Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni
ISSN: 1016-9164 | e-ISSN: 2564-6745 | Yayın Aralığı: Yılda 3 Sayı | Yayın Başlangıç Yılı: 1947
Son Sayıyı Görüntüle

Geological Bulletin of Turkey, established in 1947, is one of the oldest and best-known periodicals of this country. It is an open access journal and publishes original research papers after a peer-review procedure in Turkish or English.

Geological Bulletin of Turkey covers all aspects of the geosciences except for Engineering Geology.

Geological Bulletin of Turkey is indexed and abstracted in GeoRef, Geotitles, Geoscience Documentation, Bibliography of Economic Geology, Geology, Geo Archive, Geo Abstract, Mineralogical Abstract, ProQuest, GEOBASE, EBSCO, BIOSIS, ULAKBİM  (TRDİZİN) and Thomson Reuters&Clavirate (ESCI) databases.

Geological Bulletin of Turkey is published three times a year (January, April and August). The articles submitted to the journal are evaluated by peer review.

Your new manuscript submission should be via DergiPark.

To download of all issues from Geology Bulletin of Turkey, published since 1947; https://tjb.jmo.org.tr

Contact to Editor in Chief: tjbdergi@gmail.com

2024 ÖZEL SAYI Cilt 67 Sayı 4

COVER
PDF Olarak Görüntüle
COPYRIGHT PAGE
PDF Olarak Görüntüle
CONTENTS
PDF Olarak Görüntüle
PREFACE
PDF Olarak Görüntüle
PREFACE
PDF Olarak Görüntüle
A Discussion on Geodynamic Modeling Methodology: Inferences from Numerical Models in the Anatolian Plate
Ebru Şengül Uluocak
PDF Olarak Görüntüle

Abstract: Numerical models have found widespread use in geosciences, mainly due to high-resolution datasets andthe development of supercomputing facilities with powerful data processing and storage capabilities during the past two decades. Instantaneous and time-dependent geodynamic modeling studies were carried out in many regions ofthe Alpine-Himalayan orogenic belt, including the Anatolian Plate, to investigate mantle dynamics such as lower lithosphere deformation, upper mantle flow, and their surface implications.This study focuses on the instantaneous numerical modeling technique by considering multidimensional thermo mechanical models in the Central and East Anatolian plateaus. To this end, conventional geodynamic modeling processes are explained with a conceptual flow chart that shows a feed-forward back propagation modeling architecture which is nonlinearly fed by a large parameter space. While addressing a complex natural phenomen on controlled by variables on a wide range of space-time scales, the limitations as well as advantages of numerical models are analyzed. In addition to conventional techniques, systematic data improvement is discussed as a new strategy in data/parameter-dependent numerical model design through an iterative process based on the Grounded Theory method for the construction of an explanatory theory from the model. This involves not refinement but (re)construction of the data (i.e., measurement/analysis/scaling) as an effective way to reveal theory/information grounded in data. It is speculated that this procedure, which includes problem-oriented data reconstruction accompanying the numerical modeling process, may provide an integrated perspective for instantaneous numerical modelling.

  • Anatolian Plate

  • geodynamic modeling

  • geophysics

  • Grounded Theory

  • numerical model

  • Bangerth, W., Dannberg, J., Gassmoeller, R. & Heister, T. (2019). April 29. ASPECT v2.1.0. Zenodo. https://doi.org/10.5281/zenodo.2653531

  • Beris, A. N. & Giacomin, A. J. (2014). πάντα ῥει̃: Everything flows. Applied Rheology, 24(5):11-23.

  • Biryol, B. C., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057.

  • Chandra, R., Azam, D., Müller, R. D., Salles, T. & Cripps, S. (2019). BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands. Computers & Geosciences, 131, 89-101.

  • Danermark, B., Ekstrom, M. & Jakobsen, L. (2019). Explaining society: An introduction to critical realism in the social sciences. 2nd Edition. Routledge. ISBN: 978-1-351-01783-1

  • Davies, D. R., Ghelichkhan, S., Hoggard, M., Valentine, A. & Richards, F. D. (2023). Observations and models of dynamic topography: Current status and future directions. In J.C. (Ed.) Duarte Dynamics of Plate Tectonics and Mantle Convection (pp: 223-269). Elsevier. https://doi.org/10.1016/B978- 0-323-85733-8.00017-2

  • Demetrescu, C. & Andreescu, M. (1994). On the thermal regime of some tectonic units in a continental collision environment in Romania. Tectonophysics, 230, 265–276. https://doi. org/10.1016/0040-1951(94)90140-6

  • Diaz, J., Pérez, J., Gallardo, C. & González-Prieto, Á. (2023). Applying Inter-Rater Reliability and Agreement in collaborative Grounded Theory studies in software engineering. Journal of Systems and Software, 195, Article 111520.

  • Faccenna, C., & Becker, T.W. (2010). Shaping mobile belts by small-scale convection. Nature, 465(7298), 602–605.

  • Faccenna, C. & Becker, T.W. (2020). Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 209, Article 103327. https://doi.org/10.1016/j. earscirev.2020.103327

  • Flament, N., Gurnis, M. & Muller, R. D. (2013). A review of observations and models of dynamic topography, Lithosphere, 5, 189–210.

  • Fullsack, P. (1995). An arbitrary LagrangianEulerian formulation for creeping flows and its application in tectonic models. Geophysical Journal International, 120(1), 1–23. https://doi. org/10.1111/j.1365-246x.1995.tb05908.x

  • Gerya, T. (2022). Numerical modeling of sub duction: State of the art and future directions. Geosphere, 18(2), 503-561. https://doi.org/10.1130/ GES02416.1

  • Göğüş, O. H. & Pysklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723–726.

  • Göğüş, O. H., Pysklywec, R. N., Şengör, A. M. C. & Gün, E. (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature communications, 8(1), Article 1538. https://doi. org/10.1038/s41467-017-01611-3

  • Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. New York: Adline Pub. Co.

  • Glaser, B.G. (1992). Emergence vs. Forcing: Basics of Grounded Theory Analysis. Mill Valley, CA: Sociology Press.

  • Glerum, A., Thieulot, C., Fraters, M., Constantijn, B. & Spakman, W. (2018). Nonlinear viscoplasticity in ASPECT: Benchmarking and applications to subduction. Solid Earth, 9(2), 267–294. https:// doi.org/10.5194/se-9-267-2018

  • Heister, T., Dannberg, J., Gassmöller, R. & Bangerth, W. (2017). High accuracy mantle convection simulation through modern numerical methods– II: realistic models and problems. Geophysical Journal International, 210(2):833-51.

  • Hirth, G. & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108.

  • Hirth, G. & Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In Eiler, J. (Ed.), Inside the Subduction Factory, 138, (pp: 83- 105), Geophysical Monograph Series. https://doi. org/10.1029/138GM06

  • Ismail-Zadeh, A. & Tackley, P. (2010). Computational methods for geodynamics. Cambridge University Press.

  • Karabulut, H., Paul, A., Özbakır, A.D., Ergün, T. & Şentürk, S. (2019). A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, 218(1), 57-73.

  • Karato, S. I. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters, 20(15), 1623-1626.

  • Kheirkhah, M., Neill, I., Allen, M. B. & Ajdari, K. (2013). Small-volume melts of lithospheric mantle during continental collision: Late Cenozoic lavas of Mahabad, NW Iran. Journal of Asian Earth Sciences, 74, 37–49.

  • King, S. D. (2016). Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. Journal of Geodynamics, 100, 33-50.

  • Komut, T., Gray, R., Pysklywec, R.N. & Göğüş, O. H. (2012). Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling. Journal of Geophysical Research, 117(B11). https://doi. org/10.1029/2012jb009306

  • Kounoudis, R., Bastow, I. D., Ogden, C. S., Goes, S., Jenkins, J., Grant, B. & Braham, C. (2020). Seismic tomographic imaging of the Eastern Mediterranean mantle: Implications for terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 21(7), e2020GC009009. https://doi. org/10.1029/2020gc009009

  • Kronbichler, M., Heister, T. & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12-29. https://doi. org/10.1111/j.1365-246X.2012.05609.x

  • Lanari, R., Faccenna, C., Natali, C., Şengül Uluocak, E., Fellin, M. G., Becker, T. W., Gögüs, O., Youbi, N., Clementucci, R. & Conticelli, S. (2023). The Atlas of Morocco: A PlumeAssisted Orogeny. Geochemistry, Geophysics, Geosystems, 24(6), e2022GC010843 https://doi. org/10.1029/2022GC010843

  • Laske, G., Masters, G., Ma, Z. & Pasyanos, M. (2013). Update on CRUST1.0- A 1-degree Global Model of Earth’s Crust. Geophys. Res., 15, Abstract EGU 2013-2658.

  • Legendre, C. P., Zhao, L. & Tseng, T. L. (2021). Largescale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey. Communications Earth & Environment, 2(1), 1-7, Article 73. https://doi.org/10.1038/s43247-021- 00142-6

  • Magnani, L., Aliseda, A., Longo, G., Sinha, C., Street, K. H. I., Thagard, P. & Woods, J. (2018). Studies in Applied Philosophy. Epistemology and Rational Ethics. 45. pp. 207.

  • Memiş, C., Göğüş, O. H., Uluocak, E. Ş., Pysklywec, R., Keskin, M., Şengör, A. M. C. & Topuz, G. (2020). Long wavelength progressive plateau uplift in Eastern Anatolia since 20 Ma: Implications for the role of slab peel-back and break-off. Geochemistry, Geophysics, Geosystems, 21(2), e2019GC008726. https://doi.org/10.1029/2019GC008726

  • Molinari, I. & Morelli, A. (2011). EPcrust: a reference crustal model for the European plate. Geophysical Journal International, 185(1), 352–364.

  • Naliboff, J. & Buiter, S. J. H. (2015). Rift reactivation and migration during multiphase extension. Earth and Planetary Science Letters, 421, 58-67. https:// doi.org/10.1016/j.epsl.2015.03.050

  • Oreskes, N., Shrader-Frechette, K., Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 1263(5147):641-646.

  • Pamukçu, O. A., Akçığ, Z., Demirbaş, Ş. & Zor, E. (2007). Investigation of crustal thickness in eastern Anatolia using gravity, magnetic and topographic data. Pure Applied Geophysics, 164, 2345–2358.

  • Petrescu, L., Mihai, A. & Borleanu, F. (2023). Slab tear and rotation imaged with core-refracted shear wave anisotropy. Journal of Geodynamics, 157, Article 101985. https://doi.org/10.1016/j. jog.2023.101985

  • Piromallo, C. & Morelli, A. (2003). P wave tomography of the mantle under the Alpine–Mediterranean area. Journal of Geophysical Research, 108(B2). https://doi.org/10.1029/2002JB001757

  • Portner, D. E., Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., Özacar, A. A., Sandvol, E., Türkelli, N. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere, 14(3):907-25.

  • Priestley, K., McKenzie, D., Barron, J., Tatar, M. & Debayle, E. (2012). The Zagros core: Deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 13(11), Q11014. https://doi.org/10.1029/2012GC004435

  • Priestley, K. & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78-91.

  • Pysklywec, R. N., Beaumont, C. & Fullsack, P. (2000). Modeling the behavior of the continental mantle lithosphere during plate convergence. Geology, 28(7), 655-658. https://doi.org/10.1130/0091- 7613(2000)28<655:MTBOTC>2.0.CO;2

  • Pysklywec, R. N., Beaumont, C. & Fullsack, P. (2002). Lithospheric deformation during the early stages of continental collision: numerical experiments and comparison with South Island, New Zealand. Journal of Geophysical Research, 107(B7), 2133. https://doi.org/10.1029/2001JB000252

  • Pysklywec, R. N. & Beaumont, C. (2004). Interpolate tectonics: feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities. Earth and Planetary Science Letters, 221, 275–292.

  • Ranalli, G. & Murphy, D. C. (1987). Rheological stratification of the lithosphere. Tectonophysics, 132(4):281-95.

  • Ranalli, G. (1995). Rheology of the Earth (p. 413). Chapman and Hall.

  • Shaw, M. & Pysklywec, R. N. (2007). Anomalous uplift of the Apennines and subsidence of the Adriatic: The result of active mantle flow? Geophysical Research Letters,34(4), L04311. https://doi. org/10.1029/2006GL028337

  • Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., et al. (2004). Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1–4), 211-233. https://doi.org/10.1016/j. tecto.2002.08.001

  • Strauss, A. & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures and Techniques. SAGE Publication, London.

  • Şeber, D., Sandvol, E., Sandvol, C., Brindisi, C. & Barazangi, M. (2001). Crustal model for the Middle East and North Africa region: Implications for the isostatic compensation mechanism. Geophysical Journal International, 147(3), 630-638. https:// doi.org/10.1046/j.0956-540x.2001.01572.x

  • Şengör, A. M. C. (2019). Observations: What for? Canadian Journal of Earth Sciences, 56(11): xi-v. https://doi.org/10.1139/cjes-2019-0114

  • Şengül Uluocak, E., Pysklywec, R. & Göğüş, O. H. (2016). Present-day dynamic and residual topography in Central Anatolia. Geophysical Journal International, 206(3), 1515-1525. https:// doi.org/10.1093/gji/ggw225

  • Şengül Uluocak, E., Pysklywec, R. N., Göğüş, O. H. & Ulugergerli, E. U. (2019). Multidimensional geodynamic modeling in the Southeast Carpathians: Upper mantle flow-induced surface topography anomalies. Geochemistry, Geophysics, Geosystems, 20(7), 3134-3149. https://doi. org/10.1029/2019GC008277

  • Şengül Uluocak, E., Göğüş, O. H., Pysklywec, R. N. & Chen, B. (2021). Geodynamics of East Anatolia-Caucasus Domain: Inferences From 3D Thermo-Mechanical Models, Residual Topography, and Admittance Function Analyses. Tectonics, 40(12), e2021TC007031. https://doi. org/10.1029/2021TC007031

  • Van Zelst, I, Crameri, F., Pusok, A. E., Glerum, A., Dannberg, J. & Thieulot, C (2022). 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth. Solid Earth, 13(3):583-637.

  • Yegorova, T., Gobarenko, V. & Yanovskaya, T. (2013). Lithosphere structure of the Black Sea from 3-D gravity analysis and seismic tomography. Geophysical Journal International, 193(1), 287– 303. https://doi.org/10.1093/gji/ggs098

  • Zor, E. (2008). Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175, 1273–1282.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • VANCOUVER

  • An Overview Modeling in Earth Sciences; Inferences from Environmental Geophysics Applications
    Ebru Şengül Uluocak Emin Uğur Ulugergerli
    PDF Olarak Görüntüle

    Abstract: In an earth science-related research study, while investigating geological / engineering problems, numerical modeling functions in two stages; i) prior to the fieldwork, obtaining the survey parameters (conceptual model), and ii) subsequent to the fieldwork, confirming the accuracy of the estimated subsurface structures with thehelp of the conceptual model. Although the numerical modeling process alone is not sufficient in both stages, it ispossible to converge the numerical models in a realistic subsurface structure with additional information obtained from interdisciplinary studies.In this article, a workflow is proposed employing modeling studies used in earth sciences. Environmental pollution studies carried out on a now-unused open waste disposal site in Çanakkale (Türkiye) are presented following this workflow. Accordingly, tomography measurements were made by using the electrical resistivity method along the profiles determined based on a conceptual model, and then a hypothetical two-dimensional (2D) combined solute transport model was produced by obtaining the porosity cross-section from the subsurface resistivity structure of the study area. The results show the spatial and temporal variation of pollution in the land fill during the years  that geophysical measurements (i.e., 2004, 2008, and 2009) were taken, and the numerical modeling time (13,6 yrs). Besides, the numerical modeling results provide a conceptual model for future pollution studies in this area, with the length and depth of the possible survey profile (~40-250 m and 0-25 m, respectively). The results emphasize the importance of evaluating geophysical studies together with numerical models sensitive to the spatial and temporal spread of the pollution cloud emitted from a polluting source, such as an open dumpsite.

  • Conceptual model

  • environmental pollution

  • numerical modeling

  • Aksakal, S. (2008). Katı atık depolama sahalarından toprak ve yeraltı suyuna olan sızıntıların elektrik özdirenç ve yapay uçlaşma yöntemleri ile araştırılması [Yayımlanmamış Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi Mühendislik Fakültesi, Jeofizik Müh. Bölümü.

  • Aktimur, H. T., Uysal, Ş., Tamgaç, Ö.F., Aktimur, S., Sarıaslan, M. ve Emre, Ö. (1993). Çanakkale İli’nin arazi kullanım potansiyeli raporu (Rapor no: 159). Maden Tetkik ve Arama Genel Müdürlüğü (yayımlanmamış).

  • Apweiler, R., Beissbarth, T., Berthold, M., … & Wolkenhauer, O. (2018). Whither systems medicine? Experimental & Molecular Medicine, 50, Article e453. https://doi.org/10.1038/ emm.2017.290

  • Archie, G. E. (1942). The electrical resistivity as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54-62. https://doi. org/10.2118/942054-G

  • Barker, R. D. (1990). Investigation of groundwater salinity by geophysical method. In S. H. Ward, (Ed.), Geotechnical and Environmental Geophysics, vol.2: Environmental and Groundwater, (pp. 201- 212). Society of Exploration Geophysicists, Tulsa, USA.

  • Beşkardeş, G. D. (2009). Çanakkale katı atık depolama sahası için yeraltı suyu kirliliğinin modellenmesi. Uluslararası Deprem Sempozyumu (özet bildiriposter, s. 89), 17-19 Ağustos, 2009, Kocaeli.

  • Boonsakul, P., Buddhawong, S. & Wangyao, K. (2022). Optimization of multi-frequency electromagnetic surveying for investigating waste characteristics in an open dumpsite. Journal of the Air & Waste Management Association, 72(11), 1290-1306.

  • Box, G, (1976). Science and stastistics. Journal of the American Statistical Association, 71(356), 791– 799.

  • Canıtez, N. (2003). Jeofizikte modelleme. Literatür Yayıncılık.

  • Cumming, W. (2009). Geothermal resource conceptual models using surface exploration data. In: ThirtyFourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.

  • Deniz, O. (2005). Çanakkale yerleşim alanının yeraltı suyu kalitesinin incelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü.

  • Dimech, A., Cheng, L., Chouteau, M., Chambers, J., Uhlemann, S., Wilkinson, P., ... & Isabelle, A. (2022). A review on applications of time-lapse electrical resistivity tomography over the last 30 years: Perspectives for mining waste monitoring. Surveys in Geophysics, 43(6), 1699-1759. https:// doi.org/10.1007/s10712-022-09731-2

  • Ertekin, C. & Ulugergerli, E. U. (2022). Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4), 335-352. https://doi.org/10.19637/j.cnki.2305- 7068.2022.04.003

  • Gelhar, L. W., Welty, C. & Rehfeldt, K. W. (1992) A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resource Research, 28, 1955- 1974. https://doi.org/10.1029/92WR00607

  • Istok, J. (1989). Groundwater Modelling By The Finite Element Method. American Geophysical Union.

  • Johnston, J.M., Pellerin, L. & Hohmann, G. W. (1992). Evaluation of Electromagnetic Methods for Geothermal Reservoir Detection. Geothermal Resources Council Transactions, 16, 241 – 245.

  • Kaya, M. A., Özürlan, G. & Şengül, E. (2007). Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Çanakkale, Turkey. Environmental Monitoring and Assessment, 135, 441–446. https://doi. org/10.1007/s10661-007-9662-x

  • Karlık, G. & Kaya, M. A. (2001). The investigation of soil and groundwater pollution using geophysical methods in Isparta landfill. Environmental Geology, 40, 725–731.

  • Loke, M. H. (2004) User’s manual for RES2DINV software. Geotomo Software.

  • McNeill, J. D. (1990). Use of electromagnetic methods for groundwater studies. In S. H. Ward (Ed.), Geotechnical and Environmental Geophysics, (pp. 191–218), vol. 1. Society of Exploration Geophysicists, Tulsa, USA.

  • Meju, M. A. (1994). Geophysical data analysis: understanding inverse problem theory and practice. In. S. N. Domenico (Ed.), Society of Exploration Geophysicists. Course Notes Series, No. 6.

  • Meju, M. A. (2009). Regularized extremal bounds analysis (REBA): An approach to quantifying uncertainty in nonlinear geophysical inverse problems. Geophysical Research Letters, 36(3), Article L03304. https://doi. org/10.1029/2008GL036407

  • Menke, W. (2018). Geophysical data analysis: Discrete inverse theory. Academic press.

  • Ogilvy, R. D., Meldrum, P. I., Kuras, O., Wilkinson, P. B., Chambers, J. E., Sen, M., ... & Tsourlos, P. (2009). Automated monitoring of coastal aquifers with electrical resistivity tomography. Near Surface Geophysics, 7(5-6), 367-376.

  • Olofsson, B, Jernberg, H. & Rosenqvist, H. (2006). Tracing leachates at waste sites using geophysical and geochemical modeling. Environ Geol., 49, 720–732.

  • Oyeyemi, K. D., Aizebeokhai, A. P., Metwaly, M., Oladunjoye, M. A., Bayo-Solarin, B. A., Sanuade, O. A., Thompson C. E., Ajayi, F. S. & Ekhaguere, O. A. (2021). Evaluating the groundwater potential of coastal aquifer using geoelectrical resistivity survey and porosity estimation: A case in Ota, SW Nigeria. Groundwater for Sustainable Development, 12, Article 100488. https://doi. org/10.1016/j.gsd.2020.100488

  • Özkıdık, H. (1995) Katı Atık Yönetiminde Belediyeler İçin Yöntem ve Maliyet Analizi, [Uzmanlık Tezi]. T.C Başbakanlık Devlet Planlama Teşkilatı Müsteşarlığı, Sosyal Sektörler ve Koordinasyon Genel Müdürlüğü, Ankara.

  • Öztürk, İ., Onay, T. T., Çallı, B., Mertoğlu, B. & Yıldız, Ş. (2009). Sızıntı Suyu Yönetimi Ihtisas Komisyonu Taslak Çalışma Raporu. TC Çevre ve Şehircilik Bakanlığı Çevre Yönetimi Genel Müdürlüğü, Ankara, Türkiye.

  • Seyfert, A. (2009). Katı atık sahası, Çanakkale – Kuruçeşme, Katı Atık Sahası Gaz Pompalama Çalışması, SEF Energietechnik GmbH, Rapor, 26.

  • Şengül, E. (2004). Çanakkale düzensiz katı atık depolama sahası yüzey ve yeraltı sularına etkisinin uygulamalı jeofizik yöntemlerle araştırılması [Yayımlanmış Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü.

  • Turing A, (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641), 37-72.

  • URL1 (2023, 01 Temmuz). https://www.geologieportal. ch/en/themes/fundamentals-of-geology/ stratigraphy.html

  • URL2 (2023, 01 Temmuz). https://cdn.britannica. com/91/172891-050-2093FD16/Fault-sandstonestrata.jpg

  • URL3 (2023, 01 Temmuz). https://en.wikipedia.org/ wiki/Chevron_%28geology%29

  • Uyanık, O. (2019). Estimation of the porosity of clay soils using seismic P-and S-wave velocities. Journal of Applied Geophysics, 170, Artcile 103832. https:// doi.org/10.1016/j.jappgeo.2019.103832

  • Wilkinson, P., Chambers, J., Uhlemann, S., Meldrum, P., Smith, A., Dixon, N. & Loke, M. H. (2016). Reconstruction of landslide movements by inversion of 4-D electrical resistivity tomography monitoring data. Geophysical Research Letters, 43(3), 1166-1174.

  • Witter, J. D. & Phillips, N. (2012). Integrated 3D geophysical inversion and geological modelling for improved geothermal exploration and drillhole targeting. GRC Transactions, 36, 831-834. https:// publications.mygeoenergynow.org/grc/1030325. pdf

  • Xu, M. & Eckstein, Y. (1995). Use of weighted leastsquares method in evaluation of the relationship between dispersivity and field scale. Groundwater, 33(6), 905-908.

  • Zhdanov, M. S. (2002). Geophysical inverse theory and regularization problems. Vol. 36, Elsevier.

  • Zheng, C. & Bennett, G. (1995). Applied Contaminant Transport Modelling: Theory and Practice. Wiley, pp. 464.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • VANCOUVER

  • Origin of a-Seismic Surface Deformations in the Gediz (Alaşehir) Graben
    Semih Eski Hasan Sözbilir
    PDF Olarak Görüntüle

    Abstract: Although there has been no earthquake in the Gediz (Alaşehir) Graben since the 1969 Alaşehir earthquaketo cause a surface rupture, serious surface cracks and depressions occur between the Alaşehir and Sarıgöl area. Studies performed in the region have not reached a consensus on whether these deformations are due to tectoniceffects / groundwater level changes. Our research claims to evaluate the 2D vertical and horizontal velocity ratios obtained by using the PS-InSAR technique in the light of geological information and to establish the tectonic model that caused the deformation. Forthis, Sentinel-1 satellite images between 2015-2023 were used. Accordingly, the deformation rate in the hanging wall of the Sarıgöl Fault is -26 mm/y and +3 mm/y in the footwall. This means that under the tectonic regime, the Bozdağ Horst is uplifing while the graben is continuously collapsing. The Swath profiles clearly show that the graben border faults directly control the subsidence geometry of the basin. The fact that we obtained 11 mm/y (westward)and 7 mm/y (eastward) horizontal movements in opposite directions in the area of the maximum vertical deformation area indicates that the subsidence occurred with radial bulging in the horizontal plane and in a synformal geometry vertically. That is, the horizontal movement is related to the geometry and type of the southern border faults that directly control the subsidence regime of the basin, rather than the NW-SE directional compression in the region. In addition, the vertical deformations, which increase towards the southern margin and decrease towards the interior of the basin, point that the main graben fault with listric geometry may have been caused by a domino-style reversalin the hanging-wall. The fact that the deformations are not visible from the west of Alaşehir is due to the fact thatthe Alaşehir and Salihli sub-basins mentioned in the literature are limited by a covered semi-vertical fault. The observations of inconsistencies in vertical velocity and groundwater level changes at some points and the fact thatthese points are close to surface ruptures caused by the Alaşehir earthquake suggest that a significant part of the deformations occurred under tectonic effects. As a result, the deformations between Alaşehir and Sarıgöl occurred with a-seismic creep that occurred duringthe on going inter seismic phase, in addition to the seismic pulses that developed in the coseismic phase of the 1969 Alaşehir earthquake. Therefore, attributing current deformations to groundwater level changes alone may lead toerroneous modellings. Sudden changes in the groundwater level cause the a-seismic deformation that will occurduring the interseismic phase to accelerate the sediment consolidation developed under tectonic control and cause deformations to occur rapidly.

  • Active tectonics

  • Gediz Graben

  • PS-InSAR

  • radar interferometry

  • Sarıgöl-Alaşehir/Manisa

  • StaMPS

  • Abdikan, S., Arıkan, M., Sanli, F. B. & Cakir, Z. (2014). Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental Earth Sciences, 71, 4081-4089.

  • Akoğlu, A. M., Jónsson, S., Wang, T., Çakır, Z., Dogan, U., Ergintav, S., … & Emre, Ö. (2018). Evidence for tear faulting from new constraints of the 23 October 2011 Mw 7.1 Van, Turkey, earthquake based on InSAR, GPS, coastal uplift, and field observations. Bulletin of the Seismological Society of America, 108(4), 1929-1946. https:// doi.org/10.1785/0120170314

  • Ali, M., Shahzad, M. I., Nazeer, M., Mahmood, I. & Zia, I. (2021). Estimation of surface deformation due to Pasni earthquake using RADAR interferometry. Geocarto International, 36(14), 1630-1645.

  • Ambraseys, N. N. (1988). Engineering Seismology. Earthquake Engineering ve Structural Dynamics, 17, 1-105.

  • Anderson, E. R., Griffin, R. E. & Irwin, D. E. (2016). Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador. Natural Hazard Uncertainty Assessment: Modeling and Decision Support, 167-177.

  • Angelier, J., Dumont, J. F., Karamanderesi, H., Poisson, A., Şimşek, Ş. & Uysal, Ş. (1981). Analyses of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. Tectonophysics, 75(3-4), T1-T9.

  • Arpat, E. ve Bingöl, E. (1969). Ege Bölgesi graben sisteminin gelişimi üzerine düşünceler. Mineral Research and Exploration Institute of Turkey (MTA) Bulletin, 73, 1-8.

  • ASF (Alaska Satellite Facility), 2019. https://search. asf.alaska.edu/#/ , 10 Mart 2019.

  • Aslan, G., Cakir, Z., Lasserre, C. & Renard, F. (2019). Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sensing, 11(1), 85.

  • Asti, R., Malusà, M. G. & Faccenna, C. (2018). Supradetachment basin evolution unravelled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 30(3), 502-521.

  • Barka, A. & Reilinger R. (1997). Active Tectonics of Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, X2(3), 587-610.

  • Bayık, C., Abdikan, S., Ozdemir, A., Arıkan, M., Balik Sanli, F. & Doğan, U. (2021). Investigation of the landslides in Beylikdüzü-Esenyurt Districts of Istanbul from InSAR and GNSS observations. Natural Hazards, 109(1), 1201-1220.

  • Bayramov, E., Buchroithner, M., Kada, M. & Zhuniskenov, Y. (2021). Quantitative assessment of vertical and horizontal deformations derived by 3d and 2d decompositions of insar line-of-sight measurements to supplement industry surveillance programs in the tengiz oilfield (Kazakhstan). Remote Sensing, 13(13), 2579.

  • Beccaletto, L. & Steiner, C. (2005). Evidence of twostage extensional tectonics from the northern edge of the Edremit Graben, NW Turkey. Geodinamica Acta, 18(3-4), 283-297.

  • Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J. & Parker, D. J. (2015). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40-47.

  • Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions Geoscience and Remote Sensing, 40(11), 2375- 2383.

  • Biryol, C. B., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysics Journal International, 184(3), 1037-1057.

  • Blasco, J.M.D., Foumelis, M., Stewart, C. & Hooper, A. (2019). Measuring urban subsi-dence in the Rome metropolitan area (Italy) with sentinel-1 SNAP-StaMPSpersistent scatterer interferometry. Remote Sensing 11(2), 17.

  • Bodur, Ö., Göğüş, O. H., Brune, S., Uluocak, E. Ş., Glerum, A., Fichtner, A. & Sözbilir, H. (2023). Crustal flow driving twin domes exhumation and low-angle normal faulting in the Menderes Massif of western Anatolia. Earth and Planetary Science Letters, 619, Article 118309.

  • Bozkurt, E. (2000). Timing of Extension on the Büyük Menderes Graben, western Turkey and its tectonic implications. Geological Society London, 173, 385-403.

  • Bozkurt, E. (2001a). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30.

  • Bozkurt, E. (2001b). Late Alpine evolution of the central Menderes Massif, western Turkey. International Journal of Earth Sciences, 89(4), 728-744.

  • Bozkurt, E. (2003). Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16(2-6), 61- 81.

  • Bozkurt, E. (2004). Granitoid rocks of the southern Menderes Massif (southwestern Turkey): field evidence for Tertiary magmatism in an extensional shear zone. International Journal of Earth Sciences, 93(1), 52-71.

  • Bozkurt, E. & Rojay, B. (2005). Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodinamica Acta, 18(3-4), 299-316.

  • Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geological Magazine, 141(1), 63-79.

  • Bozkurt, E. & Sözbilir, H. (2006). Evolution of the large-scale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics. Geodinamica Acta, 19(6), 427- 453.

  • Bozkurt, E., Winchester, J. A., Mittwede, S. K. & Ottley, C. J. (2006). Geochemistry and tectonic implications of leucogranites and tourmalines of the southern Menderes Massif, Southwest Turkey. Geodinamica Acta, 19(5), 363-390.

  • Bozzano, F., Carabella, C., De Pari, P., Discenza, M. E., Fantucci, R., Mazzanti, P., …& Sciarra, N. (2019). Geological and geomorphological analysis of a complex landslides system: the case of San Martino sulla Marruccina (Abruzzo, Central Italy). Journal of Maps, 16(2), 123-136. https:// doi.org/10.1080/17445647.2019.1702596

  • Buscher, J. T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C. & Rätz, M. (2013). Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. Journal of the Geological Society, 170(4), 669-683. https://doi.org/10.1144/ jgs2012-132

  • Chen, C. W. & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709-1719.

  • Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T. H., Ávila-Olivera, J. A., Garduño-Monroy, V. H., DeMets, C. & Wdowinski, S. (2012). Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 117, 146-161.

  • Çağlayan, A., Isik, V. & Saber, R. (2019). An assessment of Holocene seismic activity on 1944 Earthquake Segment, North Anatolian Fault Zone (Turkey). Geosciences Journal, 23, 805-822.

  • Çakır, Z., Chabalier, J. B. D., Armijo, R., Meyer, B., Barka, A. & Peltzer, G. (2003). Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophysical Journal International, 155(1), 93- 110.

  • Çelik, H. (1991). Akarsuların (vadi) profil özellikleri ile eski tabanlar arasındaki ilişkiler üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, 43(2), 101-130.

  • Çetin, E., Çakır, Z., Meghraoui, M., Ergintav, S. & Akoglu, A. M. (2014). Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems, 15(7), 2883-2894.

  • Çiftçi, N. B. & Bozkurt, E. (2007). Anomalous stress field and active breaching at relay ramps: a field example from Gediz Graben, SW Turkey. Geological Magazine, 144(4), 687-699.

  • Çiftçi, N. B. & Bozkurt, E. (2008) Folding of the Gediz Graben Fill, SW Turkey: Extensional and/or Contractional Origin?. Geodinamica Acta, 21(3), 145-167.

  • Çiftçi, N. B. & Bozkurt, E. (2009a). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216(3-4), 49- 79.

  • Çiftçi, N. B. & Bozkurt, E. (2009b). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, 473(1-2), 234-260.

  • Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Research, 22(6), 846-873.

  • Dai, F., Lee, C. & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1): 65–87. https://doi. org/10.1016/S0013-7952(01)00093-X

  • Dănişor, C., Datcu, M. & Dănişor, A. (2018). Estimation of terrain’s linear deformation rates using synthetic aperture radar systems. In IOP Conference Series: Materials Science and Engineering, 400(2), 022018. IOP Publishing.

  • De Novellis, V., Carlino, S., Castaldo, R., Tramelli, A., De Luca, C., Pino, N.A., Pepe, S.; Convertito, V., Zinno, I. & De Martino, P. (2018). The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophysical Research Letters, 45(5), 2193–2202. https://doi. org/10.1002/2017GL076336

  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84- 92.

  • Dilek, Y., Altunkaynak, S. & Öner, Z. (2009). Synextensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. In: Ring, U., Wernicke, B. (Eds.), Extending a Continent: Architecture, Rheology and Heat Budget. Geological Society of London Special Publications, 321, 197-223.

  • Doğan, A., Kaygusuz, Ç., Tiryakioğlu, İ., Yigit, C. O., Sözbilir, H., Özkaymak, Ç. & Turgut, B. (2022). Geodetic evidence for aseismic fault movement on the eastern segment of the Gediz Graben system (western Anatolia extensional province, Turkey) and its significance for settlements. Acta Geodaetica et Geophysica, 57(3), 461-476.

  • Doğru, F. (2020). The Importance of Atmospheric Corrections on InSAR Surveys Over Turkey: Case Study of Tectonic Deformation of BodrumKos Earthquake. Pure and Applied Geophysics, 177(12), 5761-5780.

  • Dumont, J. F., Uysal, S., Şimşek S., Karamanderesi, I. H. ve Letouzcy, F. (1979). Güneybatı Anadolu’daki grabenlerin oluşumu. Maden Tetkik ve Arama Dergisi, 92, 7-17.

  • Elliott, J. R., Walters R. J. & Wright, T. J. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7, Article 13844.

  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi. org/10.1007/s10518-016-0041-2

  • Emre, T. & Sözbilir, H. (2007). Tectonic evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift-related basin formation overprinted by extensional tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16(4), 441-470.

  • Eravcı, B., Erkmen, C., Yaman, M., Tüzel, B. & Iravul, Y. (2009). The Origin of Ground Deformations that Caused Damage at Sarigol-Manisa-Turkey. EGU General Assembly Conference Abstracts, 2655.

  • Erkül, F., Helvacı, C. & Sözbi̇li̇r, H. (2005). Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geological Journal, 40(5), 545-570.

  • Ersoy, E. Y. & Helvacı, C. (2007). Stratigraphy and geochemical features of the Early Miocene bimodal (ultrapotassic and calc-alkaline) volcanic activity within the NE-trending Selendi Basin, Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 16, 117-139.

  • Ersoy, E. Y., Helvacı, C. & Sözbilir, H. (2010). Tectonostratigraphic evolution of the NE–SW-trending superimposed Selendi basin: Implications for late Cenozoic crustal extension in Western Anatolia, Turkey. Tectonophysics, 488(1-4), 210-232.

  • Eyidoğan, H. (1988). Rates of crustal deformation in western Turkey as deduced from major earthquakes. Tectonophysics, 148(1-2), 83-92.

  • Eyidoğan, H. & Jackson, J. A. (1985). A seismological study of normal faulting in the Demirci, Alaşehir ve Gediz earthquake of 1969-1970 in western Turkey: implications for the nature and geometry of deformationdeformation in the continental crust. Geophysical Journal of Royal Astronomical Society, 81, 569-607.

  • Fattahi, H. (2015). Geodetic Imaging of Tectonic Deformation With InSAR [PhD Thesis]. University of Miami, Florida.

  • Fernandez, J., Prieto, J. F., Escayo, J., Camacho, A. G., Luzón, F., Tiampo, K. F., … & Mallorquí, J. J. (2018). Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Scientific Reports, 8(1), Article 14782. https://doi.org/10.1038/s41598- 018-33128-0

  • Ferretti, A., Prati, C. & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.

  • Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096), 968- 971.

  • Forster, M. & Lister, G. (2009). Core-complexrelated extension of the Aegean lithosphere initiated at the Eocene-Oligocene transition. Journal of Geophysical Research: Solid Earth, 114(B2). Article B02401. https://doi. org/10.1029/2007JB005382

  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14(1-3), 45-55.

  • Gessner, K., Gallardo, L. A., Markwitz, V., Ring, U. & Thomson, S. N. (2013). What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana research, 24(1), 243-274.

  • Gessner, K., Piazolo, S., Güngör, T., Ring, U., Kroner, A. & Passchier, C.W. (2001a). Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. International Journal of Earth Sciences 89, 766-780.

  • Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W. & Güngör, T. (2001b). An active bivergent rolling-hinge detachment system: central Menderes metamorphic core complex in western Turkey. Geology, 29, 611-614.

  • Gezgin, C. (2022). The influence of groundwater levels on land subsidence in Karaman (Turkey) using the PS-InSAR technique. Advances in Space Research, 70(11), 3568-3581.

  • Goldstein, R. M., Zebker, H. A. & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23, 713-720.

  • Göktaş, F. ve Hakyemez, Y. (2015). Kemalpaşa (İzmir) Pliyo-Kuvaterner Havzasının Stratigrafik Evrimi. Türkiye Jeoloji Bülteni, 58(2), 1-28. https://doi. org/10.25288/tjb.298498

  • Gören, R. (2016). Alaşehir ve çevresinde Gediz grabeni güney kenar faylarının holosen aktivitesi [Yüksek Lisans Tezi]. Eskişehir Osmangazi Üniversitesi, Eskişehir.

  • Gürboğa, Ş. D., Koçyiğit, A. & Ruffet, G. (2013). Episodic two-stage extensional evolutionary model for southwestern Anatolian graben–horst system: new field data from the Erdoğmuş-Yenigediz graben (Kütahya). Journal of Geodynamics, 65, 176-198.

  • Gürer, Ö. F., Sarica-Filoreau, N., Özburan, M., Sangu, E. & Doğan, B. (2009). Progressive development of the Büyük Menderes Graben based on new data, western Turkey. Geological Magazine, 146(5), 652-673.

  • Gürsoy, H., Temiz, H. ve Tatar, O. (1997). Gediz grabeni GD kenarındaki güncel deformasyon verileri. Aktif Tektonik Araştırma Grubu Birinci Toplantısı, İTÜ, İstanbul.

  • Haghighi, M. H. (2019). Local and large scale insar measurement of ground surface deformation [PhD Thesis]. Leibniz Universität Hannover, Hannover.

  • Hancock, P. L. & Barka, A. A. (1987). Kinematic indicators on active normal faults in western Turkey. Journal of Structural Geology, 9(5-6), 573-584.

  • Hastaoğlu, K. O., Poyraz, F., Erdoğan, H., Tiryakioğlu, İ., Özkaymak, Ç., Duman, H. Gül, Y., Guler, S., Dogan, A. & Gul, Y. (2023). Determination of periodic deformation from InSAR results using the FFT time series analysis method in Gediz Graben. Natural Hazards, 117(1), 491-517. https://doi. org/10.1007/s11069-023-05870-w

  • Hetzel, R., Ring, U., Akal, C. & Troesch, M. (1995). Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society of London, 152, 639-654. https://doi.org/10.1144/gsjgs.152.4.0639

  • Hetzel, R., Romer, R. L., Candan, O. & Passchier, C. W. (1998). Geology of the Bozdağ area, central Menderes massif, SW Turkey: Pan-African basement and Alpine deformation. Geologische Rundschau, 87(3), 394-406.

  • Hodgkinson, K. M. (1996). Crustal deformation in extensional regimes: Iceland, Nevada and SW Turkey. [PhD Thesis]. Durham University, Durham.

  • Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35, L16302.

  • Hooper, A., Bekaert, D., Spaans, K. & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13.

  • Hooper, A., Zebker, H., Segall, P. & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, L23611.

  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L. & Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17.

  • Ingleby, T. & Wright T. J. (2017). Omori-like decay of postseismic velocities following continental earthquakes. Geophysical Research Letters, 44(7), 3119-3130.

  • Innocenti, F., Agostini, S., Di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçin, M. Y. & Tonarini, S. (2005). Neogene and Quaternary volcanism in Western Anatolia: magma sources and geodynamic evolution. Marine Geology, 221(1-4), 397-421. https://doi.org/10.1016/j.margeo.2005.03.016

  • Işık, V. & Tekeli, O. (2001). Late orogenic crustal extension in the northern Menderes massif (western Turkey): evidences for metamorphic core complex formation. International Journal of Earth Sciences, 89, 757-765.

  • Işık, V., Saber, R. & Cağlayan, A. (2021). November 08, 2019 Turkmanchay earthquake (Mw: 5.9) in NW Iran: an assessment of the earthquake using DInSAR time-series and field evidence. Natural Hazards, 105, 3013-3037.

  • İmamoğlu, M., Balik Sanli, F., Cakir, Z. & Kahraman, F. (2022). Rapid ground subsidence in the Küçük Menderes Graben (W. Turkey) captured by Sentinel-1 SAR data. Environmental Earth Sciences, 81(7), 221.

  • İmamoğlu, M., Kahraman, F., Cakir, Z. & Sanli, F. B. (2019). Ground deformation analysis of Bolvadin (W. Turkey) by means of multi-temporal InSAR techniques and Sentinel-1 data. Remote Sensing, 11(9), 1069.

  • Jackson, J. & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors and rates of active deformation in the Mediterranean and Middle East. Geophysical Journal, 93, 45-73.

  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., … & Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33. https://doi.org/10.1016/j.tecto.2012.06.011

  • Kaya, O., Ünay, E., Saraç, G., Eichhorn, S., Hassenrück, S., Knappe, A., Pekdeğer, A. & Mayda, S. (2004). Halitpaşa Transpressive Zone: Implications for an Early Pliocene Compressional Phase in Central Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 13, 1-13.

  • Kent, E. (2015). The Relationship Between Active Faulting and Fluvial Geomorphology: A Case Study In The Gediz Graben, Turkey [PhD Thesis]. Plymouth University, Plymouth.

  • Ketin, İ. (1968). Relations between general tectonic features and the main earthquake regions of Turkey. Bulletin of the Mineral Research and Exploration, 71(71).

  • Kim, D. J. & Jung, J. (2018). Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal Revealed from Small Baseline Subset-DInSAR Analysis. GIScience & Remote Sensing, 55(4), 604-621.

  • Koca, M. Y., Sözbilir, H. ve Uzel, B. (2011). Sarıgöl fay zonu boyunca meydana gelen deformasyonların nedenleri üzerine bir araştırma. Jeoloji Mühendisliği Dergisi, 35(2), 151-174.

  • Koçman, A. (1985). İzmir-Bozdağlar yöresinin yapısal jeomorfolojisi ve evrimi. Ege Coğrafya Dergisi, 3(1), 63-86.

  • Koçyiğit, A. (1984). Güneybatı Türkiye ve Yakın Dolayında levha içi yeni tektonik gelişim. Türkiye Jeoloji Kurumu Bülteni, 27, 1-16. https://www. jmo.org.tr/resimler/ekler/84b98aac2dddf59_ ek.pdf?dergi=T%DCRK%DDYE%20 JEOLOJ%DD%20B%DCLTEN%DD

  • Koçyiğit, A., Yusufoğlu, H. & Bozkurt, E. (1999). Evidence from the Gediz graben for episodic two stage extension in western Turkey. Journal of the Geological Society of London, 156, 605-616.

  • Koralay, E., Candan, O., Akal, C., Dora, O. Ö., Chen, F., Satir, M. ve Oberhänsli, R. (2011). Menderes Masifi’ndeki Pan-Afrikan ve Triyas yaşlı metagranitoyidlerin jeolojisi ve jeokronolojisi, Batı Anadolu, Türkiye. Maden Tetkik ve Arama Dergisi, 142, 69-121.

  • Lauknes, T. R., Shanker, A. P., Dehls, J. F., Zebker, H. A., Henderson, I. H. C. & Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109.

  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60, 1-42.

  • Le Pichon X., Chamot-Rooke C., Lallemant S., Noomen R. & Veis G. (1995). Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics, Journal of Geophysical Research, 100, 12675-12690.

  • Lips, A. L., Cassard, D., Sözbilir, H., Yilmaz, H. & Wijbrans, J. R. (2001). Multistage exhumation of the Menderes massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89(4), 781-792.

  • Maghsoudi, Y., van der Meer, F., Hecker, C., Perissin, D. & Saepuloh, A. (2018). Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. International Journal of Applied Earth Observation and Geoinformation, 64, 386-396.

  • Massonnet, D., Holzer, T. & Vadon, H. (1997). Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry. Geophysical Research Letters, 24(8), 901-904.

  • McClusky, S. C., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., … & Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695-5719. https:// doi.org/10.1029/1999JB900351

  • McKenzie, D. (1978). Active tectonics of the AlpineHimalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254.

  • Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics, 579, 220-242.

  • Oktar, O., Erdoğan, H., Poyraz, F. & Tiryakioğlu, İ. (2021). Investigation of deformations with the GNSS and PSInSAR methods. Arabian Journal of Geosciences, 14(23), 1-16.

  • Osmanoğlu, B., Sunar, F., Wdowinski, S. & CabralCano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90- 102.

  • Öner, Z. & Dilek, Y. (2011). Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. Geological Society of America Bulletin, 123(11- 12), 2115-2141.

  • Özkaymak, C. & Sözbilir, H. (2008). Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17, 615-635.

  • Özkaymak, Ç., Sözbilir, H., Tiryakioğlu, İ. ve Baybura, T. (2017). Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Jeolojik, Jeomorfolojik ve Jeodezik Analizi. Türkiye Jeoloji Bülteni, 60(2), 169-189. https:// doi.org/10.25288/tjb.302914

  • Paton, S. (1992). Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society, London 149, 1031-44.

  • Pawluszek-Filipiak, K. & Borkowski, A. (2020). Integration of DInSAR and SBAS Techniques to determine mining-related deformations using sentinel-1 data: The case study of Rydułtowy mine in Poland. Remote Sensing, 12(2), 242.

  • Poyraz, F. & Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13(17), 1-11.

  • Poyraz, F., Hastaoğlu, K. Ö. ve Demirel, M. (2016). Gediz Grabenin Doğu Kesimindeki Tektonik Hareketlerin Envisat Radar Görüntülerini Kullanarak Araştırılması. 8. Ulusal Mühendislik Ölçmeleri Sempozyumu (s.: 1-5). İstanbul.

  • Poyraz, F., Hastaoğlu, K. Ö., Koçbulut, F., Tiryakioğlu, İ., Tatar, O., Demirel, M., … & Sıgırcı, R. (2019). Determination of the block movements in the eastern section of the Gediz Graben (Turkey) from GNSS measurements. Journal of Geodynamics, 123, 38-48. https://doi.org/10.1016/j. jog.2018.11.001

  • Poyraz, F., Tatar, O., Hastaoğlu, K. Ö., Tiryakioğlu, İ., Gürsoy, Ö., Koçbulut, F., … & Gül, D. (2015). Gediz Grabeninin Doğu Kesimindeki Güncel Tektonik Hareketlerin GPS Ve PsInSAR Yöntemleri Kullanılarak Belirlenmesi; İlk Sonuçlar. Harita Teknolojileri Elektronik Dergisi, 7(1), 17-28. https://doi.org/10.15659/ hartek.15.03.64

  • Price, S. P. & Scott, B. (1994). Fault-block rotations at the edge of a zone of continental extension; southwest Turkey. Journal of Structural Geology, 16(3), 381-392.

  • Purvis, M. & Robertson, A. (2004). A pulsed extension model for the Neogene–Recent E–W-trending Alaşehir Graben and the NE–SW-trending Selendi and Gördes Basins, western Turkey. Tectonophysics, 391(1), 171-201.

  • Purvis, M. & Robertson, A. (2005). Sedimentation of the Neogene–Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology, 173(1-4), 373-408.

  • Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., … & Campillo, M. (2016). Triggering of the 2014 Mw 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829-833. https://doi.org/10.1038/ngeo2817

  • Reid, H. F. (1910). The mechanics of the earthquake: The California Earthquake of April 18,1906. Carnegie Institute Washington Publication, 87(2), 192.

  • Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., Kinik, I., Lenk, O. & Sanli, I. (1997). GPS measurements of present day crustal movements in the ArabiaAfrica-Eurasia plate collision zone. Journal of Geophysical Research, Solid Earth, 102(B5), 9983-9999. https://doi.org/10.1029/96JB03736

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R. … & Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Solid Earth, 111(B5). Article B5411 https://doi. org/10.1029/2005JB004051

  • Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441.

  • Roberts, S. C. (1988). Active normal faulting in Central Greece and Western Turkey [phD Thesis]. University of Cambridge, Cambridge.

  • Rojay, B. (2009). Post-Miocene Deformation in Central Anatolia and its link to Horst and Graben System of Western Anatolia, Turkey. EGU General Assembly Conference Abstracts, 4601.

  • Rojay, B., Demirci, C., Toprak, V. & Özsayın, E. (2019). Superposition of the neotectonic events in a complex multi extensional terrain evolution during post-Miocene in western Anatolia (GedizAlaşehir Graben, western Turkey). Geophysical Research Abstracts, (21).

  • Rojay, B., Toprak, V., Demirci, C. & Süzen, L. (2005). Plio-quaternary evolution of the Küçük Menderes graben southwestern Anatolia, Turkey. Geodinamica Acta, 18(3-4), 317-331.

  • Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. & Fielding, E. J. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research: Planets, 101(E10), 23109-23125.

  • Saatçılar, R., Ergintav, S., Demirbaǧ, E. & İnan, S. (1999). Character of active faulting in the North Aegean Sea. Marine Geology, 160(3-4), 339-353.

  • Saber, R., Isik, V., Caglayan, A. & Tourani, M. (2023). Sentinel-1 InSAR observations and time-series analysis of co-and postseismic deformation mechanisms of the 2021 Mw 5.8 Bandar Ganaveh Earthquake, Southern Iran. Journal of Mountain Science, 20(4), 911-927.

  • Sangu, E., Gürer, Ö. F. & Gürer, A. (2020). Fault kinematic and Plio-Quaternary paleostress evolution of the Bakırçay basin, western Turkey. International Geology Review, 62(10), 1245-1261.

  • Sarychikhina, O. & Glowacka, E. (2015). Application of DInSAR Stacking Method for Monitoring of Surface Deformation Due to Geothermal Fluids Extraction in the Cerro Prieto Geothermal Field, Baja California, Mexico. Proceedings World Geothermal Congress 2015 (WGC) (pp. 19-25).

  • Savaşçın, M. Y., Giese, L. B., Kaya, O., Pekdeğer, A. & Woith, H. (1999). An example for the optimal use of geothermal energy-the integrated development project for Kula, West Anatolia. International Symposium on Geology and Environment, Istanbul.

  • Seyitoğlu, G. & Scott, B. C. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155-166.

  • Seyitoğlu, G. & Scott, B. C. (1994). Late Cenozoic basin development in west Turkey: Gördes basin tectonics and sedimentation. Geological Magazine, 131(5), 631-637.

  • Seyitoğlu, G. & Scott, B. C. (1996). The age of Alaşehir Graben (west Turkey) and its tectonic implications. Geological Journal, 31(1), 1-11.

  • Seyitoğlu, G., Scott, B. C. & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149(4), 533-538.

  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık, V. (2002). The role of the flexural rotation/ rolling hinge model in the tectonic evolution of the Alaşehir graben, western Turkey. Geological Magazine, 139, 15-26.

  • Shahabi, H. & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific reports, 5(1), 9899.

  • Shanker, P., Casu, F., Zebker, H. A. & Lanari, R. (2011). Comparison of persistent scatterers and small baseline time-series InSAR results: A case study of the San Francisco bay area. IEEE Geoscience and Remote Sensing Letters, 8(4), 592-596.

  • Sözbilir, H. (2001). Extensional tectonics the geometry of related macroscopic structures: Field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Science, 10, 51-67.

  • Sözbilir H. (2002). Revised stratigraphy and facies analysis of the Palaeocene-Eocene supraallochthonous sediments and their tectonic significance (Denizli, SW Turkey). Turkish Journal of Earth Sciences, 11, 1-27.

  • Sözbilir, H., Erkül, F. & Sümer, Ö. (2003a). Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia. 56. Geological Congress of Turkey, 85-86.

  • Sözbilir, H., İnci, U., Erkül, F. & Sümer, Ö. (2003b). An active intermittent transfer zone accommodating N–S extension in western Anatolia and its relation to the North Anatolian fault system. International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Palaeo-seismology and Field Training Course in Palaeoseismology, 87.

  • Sözbilir, H., Uzel, B., Sümer, Ö., Eski, S., Softa M., Tepe, Ç., Özkaymak, Ç. ve Baba, A. (2018). Çanakkale-Ayvacık Deprem Fırtınasının (14 Ocak-20 Mart 2017) Sismik Kaynakları. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 6, 1-17.

  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.

  • Şaroğlu, F. ve Güler, B. (2020). Batı Anadolu Tektonik Kaması’nın güncel deformasyonu: batıya doğru kaçıştan kaynaklanan blok hareketleri. Türkiye Jeoloji Bülteni, 63(2), 161-194. https://doi. org/10.25288/tjb.593423

  • Şengör, A. M. C. (1979). The North Anatolian Transform Fault: its age, offset and tectonic significance. Geological Society of London, 136, 269-282.

  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of lowangle normal faulting: examples from western Turkey. Geological Society London, 28, 575-589.

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In K. Biddle, N. Christie-Blick (Eds), Strike-slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publications 37, 227-264.

  • Şimşek, C. ve Demirkesen, A. C. (2022). Kısa Dönem Kuyu İzlem Verilerine Göre Yeraltısuyu Besleniminin Belirlenmesi, Alaşehir (Manisa) Örneği. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 91- 104.

  • Tatar, O., Sözbilir, H., Koçbulut, F., Bozkurt, E., Aksoy, E., Eski, S., … & Metin, Y. (2020). Surface deformations of 24 January 2020 Sivrice (Elazığ)– Doğanyol (Malatya) earthquake (Mw= 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-yearsurface ruptures. Mediterranean Geoscience Reviews, 2(3), 385-410. https://doi.org/10.1007/ s42990-020-00037-2

  • Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T. S., Kapetanidis, V., … & Özkan, B. (2022). The 23 February 2020 Qotur-Ravian earthquake doublet at the Iranian-Turkish border: Seismological and InSAR evidence for escape tectonics. Tectonophysics, 838. Article 229482. https://doi.org/10.1016/j.tecto.2022.229482

  • Taymaz, T., Jackson, J. & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433- 490.

  • Taymaz, T., Yilmaz, Y. & Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: introduction. Geological Society, London, Special Publications, 291(1), 1-16.

  • Tekin, T., Sançar, T. & Rojay, B. (2022). A new set of overprinting slip-data along Manisa Fault in Aegean Extensional Province, Western Anatolia. EGU22-452, Copernicus Meetings.

  • Temiz, H., Gürsoy, H. & Tatar, O. (1998). Kinematics of late pliocene-quaternary normal faulting in the southeastern end of the Gediz graben, Western Anatolia, Turkey. International Geology Review, 40(7), 638-646.

  • Thomson, S. N. & Ring, U. (2006). Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics, 25, Article TC3005.

  • Tiryakioğlu, İ., Umutlu, A. İ. ve Poyraz, F. (2019). Jeodezik Yöntemlerle Deprem Tekrarlama Periyotlarının Belirlenmesi: Alaşehir Bölgesi Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 762-768.

  • Torres, R., Snoeij, P., Davidson, M., Bibby, D. & Lokas, S. (2012). The Sentinel-1 mission and its application capabilities. 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 1703-1706). Munich, Germany. https://doi. org/10.1109/IGARSS.2012.6351196.

  • Uzel, B., Kuiper, K., Sözbilir, H., Kaymakci, N., Langereis, C. G. & Boehm, K. (2020). Miocene geochronology and stratigraphy of western Anatolia: Insights from new Ar/Ar dataset. Lithos, 352, Article 105305.

  • Uzel, B., Langereis, C. G., Kaymakci, N., Sözbilir, H., Özkaymak, Ç. & Özkaptan, M. (2015). Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex. Earth and Planetary Science Letters, 414, 108-125.

  • Uzel, B. & Sözbilir, H. (2008). A first record of a strikeslip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17(3), 559-591.

  • van Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E. & Koopman, M. (2010). Exhumation with a twist: paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics, 29(3), 1-33, Article TC3009.

  • Walters, R. J., Holley, B., Parsons & Wright T. J. (2011). Interseismic strai accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophysical Research Letters, 38(5), Article L05303. https://doi. org/10.1029/2010GL046443

  • Wang, H., Wright, T. J. & Biggs, J. (2009). Interseismic slip rate of the northwestern xianshuihe fault from insar data. Geophysical Research Letters, 36(3), Article L03302. https://doi. org/10.1029/2008GL036560

  • Weiss, J. R., Walters, R. J., Morishita, Y., Wright, T. J., Lazecky, M., Wang, H., … & Parsons, B. (2020). High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophysical Research Letters, 47(17), Article e2020GL087376. https://doi. org/10.1029/2020GL087376

  • Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M. & Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234. https://doi.org/10.1109/TGRS.2015.2497902

  • Yeats, R. S., Sieh, K. ve Allen, C. R. (2006). Deprem Jeolojisi (Çev: R. Demirtaş ve K. Kayabalı). Ankara: Gazi Kitabevi. (Orijinal yayın tarihi: 1997).

  • Yen, J. Y., Lu, C. H., Chung-Pai, C., Hooper, A. J., Chang, Y. H., Liang, W. T., … & Chen, K.-S. (2011). Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small-baseline SAR interferometry. Terrestrial Atmospheric and Oceanic Sciences. 22, 291-304. https://doi.org/10.3319/TAO.2010.10.25.01(TT)

  • Yılmaz, Y., Genç, Ş. C., Gürer, O. F., Bozcu, M., Yılmaz, K. ve Karacık, Z., Altunkaynak, Ş. & Elmas, A. (2000). When did the western Anatolian grabens begin to develop?. In E. Bozkurt, J. A. Winchester & J. D. A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London, Special Publication, 173, 353-384. https://doi.org/10.1144/GSL. SP.2000.173.01.17

  • Zanchi, A. & Angelier, J. (1993). Seismotectonics of western Anatolia: regional stress orientation from geophysical and geological data. Tectonophysics, 222(2), 259-274.

  • Zhang, Y., Meng, X., Chen, G., Qiao, L., Zeng, R. & Chang, J. (2016). Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides, 13(5), 1273-1284.

  • Zhu, L., Mitchell, B. J., Akyol, N., Cemen, I. & Kekovali, K. (2006). Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research: Solid Earth, 111(B1), Article B01301. https://doi.org/10.1029/2005JB003770










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Heat Transfer Analysis of Active Magma Chambers Feeding Hasan Dağı Volcano and Çiftlik-Bozköy (Central Anatolia) Hidden Caldera
    Özgür Karaoğlu
    PDF Olarak Görüntüle

    Abstract: In Turkey, 78% of geothermal energy resources are located in Western Anatolia, 9% in Central Anatolia,7% in the Marmara Region, 5% in Eastern Anatolia, and 1% in other regions. The Cappadocia region standsout as an important area where many investments have been made in recent years to increase the potential of the geothermal sector. In recent years, drilling activities were carried out in and around Hasan Dağı volcano to find and utilise geothermal energy. The most important of these was carried out by the 3S Kale Energy company in theÇiftlik-Bozköy region, where temperature values of 295 °C at a depth of 3,814 meters and 341 °C from anotherdeeper drilling at a depth of 3,957 meters were obtained. Numerical modelling studies were carried out using datafrom these two individual drillings. According to the simulation results, the magma chamber (magma chamber roof),which acts as a heat source with a temperature of 600-700 °C at a depth of 7 km and/or 900-1,000 °C at a depth of8 km, must still be actively present in the upper crust to produce these temperature values. Magnetotelluric (MT) studies conducted in Hasan Dağı and vicinity suggest a potential magma chamber witha depth of 4-6 km and a width of approximately the same dimensions, especially in the profiles obtained towardsNigde plain. These MT studies and drilling data were evaluated together and temperature anomalies were obtainedfor possible drilling in and around Hasan Dağı. Accordingly, it is estimated that approximate temperature valuesof 120 °C at 3814 meters, 90 °C at 3,000 meters, 74 °C at 2,000 meters, and 41 °C at 1,000 meters will be obtained from geothermal drilling carried out in the flat areas located southwest of Hasan Dağı. The temperature ascends to 600°C at the equivalent depth beneath the magma chamber of Hasan Dağı. 

  • Geothermal energy

  • Hasan Dağı

  • heat transfer

  • Magma

  • numerical modelling

  • Volcano

  • Atabey, E. (1989). 1/100.000 ölçekli açınsama nitelikli Türkiye Jeoloji Haritaları Serisi, Aksaray H19 (K33) Paftası. Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Aydar, E. (1992). Etude Volcano-Structurale et Magmatologique du Strato-Volcan Hasan Dagı (Anatolie Central-Turquie), [Yayınlanmamış Doktora Tezi]. Université Blaise Pascal, ClermontFerrand, France.

  • Aydar, E. & Gourgaud, A. (1998). The geology of Mount Hasan stratovolcano, central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 129–152.

  • Aydemir, A., Bilim, F., Kosaroglu, S. & Buyuksarac, A. (2019). Thermal structure of the Cappadocia region, Turkey: a review with geophysical methods. Mediterranean Geoscience Reviews,1, 243-254. https://doi.org/10.1007/s42990-019- 00011-7

  • Besang, C., Eckhardt, F. J., Harre, W., Kreuzer, H. & Muller, P. (1977). Radiometrische Altersbestimmungen an Neogenen Eruptivgsteinen der Turkei. Geologisches Jahrbuch, 25, 3–36.

  • Bilim, F., Kosaroglu, S., Aydemir A. & Buyuksarac, A. (2017). Thermal investigation in the Cappadocia Region, Central Anatolia-Turkey, analyzing the Curie Point Depth, Geothermal Gradient and Heat Flow maps from the aeromagnetic data. Pure and Applied Geophysics, 147, 4445–4458.

  • Caricchi, L., Annen, C., Blundy, J., Simpson, G. & Pinel, V. (2014). Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nature Geoscience, 7(2), 126–130. https://doi.org/10.1038/ngeo2041

  • Chestler, S.R. & Grosfils, E.B. (2013). Using numerical modeling to explore the origin of intrusion patterns on Fernandina volcano, Galapagos Islands, Ecuador. Geophysical Research Letters, 40(17), 4565–4569.

  • Cosentino, D., Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N., Lucifora, S. & Strecker, M.R. (2011). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. Bulletin of Geological Society of America, 124(1–2), 133– 145.

  • de Silva, S. L. & Gregg, P. M. (2014). Thermomechanical feedbacks in magmatic systems: Implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. Journal of Volcanology and Geothermal Research, 282, 77-91.

  • Deniel, C., Aydar, E. & Gourgaud, A. (1998). The Hasan Dagi stratovolcano (Central Anatolia, 780 Turkey): Evolution from calc-alkaline to alkaline magmatism in a collision Zone. Journal of Volcanology and Geothermal Research, 87, 275- 302.

  • Dornadula, C., Singh, M., & Baba, A (basımda/in press). Sahinkalesi Massif, a Resurgent Dome and Super-Hot Egs Province: Hasandag Stratovolcanic Province, Central Anatolia. Available at SSRN. http://dx.doi.org/10.2139/ssrn.4388412

  • Eldursi, K., Branquet, Y., Guillou-Frottier, L. & Marcoux, E. (2009). Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth Planetary Science Letters, 288(1–2), 70–83.

  • Ercan, T., Tokel, S., Can, B., Fişekçi, A., Fujitani, T., Notsu, K., Selvi, Y., Olmez, M., Matsuda, J.I., Ui, T., Yıldırım, T. & Akbaşlı, A. (1990). Hasan Dağı-Karacadağ Orta Anadolu dolaylarındaki Senozoyik yaşlı volkanizmanin kökeni ve evrimi. Jeomorfoloji Dergisi, 18, 39–54.

  • Froger, J. L., Lenat, J. F., Chrowicz, J., Le Pennec, J. L., Bourdier, J. L., Kose, O., Zimitoğlu, O., Gündoğdu, N. M. & Gaurgaud, A. (1998). Hidden calderas evidenced by multisource geophysical data; example of Cappadocian Calderas, Central Anatolia. Journal of Volcanology and Geothermal Research, 185, 99–128.

  • Gelman, S. E., Gutiérrez, F. J. & Bachmann, O. (2013). On the longevity of large upper crustal silicic magma reservoirs. Geology, 41(7), 759-762.

  • Gerbault, M., Cappa, F. & Hassani, R. (2012). Elasto-plastic and hydromechanical models of failure around an infinitely long magma chamber. Geochemistry, Geophysics, Geosystems, 13(3), Article Q03009. https://doi. org/10.1029/2011GC003917

  • Gudmundsson, A. (2012). Magma chambers: Formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research, 237, 19–41.

  • Hacıoğlu, Ö., Başokur, A. T., Meqbel, N., Arslan, H. İ. & Efeçınar, T. (2023). Magnetotellurics unveils a hidden caldera complex beneath the Cappadocia Volcanic Province, Central Anatolia, Türkiye. Journal of Volcanology and Geothermal Research, 442, Article 107877. https://doi.org/10.1016/j. jvolgeores.2023.107877

  • Jaeger, J. C. (1959). Temperatures outside a cooling intrusive sheet. American Journal of Science, 257(1), 44-54.

  • Jaupart, C., Mareschal, J.C., Guillou-Frottier, L. & Davaille, A. (1998). Heat flow and thickness of the lithosphere in the Canadian Shield. Journal of Geophysical Research 103(B7), 15269–15286.

  • Karakas, O., Degruyter, W., Bachmann, O. & Dufek, J. (2017). Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience, 10(6), 446-450. https://doi. org/10.1038/ngeo2959

  • Karaoğlu, Ö. (2021). A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. Turkish Journal of Earth Sciences, 30(4), 536-550. https://doi.org/10.3906/yer-2101- 21

  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A., Karabiyikoğlu, M., Köse, O. & Froger, J. L. (2005). Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the caldera formation. Turkish Journal of Earth Sciences, 14(2), 123-143.

  • Karaoğlu, Ö., Browning, J., Bazargan, M., & Gudmundsson, A. (2016). Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport. Earth and Planetary Science Letters, 452, 157-170. https://doi.org/10.1016/j. epsl.2016.07.037

  • Kosaroglu, S., Buyuksarac, A. & Aydemir, A. (2016). Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies. Journal of Asian Earth Sciences, 124, 214–226. https://doi.org/10.1016/j.jseaes.2016.05.005

  • Kuzucuoğlu, C., Pastre, J.F., Black, S., Ercan, T., Fontugne, M., Guillou, Hatté, C., Karabıyıkoğlu, M., Orth, P. & Türkecan, A. (1998). Identification and dating of tephra layers from Quaternary sedimentary sequences of Inner Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 153–172.

  • Le Corvec, N., Menand, T. & Lindsay, J. (2013). Interaction of ascending magma with preexisting crustal fractures in monogenetic basaltic volcanism: an experimental approach. Journal of Geophysical Research, 118(3), 968–984. https:// doi.org/10.1002/jgrb.50142

  • Le Pennec, J. L., Bourdier, J. L., Froger, J. L., Temel, A., Camus, G. & Gourgaud, A. (1994). Neogene ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy distribution and source constraints. Journal of Volcanology and Geothermal Research, 63, 59–67.

  • Nabelek, P. I., Hofmeister, A. M. & Whittington, A. G. (2012). The influence of temperature dependent thermal diffusivity on the conductive cooling rates of plutons and temperature- time paths in contact aureoles. Earth and Planetary Science Letters, 317-318, 157–164. https://doi.org/10.1016/j. epsl.2011.11.009

  • Okubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K. & Tsu, H. (1985). Cruie Point Depths of the Island of Kyushu and Surrounding Areas, Japan. Geophysics, 50, 481–494.

  • Pasquare, G., Poli, S., Vezzoli, L. & Zanchi, A. (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysics, 146, 217–230.

  • Rodriguez, C., Geyer, A., Castro, A. & Villasenor, A. (2015). Natural equivalents of thermal gradient experiments. Journal of Volcanology and Geothermal Research, 298, 47–58. https://doi. org/10.1016/j.jvolgeores.2015.03.021

  • Rozimant, K., Buyuksarac, A. & Bektas, O. (2009). Interpretation of magnetic anomalies and estimation of depth of magnetic crust in Slovakia. Pure and Applied Geophysics, 166, 471–484.

  • Schildgen, T. F., Cosentino, D., Bookhagen, B., Niedermann, S., Yildirim, C., Echtler, H., Wittmann, H. & Strecker, M. R. (2012). Multiphased uplift of the southern margin of the Central Anatolian plateau, Turkey: a record of tectonic and upper mantle processes, Earth and Planetary Science Letters 317–318, 85–95. https://doi. org/10.1016/j.epsl.2011.12.003

  • Şener M. F., Baba, A., Uzelli, T., Akkuş, İ. & Mertoğlu, O. (2022). Türkiye Jeotermal Kaynaklar Strateji Raporu. Maden ve Petrol İşleri Genel Müdürlüğü, Ankara, 1-149 (in Turkish).

  • Şener, M. F., Öztürk, M. Z. & Baba, A. (2023). A review of the geothermal system evolution and distribution in the Central Anatolian Crystalline Complex (Türkiye). Turkish Journal of Earth Sciences, 32(6), 703-720. https://doi.org/10.55730/1300- 0985.1870

  • Tabatabaian, M. (2014). COMSOL for Engineers. Mercury Learning and Information, Boston, USA.

  • Tank, S. B. & Karaş, M. (2020). Unraveling the electrical conductivity structure to decipher the hydrothermal system beneath the Mt. Hasan composite volcano and its vicinity, SW Cappadocia, Turkey. Journal of Volcanology and Geothermal Research, 405, Article 107048. https://doi.org/10.1016/j.jvolgeores.2020.107048

  • Toprak, V. (1998). Vent distribution and its relation to regional tectonics, Cappadocian volcanics, Turkey. Journal of Volcanology and Geothermal Research, 85, 55–67.

  • Yildirim, C., Schildgen, T.F., Echtler, H., Melnick, D. & Strecker, M.R. (2011). Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics, 30(5). https://doi. org/10.1029/2010TC002756

  • URL 1: https://3skaleenerji.com.tr/biz-kimiz/: Eylül 2023.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • A Simple Model for Plate Motion and Topography
    Ömer Faruk Bodur
    PDF Olarak Görüntüle

    Abstract: The traditional explanation of slow dynamic subsidence and uplift of tectonic plates solely depends on the vertical motion of mantle density anomalies. This has been challenged by observations of rapid and short-live delevation changes exceeding 100 meters per-million-year in numerous sedimentary basins. Bodur et al., (2023) have shown that relative tectonic plate motion and associated basal shear stress can explain those rapid and short-live delevation changes. In this paper, I suggest a basic approach to quantify elevation changes resulting from basal shear stress by employing torque-balance calculations. The results confirm the existing flow model solution and offer amore robust formula for estimating the impact of plate motion on changes in Earth`s topography. Such function alitymay prove invaluable in various applications including interpretation of stratigraphic records.

  • Basal shear stress

  • dynamic topography

  • Earth`s topography

  • stratigraphy

  • tectonic plate motion

  • torque balance

  • Barba, S., Carafa, M. M. & Boschi, E. (2008). Experimental evidence for mantle drag in the Mediterranean. Geophysical Research Letters, 35(6). https://doi.org/10.1029/2008GL033281

  • Bodur, Ö. F. & Rey, P. F. (2019). The impact of rheological uncertainty on dynamic topography predictions. Solid Earth, 10, 2167–2178. https:// doi.org/10.5194/se-10-2167-2019

  • Bodur, Ö. F., Houseman, G. A. & Rey, P. F. (2023). Brief immersion of southern Australia by change in relative plate speed. Terra Nova, 35(2), 134- 140. https://doi.org/10.1111/ter.12637

  • Embry, A. & Beauchamp, B. (2019). Sverdrup basin. In The sedimentary basins of the United States and Canada (pp. 559-592). Elsevier.

  • Flament, N., Gurnis, M. & Müller, R. D. (2013). A review of observations and models of dynamic topography. Lithosphere, 5(2), 189-210. https:// doi.org/10.1130/L245.1

  • Gurnis, M., Muller, R. D. & Moresi, L. (1998). Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science, 279(5356), 1499-1504.

  • Gurnis, M., Kominz, M. & Gallagher, S. J. (2020). Reversible subsidence on the North West Shelf of Australia. Earth and Planetary Science Letters, 534, Article 116070. https://doi.org/10.1016/j. epsl.2020.116070

  • Haq, B. U., Hardenbol, J. A. N. & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156-1167.

  • Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary change, 113, 44-58. https://doi. org/10.1016/j.gloplacha.2013.12.007

  • Hoggard, M. J., White, N. & Al-Attar, D. (2016). Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geoscience, 9(6), 456-463.

  • Melosh, J. (1977). Shear stress on the base of a lithospheric plate. In C. L. Drake & L. G. Balazs (Eds.), Stress in the Earth (pp. 429-439).

  • Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S. & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20), Article eaaz1346. https://doi.org/10.1126/sciadv.aaz1346

  • Molnar, P., England, P. C., & Jones, C. H. (2015). Mantle dynamics, isostasy, and the support of high terrain. Journal of Geophysical Research: Solid Earth, 120(3), 1932-1957. https://doi. org/10.1002/2014JB011724

  • Morgan, W. J. (1965). Gravity anomalies and convection currents: 1. A sphere and cylinder sinking beneath the surface of a viscous fluid. Journal of Geophysical Research, 70(24), 6175- 6187.

  • Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., & Grand, S. P. (2008). Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271(1-4), 101-108. https://doi. org/10.1016/j.epsl.2008.03.056

  • Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson, M. E., ... & Delcaillau, B. (2011). Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?. Earth-Science Reviews, 108(1-2), 1-15. https:// doi.org/10.1016/j.earscirev.2011.05.002

  • Petersen, K. D., Nielsen, S. B., Clausen, O. R., Stephenson, R. & Gerya, T. (2010). Smallscale mantle convection produces stratigraphic sequences in sedimentary basins. Science, 329(5993), 827-830. https://doi.org/10.1126/ science.1190115

  • Pysklywec, R. N. & Mitrovica, J. X. (1998). Mantle flow mechanisms for the large-scale subsidence of continental interiors. Geology, 26(8), 687-690.

  • Pysklywec, R. N., & Mitrovica, J. X. (1997). Mantle avalanches and the dynamic topography of continents. Earth and Planetary Science Letters, 148(3-4), 447-455.

  • Steinberger, B. (2007). Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Physics of the Earth and Planetary Interiors, 164(1-2), 2-20.

  • Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S., Sangree, J. B., ... & Hatlelid, W. G. (1977). Seismic stratigraphy and global changes in sea level. In C. E. Payton (Ed.), Seismic stratigraphy: Applications to hydrocarbon exploration (pp. 49-212). AAPG Memoir 26.

  • Van Benthem, S. & Govers, R. (2010). The Caribbean plate: Pulled, pushed, or dragged?. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/10.1029/2009JB006674

  • Zhu, Y., An, F. & Tan, J. (2011). Geochemistry of hydrothermal gold deposits: A review. Geoscience Frontiers, 2(3), 367-374. http://dx.doi. org/10.1016/j.gsf.2011.05.006










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • ISSUE FULL FILE
    PDF Olarak Görüntüle