Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni
ISSN: 1016-9164 | e-ISSN: 2564-6745 | Period Tri-annual: Yılda 3 Sayı | Founded: 1947
Show Last Issue

Geological Bulletin of Turkey, established in 1947, is one of the oldest and best-known periodicals of this country. It is an open access journal and publishes original research papers after a peer-review procedure in Turkish or English.

Geological Bulletin of Turkey covers all aspects of the geosciences except for Engineering Geology.

Geological Bulletin of Turkey is indexed and abstracted in GeoRef, Geotitles, Geoscience Documentation, Bibliography of Economic Geology, Geology, Geo Archive, Geo Abstract, Mineralogical Abstract, ProQuest, GEOBASE, EBSCO, BIOSIS, ULAKBİM  (TRDİZİN) and Thomson Reuters&Clavirate (ESCI) databases.

Geological Bulletin of Turkey is published three times a year (January, April and August). The articles submitted to the journal are evaluated by peer review.

Your new manuscript submission should be via DergiPark.

To download of all issues from Geology Bulletin of Turkey, published since 1947; https://tjb.jmo.org.tr

Contact to Editor in Chief: tjbdergi@gmail.com

2021 NİSAN Cilt 64 Sayı 2

View as PDF
View as PDF
View as PDF
Sequence Stratigraphy, Sedimentology and Hydrocarbon Potentials of the Paleozoic Successions in Southeast Turkey
Muhittin Şenalp Sema Tetiker Murat Şentürk
View as PDF

The hydrocarbon potentials of the carbonates and siliciclastic rocks forming the continuous Paleozoic successions in Southeast Turkey are well understood. In this study, every aspect of the sequence stratigraphy was investigated and the erosional unconformity surfaces of different origin and transgressive surfaces were defined. In this way, the Paleozoic successions of Southeast Turkey were correlated with the hydrocarbon-producing Paleozoic successions of Saudi Arabia. Based on fieldwork, new formations and members were defined and formation boundaries were slightly modified. The stratigraphic sequence extending between the Neoproterozoic igneous basement (Telbesmi Formation) and the Early Ordovician (Konur Formation) is best represented along Zabuk Valley (Derik town). Middle-Late Ordovician successions are exposed between Bedinan (Gürmeşe) and Yurteri villages, west of Kızıltepe town. The outcrops and subsurface indicated that the thick Middle Cambrian stromatolitic algal limestone (Koruk Formation) has both source rock and reservoir rock potentials. The glaciogenic Yurteri Formation  has deeply incised in to the Bedinan Formation. The well-sorted and porous glaciofluvial sandstones produce oil and gas in southeast Turkey and other countries located on the Gondwana continent. The organic rich shale deposited at the base of the Silurian Dadaş Formation forms a very productive source rock for the entire Paleozoic successions. Crude oil has been produced from the Late Silurian Hazro sandstone. In order to locate exploration wells in the right place, depositional environment models of all the formations, their lithofacies, isopach maps and hydrocarbon migration pathways were prepared. This is crucial for geological exploration and oil and gas production.

  • Al-Hadidy, A.H. (2007). Paleozoic Stratigraphic Lexicon and Hydrocarbon Habitat of Iraq. GeoArabia, 12(1), 63-130.

  • Al-Hajri, S. A. (1995). Biostratigraphy of the Ordovician Chitinozoa of northwestern Saudi Arabia. Review of Palaeobotany and Palynology, 89, 27-48.

  • Al-Husseini, M.I. (1989). Tectonic and depositional model of Late Precambrian–Cambrian Arabian and adjoining plates. AAPG Bulletin 73(9), 1117– 1131. https://doi.org/10.1306/44B4A54B-170A- 11D7-8645000102C1865D

  • Al-Husseini, M.I. (2000). Origin of the Arabian plate structures: amar collision and Najd rift. GeoArabia 5, 527–542.

  • Al-Husseini, M. (2011). Late Ediacaran to early Cambrian (Infracambrian) Jibalah group of Saudi Arabia. GeoArabia, 16, 69–90.

  • Al-Saleh, A. M., Boyle, A. P. & Mussett, A. E. (1998). 40Ar/30Ar dating of the Halaban ophiolite and associated units: evidence for two-stage orogenesis in the eastern Arabian shield. Journalof the Geological Society 155, 165–175. https:// doi.org/10.1144/gsjgs.155.1.0165

  • Amthor, J. E., Grotzinger, J. P., Schroder, S., Bowring, S. A., Ramezani, J., Martin, M. W. & Matter, A. (2003). Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31(5), 431–434. https://doi. org/10.1130/0091-7613(2003)031<0431:EOCAN A>2.0.CO;2

  • Andrews, I. J. (1991). Palaeozoic lithostratigraphy in the subsurface of Jordan. Subsurface Geology Bulletin, 2: Geology Directorate, NRA, Amman.

  • Aqrawi, A. A. M. (1998a). Paleozoic stratigraphy and petroleum systems of the western and southwestern deserts of Iraq. GeoArabia, 3(2), 229-248.

  • Aqrawi, A. A. M. (1998b). Errata: Paleozoic Stratigraphy and petroleum Systems of the western and southwestern deserts of Iraq. GeoArabia, 3, 417-418.

  • Bakor, A. R., Gass, I. G., Neary, C. R. (1976). Jabal al Wask, northwest Saudi Arabia: an Eocambrian back-arc ophiolite. Earth and Planetary Science Letters, 30, 1–9.

  • Bentor, Y. K. (1985). The Crustal Evolution of the Arabo-Nubian Massif with Special Reference to the Sinai Peninsula. Precambrian Research, 28, 1-74.

  • Dean, W.T. & Monod, O. (1970). The Lower Paleozoic stratigraphy and faunas of the Taurus Mountains near Beyşehir, Turkey, I. Stratigraphy. Bulletin of the British Museum (Natural History). Geology, 19, 413-426.

  • Dean, W. T. ve Monod, O. (1990). Revised stratigraphy and relationships , of the Lower Palaeozoic rocks, eastern Taurus Mountains, south central Turkey. Geological Magazine, 127, 333-347.

  • El-Khayal, A. A., Chaloner, W. G. & Hill, C. R. (1980). Paleozoic Plants from Saudi Arabia. Nature, 285, 33-34. https://doi.org/10.1038/285033a0

  • El-Khayal, A. A. & Wagner, R. H. (1985). Upper Permian Stratigraphy and Megafloras of Saudi Arabia: Paleogeographic and Climatic Implications. Compte Rendu X Congress International Stratigraphie Geologie Carbonifere, Madrid, 17-26.

  • Gass, I. G. (1981). Pan African (Upper Proterozoic) plate tectonics of the Arabian-Nubian shield. In A. Kröner (Ed.), Developments in Precambrian Geology, Precambrian Plate Tectonics (pp.387- 405). Elsevier. https://doi.org/10.1016/S0166- 2635(08)70020-3

  • Ghienne, J. F., Kozlu, H., Dean, W. T., Günay, Y. & Monod, O. (2001). Discovery of the Northernmost Gondwanan evidence of an Upper Ordovician Glacier: Southern Turkey. In: EUG XI, Strasbourg, Abstracts.

  • Ghienne, J. F., Monod, O. & Dean, D. W. (2010). Cambrian-Ordovician sequences in the Middle East: A perspective from Turkey. Earth-Science Reviews, 101(3-4), 101-146.

  • Girard, F., Ghienne, J. F. & Rubino, J. L. (2012). Channelized sandstone bodies (‘cordons’) in the Tassili N’Ajjer (Algeria & Libya): snapshots of a Late Ordovician proglacial outwash plain. In M. Huuse, J. Redfern, D. Le Heron, R.J. Dixon, A. Moscariello & J. Craig (Eds.), Glaciogenic Reservoirs and Hydrocarbon Systems, Special Publications 368 (pp.355-379). Geological Society, London. https://doi.org/10.1144/SP368.3

  • Guitt, F. A., Al-Lawti, M. H. & Nederlof, R. J. R. (1995). Seeking New Potential in the Early- Late Permian Gharif Play, West Central Oman. In M. I. Husseini (Ed.), Middle East Petroleun Geosciences Conference. GEO’94 Gulf Petrolink, Bahrain, 2, 447-462.

  • Hadley, D. G. & Schmidt, D. L. (1980). Sedimentary rocks and basins of the Arabian Shield and Their evolution. In P.G. Cooray, S.A.Tahoun (Eds.), Evolution and Mineralization of the Arabian- Nubian Shield, Bulletin 3, Volume 4, (pp. 26-50). Institute of Applied Geology, King Abdulaziz University: Jiddah, Saudi Arabia.

  • Hirst, J. P. P., Benbakir, A., Payne, D. F. & Westlake, I. R. (2002). Tunnel Valleys and Density Flow Processes in the upper Ordovician glacial succession, Illizi Basin, Algeria: influence on reservoir quality. Marine and Petroleum Geology, 25, 297–324.

  • Hoffman, P.F. & Schrag, D. P. (2000). Snowball Earth. Scientific American, 282(1), 68-75.

  • Huckriede, R., Kürsten, M. & Venzlaff, H. (1962). Zur Geologie des Gebietes zwischen Kerman und Sagand (İran). In Beihefte zum Geologischen Jahrbuch, 51, (197 p). Niedersächsisches Landesamt für Bodenforschung.

  • Hughes, G.W. & Filatoff, J. (1995). New biostratigraphic constraints on Saudi Arabian Red Sea pre-and synrift sequences. In M.I. Al-Husseini (Ed.), Middle East Petroleum Geosciences GEO’94 (517-528). Gulf PetroLink, Bahrain, 2.

  • Hughes, G. W. & Johnson, R. S. (2005). Lithostratigraphy of the Red Sea Region. GeoArabia, 10(3). 49-129.

  • Huuse, M., Le Heron, D. P., Dixon, R., Redfern, J., Moscariello, A. & Craig, J. (2012). Glaciogenic reservoirs and hydrocarbon systems: an introduction. In M. Huuse, J. Redfern, D. Le Heron, R. J. Dixon, A. Moscariello & J. Craig (Eds.), Glaciogenic Reservoirs and Hydrocarbon Systems, Special Publications 368 (pp.1- 28). Geological Society, London. https://doi. org/10.1144/SP368.19

  • Johnson, P. R. (1996). Proterozoic Geology of Western Saudi Arabia, East-central Sheet (Open-File Report USGS-OF-96-4, scale 1:500,000). Saudi Arabian Deputy Ministry for Mineral Resources.

  • Johnson, P. R. (2003). Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogen. Precambrian Research, 123(2- 4), 321–337. https://doi.org/10.1016/S0301- 9268(03)00074-3

  • Johnson, P. R. & Kattan, F. (1999). The Ruwah, Ar Rika, and HalabanZarghat fault zones: northwesttrending Neoproterozoic brittel-ductile shear zones in west-central Saudi Arabia. In: H. de Wall, R. O. Greiling, (Eds.), Aspects of Pan-African Tectonics (pp. 75–79). International Cooperation, Bilateral Seminars of the International Bureau 32, Forschungszentrum Jülich, Germany,

  • Johnson, P. R. & Kattan, F. H. (2001). Oblique sinistral transpression in the Arabian shield: the timing and kinematics of a Neoproterozoic suture zone. Precambrian Research, 107 (1-2), 117–138. https://doi.org/10.1016/S0301-9268(00)00157-1

  • Johnson, P. R. & Kattan, F. H. (2012). The geology of the Saudi Arabian Shield. Jeddah, Saudi Geological Survey.

  • Johnson, P. R., Kattan, F. H. & Al-Saleh, A. M. (2004). Neoproterozoic ophiolites in the Arabian Shield: Field relations and structure. T.M. Kusky (Ed.), Precambrian Ophiolites and related rocks: Developments in Precambrian Geology (13, 129- 162). Elsevier, Amsterdam.

  • Kavak. O., (2007). Hazro Bölgesinin Kömür Potansiyeli ve Hidrokarbon Özellikleri. 16th International Petroleum and Natural Gas Congress and Exhibition of Turkey, May, 2007. Organizations: TAPG

  • Kellogg, H. E. (1960). Stratigraphic report, DerikMardin area Petroleum District V, Southeast Turkey (Rapor no: 1367). TPAO.

  • Ketin, İ. (1966). Güneydoğu Anadolu’nun Kambriyen teşekkülleri ve bunların Doğu İran kambriyeni ile mukayesesi. MTA Dergisi, 66, 75-87.

  • Kocurek, G. & Nielson, J. (1986). Conditions favourable for the formation of warm-climate eolian sand sheets. Sedimentology, 33(6), 795–816.

  • Konert, G., Afifi, A. M., Al-Hajri, S. A., Al Naim, A. A. & Droste, H. J. (2001). Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate. AAPG Memoir, 74, 483-515.

  • Kröner, A. (1985). Ophiolites, and the evolution of tectonic boundaries in the late Proterozoic Arabian-Nubian shield of Northeast Africa and Arabia. Precambrian Research 27, 277-300.

  • Kröner A., Todt, W., Hussein, I. M., Mansour, M. & Rashwan, A. (1992). Dating of late Proterozoic ophiolites in Egypt and the Sudan using the single grain zircon evaporation technique. Precambrian Research, 59(1-2), 15-32. https:// doi.org/10.1016/0301-9268(92)90049-T

  • Lüning, S., Craig, J., Loydell, D. K., Storch, P. & Fitches, W. (2000). Lowermost Silurian hot shales in north Africa and Arabia: regional distribution and depositional model. Earth Science Reviews, 49, 121-200.

  • Lüning, S., Kolonic, S., Loydell, D. K. & Craig, J. (2003). Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya). GeoArabia, 8, 299-308.

  • Lüning, S., Shahin, Y. M., Loydell, D., Al-Rabi, H. T., Masri, A., Tarawneh, B. & Kolonic, S. (2005). Anatomy of a world-class source rock: distribution and depositional model of Silurian organic-rich shales in Jordan and implications for hydrocarbon potential. Bulletin of American Association of Petroleum Geologists, 89, 1397–1427.

  • Molyneux, S. G. & Al-Hajri, S. (2000). Palynology of Problematic Lower Paleozoic Lithofacies in Central Arabia. In: Al-Hajri and B. Owens (Eds.), Stratigraphy of the Paleozoic of Saudi Arabia (pp. 277-294). GeoArabia Special Publication 1. Gulf Petrolink.

  • Monod, O., Kozlu, H., Ghienne, J.-F., Günay, Y., Le Herisse. A., Paris, F. & Robardet, M. (2003). Late Ordovician glaciation in southern Turkey. Terra Nova 15, 249-257.

  • Moreau, J. (2005). Architecture stratigraphique et dynamique des dépôts glaciaires ordoviciens du Bassin de Murzuk (Libye) [Unpublished doctoral dissertation]. Université Louis Pasteur, Strasbourg.

  • Moses, H.F. (1936). Geological report on the MardinCizre region. Southeastern Turkey (Derleme No:212). sbkdrndrodoMaden Tetkik Arama Enstitüsü.

  • Nayiroğlu, Ü. (2019). 3B Sismik Yorumlamada Farklı Hız Modellerinin Kullanılması ve Derinlik Dönüşümüne Katkılarının incelenmesi [Yayımlanmamış yüksek lisans tezi]. Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Anabilim Dalı, Süleyman Demirel Üniversitesi, Isparta.

  • Naylor, D., Al-Rawi, M., Clayton, M., Fitzpatrick, M. J. & Green, P. F. (2013). Hydrocarbon Potential of Jordan. Journal of Petroleum Geology, 36(3), 205- 236. https://doi.org/10.1111/jpg.12553

  • Nehlig, P., Genna, A., Asfirane, F., Dubreuil, N., Guerrot,C., Eberlé,, J. M., Kluyver, H. M., Lasserre, J. L., Le Goff, E., Nicol. N., Salpeteur, N., Shanti, M., Thiéblemont, D. & Truffert, C. (2002). A review of the Pan-African evolution of the Arabian Shield. GeoArabia, 7, 103–124.

  • Özdemir, F. ve Ünlügenç, U. C. (2013). Gökiçi (Diyarbakır) Yapısının Stratigrafisi ve Hidrokarbon Potansiyeli Açısından İncelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(1), 127-141.

  • Özgül, N. (1971). Orta Torosların kuzey kesiminin yapısal gelişiminde blok hareketlerinin önemi. Türkiye Jeoloji Kurumu Bülteni, 14(1), 85- 101. https://dergipark.org.tr/tr/pub/tjb/ issue/54938/753186

  • Özgül, N. ve Gedik, İ. (1973). Orta Toroslarʹda Alt Paleozoyik yaşta Çaltepe kireçtaşı ve Seydişehir formasyonunun stratigrafisi ve konodont faunası hakkında yeni bilgiler. Türkiye Jeoloji Kurumu Bülteni, 16 (2), 39–52.

  • Pallister, J. S., Stacey, J. S., Fischer, L. B. & Premo, W. R. (1988). Precambrian ophiolites of Arabia: Geologic settings, U-Pb geochronology, Pb- isotope characteristics, and implications for continental accretion. Precambrian Research, 38, 1–54

  • Quick, J. E. (1991). Late Proterozoic transpression of the Nabitah fault system implications for the assembly of the Arabian shield. Precambrian Research, 53, 119–147.

  • Rubino, J. L., Deynoux, M., Ghienne, J. F., Moreau, J., Blanpied, C., Lafont, Andres-Calatrava, F. R., Galeazzı, S. Mynth, T. & Sommer, F. (2003). Late Ordovician Glaciation in Northern Gondwana, Reappraisal and Petroleum Implications. Geology, 19, 117–142.

  • Sayılı, A., Tandırcıoğlu, A., Temel, R. Ö., Can, H. & Yılmaz, E. (2012). Paleozoic Petroleum Geology and New Oil Fields Discoveries in Area-147/3-4, Murzuq Basin in Libya, A Field Trip Guide Book. Kayseri, Turkey. Erciyes University.

  • Sharland, R. P., Archer, R., Casey, R. B., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D. & Simmons, M. D. (2001). Arabian Plate Sequence Stratigraphy. GeoArabia Special Publication 2.

  • Schmidt, G. (1965). Proposed rock unit nomenclature, Petroleum District V, SE-Turkey (autochthonous terrain). Chart 1. In Stratigraphic Committee, Turkish Association of Petroleum Geologists, Ankara.

  • Siyako, M., Şeker, H., Bahtiyar, İ., Özdemir, İ., Kılınç, S. F., Arslan, M. D., Karaçay, A., Özsoy, S. ve İşdiken, B. (2015). Batman, Beşiri, Kurtalan, Raman ve Gercüş Civarının Jeolojisi ve Hidrokarbon Olanakları (Rapor no. 5546). Türkiye Petrolleri Anonim Ortaklığı Arama Grubu.

  • Stephenson, H. M. & Filatoff, J. (2000a). Correlation of Carboniferous-Permian Palynological Assemblages from Oman and Saudi Arabia. In S. Al-Hajri & B. Owens (Eds.), Stratigraphic Palynology of the Paleozoic of Saudi Arabia (pp. 168-191). GeoArabia Special Publication 1. Gulf PetroLink, Bahrain.

  • Stephenson, H. M. & Filatoff, J. (2000b). Description and Correlation of Late Permian Palynological Assemblages from the Khuff Formation, Saudi Arabia and Evidence for the Duration of the preKhuff Hiatus. In S. Al-Hajri & B. Owens (Eds.), Stratigraphic Palynology of the Paleozoic of Saudi Arabia (pp. 192-215). GeoArabia Special Publication 1. Gulf PetroLink, Bahrain.

  • Stern, R. J. (1994). Arc assembly and continental collision in the Neoproterozoic East African orogen. Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22, 319-351.

  • Stern, R. J., Johnson, P. R., Kroner, A. & Yibas, B. (2004). Neoproterozoic ophiolites of the ArabianNubian Shield. Developments in Precambrian Geology, 13, 95–128.

  • Stern, R. J. & Johnson, P. (2010). Continental Lithosphere of the Arabian Plate; a Geologic, Petrologic, and Geophysical Synthesis. Earth Science Reviews, 101, 29-67.

  • Stern, R. J., Avigad, D., Miller, N. R. & Beyth, M. (2006). Evidence for the snowball Earth hypothesis in the Arabian-Nubian Shield and the east African Orogen. Journal of African Earth Sciences, 44(1), 1–20. https://doi.org/10.1016/j. jafrearsci.2005.10.003

  • Stern, R. J., Johnson, P. R., Ali, K. A. & Mukherjee, S. (2011). Evidence for early and mid-cryogenian glaciation in the northern Arabian-Nubian Shield (Egypt, Sudan, and western Arabia). In E. Arnaud, G. P. Halverson, & G. Shield-Zhou (Eds), The Geological Record of Neoproterozoic Glaciation (pp. 277–284). Geological Society, London.

  • Stoeser, D. B. & Camp, V. E. (1985). Pan-African microplate accretion of the Arabian Shield. Geological Society of America Bulletin, 96, 917- 826.

  • Stoeser, D. B. & Frost, C. D. (2006). Nb, Pb, St, and O isotopic characterization of Saudi Arabian Shield terrenes: Chemical Geology, 226, 163-188.

  • Stoeser, D. B. & Stacey, J. S. (1988). Evolution, U-Pb geochronology, and isotope geology of the Pan-African Nabitah orogenic belt of the Saudi Arabian Shield. In S. El-Gaby & R. O. Greiling, (Eds.), The Pan-African Belt of Northeast Africa and Adjacent Areas (pp. 227–288). Braunschweig/ Wiesbaden, Vieweg and Sohn.

  • Stolle, E. (2010). Recognition of southern Gondwanan palynomorphs at Gondwana’s northern margin and biostratigraphic correlation of Permian strata from SE Turkey and Australia. Geological Journal, 45(2-3), 336–349. https://doi.org/10.1002/gj.1215

  • Stolle, E., Yalçın, N. & Kavak, O. (2011). The Permian Kas Formation of SE Turkey palynological correlation with strata from Saudi Arabia and Oman. Geological Journal, 46, 561–573.

  • Şenalp, M. (2006a). Stratigraphy and Sedimentology of the Paleozoic Successions in Saudi Arabia, (Volume 1). Upstream Ventures Department of Saudi Aramco.

  • Şenalp, M. (2006b). Stratigraphy and Sedimentology of the Paleozoic Successions in Saudi Arabia, (Volume 2). Upstream Ventures Department of Saudi Aramco.

  • Şenalp, M. (2016). Kızıldeniz’in Açılımı ve Midyan Havzası’nın Stratigrafik Evrimi (KB Suudi Arabistan. Türkiye Petrol Jeologları Derneği Bülteni, 28(1), 29-58.

  • Şenalp, M. & Al-Duaiji, A. A. (1995). Stratigraphy and Sedimentation of the Unayzah Reservoir Central Saudi Arabia. In M. I. Husseini (Ed.), Middle East Petroleum Geosciences Conference. GEO’94 Gulf Petrolink, Bahrain, 2, 837-847

  • Şenalp, M. & Al-Duaiji, A. A. (2001a). Qasim Formation: Ordovician storm- and tide-dominated shallow marine siliciclastic sequences, Central Saudi Arabia. GeoArabia, 6, 233-268.

  • Şenalp, M. & Al-Duaiji, A. A. (2001b). Sequence Stratigraphy of the Unayzah Reservoir in Central Saudi Arabia. The Saudi Aramco Journal of Technology, 20-43.

  • Şenalp, M. & Al-Laboun, A. (2000). New Evidence on the Late Ordovician Glaciation in Central Saudi Arabia. Saudi Aramco Journal of Technology, 11- 40.

  • Şenalp, M., Bahtiyar, I., Isıkalp, U., Uz, E. & Kaya, M. 2018. Sequence Stratigraphy and Sedimentology of the Paleozoic Successions on the Arabian Platform and Their Impact to Hydrocarbon Explorations in Southeast Turkey. Turkish Association of Petroleum Geologists, 396 p.

  • Taylor, S.R. (1955). Stratigraphic studies Bozova (Urfa) area (Mobil Exploration Mediterrainean Inc. Report). Petrol İşleri Genel Müdürlüğü Teknik Arşivi, Kutu No. 1.

  • Tromp, S. W. (1941). Preliminary compilation of the stratigraphy, structural features and oil possibilities of Southeastern Turkey and a comparison with neighboring areas. Maden Tetkik Arama Enstitüsü Yayınları, Seri A, No.4, 19-34.

  • Turner, R. B., Makhlouf, M. I. & Armstrong A. H. (2005). Late Ordovician (Ashgillian) glacial deposits in Southern Jordan. Sedimentary Geology, 181, 73-91.

  • Vail, J. R. (1985). Panafrican (late Precambrian) tectonic terrains and the reconstruction of the ArabianNubian Shield. Geology, 13, 839–842.

  • Vaslet, D. (1990). Upper Ordovician glacial deposits in Saudi Arabia. Episodes, 13, 147-161.

  • Weber, K. J. (1987). Computation of initial well productivities in aeolian sandstone on the basis of a geological model, Leman gas field, UK. In R. W. Tillman & K. J. Weber (Eds.), Reservoir Sedimentology (333–354). Society of Economic Paleontologists and Mineralogists Special Publication 40. https://doi.org/10.2110/ pec.87.40.0333

  • Wolfart, R. (1981). Lower Paleozoic rocks of the Middle East, In: C. H. Holland (Ed.), Lower Paleozoic rocks of the Middle East, Eastern and Southern Africa, and Antartica (6-130). Wiley, Chichester.

  • Yılmaz, E. ve Duran, O. (1997). Güneydoğu Anadolu Bölgesi Otokton ve Allokton Birimler Stratigrafi Adlama Sözlüğü. TPAO Araştırma Grubu, Ankara, Eğitim Yayınları No: 31.

  • Şenalp, M , Tetiker, S , Şentürk, M . (2021). Güneydoğu Türkiye’deki Paleozoyik İstiflerinin Sekans Stratigrafisi, Sedimantolojisi ve Hidrokarbon Potansiyeli . Türkiye Jeoloji Bülteni , 64 (2) , 143-198 . DOI: 10.25288/tjb.686651

  • Petrographic Observations Related to Rocks used in Urartu Settlements (Van Castle, Aşağı and Yukarı Anzaf, Çavuştepe, Ayanis, Toprakkale, Zivistan, Keçikıran, Aliler, Körzüt and Menua Canal Historical Sites) around Van (Eastern Turkey)
    Asli Karabaşoğlu Özgür Karaoğlu Rifat Kuvanç
    View as PDF

    Abstract: Van and its vicinity have been a prominent region with settlements recording many civilizations since the earliest periods in history. The most stunning remains of civilizations in this region belong to the Urartian Kingdom, which was established in the centre of Van from the middle of the 9th century BC. The capital city of the Urartian Kingdom was Tushpa (Van Castle), which was established on the Van Castle rock cliffs rising on the eastern shore of Lake Van. In addition to Tushpa, the capital of the Kingdom of Urartu, the architectural remains of many castles, urban settlements, and other architectural structures, including dams and water canals, are extensively observed in the eastern part of Lake Van. Considering the geological structure of this central region, it appears that the Kingdom’s settlements and architectural structures were founded on the Van formation, which consists of Bitlis Metamorphics, Upper Cretaceous Ophiolites and Tertiary deep-sea sediments that form the basement rocks in the region. This study was carried out to determine petrographic characteristics and classify rock types of natural stones used as building materials in Van Castle, Çavuştepe, Ayanis, Toprakkale, Zivistan, Keçikıran Castle, Körzüt Castle and Menua Canal belonging to the Urartian Kingdom. A secondary purpose was to use a geological approach to determine the quarries from which they were extracted. For this purpose, representative natural stone samples were taken from the architectural structures and their remains in the settlement centres of Urartian Kingdom in order to prepare rock thin sections of natural stone samples. The thin sections were examined under polarising petrographic microscope to determine petrographic features and classify the rock types. When the architectural building groups in Urartian settlements are examined, different natural stones were mostly used as building materials. The rock types of these natural stones used in construction of these structures are generally classified under two main groups as igneous and sedimentary origin. Sedimentary rock types such as limestone, travertine and sandstone were preferred as the main building material in settlement centres around the Lake Van Basin. Additionally, igneous rocks types such as gabbro, basalt, andesite and serpentinite were preferred more intensely in centres which are located around the north and western part of Lake Van. At the point of determining the sources of rock types used as natural stone building materials in the Urartian centres, it was concluded that Urartu primarily supplied those materials from the nearest quarry sites. The use of this material is also possible especially from rocky or other nearby areas on which the structure was built. However, in line with the materials used in cuneiform inscriptions and monumental architectural structures such as temples, etc, the supply of building materials was also provided by distant sources. Considering the geology of the region, it is suggested that essential findings were obtained showing that igneous rocks were brought from the areas north and west of Lake Van, while sedimentary rocks are represented by limestones from the southern part of Lake Erçek, and travertine rocks from quarries in the Edremit region.

  • Architectural structures

  • castles

  • natural stones

  • petrography

  • Urartian

  • Van

  • Açlan, M., Oyan, V. & Köse, O. (2020). Petrogenesis and the evolution of Pliocene Timar basalts in the east of Lake Van, Eastern Anatolia, Turkey: A consequence of the partial melting of a metasomatized spinel–rich lithospheric mantle source. Journal of African Earth Sciences, 168, Article 103844. https://doi.org/10.1016/j. jafrearsci.2020.103844.

  • Belli O. (2000). Urartu Krallığı Döneminde Van Bölgesi’nde İşletilen Taş Ocakları ve Atölyeleri. Türkiye Arkeolojisi ve İstanbul Üniversitesi (1932-1999) (s. 415-422).

  • Belli, O. (2003). Van-Aşağı ve Yukarı Anzaf Urartu Kaleleri Kazısı: Bir Ara Değerlendirme (1991- 2002). Colloquium Anatolicum, II (s. 1-49). Türk Eskiçağ Bilimleri Enstitüsü Yayınları.

  • Burney, C. A. (1957). Urartian Fortresses and Towns in Van Region. Anatolian Studies, 7, 37-53.

  • Burney, C. A. & Lawson, G. R. J. (1960). Measured Plans of Urartian Fortresses. Anatolian Studies, 10, 177-196.

  • Çilingiroğlu, A. (2004). How was an Urartian Fortress Built?. In A. Sagona (Ed.), A View from the Highlands: Archaeological Studies in Honour of Charles Burney (Ancient Near Eastern Studies) (pp. 205-231). Peeters Publishers.

  • Çilingiroğlu, A. (2011). Ayanis Kalesi. K. Köroğlu, E. Konyar (Ed.ler), Urartu: Doğu’da Değişim (s. 338-365). Yapı Kredi Yayınları.

  • Karabıyıkoğlu, M., Aras, O., Beşikçi, B. ve Işıklı, M. (2019). Ayanis Kalesi Taşlarının Kaynak Sorunu. Arkeometri Sonuçları Toplantısı, 34 (s. 467-474).

  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A. Ü., Karabıyıkoğlu, M., Köse, O. & Froger, J. L. (2005). Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the caldera formation. Turkish Journal of Earth Science 14, 123-143.

  • Keskin, M., Pearce J. A. & Mitchell J. G. (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the ErzurumKars Plateau, North Eastern Turkey. Journal of Volcanology and Geothermal Research, 85, 355- 404.

  • Konak, N. ve Ercan, T. (2002). 1/500.000 Türkiye Jeoloji Haritası Van Paftası, (Şenel, M., (Ed.)) Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Kuvanç, R. (2017a). Urartu Mimarisinde Malzeme ve Teknik [Yayımlanmamış doktora tezi]. Van Yüzüncü Yıl Üniversitesi, Sosyal Bilimler Enstitüsü.

  • Kuvanç, R. (2017b). Urartu Krallığı’nın İlk Devlet Yatırımı Sardurburç Yapısı Işığında Urartu Taş Ocakçılığına İlişkin Gözlemler. Anadolu Araştırmaları, 20, 115-134.

  • Pettijohn, F. J., Potter, P. E. & Siever, R. (1987). Sand and Sandstones (2nd ed.). Springer-Verlag New York. https://www.doi.org/10.1007/978-1-4612- 1066-5

  • Salvini, M. (2006). Urartu Tarihi ve Kültürü (Çev. B. Aksoy). Arkeoloji ve Sanat Yayınları, İstanbul.

  • Salvini, M. (2008). Corpus Dei Testi Urartei, Vol. I-III, (CTU I-III). Istituto di Studi Civilta Dell‟e Egeo Del Vicino Oriente, Documenta Asiana, Roma.

  • Sevin, V. (2006). Keçikıran: Van Bölgesinden Yarım Kalmış Bir Urartu Projesi. A. Öktü, E. Özgen, … A. Rennie (Ed.ler), Hayat Erkanal’a Armağan, Kültürlerin Yansıması (s. 667-674). Homer Kitabevi ve Yayıncılık.

  • Sevin. V. (2012). Van Kalesi, Urartu Kral Mezarları ve Altıntepe Halk Mezarlığı. Ege Yayınları.

  • Sevin, V. (2014). Çavuştepe Aşağı ve Yukarı Kale Kapıları: Urartu mimarlığında sıra dışı uygulamalar. B. Helving, B. Uysal, A. Engin (Ed. ler), Armizzi-Engin Özgen’e Armağan/Studies Honour of Engin Özgen (s. 227-235). Atatürk Kültür Merkezi Başkanlığı Yayınları.

  • Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch für Mineralogie, Abhandlungen, 143, 1-14.

  • Şaroğlu, F. & Yılmaz, Y. (1986). Geological evolution and basin models during neotectonic episode in the eastern Anatolia. Bulletin Mineral Research and Exploration, 107, 61-83.

  • Şengör, A. M. C. & Kidd, W. S. F. (1979). Postcollisional tectonics of the Turkish-İranian Plateau and a comparison with Tibet. Tectonophysics, 55(3-4), 361-376. https://doi.org/10.1016/0040- 1951(79)90184-7

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey:a plate tectonic approach. Tectonophysics, 75(3-4), 181-241. https://doi. org/10.1016/0040-1951(81)90275-4

  • Üner, S., Yeşilova, Ç., Yakupoğlu, T. ve Üner, T. (2010). Pekişmemiş sedimanlarda depremlerle oluşan deformasyon yapıları (sismitler): Van Gölü Havzası, Doğu Anadolu. Yerbilimleri,31(1),53-66.

  • Karabaşoğlu, A , Karaoğlu, Ö , Kuvanç, R . (2021). Van Çevresindeki (Doğu Türkiye) Urartu Yerleşim Merkezlerinde (Van Kalesi, Aşağı ve Yukarı Anzaf, Çavuştepe, Ayanis, Toprakkale, Zivistan, Keçikıran, Aliler, Körzüt ve Menua Kanalı Tarihi Yerleri) Kullanılan Kayaçlara İlişkin Petrografik Gözlemler . Türkiye Jeoloji Bülteni , 64 (2) , 199-222 . DOI: 10.25288/tjb.754716

  • Porosity Prediction for Some Geological intervals in the East Baghdad Oil Field Using New Empirical Equations
    Maan Hasan Abdullah Al-Majid
    View as PDF

    Abstract: This study examines the evaluation of empirical equations related to primary seismic velocity with density and porosity. The empirical equations have been used in 128 sites based on a seismic grid covering the east Baghdad oil field. The average of density of the geological formations between each seismic reflectors and another (each interval) was extracted from well log data for four wells scattered in the field. Those reflectors were arranged from top to bottom of the studied Formations (Fatha, Hartha, Tanuma, Ahmadi, Shuaiba, and Gutnia Formations). In order to determine the best empirical equations, several previous equations were tested to obtain the best that correspond to the density rates taken from well records. The most suitable equations were used in calculating density for all intervals in the whole field. Using the strong relationship (porosity-density) taken from the well log data, the porosity values for all the studied intervals were found. Later, the porosity and density contour maps for each interval in the whole field were established. The locations of high porosity zones were identified and related to the petroleum distribution in the field.

  • Density

  • East Baghdad oil field

  • petrophysical parameters

  • porosity

  • new empirical equations

  • seismic velocity analyses

  • Al-Ameri, T.K. (2011). Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Marine and Petroleum Geology, 28(4), 880-894. https://doi. org/10.1016/j.marpetgeo.2010.06.003

  • Al-Ameri, T. K., Al-Temimi A. K. & Zumberge J. (2016). Assessments of oil characterization, source affinities, and hydrocarbon dynamic of East Baghdad oil fields, Central Iraq. Marine and Petroleum Geology, 77, 353-375. https://doi. org/10.1016/j.marpetgeo.2016.03.009

  • Al-majid, M. (1992). The study of compaction in the east Baghdad oil field by using seismic velocity analyses (Unpublished MSc thesis). University of Mosul, Iraq.

  • Barnola, A. S. & White, R. E. (2001). Gardner’s relation and AVO inversion. First Break, 19(11), 607-611.

  • Brocher, T. M. (2005). Empirical relations between elastic wave speeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092.

  • C.F.P. (Compagnie FranGaise du Pdtrole) (1981). East Baghdad field: sedimentological study of the carbonate reservoirs. Oil Exploration Co, Baghdad [Unpublished report].

  • Darweesh, H. A., Obed, A. M. & Albadran, B. N. (2017). Structural study of East- Baghdad oil field, Central-Iraq. World Journal of Engineering Research and Technology, 3(6), 56 -66.

  • Gardner, G. H. F., Gardner, L. W. & Gregory, A. R. (1974). Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39, 770-780.

  • Han, D. H., Nur, A. & Morgan, D. (1986). Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51, 2093-2107.

  • Han, D. H. & Batzle, M. (2004). Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics, 69, 398–405.

  • Harding, T. P. & Lowell, J. D. (1979). Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum province. The American Association of Petroleum Geologists Bulletin, 63(7),1016- 1058.

  • Khaiwka, M. H. (1989). Structural evolution of the East Baghdad oilfield, central Iraq. Proc. 5th Sci. Con., Scientific Research Council, Baghdad, 2,(l), 17-27.

  • Kuiper, J., Van Ryan, W. M. L. & Kocfoed, O. (1959). Laboratory determinations of elastic properties of some limestones. Geophysical Prospecting, 7(1), 38-14.

  • Lindseth, R. O. (1979). Synthetic sonic logs - a process for stratigraphic interpretation. Geophysics, 44, 3-26.

  • Nwozor, K. K., Onuorah, L. O., Onyekuru, S.O. & Egbuachor, C. J. (2017). Calibration of Gardner coefficient for density–velocity relationships of tertiary sediments in Niger Delta Basin. Journal of Petroleum Exploration and Production Technology, 7, 627–635. https://doi.org/10.1007/ s13202-017-0313-7

  • Van Koughnet, R. W., Skidmore, C. M., Kelly, M. C. & Lindsay, R. (2003). Prospecting with the density cube. The Leading Edge, 22, 1038-1045

  • Abdullah, M . (2021). Porosity Prediction for Some Geological intervals in the East Baghdad Oil Field Using New Empirical Equations . Türkiye Jeoloji Bülteni , 64 (2) , 223-232 . DOI: 10.25288/tjb.766968

  • A Geochemical Approach to the Origin of Geothermal and Mineral Waters Southwest of Uludağ Mountain (Bursa)
    Nizamettin Şentürk Halim Mutlu
    View as PDF

    Abstract: In this study, hydrogeochemical characteristics and the origin of geothermal springs and mineral waters southwest of Uludağ (Bursa) Mountain were investigated. Temperatures of thermal waters are 37-64.5 °C and those of mineral waters range from 15.6 to 22.5 °C. Total dissolved solid (TDS) content of waters is in the range of 451 to 2026 mg/l. The pH of mineral waters (6.2 - 6.7) is much more acidic than thermal waters (7.1 - 7.3). Thermal waters are represented by Na-Ca-HCO3 facies type, while mineral waters are Mg-Na-Ca-HCO3 type. Tritium measured in the Bursa mineral waters is 0.34 to 5.96 TU. Thermal waters (0.34 to 1.95 TU) have lower tritium content than mineral waters (1.57 to 5.46 T). These results indicate that most of studied fluids are regarded as modern waters. δ18O of samples is -11.08 to -7.97‰ (VSMOW) and δD values are in the range of -73.81 to -57.64‰ (VSMOW). Stable isotope compositions of Bursa mineral water are located between Global and Mediterranean Water Lines, indicating meteoric origin.  δ13C values measured in dissolved inorganic carbon (HCO3) are between -15.3 and +10.12‰ (VPDB). Carbon isotope compositions of thermal waters are about 15‰ lower than those of mineral waters, implying that carbon in thermal springs is derived from an organic source. Carbon in mineral waters originates from marine limestones. Using the deuterium-altitude relationship, the recharge zone for Bursa mineral waters was at 1180-2300 m.

  • Bursa

  • Geothermal spring

  • hydrogeochemistry

  • isotope

  • mineral water

  • Uludağ

  • Akıllı, H. ve Mutlu, H. (2018). Polatlı ve Haymana (Ankara) sıcak sularının kökenine yönelik kimyasal ve izotopik sınırlamalar. Yerbilimleri, 39(1), 41-64.

  • Aydın, H., Karakuş, H. & Mutlu, H. (2020). Hydrogeochemistry of geothermal waters in eastern Turkey: geochemical and isotopic constraints on water-rockinteraction. Journal of Volcanology and Geothermal Research, 390, Article 106708. https:// doi.org/10.1016/j.jvolgeores.2019.106708

  • Ateş, Ş., Mutlu, G., Bulut Üstün, A., Özata, A., Özerk, O.C., Karakaya Gülmez, F., ve Osmançelebioğlu, R. (2009). Bursa İli ve Kentsel Alanların Yer Bilim Verileri (Derleme no: 11163). Maden Tetkik ve Arama Genel Müdürlüğü (yayımlanmamış).

  • Barry, P. H., Hilton, D. R., Füri, E., Halldórsson, S. A. & Gronvold, K. (2014). Carbon isotope and abundance systematics of Icelandic geothermal gases, fluid sand subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochimica et Cosmochimica Acta, 134, 74–99.

  • Bingöl E., Akyürek B. ve Korkmazer B. (1973). Biga Yarımadasının Jeolojisi ve Karakaya Formasyonun Bazı Özellikleri. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi Ankara (s. 70-76).

  • Clark, I. D. & Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers, New York.

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1833-1834.

  • Criaud, A. & Fouillac, C. (1986). Etude de seaux thermo minerales carbogaze uses du Massif Central Français. II. Comportment de quelquesmetaux en trace, de l’arsenic, de l’antimoine et dugermanium. Geochimica et Cosmochimica Acta, 50, 1573–82.

  • De Leew, G. A. M., Hilton, D. R., Güleç, N. & Mutlu, H. (2010). Regional and temporal variations in CO2/3He, 3He/4He and d13C along the North Anatolian Fault Zone, Turkey. Applied Geochemistry, 25, 524-539.

  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, Part I, 90, 84–92.

  • Ergül, E., Öztürk, Z., Akçaören, F. ve Gözler, M. Z. (1980). Balıkesir İli-Marmara Denizi arasının Jeolojisi (Derleme No: 6760). Maden Tetkik ve Arama Enstitüsü (yayımlanmamış).

  • Farley, K. A. & Neroda, E. (1998). Noble gases in the Earth’s mantle. Annual Review of Earth and Planetary Sciences, 26, 189–218.

  • Fournier, R. O. (1979). Geochemical and hydrologic consideration sand theuse of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. Journal of Volcanology and Geothermal Research, 5, 1-16.

  • Gat, J. R. & Carmi, I. (1987). Effect of climate changes on the precipitation pattern sand isotope composition of water in a clima tetransition zone - case of the eastern Mediterranean Sea area. In S. I. Solomon, M. Beran, & W. Hogg (Eds.), The Influence of Climate Changeand Climate Variability on the Hydrologic Regime and Water Resources (pp. 513- 523) IAHS Publications.

  • Giggenbach, W. F., Gonfiantini, R., Jangi, B. L. & Truesdell, A. H. (1983). Isotopic and chemical composition of Parbati Valley geothennal discharges, north-west Himalaya. India. Geothermics, 12, 199-222.

  • Gökgöz, A., Mutlu, H., Özkul, M. & Yüksel, A. K. (2021). Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav graben, western Turkey. Turkish Journal of Earth Sciences, 30, 182- 203.

  • Greber, E. (1994). Deep circulation of CO2 -rich palaeowaters in a seismically active zone (Kuzuluk/ Adapazarı, North western Turkey). Geothermics, 23(2), 151–74.

  • Hilton, D. R., Fischer, T. P. & Marty, B. (2002). Noble gases and volatile recycling at subduction zones. In: D. Porcelli, C.J. Ballentine & R. Wieler, (Eds.), Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry, 47(1), 319–370

  • IAH., (1979). Map of Mineral and Thermal Water of Europe, Scale: 1:500.000. International Association of Hydrogeologists, United Kingdom.

  • James, E. R., Manga, M., Rose, T. P. & Hudson, G. B. (2000). The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow. Journal of Hydrology, 237, 100-112.

  • Ketin, İ. (1947). Uludağ Masifinin Jeoloji İncelemesi (Derleme No: 1930). Maden Tetkik ve Arama Enstitüsü (yayımlanmamış).

  • Marques, J. M., Andrade, M., Carreira, P. M., Eggenkamp, H. G. M., Graça, R. C., Aires-Barros, L. & Da Silva, M.A. (2006). Chemical and isotopic signatures of Na/HCO3 /CO2 -rich geofluids, North Portugal. Geofluids, 6(4), 273–287.

  • Mutlu, H. (1998). Türkiye’deki maden sularının kimyasal özellikleri ve oluşumu. Jeoloji Mühendisliği Dergisi, 53, 67-74.

  • Mutlu, H. (2007). Constraints on the origin of the Balıkesir thermal waters (Turkey) from stable isotope (d18O, dD, d13C, d34S) and major-trace element compositions. Turkish Journal of Earth Sciences, 16, 13-32.

  • Mutlu, H. & Güleç, N. (1998). Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 495-515.

  • Okay, A. I. (1987). Notes on the geology of Northwest Turkey. Guide book on the geology of the western Anatolia for the IGCP Project number five. Maden Tetkik ve Arama Enstitüsü.

  • Okay, A. I. (1989). Tectonic unit sand sutures in the Pontides, northern Turkey. In A. M. C. Şengör, (Ed.), Tectonic Evolution of the Tethyan Region (pp. 109-115). Kluwer, Dordrecht.

  • Okay, A. I., Harris, N. B. W. & Kelley, S. P. (1998). Exhumation of blueschists along a Tethyan suture in North West Turkey. Tectonophysics, 285, 275- 299.

  • Parlaktuna, M., Güçer, Ş., Güleç, N., Savaşçın, Y., Mutlu, H., Tut, F. S., Erhan, Z., Süer, S., Arkan, S., Gök, E. & Çetinoğlu, A. (2008). Geothermal Energy Potential Assessment of Bursa, Turkey (102Y156). TÜBİTAK - JULICH (yayımlanmamış).

  • Piper, A. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions. American Geophysical Union. 25(6): 914–928.

  • Schoeller, H. (1962). Les Eaux Souterraines, Hydrologie Dynamique et Chimique, Recherche, Exploitation et Évaluation des Ressources. Masson et Cie, Paris.

  • Schürch, M., Kozel, R., Schotterer, U. & Tripet, J-P. (2003). Observation of isotopes in the water cycle—the Swiss National Network (NISOT). Environmental Geology, 45, 1-11.

  • Stumm, W. & Morgan, J. J. (1981). Aquatic Chemistry, an Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd ed. Wiley-Interscience, New-York.

  • Süer, S., Güleç, N., Mutlu, H., Hilton, D. R., Çifter, C. & Sayın, M. (2008). Geochemical monitoring of geothermal waters (2002-2004) along the North Anatolian Fault Zone, Turkey: spatial and temporal variations and relationship to seismic activity. Pure and Applied Geophysics, 165, 17-43.

  • Şaroğlu, F., Emre, Ö. & Boray, A. (1987). Türkiye’nin diri fayları ve depremselliği (Derleme No: 8174). Maden Tetkik ve Arama Genel Müdürlüğü (yayımlanmamış).

  • Şengör, A. M. C. & Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

  • Şentürk, N. (2006). Uludağ Maden Suyu Kaynakları Jeoloji-Hidrojeoloji İncelemesi ve Koruma Alanları Çalışması. Uludağ İçecek Türk A.Ş. (yayımlanmamış).

  • Truesdell, A. (1991). Effects of physical processes on geothermal fluids. In F. D’Amore, (coordinator), Applications of Geochemistry in Geothermal Reservoir Development. (71-92). UNITAR/UNDP Publications.

  • Truesdell, A. H., Nathenson, M. & Rye, R. O. (1977). The effects of subsurface boiling and eilution on the isotopic compositions of Yellowstone thermal waters. Journal of Geophysical Research, 82, 3964-3707.

  • Tut Haklıdır, F. S. (2007). Bursa İli ve Çevresindeki Termal, Maden ve Yeraltı Sularının Jeokimyasal İncelenmesi [Yayımlanmamış yüksek lisans tezi]. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü.

  • Tut Haklıdır, F., 2013. Hydrogeochemical evaluation of thermal, mineral and cold waters between Bursa city and Mount Uludağ in the South Marmara region of Turkey. Geothermics, 48, 132-145

  • Şentürk, N , Mutlu, H . (2021). Uludağ`ın (Bursa) Güneybatısındaki Jeotermal Kaynak ve Madensularının Kökenine Jeokimyasal Bir Yaklaşım . Türkiye Jeoloji Bülteni , 64 (2) , 233-248 . DOI: 10.25288/tjb.865944

  • Defining of the Chibanian Stage and its Scientific and Social Background
    Nizamettin Kazanci
    View as PDF

    Abstract: The Middle Pleistocene stage in the International Chronostratigrahic Chart has been ratified as Chibanian. Its time interval is from 0.774 Ma to 0.129 Ma. Lower boundary of this stage corresponds to the MIS 19 (marine isotope stage - 19) and also palaeomagnetic polarity reversal of Matuyama-Brunhes. The data source and locality are the Chiba section (Japan). Based on investigation in detail and dating by different methods of the marine Chiba deposits, the relevant section has been adopted as the stratotype section and type locality of the Chibanian stage in January 2020. Chiba section is now an international geosite and geological heritage.

  • Chiba

  • Chibanian

  • Geosite

  • Stratotype section

  • Cita, M. B., Capraro, L., Ciaranfi, N., Di Stefano E., Marino, M., Rio, D., Sprovieri, R. & Vai, G. B. (2006). Calabrian and Ionian: A proposal for the definition of Mediterranean stages for the Lower and Middle Pleistocene. Episodes 29(2), 107-114. https://doi.org/10.18814/epiiugs/2006/v29i2/004

  • GSSP Proposal group (2019). A summary of the Chiba Section, Japan. Journal of the Geological Society of Japan 125, 5-22. https://doi.org/10.5575/ geosoc.2018.0056

  • Haneda, Y., Okada, M., Suganuma, Y. & Kitamura, T. (2020). A full sequence of the Matuyama–Brunhes geomagnetic reversal in the Chiba composite section, Central Japan. Progress in Earth and Planetary Science 7, Artcile 44. https://doi. org/10.1186/s40645-020-00354-y

  • Head, M. J. (2019). Formal subdivision of the Quaternary System/Period: Present status and future directions. Quaternary International, 500, 32–51. https://doi.org/10.1016/j.quaint.2019.05.018

  • Xuan, C., Jin, Y., Sugisaki, S., Satoguchi, Y. & Nagahashi, Y. (2020). Integrated PliocenePleistocene magnetostratigraphy and tephrostratigraphy of deep-sea sediments at IODP Site U1424 (Yamato Basin, Japan Sea). Progress in Earth and Planetary Science, 7, Article 60. https://doi.org/10.1186/s40645-020-00373-

  • Kazancı, N . (2021). Çibaniyen Katı’nın İlanı, Bilimsel ve Sosyal Arka Planı . Türkiye Jeoloji Bülteni , 64 (2) , 249-252 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/59789/847446

    View as PDF