignimbrites of the Nevsehir plateau (central Turkey): stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research, 63(1-2), 59-87.

  • Lillesand, T. M. & Kiefer, R. W. (1994). Remote Sensing and Image Interpretation (3rd edn). Wiley ve Sons, New York.

  • Meijers, M. J., Kaymakci, N., Van Hinsbergen, D. J., Langereis, C. G., Stephenson, R. A. & Hippolyte, J. C. (2010). Late Cretaceous to Paleocene oroclinal bending in the central Pontides (Turkey). Tectonics, 29(4). https://doi.org/10.1029/2009TC002620

  • Moix, P., Beccaletto, L., Kozur, H. W., Hochard, C., Rosselet, F. & Stampfli, G. M. (2008). A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451, 7–39.

  • NASA (National Aeronautics and Space Administration), 2021. https://terra.nasa.gov/data/ aster-data 08.07.2021.

  • NASA (National Aeronautics and Space Administration), 2021. https://landsat.gsfc.nasa. gov/ 08.07.2021.

  • Okay A. I., Satır M., Maluski H., Siyako, M. Monié, P., Metzger, R. & Akyüz, S. (1996). Paleo and NeoTethyan events in northwestern Turkey: Geologic and geochronologic constraints. In A. Yin & M. Harrison (Eds.), The Tectonic Evolution of Asia, (pp. 420–41). Cambridge University Press, New York.

  • Okay, A. I., Tüysüz, O., Satır, M., Özkan-Altıner, S., Altıner, D., Sherlock, S. & Eren, R. H. (2006). Cretaceous and Triassic subduction-accretion, high-pressure-low-temperature metamorphism, and continental growth in the Central Pontides, Turkey. Geological Society of America Bulletin, 118(9-10), 1247–1269. https://doi.org/10.1130/ B25938.1

  • Pasquare, G. (1968). Geology of the cenozoic volcanic area of Central Anatolia (Provinces of Kayseri and Nevsehir, Turkey). Atti Accademia Nazionale dei Lincei, 9(1), 53-204.

  • Robertson, A. (2004). Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth-Science Reviews, 66(3-4), 331–387. https://doi.org/10.1016/j. earscirev.2004.01.005

  • Sabins Jr, F. F. (1987). Remote sensing-principles and interpretation. WH Freeman and Company.

  • Stampfli, G. M. & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2), 17-33.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Thetyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241.

  • Seyitoğlu, G., Işık, V., Gürbüz, E. & Gürbüz, A. (2017). The discovery of a low-angle normal fault in the Taurus Mountains: the İvriz detachment and implications concerning the Cenozoic geology of southern Turkey. Turkish Journal of Earth Sciences, 26(3), 189-205.

  • Temel, A., Gündoğdu, M. N., Gourgaud, A. & Le Pennec, J. L. (1998). Ignimbrites of Cappadocia (central Anatolia, Turkey): petrology and geochemistry. Journal of Volcanology and Geothermal Research, 85(1-4), 447-471.

  • Toprak, V. (1994). Central Kızılırmak fault zone: northern margin of Central Anatolian volcanics. Turkish Journal of Earth Sciences, 3, 29-38.

  • Umhoefer, P. J., Whitney, D. L., Teyssier, C., Fayon, A. K, Casale, G., Heizler, T. & Heizler, M. T. (2007). Yo-yo tectonics in a wrench zone, Central Anatolian fault zone, Turkey. In S. M. Roeske, A. B. Till, D. A. Foster, J. C. Sample (Eds.), Exhumation Associated with Continental Strike-Slip Fault Systems. https://doi.org/10.1130/2007.2434(03)

  • Viereck-Goette, L., Lepetit, P., Gürel, A., Ganskow, G., Çopuroğlu, I. & Abratis, M. (2010). Revised volcanostratigraphy of the Upper Miocene to Lower Pliocene Ürgüp Formation, Central Anatolian volcanic province, Turkey. In G. Groppelli, & L. Viereck-Goette (Eds.), Stratigraphy and Geology of Volcanic Areas: Geological Society of America Special Paper 464, 85–112.

  • Yalınız, M. K. & Göncüoğlu, M. C. (1998). General geological characteristics and distribution of the Central Anatolian Ophiolites. Yerbilimleri, (20), 19-30.

  • Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T. & Pniel, M., 1998. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Transactions on geoscience and remote sensing, 36(4), 1062-1071.

  • Whitney, D. L. & Dilek, Y. (1997). Core complex development in central Anatolia, Turkey. Geology, 25(11), 1023-1026.

  • Whitney, D.L. & Dilek, Y. (2001). Metamorphic and Tectonic Evolution of the Hırkadağ Block, Central Anatolian Crystalline Complex. Turkish Journal of Earth Sciences, 10, 1-15.

  • Whitney, D. L., Teyssier, C., Fayon, A. K., Hamilton, M. A. & Heizler M. (2003). Tectonic controls on metamorphism, partial melting, and intrusion: Timing and duration of regional metamorphism and magmatism in the Niğde Massif. Turkey. Tectonophysics, 376(1–2), 37–60.

  • Whitney, D. L., Teyssier, C. & Heizler, M. T. (2007). Gneiss domes, metamorphic core complexes, and wrench zones: Thermal and structural evolution of the Niğde Massif, central Anatolia, Tectonics, 26, Article TC5002. https://doi. org/10.1029/2006TC002040

  • Koç, A. (2021). Ayhan Havzası’nın (Orta Anadolu) Litolojik Haritalaması ve Jeolojik Çıkarımlar: Bir Uzaktan Algılama ve Arazi Çalışması Entegrasyonu . Türkiye Jeoloji Bülteni , 64 (3) , 309-348 . DOI: 10.25288/tjb.913294

  • Morphometric and Kinematic Analysis of Gümüldür Fault and Its Seismotectonic Implications for Western Anatolia
    Büşra Yerli Mustafa Softa Hasan Sözbilir
    View as PDF

    Abstract: Kuşadası Bay, which is controlled by active normal faults, is located in an evolving graben in the westof the Western Anatolian Extension System. Gümüldür Fault (GF), which restricts Kuşadası Bay to the north, hasapproximately 30 km long, fragmented structure between Ürkmez and Ahmetbeyli. GF, which strikes N (50o-55o)W direction, forms a sharp morphological escarpment between Ürkmez and Ahmetbeyli starting from Paleozoicbasement rocks to Quaternary alluvium units. The dip angle of the fault planes increases to the west (40o-85oSW),and the fault is a dip-slip active normal fault with convex structure and geometry toward the northeast. To unravelthe Quaternary activity of Gümüldür Fault and the evaluation of the regional uplift, morphometric and kinematicanalysis was performed for the first time on the fault that includes well-preserved geomorphological markers.Quantitative measurement of morphometric indices such as mountain front sinuosity (Smf: 1.13-1.56), valley floor  width to height ratio (Vf: 0.10-1.00), percentage faceting Lf/Ls ([L: 4.75-88.35, S: 0.12-9.30]), asymmetry factor (AF:19-78 ), basin shape geometry (Bs: 1.05-5.98), stream length gradient (Hack) index (SL: 25-6094.44), hypsometriccurve and hypsometric integral (HI: 0.16-0.53) and rock strength and climate parameters indicate that the footwallof the GF has been uplifting toward the west with more than 0.5 mm per year. According to kinematic studies ofthe GF, which is geometrically composed of three parts, the region developed under the control of an extensionalregime oriented NNE-SSW. If it is broken in seperate segments, it has the potential to produce earthquakes witha magnitude of 6.12, 6,45 and 5.78, respectively. If considered as a single segment, it has the potential to produceearthquakes with a magnitude of 6.81 in Kuşadası Bay. For this reason, trench-based paleoseismological studies areneeded to reveal the past activity of Gümüldür Fault and to determine the seismic hazard level in the region.

  • Gümüldür Fault

  • kinematic analysis

  • morphometric analysis

  • Western Anatolia


  • Akkar, S., Azak, T., Çan, T., Çeken, U., Demircioğlu Tümsa, M. D., Duman, T. Y., ... & Zülfikar, Ö. (2018). Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 16(8), 3197-3228. https://doi.org/10.1007/ s10518-018-0349-1

  • Aktuğ, B. & Kılıçoğlu, A. 2006. Recent crustal deformation of Izmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field. Journal of Geodynamics, 41(5), 471-484.

  • Akyol, N., Zhu, L., Mitchell, B. J., Sözbilir, H. & Kekovalı, K. 2006. Crustal structure and local seismicity in western Anatolia. Geophysical Journal International, 166(3), 1259-1269.

  • Akyüz, H. S. & Altunel, E. (2001). Geological and archaeological evidence for post–Roman earthquake surface faulting at Cibyra, SW Turkey. Geodinamica Acta, 14(1-3), 95-101.

  • Alipoor, R., Poorkermani, M., Zare, M. & El Hamdouni, R. (2011). Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology, 128(1-2), 1-14.

  • Altunel, E. & Pınar, A. (2021). Tectonic implications of the Mw 6.8, 30 October 2020 Kuşadası Gulf earthquake in the frame of active faults of Western Turkey. Turkish Journal of Earth Sciences. https:// doi.org/10.3906/yer-2011-6

  • Altunel, E. (1999). Geological and geomorphological observations in relation to the 20 September 1899 Menderes earthquake, western Turkey. Journal of the Geological Society, 156(2), 241-246.

  • Ambraseys, N. (2009). Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press.

  • Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. The Annals of Mathematical Statistics, 22(3), 327-351.

  • Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848.

  • Bagha, N., Arian, M., Ghorashi, M., Pourkermani, M., El Hamdouni, R. & Solgi, A. (2014). Evaluation of relative tectonic activity in the Tehran basin, central Alborz, northern Iran. Geomorphology, 213, 66-87.

  • Balaban U. D. (2019). Lebedos antik kenti ÜrkmezMersinalanı kurtarma kazısından ele geçen seramikler [Yayımlanmamış Yüksek Lisans Tezi]. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü.

  • Barka A. A. & Reilinger R. (1997). Active tectonics of the Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geophis. XI, 587-610.

  • Başarır Baştürk, N., Özel, N.M., Altınok, Y. ve Duman, T.Y. 2017. Türkiye ve yakın çevresi için geliştirilmiş tarihsel dönem (MÖ 2000 - MS 1900) deprem katalogu. T.Y. Duman (Ed.), Türkiye Sismotektonik Haritası Açıklama Kitabı Özel Yayınlar Serisi-34 (239 s.). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Başarır, E. & Konuk, Y. T. (1981). Gümüldür yöresinin kristalin temeli ve allokton birimleri. Türkiye Jeoloji Kurumu Bülteni, 24(2), 1-6.

  • Bayrak, Y. & Bayrak, E. (2012). Regional variations and correlations of Gutenberg–Richter parameters and fractal dimension for the different seismogenic zones in Western Anatolia. Journal of Asian Earth Sciences, 58, 98-107.

  • Bayrak, Y. & Türker, T. (2016) The determination of earthquake hazard parameters deduced from Bayesian approach for different seismic source regions of Western Anatolia. Pure and Applied Geophysics, 173(1), 205-220.

  • Berberian, M. & Arshadi, S. (1976). On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city. Geol. Surv. Iran Rep, 39, 397-418.

  • Borsi, S., Ferrara, G., Innocenti, F. & Mazzuoli, R. (1972). Geochronology and petrology of recent volcanics in the Eastern Aegean Sea (West Anatolia and Lesvos Island). Bulletin Volcanologique, 36(3), 473.

  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological magazine, 96(2), 109-117.

  • Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica acta, 14(1-3), 3-30.

  • Bozkurt, E. & Park, R. G. (1997). Evolution of a midTertiary extensional shear zone in the southern Menderes Massif, western Turkey. Bulletin de la Société Géologique de France, 168(1), 3-14.

  • Bull, W. B. (1978). Geomorphic Tectonic Activity Classes of the South Front of the San Gabriel Mountains, California. Geosciences Department, University of Arizona.

  • Bull, W. B. (2007). Mountain Fronts. In Tectonic Geomorphology of Mountains, (pp. 75-116). Blackwell Publishing Ltd.

  • Bull, W. B., 2007. Tectonic Geomorphology of Mountains: a new Approach to Paleoseismology. Blackwell Publishing Ltd.

  • Bull, W.B. & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. Doehring, D.O (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium (115-138). State University of New York, Binghamton.

  • Burbank, D. & Anderson, R. A. (2000). Tectonic Geomorphology, (pp. 201-231). Blackwell Science, USA.

  • Burbank, D. W., Anderson, R. S. (2000). Tectonic Geomorphology. Backwell Science.

  • Cannon, P. J. (1976). Generation of explicit parameters for a quantitative geomorphic study of the mill creek drainage basin. Oklahoma Geology Notes, 36(1), 3–16.

  • Caputo, R. & Helly, B. (2005). The Holocene activity of the Rodia Fault, Central Greece. Journal of Geodynamics, 40(2-3), 153–169.

  • Caputo, R. & Helly, B. 2008. The use of distinct disciplines to investigate past earthquakes. Tectonophysics, 453(1-4), 7-19.

  • Caputo, R., Helly, B., Pavlides, S. & Papadopoulos, G. (2004). Palaeoseismological investigation of the Tyrnavos Fault, Central Greece. A contribution to the seismic hazard assessment of Thessaly. Tectonophysics, 394(1), 1–20.

  • Chamot-Rooke N. & Dotmed Working Group (2005). DOTMED – Deep Offshore Tectonics of the Mediterranean: A synthesis of deep marine data in eastern Mediterranean. Mémoire de la Société géologique de France and American Association of Petroleum Geologists, numéro spécial, 177, 64 pp, 9 maps.

  • Chatzipetros, A., Kiratzi, A., Sboras, S., Zouros, N. & Pavlides, S. (2013). Active faulting in the northeastern Aegean Sea Islands. Tectonophysics, 597, 106-122.

  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571-581.

  • Çetinkaplan, M., Candan, O., Oberhänsli, R., Sudo, M., & Cenki-Tok, B. (2020) P–T–t evolution of the Cycladic Blueschist Unit in Western Anatolia/ Turkey: Geodynamic implications for the Aegean region. Journal of Metamorphic Geology, 38(4), 379-419.

  • Daxberger, H. & Riller, U. (2015). Kinematics of Neogene to Recent upper-crustal deformation in the southern Central Andes (23–28 S) inferred from fault–slip analysis: evidence for gravitational spreading of the Puna Plateau. Tectonophysics, 642, 16-28.

  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84- 92.

  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96, 150–173.

  • Emre, Ö., Duman, T. Y., Özalp, S., Elmaci, H. & Olgun, S. (2011). 1:250.000 scale active fault map series of Turkey, Kayseri (NJ36-8) Quadrange. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.

  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275.

  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. & Göktaş, F. (2005). İzmir yakın çevresinin diri fayları ve deprem potansiyelleri (Rapor no:10754). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.

  • Emre, T., Sözbilir, H. (2007). Tectonic Evolution of the Kiraz Basin, Küçük Menderes Graben: Evidence for Compression/Uplift-related Basin Formation Overprinted by Extensional Tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16(4), 441-470.

  • Erdoğan, B. (1990). Tectonic relations between IzmirAnkara zone and Karaburun belt. Maden Tetkik ve Arama Dergisi, 110, 1-15.

  • Eski, S., Sözbilir, H., Uzel, B., Özkaymak, Ç. & Sümer, Ö. (2020). Gölmarmara Fayı’nın Morfotektonik Evriminin CBS Tabanlı Yöntemlerle Araştırılması, Gediz Grabeni, Batı Anadolu. Türkiye Jeoloji Bülteni, 63(3), 345-372. https://doi.org/10.25288/ tjb.679584

  • Eyubagil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B. & Özkaymak, Ç. (2020). Present-day strike-slip deformation within the southern part of İzmir Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment, western Anatolia. Turkish Journal of Earth Sciences. https://doi.org/10.3906/ yer-2005-26

  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14(1-3), 45-55.

  • Gürer, A., Bayrak, M. & Gürer, Ö. F. (2004). Magnetotelluric images of the crust and mantle in the southwestern Taurides, Turkey. Tectonophysics, 391(1-4), 109-120.

  • Hack, J. T. (1973). Stream-profile analysis and streamgradient index. Journal of Research of the us Geological Survey, 1(4), 421-429.

  • Hare, P. W. & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.

  • Hurtrez, J. E., Sol, C. & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(9), 799- 808.

  • ISC (2020). http://www.isc.ac.uk/iscbulletin/search/ catalogue/interactive/ Retrieved 05.03.2021.

  • Jackson, J. & McKenzie, D. (1989). Relations between seismicity and paleomagnetic rotations in zones of distributed continental deformation. In Paleomagnetic Rotations and Continental Deformation (pp. 33-42). Springer, Dordrecht.

  • Keller, E. A. (1986). Investigation of active tectonics: use of surficial earth processes. In: R. E. Wallace (Ed.), Active Tectonics, Studies in Geophysics (136-147). National Academy Press.

  • Keller, E.A., & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift, and Landscape. Upper Saddle River, New Jersey, Prentice-Hall Inc.

  • Khalifa, A., Cakir, Z., Lewis, O. & Şinasi, K. (2018). Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27(2), 110-126.

  • Koçyigit, A., Yusufoglu, H., Bozkurt, E. 1999. Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society, London, 156, 1240-1242.

  • Konak N. (2002a). 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel M. (ed.)). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Konak N. (2002b). 1/500.000 Türkiye Jeoloji Haritası Denizli Paftası, (Şenel M. (ed.)). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1-2), 1-42.

  • Lykousis, V., Anagnostou, C., Pavlakis, P., Rousakis, G. & Alexandri, M. (1995). Quaternary sedimentary history and neotectonic evolution of the eastern part of Central Aegean Sea, Greece. Marine Geology, 128(1-2), 59-71.

  • Maniatis, G. & Hampel, A. (2008). Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models. Journal of Structural Geology, 30(1), 21- 28.

  • Mayer, L. (1986). Tectonic geomorphology of escarpments and mountain fronts. In R. E. Wallace (Ed.), Active tectonics, Studies in Geophysics (pp. 125-135). National Academy Press.

  • McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.

  • McKenzie, D. (1978). Active tectonics of the Alpine— Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254.

  • Mountrakis, D., Kilias, A., Vavliakis, E., Psilovikos, A. & Thomaidou, E. (2003). Neotectonic map of Samos island (Aegean Sea, Greece): implication of geographical information systems in the geological mapping. In 4th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy (pp. 11-13).

  • Mozafari, N., Tikhomirov, D., Sumer, Ö., Özkaymak, Ç., Uzel, B., Yeşilyurt, S., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H. & Akçar, N. (2019). Dating of active normal fault scarps in the Büyük Menderes Graben (western Anatolia) and its implications for seismic history. Quaternary Science Reviews, 220, 111-123. https://doi. org/10.1016/j.quascirev.2019.07.002

  • Necmioğlu, Ö. (2014). Tsunami Hazard in Turkey and Surroundings [Doctoral dissertation, PhD. Thesis]. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute Istanbul, Turkey

  • Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. (2004). Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strike-slip faulting in the Aegean extensional province. Tectonophysics, 391(1-4), 67-83.

  • Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. (2005). Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219(2-3), 155-171.

  • Okay, A. I. (2001). Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. International Journal of Earth Sciences, 89(4), 709-727.

  • Okay, A. I. & Altiner, D. (2007). A condensed Mesozoic succession north of Izmir: A fragment of the Anatolide-Tauride platform in the Bornova Flysch Zone. Turkish Journal of Earth Sciences, 16(3), 257-279.

  • Okay, A. I. & Siyako, M. (1993). İzmir-Balıkesir arasında İzmir-Ankara Neo-Tetis Kenedinin yeni konumu. Türkiye ve Çevresinin TektoniğiPetrol Potansiyeli. S. Turgut (Ed.) Ozan Sungurlu Sempozyumu Bildirileri, (s. 333-355).

  • Okay, A. İ., Kaşlılar-Özcan, A., Imren, C., BoztepeGüney, A., Demirbağ, E. & Kuşçu, İ. (2000). Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics, 321(2), 189-218.

  • Özgenç, İ. (1978). Cumaovası (İzmir) asit volkanitlerinde saptanan iki ekstrüzyon aşaması arasındaki göreli yaş ilişkisi. Türkiye Jeoloji Kurumu Bülteni, 21(1), 31-84.

  • Özkaymak, Ç. & Sözbilir, H. (2008). Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17(3), 615-635.

  • Özkaymak, Ç., Sözbi̇li̇r, H., Uzel, B. & Akyüz, H. S. (2011). Geological and palaeoseismological evidence for late Pleistocene− Holocene activity on the Manisa Fault Zone, western Anatolia. Turkish Journal of Earth Sciences, 20(4), 449- 474.

  • Özkaymak, Ç. & Sözbilir, H. (2012). Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173, 128-140.

  • Özkaymak, Ç., Sözbilir, H. & Uzel, B. (2013). Neogene–Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.

  • Özkaymak, Ç. (2015) Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27(2-3), 110-129.

  • Özkaymak, Ç., Sözbilir, H., Gecievi, M. O., & Tiryakioğlu, İ. (2019). Late Holocene coseismic rupture and aseismic creep on the Bolvadin Fault, Afyon Akşehir Graben, western Anatolia. Turkish Journal of Earth Sciences, 28(6), 787-804.

  • Özsayın, E. (2016). Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253.

  • Pavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G. & Chatzipetros, A. (2009). Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. In Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering (Vol. 10, p. 2009).

  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1-2), 74-87.

  • Radaideh, O. M. & Mosar, J. (2019). Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics, 768, Artcile 228179. https://doi. org/10.1016/j.tecto.2019.228179

  • Ramírez-Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23(4), 317-332. https://doi.org/10.1002/ (SICI)1096-9837(199804)23:4<317::AIDESP845>3.0.CO;2-V

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., ... & Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi. org/10.1029/2005JB004051

  • Rimando, J. M. & Schoenbohm, L. M. (2020). Regional relative tectonic activity of structures in the Pampean flat slab segment of Argentina from 30 to 32° S. Geomorphology, 350, Artcile 106908.

  • Ring, U. W. E., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous– Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441.

  • Roberts, G. P. (1996). Variation in fault-slip directions along active and segmented normal fault systems. Journal of Structural Geology, 18(6), 835-845.

  • Rockwell, T. K., Keller, E. A., Clark, M. N. & Johnson, D. L. (1984). Chronology and rates of faulting of Ventura River terraces, California. Geological Society of America Bulletin, 95(12), 1466-1474.

  • Schumm, S.A., Dumont, J.F. & Holbrook, J.M. (2000). Active Tectonics and Alluvial Rivers. Cambridge University Press

  • Schwanghart, W. & Kuhn, N.J. (2010) TopoToolbox: A set of Matlab functions for topographic analysis. Environment Modelling and Software 25, 770- 781.

  • Selby, M. J. (1980). A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie Stuttgart, 24(1), 31-51.

  • Seyitoğlu, G. & Scott, B. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155-166.

  • Seyitoğlu, G., Scott, B. C. & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149(4), 533-538.

  • Seyitoğlu, G., Işık, V. & Çemen, I. (2004). Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova, 16(6), 358-364.

  • Seyitoğlu, G. ve Esat, K. (2019) Bolu-İzmir Arasında Kuzey Anadolu Fay Zonu Güney Kolu’na Ait Olası Segment Dağılımı: İzmir-Balıkesir Transfer Zonu Yorumunun Uygunluğu Üzerine Bir Tartışma. H. Sözbilir, Ç. Özkaymak, B. Uzel, Ö. Sümer, M. Softa, Ç. Tepe, S. Eski (Ed.ler), 72. Türkiye Jeoloji Kurultayı Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s.475-477). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo. org.tr/resimler/ekler/174e0f6fa731893_ek.pdf 475-477.

  • Silva, P. G., Goy, J. L., Zazo, C. & Bardajı, T. (2003). Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225.

  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q. & Turan, M. (2018). Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta, 30(1), 249-264.

  • Soysal, H., Sipahioğlu, S., Kolçak, D. & Altınok, Y. (1981). Türkiye ve Cevresinin Tarihsel Deprem Kataloğu. (Proje no: TBAG 341). İstanbul. TUBITAK.

  • Sözbilir, H. (2001). Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Sciences, 10(2), 51-67.

  • Sözbilir, H. (2002). Geometry and origin of folding in the Neogene sediments of the Gediz Graben, western Anatolia, Turkey. Geodinamica Acta, 15(5-6), 277-288.

  • Sözbilir, H. (2005). Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey. Geodinamica Acta, 18(3-4), 255-282.

  • Sözbilir, H., Bora, U., Sümer, Ö., Özkaymak, Ç., Ersoy, E. Y., Koçer, T. & Demirtaş, R. (2008). D-B Uzanımlı İzmir Fayı ile KD-Uzanımlı Seferihisar Fayı’nın Birlikte Çalıştığına Dair Veriler: İzmir Körfezi’ni Oluşturan Aktif Faylarda Kinematik ve Paleosismolojik Çalışmalar, Batı Anadolu/. Türkiye Jeoloji Bülteni, 51(2), 91-114. https:// dergipark.org.tr/tr/pub/tjb/issue/28370/301652

  • Sözbilir, H., Softa, M., Eski, S., Tepe, Ç., Akgün, M., Pamukçu, OA., Çırmık, A., Utku, M., Özdağ, ÖC., Özden, G., Özçelik, Ö., Evlek, D. A., Çakır, R., Baba, A., Uzelli, T. & Tatar, O. (2020). 30 Ekim 2020 Sisam (Samos) Depremi (Mw: 6,9) Değerlendirme Raporu. Dokuz Eylül Üniversitesi, Deprem Araştırma ve Uygulama Merkezi (DAUM). Erişim adresi http://daum. deu.edu.tr/wp-content/uploads/2020/11/SamosDeprem-Raporu.pdf

  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül, F., İnci, U., Helvacı, U. & Özkaymak, Ç. 2009. 17-20 Ekim 2005-Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52(2), 217-238. https://dergipark.org.tr/tr/ pub/tjb/issue/28366/301607

  • Stiros, S. C., Laborel, J., Laborel-Deguen, F., Papageorgiou, S., Evin, J. & Pirazzoli, P. A. (2000). Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece. Marine Geology, 170(1-2), 41-58.

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142.

  • Stucchi, M., Rovida, A., Capera, A. G., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., ... Sesetyan, K. 2013. The SHARE European earthquake catalogue (SHEEC) 1000–1899. Journal of Seismology, 17(2), 523-544. https://doi. org/10.1007/s10950-012-9335-2

  • Sümer, Ö. (2015). Evidence for the reactivation of a preexisting zone of weakness and its contributions to the evolution of the Küçük Menderes Graben: a study on the Ephesus Fault, Western Anatolia, Turkey. Geodinamica Acta, 27(2-3), 130-154.

  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: Extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.

  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society, London, Special Publications, 28 (1), 575-589.

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N. Christie-Blick (eds) StrikeSlip Faulting and Basin Formation. Spec. Publ. Soc. Econ. Paleontol. Mineral, 37, 227- 264.

  • Şengör, A. M. C. & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.

  • Tan, O., Papadimitriou, E. E., Pabucçu, Z., Karakostas, V., Yörük, A. & Leptokaropoulos, K. (2014). A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophysica, 62(6), 1283-1309.

  • Tan, O., Tapirdamaz, M. C. & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17(2), 405-418.

  • Taxeidis, K. (2003). Study of historical seismicity of the Eastern Aegean Islands [Doctoral dissertation, PhD thesis], N. K. University of Athens.

  • Taymaz, T., Jackson, J. & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433- 490.

  • Tepe, Ç. & Sözbilir, H. (2017). Tectonic geomorphology of the Kemalpaşa Basin and surrounding horsts, southwestern part of the Gediz Graben, Western Anatolia. Geodinamica Acta, 29(1), 70-90.

  • Topal, S. & Özkul, M. (2018). Determination of relative tectonic activity of the Honaz fault (SW Turkey) using geomorphic indices. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1200-1208.

  • Topal, S. (2019a). Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): Insights from geomorphic indices and drainage analysis. Journal of Mountain Science, 16(4), 909-923.

  • Topal, S. (2019b). Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 37-48.

  • Troiani, F., Della Seta, M. (2008). The use of the Stream Length–Gradient index in morphotectonic analysis of small catchments: A case study from Central Italy. Geomorphology, 102(1), 159-168.

  • Tsimi, C. & Ganas, A. (2015). Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults. Geomorphology, 234, 171-181.

  • Tüysüz, O. (2002). Aktif Tektonikte Jeomorfik İndisler. Aktif Tektonik Ders Notları. İstanbul, (yayınlanmamış).

  • Uzel, B. & Sözbilir, H. (2008). A first record of a strikeslip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17(3), 559-591.

  • Uzel, B., Sözbilir, H. & Özkaymak, Ç. (2012). Neotectonic evolution of an actively growing superimposed basin in western Anatolia: The inner bay of Izmir, Turkey. Turkish Journal of Earth Sciences, 21(4), 439-471.

  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N. & Langereis, C. G. (2013). Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics, 65, 94-116.

  • Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118-130.

  • Wells, D. L. & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.

  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Ritter, J. B. & Wesling, J. R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1(3), 239-265. https://doi. org/10.1016/0169-555X(88)90016-5

  • Willgoose, G. & Hancock, G. (1998). Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms 23(7), 611-623.

  • Yıldırım, C. (2014). Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183-192.

  • Zhu, L., Akyol, N., Mitchell, B. J. & Sozbilir, H. (2006). Seismotectonics of western Turkey from high resolution earthquake relocations and moment tensor determinations. Geophysical Research Letters, 33(7).

  • Zimmermann, R., Brandmeier, M., Andreani, L., Mhopjeni, K. & Gloaguen, R. (2016). Remote sensing exploration of Nb-Ta-LREE-enriched carbonatite (Epembe/Namibia). Remote Sensing, 8(8), 620.

  • Yerli, B. , Softa, M. & Sözbilir, H. (2021). Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı . Türkiye Jeoloji Bülteni , 64 (3) , 349-382 . DOI: 10.25288/tjb.846813

  • ISSUE FULL FILE
    View as PDF