Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2022 NİSAN Cilt 65 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
The Anatolian Diagonal: A Broad Left-Lateral Shear Zone Between the North Anatolian Fault Zone *and the Aegean / Cyprus Arcs
Ergin Gökkaya Bülent Kaypak Korhan Esat Esra Tunçel Gürol Seyitoğlu
View as PDF

Abstract: Recent detailed examination of the internal deformation of the Turkish-IranianPlateau in the hinterland of Bitlis-Zagros Suture Zone, which is related to the collision of theArabian-Eurasian plates, indicates multiple intersection points between the right- left-lateral strike-slip structures explained by an inevitably broad left-lateral strike-slip shear zone,the Anatolian Diagonal.The faults bounding, internally deforming the Anatolian Diagonal were closelyexamined by using high-resolution satellite images, focal mechanism solutions of theearthquakes, published seismic reflection data in the offshore areas. The AnatolianDiagonal is a NE-SW trending left-lateral shear zone having a 170 km width between theCentral Anatolian, the East Anatolian fault zones, an 850 km length between Erzincan, the Cyprus Arc. It has at least four intersection points with the right-lateral North AnatolianFault Zone, the Southeast Anatolian-Zagros Fault Zone. As the offshore continuation of theEcemiş-Deliler Fault of the Anatolian Diagonal, the Biruni Fault reaches the Cyprus Arc,Piri Reis (Mediterranean) Ridge Front west of Cyprus. This structure creates a restrainingstepover with the left-lateral Antalya-Kekova Fault Zone, causes NW-SE trending thrustsof the Florence Rise , Antalya Thrust in the Antalya Basin. There is another restrainingstepover between the Antalya-Kekova Fault Zone, the Pliny-Strabo Fault Zone, where thethrust-controlled northern margin of Rhodes basin developed.In this neotectonic framework, there is no need for the existence of the highly-debatedleft-lateral Fethiye-Burdur Fault Zone as an onshore continuation of the Pliny, Strabo faults.In fact, the westerly motion of the Anatolian plate is accommodated by the left-lateral AnatolianDiagonal Shear Zone, Antalya-Kekova Fault Zone, Pliny-Strabo Fault Zone together withthe right-lateral North Anatolian Fault Zone.

  • Anatolian Diagonal

  • Cyprus

  • East Anatolian Fault Zone

  • Eastern Mediterranean

  • Neotectonics

  • Acarel, D., Cambaz, M. D., Turhan, F., Mutlu, A. K. & Polat, R. (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosciences, 11, 1098-1111.

  • Aksu, A. E., Calon, T. J., Hall, J., Mansfield, S. & Yaşar, D. (2005). The Cilicia–Adana basin complex, Eastern Mediterranean: Neogene evolution of an active fore-arc basin in an obliquely convergent margin. Marine Geology, 221, 121-159.

  • Aksu, A. E., Hall, J. & Yaltırak, C. (2009). Miocene–Recent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, 258, 24-47.

  • Aksu, A. E., Walsh-Kennedy, S., Hall, J., Hiscott, R.N., Yaltırak, C., Akhun, S.D., Çifçi, G. & (2014a). The Pliocene–Quaternary tectonic evolution of the Cilicia and Adana basins, eastern Mediterranean: Special reference to the development of the Kozan Fault zone. Tectonophysics, 622, 22-43.

  • Aksu, A. E., Hall, J., Yaltırak, C., Çınar, E., Küçük, M. & Çifçi, G. (2014b). Late MioceneRecent evolution of the Finike basin and its linkages with the Beydağları complex and the Anaximander Mountains, eastern Mediterranean. Tectonophysics, 635, 59-79.

  • Aksu, A. E., Hall, J. & Yaltırak, C. (2022). The uppermost Messinian-Quaternary evolution of the Anamur-Kormakiti zone: The transition between the Outer Cilicia and Antalya basins. Marine and Petroleum Geology, 136, 105451.

  • Akyüz, H. S., Altunel, E., Karabacak, V. & Yalçıner, C. Ç. (2006a). Historical earthquake activity of the northern part of the Dead Sea Fault Zone, southern Turkey. Tectonophysics, 426, 281-293.

  • Akyüz, H. S, Uçarkuş, G., Şatir, D., Dikbaş, A. & Kozacı, Ö. (2006b). 3 Şubat 2002 Çay depreminde meydana gelen yüzey kırığı üzerinde paleosismolojik araştırmalar. Yerbilimleri, 27, 41-52.

  • Alan, İ., Balcı, V. & Elibol, H. (2014.) Geological map of the Silifke-P31 and P32 Quadrangles. MTA-Ankara, Türkiye.

  • Arpat, E. & Şaroğlu, F. (1972). The East Anatolian fault system; thoughts on its development. Bulletin of the Mineral Research and Exploration, 78, 33-39.

  • Arpat, E. & Şaroğlu, F. (1975). Türkiye’deki bazı önemli genç tektonik olaylar. Türkiye Jeoloji Kurumu Bülteni, 18, 91-101. http://tjb.jmo.org.tr/detail-article.php?articlekod=63

  • Barka, A. A. & Reilinger, R. (1997). Active tectonics of the Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Annales Geofisica, 40, 587-610.

  • Barrier, E. & Chamot Rooke, N., Giordano, G. (2004). Geodynamic Maps of the Mediterranean-sheet 1: Tectonics and Kinematics. Commission for the Geological map of the World (CGMW) and UNESCO.

  • Biju-Duval, B., Dercourt, J. & Le Pichon, X. (1976). From the Tethys Ocean to the Mediterranean Seas: A plate tectonic model of the evolution of the western Alpine system. In B. Biju-Duval, L. Montadert, (Eds.), International Symposium on the Structural History of the Mediterranean Basins, Split (Yugoslavia), (p. 143-164). Editions Technip Paris

  • Chorowicz, J., Dhont, D. & Gündoğdu, N. (1999). Neotectonics in the eastern North Anatolian Fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. Journal of Structural Geology, 21, 511-532.

  • Çıvgın, B., Kaypak, B., Seyitoğlu, G., Aktuğ, B., Kılıçarslan, Ö. & Akkoyunlu, F. (2019). An approach to the tectonic structure of the Acıpayam Basin: Analysis of the 20.03.2019 (Mw 5.5) earthquake and its aftershocks. 20th Anniversary of the 1999 Marmara Earthquakes: 23rd Active Tectonics Research Group Meeting, Abstract Books, İstanbul, Türkiye.

  • Davis, P. (1971). Distribution patterns in Anatolia with particular reference to endemism. In P. H. Davis & I. C. Hedge (Eds.), Plant life of southwest Asia (pp. 15-28). University Press, Aberdeen.

  • Dirik, K. & Göncüoğlu, M. C. (1996). Neotectonic characteristics of central Anatolia. International Geology Reviews, 38, 807-817.

  • Dirik, K., Yürür, T &, Demirbağ, H. (2003). 1 Mayıs 2003 Çimenli (Bingöl) Depremi Değerlendirme Raporu. https://www.doi.org/10.13140/2.1.5130.1449

  • Duman, T. Y. & Emre, Ö. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society London Special Publications, 372, 495-529.

  • Dündar, S. & Varol, B. (2019). New insights on Messinian evaporites based on field and seismic interpretations in the Neogene Antalya Basin, SW Turkey. Turkish Journal of Earth Sciences, 28, 687-705.

  • Dziewonski, A. M., Chou, T-A. & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825-2852.

  • Ekström, G., Nettles., M. & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth Planetary Interiors, 200-201, 1-9.

  • Elitez, İ. & Yaltırak, C. (2016). Miocene to Quaternary tectonostratigraphic evolution of the middle section of the Burdur – Fethiye Shear Zone, south-western Turkey: Implications for the wide inter-plate shear zones. Tectonophysics, 690, 336-354.

  • Elitez, İ., Yaltırak, C. & Aktuğ, B. (2016). Extensional and compressional regime driven leftlateral shear in southwestern Anatolia (eastern Mediterranean). The Burdur – Fethiye Shear Zone. Tectonophysics, 688, 26-35.

  • Emre, Ö. & Duman, T. (2011a). 1:250,000 Scale active fault map series of Turkey, Mersin (NJ 36-16) Quadrangle Serial Number: 34. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö. & Duman, T. (2011b). 1:250,000 Scale active fault map series of Turkey, Fethiye (NJ 35-16) Quadrangle Serial Number: 13. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H. & Olgun, Ş. (2011a). 1:250,000 Scale active fault map series of Turkey, Adana (NJ 36-12) Quadrangle Serial Number: 33. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H. & Olgun, Ş. (2011b). 1:250,000 Scale active fault map series of Turkey, Kayseri (NJ 36-8) Quadrangle Serial Number: 32. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T., Olgun, Ş., Elmacı, H. & Özalp, S. (2012a). 1:250,000 Scale active fault map series of Turkey, Divriği (NJ 37-2) Quadrangle Serial Number: 41. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T. Y., Elmacı, H., Özalp, S. & Olgun, Ş. (2012b). 1:250,000 Scale active fault map series of Turkey, Malatya (NJ37-6) Quadrangle Serial Number: 42. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T. & Elmacı, H. (2012c). 1:250,000 Scale active fault map series of Turkey, Elbistan (NJ 37-5) Quadrangle. Serial Number: 37. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T., Olgun, Ş., Elmacı, H. & Özalp, S. (2012d). 1:250,000 Scale active fault map series of Turkey, Gaziantep (NJ 37-9) Quadrangle Serial Number: 38. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active fault map of Turkey with and explanatory text. Special Publication Series 30. General Directorate of Mineral Research and Exploration, Ankara-Turkey.

  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., Çan, T., 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275.

  • Ergin, M. (1999). Present day seismicity and seismotectonic characteristics of the Cilician region [Unpublished PhD thesis]. Istanbul Technical University.

  • Ergin, M., Aktar, M. & Eyidoğan, H. (2004). Present-Day Seismicity and Seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey. Bulletin of the Seismological Society of America, 94, 930-939.

  • Esri (2021). `Ocean` [basemap]. Scale Not Given. `World Ocean Base`. January, 2021. https://server.arcgisonline.com/arcgis/rest/services/Ocean/World_Ocean_Base/MapServ er (January, 2022).

  • Güneş, P., Aksu, A. E. & Hall, J. (2018). Structural framework and deformation history of the western Cyprus Arc. Tectonophysics, 744, 438-457.

  • Güvercin, S. E., Konca, A. Ö., Özbakır, A. D., Ergintav, S. & Karabulut, H. (2021). New focal mechanisms reveal fragmentation and active subduction of the Antalya slab in the Eastern Mediterranean. Tectonophysics 805, Article 228792. doi.org/10.1016/j.tecto.2021.228792.

  • Hall, J., Aksu, A. E., Yaltırak, C. & Winsor, J. D. (2009). Structural architecture of the Rhodes Basin: A deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, 258,1-23.

  • Hall, J., Aksu, A. E., King, H., Gogacz, A., Yaltırak, C. & Çifçi, G. (2014a). Miocene–Recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Marine Geology, 349, 1-23.

  • Hall, J., Aksu, A. E., Elitez, I., Yaltırak, C. & Çifçi, G. (2014b). The Fethiye-Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, 635, 80-99.

  • Harrison, R.W., Tsiolakis, E., Stone, B.D., Lord, A., McGheehin, J. P., Mahan, S. A. & Chirico, P. (2012). Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate. In A.H.F. Robertson, O. Parlak & U.C. Ünlügenç, (Eds.), Geological Development of Anatolia and the Easternmost Mediterranean Region. Geological Society London, Special Publications, 372. https://doi.org/10.1144/SP372.3

  • Herece, E. (2008). Doğu Anadolu Fayı (DAF) Atlası. Maden Tetkik Arama Genel Müdürlüğü Özel Yayın Serisi. No: 13, Ankara.

  • Herrmann, R. B. (2013). Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letters, 84, 1081-1088.

  • Higgins, M., Schoenbohm, L. M., Brocard, G., Kaymakçı, N., Gosse, J.C. & Cosca, M. A., (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics, 34, 2118-2141.

  • Howell, A., Jackson, J., Copley, A., McKenzie, D. & Nissen, E. (2017). Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International, 211, 593-620.

  • Huang, W. (1993). Morphologic patterns of stream channels on the active Yishi Fault, southern Shandong province, eastern China: implications for repeated great earthquakes in the Holocene. Tectonophysics, 219, 283-304.

  • Huguen, C., Mascle, J., Chaumillon, E., Woodside, J. M., Benkhelil, J., Kopf, A. & Volkonskaı̈a, A. (2001). Deformational styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics, 343, 21-47.

  • Jackson, J., Howell, A., Copley, A., McKenzie, D. & Nissen, E. (2019). Active tectonics of SW Turkey from the combined use of seismology, geodesy and Quaternary Geology. 72nd In H. Sözbilir, Ç. Özkaymak, B. Uzel, Ö. Sümer, M. Softa, Ç. Tepe, & S. Eski (Eds), Geological Congress of Turkey, The Proceedings and Abstracts Book, (p. 6). https://www.jmo.org.tr/resimler/ekler/174e0f6fa731893_ek.pdf

  • Kaya, S., Esat, K., Işık, V., Kaypak, B., Uyar, A. G. & Seyitoğlu, G. (2014). Geological and geophysical observations on the tectonic features of western part of the Afyon-Akşehir graben: a contribution to the arguments on the two-stage extension model. Yerbilimleri, 35, 1-16.

  • Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A.A., Gülyüz, E., Uzel, B. & Sözbilir, H. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101-115.

  • Keller, E. A. & Pinter, N. (2001). Active tectonics: Earthquakes, uplift and landscape. Prentice Hall.

  • Kılıç, T. & Utkucu, M. (2012). A Seismic Moment Tensor Catalogue Comprising Years 2007 and 2008 for M ≥ 4.0 Earthquakes in Turkey. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 33(3), 219-238.

  • Kılıç, T., Kartal, R.F., Kadirioğlu, F.T., Duman, T.Y. & Özalp, S. (2017). Türkiye ve yakın çevresi için düzenlenmiş moment tensor (1906–2012) kataloğu MW ≥ 4,0). In T.Y. Duman (Ed.), Türkiye Sismotektonik Haritası: Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi-34, 261 s.

  • Koç, A. & Kaymakçı, N. (2013). Kinematics of Sürgü Fault Zone (Malatya, Turkey): A remote sensing study. Journal of Geodynamics, 65, 292-307.

  • Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental transcurrent structure: The Central Anatolian Fault Zone, Turkey. Tectonophysics, 284, 317-336.

  • Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019). The geomorphological regions of Turkey. In C. Kuzucuoğlu, A. Çiner, N. Kazancı (Eds.), Landscapes and Landforms of Turkey (pp. 41-178). Springer International Publishing.

  • Le Pichon, X. & Kreemer, C. (2010). The Miocene -to-Present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351.

  • Lentas, K. (2018). Towards routine determination of focal mechanisms obtained from first motion P-wave arrivals. Geophysical Journal International, 212, 1665–1686.

  • Lentas, K, Di Giacomo, D., Harris, J. & Storchak, D. A. (2019). The ISC Bulletin as a comprehensive source of earthquake source mechanisms. Earth System Science Data, 11, 565-578.

  • Mansfield, S. L. (2005). Neogene Tectonic and Sedimentary Evolution of the Outer Cilicia Basin, Eastern Mediterranean Sea [MSc Thesis,]. Memorial University of Newfoundland and Labrador. ISBN: 978-0-494-19380-8.

  • McClusky, S., Balassian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., et al. (2000). Global Positioning System constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695-5719.

  • McKenzie, D. P. (1970). Plate tectonics of the Mediterranean Region. Nature, 226, 239-243.

  • McKenzie, D. (1972). Active tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 30, 109-185.

  • Melgar, D., Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B.W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S. & Öcalan, T. (2020). Rupture kinematics of 2020 January 24 Mw=6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophysical Journal International, 223, 862-874.

  • Morelli, A. & Barrier, E. (2004). Geodynamic map of the Mediterranean. Commission for the Geological Map of the World, Limoges, France.

  • Nalbant, S. S., McCloskey, J., Steacy, S. & Barka, A. A. (2002). Stress accumulation and increased seismic risk in eastern Turkey. Earth and Planetary Science Letters, 195, 291- 298.

  • Nalbant, S. S., McCloskey, J. & Steacy, S. (2005). Lessons on the calculation of static stress loading from the 2003 Bingöl, Turkey earthquake. Earth and Planetary Science Letters, 235, 632-640.

  • Okyar, M., Ergin, M. & Evans, G. (2005). Seismic stratigraphy of Late Quaternary sediments of western Mersin Bay shelf, (NE Mediterranean Sea). Marine Geology, 220, 113-130.

  • Ökeler, A. (2003). Recent Seismicity and Stress Analysis of The Cilician Region [Unpublished M.Sc. thesis]. Istanbul Technical University (in Turkish).

  • Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R. & Govers, R. (2013). The Pliny–Strabo trench region: A large shear zone resulting from slab tearing. Earth and Planetary Science Letters, 375, 188-195.

  • Özkaptan, M., Kaymakçı, N., Langereis, C. G., Gülyüz, E. & Özacar, A. A. (2018). Age and kinematics of the Burdur basin: Inferences for existence of the Fethiye Burdur Fault Zone in SW Anatolia (Turkey). Tectonophysics, 744, 256-274.

  • Papazachos, B. C. & Papaioannou, C. A. (1999). Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics, 308, 193-204.

  • Poisson, A., Wernli, R., Sağular, E. K. & Temiz, H. (2003). New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geological Journal, 38, 311-327.

  • Pondrelli, S. (2002). European-Mediterranean Regional Centroid-Moment Tensors Catalog (RCMT) [Data set]. Instituto Nazionale di Geofisica e Vulcanologia (INGV).

  • Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksöz, M. N., Barka, A. A., et al. (1997). Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journal of Geophysical Research, 102, 9983-9999.

  • Reilinger, R. E., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., et al. (2006). GPS constraints on continental deformation in the Africa - Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, Article B05411. https://doi.org/10.1029/2005JB004051

  • Reitman, N. G., Mueller, K. J., Tucker, G. E., Gold, R. D., Briggs, R. W. & Barnhart, K. R. (2019). Offset channels may not accurately record strike-slip fault displacement: Evidence from landscape evolution models. Journal of Geophysical Research: Solid Earth, 124, 13, 427-13,451.

  • Rojay, B., Heimann, A. & Toprak, V. (2001). Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia, Turkey): The transition zone between the Dead Sea transform and the East Anatolian fault zone. Geodinamica Acta, 14, 197-212.

  • Sage, L. & Letouzey, J. (1990). Convergence of the African and Eurasian plate in the eastern Mediterranean. In J. Letouzey (Ed.), Petroleum and Tectonics in Mobile Belts (pp. 49- 68). 4th IFB Exploration and Production Research Conference, Bordeaux, November 14– 18.

  • Sarıkaya, M. A., Yıldırım, C. & Çiner, A. (2015). Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides. Geomorphology, 228, 512-525.

  • Sançar, T., Zabcı, C., Akçar, N., Karabacak, V., Yeşilyurt, S., Yazıcı, M., Akyüz, H. S., Öztüfekçi Önal, A., Ivy-Ochs, S., Christl, M. & Vockenhuber, C. (2020). Geodynamic importance of the strike-slip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift and slip rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). Journal of Asian Earth Sciences, 188, Article 104091. https://doi.org/10.1016/j.jseaes.2019.104091

  • Savaşçın, M. Y., Francalanci, L., Innocenti, F., Manetti, P., Birsoy, R. & Daǧ, N. (1995). Miocene-Pliocene potassic-ultrapotassic volcanism of the Afyon-Isparta region (centralwestern Anatolia, Turkey). Petrogenesis and geodynamic implications: Internatio Earth Sciences Colloquium on the Aegean Region (IESCA-1995), Proceedings V-II, (pp. 487-502).

  • Sellier, N. C., Loncke, L., Vendeville, B. C., Mascle, J., Zitter, T., Woodside, J. & Loubrieu, B., (2013a). Post-Messinian evolution of the Florence Ridge area (Western Cyprus Arc), Part I: Morphostructural analysis. Tectonophysics, 591, 131-142.

  • Sellier, N.C., Vendeville, B. C. & Loncke, L. (2013b). Post-Messinian evolution of the Florence Rise area (Western Cyprus Arc) Part II: Experimental modeling. Tectonophysics, 591, 143-151.

  • Seyitoğlu, G., Aktuğ, B., Karadenizli, L., Kaypak, B., Şen, Ş., Kazancı, N., Işık, V., Esat, K., Parlak, O., Varol, B., Saraç, G. & İleri, İ. (2009). A Late Pliocene - Quaternary pinched crustal wedge in NW central Anatolia, Turkey: A neotectonic structure accommodating the internal deformation of the Anatolian Plate. Geological Bulletin of Turkey, 52(1), 121- 154. https://dergipark.org.tr/tr/pub/tjb/issue/28367/301626

  • Seyitoğlu, G., Ecevitoğlu, B., Kaypak, B., Esat, K., Çağlayan, A., Gündoğdu, O., Güney, Y., Işık, V., Pekkan, E., Tün, M. & Avdan, U. (2015). A missing-link in the tectonic configuration of the Almacık Block along the North Anatolian Fault Zone (NW Turkey): Active faulting in the Bolu plain based on seismic reflection studies. Geophysical Journal International, 201, 1814-1833.

  • Seyitoğlu, G., Esat, K. & Kaypak, B. (2017). The neotectonics of southeast Turkey, northern Syria and Iraq: the internal structure of the South East Anatolian Wedge and its relationship with the recent earthquakes. Turkish Journal of Earth Sciences, 26, 105-126.

  • Seyitoğlu, G., Esat, K., Kaypak, B., Toori, M. & Aktuğ, B. (2018). Internal deformation of the Turkish-Iranian Plateau in the hinterland of Bitlis-Zagros Suture Zone. In A. Farzipour Saein (ed.), Tectonic and Structural Framework of the Zagros Fold-Thrust Belt (pp. 161- 244). Elsevier.

  • Seyitoğlu, G., Kaypak, B., Esat, K. & Toori, M. (2020). The focal mechanism solution of 2020.10.25 (Mw=4.1) Sancaklı-Bingöl Earthquake and an evaluation of the seismicity along the Southeast Anatolian Zagros Fault Zone. Researchgate Technical Report. http://doi.org/10.13140/RG.2.2.23793.10083

  • Seyitoğlu, G., Esat, K., Kaypak, B. & Çıvgın, B. (2022) Seismotectonics of the southern branch of North Anatolian Fault Zone along Bolu – Bursa – İzmir – Değirmenlik (Milos) island in the Aegean Sea. In review.

  • Seymen, İ. & Aydın, A. (1972). The Bingöl earthquake fault and its relation to the North Anatolian fault zone. Bulletin of the Mineral Research and Exploration, 79, 8-12.

  • Shaw, B. & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181, 966-984.

  • Symeou, V., Homberg, C., Nader, F.H., Darnault, R., Lecomte, J-C., Papadimitriou, N., 2018. Longitudinal and temporal evolution of the tectonic style along Cyprus Arc System, assessed through 2-D reflection seismic interpretation. Tectonics, 37, 30-47.

  • Şaroğlu, F., Emre, Ö. & Kuşçu, İ. (1992). The East Anatolian Fault Zone of Turkey. In R.C. Bucknam, & P.L. Hancock (Eds.), Major active faults of the world, results of IGCP project 206. Annales Tectonicae, suppl vol IV, 99-125.

  • Şengör, A. M. C., (1980). Türkiye’nin Neotektoniğinin Esasları [Fundamentals of the neotectonics of Turkey]. Publication of Geological Society of Turkey, pp 1-40.

  • Şengör, A. M. C. (2017). Diversion of river courses across major strike-slip faults and keirogens. In İ. Çemen & Y. Yılmaz (Eds.), Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region (pp. 93-101). Geophysical Monograph 225.

  • Şengör, A. M. C. & Barka, A. (1992). Evolution of escape-related strike-slip systems: implications for disruption of collisional orogens. In 29th International Geological Congress (p.:323). Kyoto, Japan, Abstracts, vol. 1, p. 232.

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip deformation basin formation and sedimentation: Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N. Christie-Blick (Eds.), Strike-slip faulting and basin formation (pp.227-264). Society of Economic Paleontologist and Minerologists Special Publications 37.

  • Şengör, A. M. C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. & Rangin, C. (2004). The North Anatolian Fault: A new look. Annual Review of Earth Planetary Sciences, 33, 1-75.

  • Şengör, A. M. C., Zabcı, C. & Natal`in, B. A. (2019). Chapter 9 - Continental Transform Faults: Congruence and Incongruence with Normal Plate Kinematics? In J. C. Duarte (Ed.), Transform Plate Boundaries and Fracture Zones (pp. 169-247). Elsevier. https://doi.org/10.1016/B978-0-12-812064-4.00009-8

  • Umhoefer, P. J., Thomson, S. N., Lefebvre, C., Cosca, M. A., Teyssier, C. & Whitney, D. L., (2020). Cenozoic tectonic evolution of the Ecemiş Fault Zone and adjacent basins, central Anatolia, Turkey, during the transition from Arabia-Eurasia collision to escape tectonics. Geosphere, 16, 1358-1384.

  • Walsh-Kennedy, S., Aksu, A. E., Hall, J., Hiscott, R. N., Yaltırak, C. & Çifçi, G. (2014). Source to sink: The development of the latest Messinian to Pliocene–Quaternary Cilicia and Adana Basins and their linkages with the onland Mut Basin, eastern Mediterranean. Tectonophysics, 622, 1-21.

  • Westaway, R. & Arger, J. (2001). Kinematics of the Malatya-Ovacık Fault. Geodinamica Acta, 14, 103-131.

  • Woodside, J. M. (1977). Tectonic elements and crust of Eastern Mediterranean Sea. Marine Geophysical Research, 3, 317-354.

  • Woodside, J. M., Mascle, J., Huguen, C. & Volkonskaia, A. (2000). The Rhodes Basin, a postMiocene tectonic trough. Marine Geology, 165,

  • Woodside, J. M., Mascle, J., Zitter, T. A. C., Limonov, A. F., Ergün, M. & Volkonskaia, A. (2002). The Florence Rise, the western bend of the Cyprus Arc. Marine Geology, 185, 177-194.

  • Yazıcı, M., Zabcı, C., Sançar, T. & Natalin, B. A., The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 312, 129-145.

  • Yetiş, C. (1978). Geology of the Çamardı (Niğde) region and the characteristics of the Ecemiş Fault Zone between Madenboğaz and Kamışlı. Istanbul University, Faculty of Science Bulletin, Serie B, 43, 41-61.

  • Yıldırım, C., Sarıkaya, M. A. & Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics, 35, 1446-1464.

  • Yolsal-Çevikbilen, S. & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536-537, 61-100.

  • Zhang, K., Liu, K. & Yang, J. (2004). Asymmetrical valleys created by the geomorphic response of rivers to strike-slip fault. Quaternary Research, 62, 301-315.

  • Zitter, T. A. C., Woodside, J. M. & Mascle, J. (2003). The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal, 38, 375-394.

  • Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The World Stress Map project. Journal of Geophysical Research, 97, 11703-11728.


  • Seyitoğlu, G. , Tunçel, E. , Kaypak, B. , Esat, K. & Gökkaya, E. (2022). The Anatolian Diagonal: A Broad Left-Lateral Shear Zone Between the North Anatolian Fault Zone and the Aegean / Cyprus Arcs . Türkiye Jeoloji Bülteni , 65 (2) , 1-33 . DOI: 10.25288/tjb.1015537

  • Mineral Chemistry, Geochemistry ,and Petrology of Oligocene-Miocene Clac-alcaline Volcanic Rocks in Büyükbostancı-Çiçekpınar (Balıkesir, NW Turkey)
    Ferhat Bozan Zafer Aslan
    View as PDF

    Abstract: In this study, petrography, mineral chemistry, geochemistry ,and petrology of Oligocene-Miocene volcanicrocks located in the Büyükbostancı-Çiçekpınar (Balıkesir, NW Turkey) region in the south of Balıkesir wereinvestigated.The studied volcanics rocks have the composition of andesite, basaltic andesite, trachyandesite ,andaccompanying pyroclastics. Volcanic rocks show microlithic porphyry, porphyric, fluidal, glomeroporphyritic andspherulitic structures ,and consist of plagioclase, clinopyroxene, amphibole, biotite ,and Fe-Ti oxide as the majorminerals. According to the results of mineral chemistry analysis of the investigated volcanic rocks, plagioclasesare andesine (An33-47Ab49-61Or2-6) ,and labradorite (An60-62Ab34-38Or1-4), pyroxenes are augite ,and clinoenstatite(Wo43En75Fs36-Wo1En38Fs14) ,and biotite is Mg-bearing biotite. Geothermobarometry calculations from biotite yieldeda temperature range of 798–843 °C ,and a pressure range of 0.67–1.93 kbar. Geochemically, the volcanic rocks have high-K calc-alkaline features. Fractional crystallization ,and assimilationprocesses dominated by hornblende, clinopyroxene ,and biotite mineral differentiation affected the andesitic volcanicrocks. Trace element diagram for volcanic rocks normalized to normal-mid-ocean ridge basalts (N-MORB) showenrichment in large ion lithophile elements (LILE, Rb, U ,and Th) ,and depletion in high field strength elements(HFSE, Nb ,and Yb). In the rare earth element diagram normalized to chondrite, there is moderate enrichment of (La/Lu)N 8.29-15.65 ,and the curve generally has a concave shape. When the obtained data ,and regional geological dataare evaluated together, the investigated volcanic rocks are post-collisional products with subduction traces ,and arederived from enriched lithospheric mantle.  

  • Andesite

  • Biga Peninsula

  • Hallaçlar Volcanic Rocks

  • geochemistry

  • mineral chemistry


  • Akay, E. (2009). Geology and petrology of the Simav Magmatic Complex (NW Anatolia) and its comparison with the Oligo–Miocene granitoids in NW Anatolia: Implications on Tertiary tectonic evolution of the region. International Journal of Earth Sciences, 98, 1655-1675.

  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. & Mitchell, J. G. (2000). Petrogenetic Evolution of late Cenozoic, Post-collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95.

  • Altunkaynak, Ş. (2007). Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. Journal of Geology, 115, 63-82.

  • Altunkaynak, Ş. & Dilek, Y. (2006). Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. In: Dilek, Y. & Pavlides, S. (Eds.), Post collisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Paper, 409, 321–351.

  • Altunkaynak, Ş. & Genç, Ş. C. (2008). Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos, 102, 316-340.

  • Altunkaynak, S., Dilek, Y., Genç, Ş. C., Sunal, G., Gertisser, R., Furnes, H., Foland, K. A. & Yang, J. (2012). Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research, 21, 961-986.

  • Aslan, Z., Edrem, D., Temizel, İ. & Arslan, M. (2017). SHRIMP U–Pb zircon ages and whole-rock geochemistry for the Şapçı volcanic rocks, Biga Peninsula, Northwest Turkey: implications for pre-eruption crystallization conditions and source characteristics. International Geology Review, 59(14), 1764-1785.

  • Aslan, Z., Demir, H. & Altın, İ. (2020). U–Pb zircon geochronology and petrology of the early Miocene Göloba and Şaroluk plutons in the Biga Peninsula, NW Turkey: Implications for post-collisional magmatism and geodynamic evolution. Journal of African Earth Sciences, 172, Article 103998.

  • Aysal, N., Öngen, A. S., Yılmaz Şahin, S., Kasapçı, C., Hanilçi, N. & Peytcheva, I. (2021). Peritectic assemblage entrainment and mafic–felsic magma interaction in the Late Oligocene–Early Miocene Karadağ Pluton in the Biga Peninsula, northwest Turkey: petrogenesis and geodynamic implications. Turkish Journal of Earth Sciences, 30, 279-312.

  • Baier, J., Audetat, A. & Kepler, H. (2008). The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 267, 290-300.

  • Biryol, B. C., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057.

  • Bozan, F. (2019). Büyükbostanci-Çiçekpinar (Balikesir) Köyleri Civarindaki Hallaçlar Volkanitlerinin Petrografisi ve Petrolojisi. [Yayınlanmamış Yüksek Lisans Tezi]. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü.

  • Condie, K. C. (1989). Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance. Lithos, 23(1-2), 1-18.

  • Condie, K. C., Bonnie, A. F. & Kerrich, R. (2002). The 1.75-Ga Iron king volcanics in west-central Arizona: A remnant of an accreted oceanic plateau derived from a mantle plume with a deep depleted component. Lithos, 64, 49–62.

  • De Albuquerque, C. A. R. (1973). Geochemistry of biotites from granitic rocks: Northern Portugal. Geochimica Et Cosmochimica Acta, 37(7), 1779- 1802.

  • De Paolo, D. J. & Daley, E. E. (2000). Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2), 157-185.

  • Deer, W. A., Howie, R. A. & Zussman, J. (1992). An introduction to the rock forming minerals. Longman, London, 270 p.

  • Dilek, Y. & Altunkaynak, Ş. (2010). Geochemistry of neogene-quaternary alkaline volcanism in western Anatolia, Turkey, and implications for the Aegean mantle. International Geology Review, 52(4–6), 631-655.

  • Dönmez, M., Akçay, A. E., Genç, Ş. C. & Acar, Ş. (2005). Biga Yarımadasında Orta-Üst Eosen volkanizması ve denizel ignimbiritler. Maden Tetkik ve Arama Dergisi, 131, 49-61.

  • Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş F. & Kar, H. (2004). New Results on the lithostratigraphy of the Kazdağ Massif in Northwest Turkey. Turkish Journal of Earth Sciences, 13, 177-186.

  • Edwards, C., Menzies, M. & Thirwall, M. (1991). Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate processes in the genesis of potassic alkaline magmas. Journal of Petrology 32, 555–592.

  • Elburg, M. A., Bergen, M. V., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I. & Nasution, A. (2002). Geochemical trends across an arccontinent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta, 66, 2771-2789.

  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E., Adis, C., Walter, H. J. & Yıldırım, T. (1995). Biga Yarımadası ile Gökçeada Bozcaada ve Tavşan adalarındaki (KB Anadolu) Tersiyer Volkanizmasmın özellikleri. Maden Tetkik ve Arama Dergisi, 117, 55-86.

  • Ersoy, Y. E., Helvacı, C., Uysal, İ., Karaoğlu, Ö., Palmer, M. R. & Dindi, F. (2012). Petrogenesis of the Miocene volcanism along the İzmir-Balıkesir Transfer Zone in western Anatolia, Turkey: Implications for origin and evolution of potassic volcanism in post-collisional areas. Journal of Volcanology and Geothermal Research, 241-242, 21-38.

  • Fuhrman, M. L. & Lindsley, D. H. (1988). Ternary feldspar modeling and thermometry. American Mineralogist, 73(3-4), 201-215.

  • Gill, J. B. (1981). Orogenic Andesites and Plate Tectonics. Springer, Berlin. 390 p.

  • Harris, N. B. W., Kelley, S. & Okay, A. I. (1994). Postcollisional magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology, 117, 241-252.

  • Henry, D. J., Guidotti, C. V. & Thomsin, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanism. American Mineralogist, 90(2-3), 316-328.

  • Irvine, T. N. & Baragar W. R. A. (1971). A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548.

  • Kamacı, Ö. & Altunkaynak, Ş. (2020). The role of accreted continental crust in the formation of granites within the Alpine style continental collision zone: Geochemical and geochronological constrains from leucogranites in the Çataldağ Metamorphic Core Complex (NW Turkey). Lithos, 105347, 354–355.

  • Karacık, Z., Yılmaz, Y., Pearce, J. A. & Ece, O. I. (2008). Petrochemistry of the south Marmara granitoids, northwest Anatolia Turkey. International Journal of Earth Sciences, 97, 1181-1200.

  • Karaoğlu, O. & Helvacı, C. (2014). Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos, 192-195, 226-239

  • Krushensky, R. D. (1976). Neogene calc-alkaline extrusive and intrusive rocks of the Karalar-Yeşiller area, Northwest Anatolia, Turkey. Bulletin Volcanologique, 39(2), 336-360.

  • Lambert, R. J. & Holland, J. G. (1974). Yttrium geochemistry applied to petrogenesis utilizing calcium-yttrium relationships in minerals and rocks. Geochima Cosmochima Acta, 38(9), 1393- 1414.

  • Langmuir, C. H., Vocke, R. D., Hanson, G. N. & Hart, S. R. (1978). A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3), 380-392.

  • Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lamere, J., Sabine, P. A., Schmid, R., Sorensen, H. & Woolley, A. R. (2002). Igneous rocks: A classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press, Cambridge.

  • Lindsley, D. H. (1983). Pyroxene thermometry. American Mineralogist, 68(5-6), 477-493.

  • Lindsley, D. H. ve Andersen, D. J., 1983. A twopyroxene thermometer. Journal of Geophysical Research, 88, 887-906.

  • Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. (1984). The 1982 eruptions of El Chicón Volcano, Chiapas, Mexico: Mineralogy and petrology of the anhydrite-bearing pumices. Journal of Vocanology and Geothermal Research, 23(1-2), 69-108.

  • Mcdermott, F., Delfin, F. G., Defant, M. J., Turner, S. & Maury, R. (2005). The petrogenesis of volcanic from Mt. Bulusan and Mayon in the Bicol arc, the Philippines. Contribution to Mineralogy and Petrology, 150(6), 652-670.

  • Morimoto, M. J., Fabries, A. K., Ferguson, I. V., Ginzburg, M. & Ross, F. A. (1988). Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535- 550.

  • Nachit, H., Ibhi, A., Abia, E. A. & Ohoud, M. B. (1985). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16), 1415-1420.

  • Okay, A. I. (2008). Geology of Turkey: a synopsis. Anschnitt, 21, 19-42.

  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In: Durant, B., Jolivet, F., Horvath, F. & Seranne, M. (Eds.), The Mediterranean basin: Tertiary extension within the Alpine orogen. Geological Society Special Publication, 156(1), 475-515.

  • Okay, A. I. & Satır, M. (2000). Upper Cretaceous eclogite – facies metamorphic rocks from the Biga peninsula, northwest Turkey. Turkish Journal Earth Sciences, 9, 47-56.

  • Okay, A. I., Tansel, I. & Tüysüz, O. (2001). Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geological Magazine, 138(2), 117-42.

  • Okay, A. I., Satır, M., Maluski, H., Siyako, M., Metzger, R. & Akyüz, S. (1996). Paleo-and NeoTethyan events in Northwest Turkey: geological and geochronological constrains. In: Yin, A. & Harrison, T. M. (Eds.), The tectonic evolution of Asia, (p. 420-444). Cambridge University Press, Cambridge

  • Özgenç, İ. & İlbeyli, N. (2008). Petrogenesis of the Late Cenozoic Eğrigöz Pluton in Western Anatolia, Turkey: Implications for magma genesis and crustal processes. International Geology Review, 50, 375-391.

  • Pearce, J. A. (1983). The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawksworth, C. J. & Norry, M. J. (Eds.), Continental basalts and mantle xenoliths (pp. 230-249). Shiva, Nantwich.

  • Pearce, J. A. (1996). A user’s guide to basalt discrimination diagrams. In: Wyman, D. A. (Eds.), Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration: Winnipeg. Geological Association of Canada, Short Course Notes 12, 79-113.

  • Pearce, J. A. & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review Earth Planet Sciences Letter, 23, 251-285.

  • Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., Şaroğlu, F., Yılmaz, Y, Moorbath, S. & Mitchell, J. J. (1990). Genesis of collision volcanism in eastern Anatolia Turkey. Journal Volcanology Geotherm Research, 44(1- 2), 189-229.

  • Pehlivan, Ş., Duru. M., Dönmez, M., Ilgar, A., Akçay, A. E., Erdoğan, K. & Özer, D. (2007). Türkiye Jeolojisi Haritaları No:96, Balıkesir-İ 19 Paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara

  • Prelevic, D., Akal, C., Foley, S. F., Romer, R. L., Stracke, A. & Van Den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for postcollisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53(5), 1019-1055.

  • Prelevic, D., Akal, C., Romer, R.L., Mertz-Kraus, R. & Helvacı, C. (2015). Magmatic response to slab tearing: constraints from the afyon alkaline volcanic complex, western Turkey. Journal of Petrology, 56(3), 527-562.

  • Saatcı, E. S. & Aslan, Z. (2018). Petrography and petrology of the Yürekli (Balıkesir) volcanics: an example of post-collisional felsic volcanism in the Biga peninsula (NW Turkey). Bulletin of the Mineral Research and Exploration, 157, 103-120.

  • Seghedi, I., Ersoy, Y. E. & Helvacı, C. (2013). Miocene– Quaternary volcanism and geodynamic evolution in the pannonian basin and the menderes Massif: a comparative study. Lithos, 180(6), 25-42.

  • Seyitoğlu, G. & Scott, B. (1996). The cause of N–S extensional tectonics in western Turkey: Tectonic escape vs. backarc spreading vs. orogenic collapse. Journal of Geodynamics, 22(1-2), 145-153.

  • Sun, S. S. & Mcdonough, W. F. (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Saunders, A. D. & Norry, M. J., (Eds.), Magmatism in the ocean basins. Geology Society London Special Publication, 42, 313-345.

  • Şengör, A. M .C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.

  • Tischendorf, G., Gottesmann, B., Förster, H. J. & Trumbull, R. B. (1997). On Li-bearing micas: Estimating Lif rom electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409), 809-834.

  • Thirlwall, M. F., Smith, T. E., Graham, A. M., Theodorou, N., Hollings, P., Davidson, J. P. & Arculus, R. J. (1994). High field strength element anomalies in arc lavas; source or process? Journal Petrogly, 35(3), 819-838.

  • Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. (1984). An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philos Translate Society London, A310, 549-590.

  • Topuz, G. & Okay, A.I. (2017). Late Eocene–Early Oligocene two-mica granites in NW Turkey (the Uludağ Massif): Water-fluxed melting products of a mafic metagreywacke. Lithos, 268–271, 334– 350

  • Tulloch, A.J. & Challis, G.A. (2000). Emplacement depths of Paleozoic-Mesozoic plutons from western New Zealand estimated by hornblende-AI geobarometry. New Zealand Journal of Geology and Geophysics, 43, 555–567.

  • Uchida, E., Endo, S. & Makino, M. (2007). Relationship between solidifi cation depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47–56.

  • Yılmaz, Y. (1989). An approach to the origin of young volcanic rocks of western Turkey. In Şengör, A. M. C. (Eds.), Tectonic evolution of the Tethyan region (pp. 159-189). Kluwer Academics, Hague, The Netherlands.

  • Yılmaz, Y. (1990). Comparison of young volcanic associations of western and eastern Anatolia under compressional regime; a review. Journal of Volcanology and Geothermal Research, 44(1), 69-87.

  • Yılmaz, Y., Genç, S. C., Karacik, Z. & Altunkaynak, Ş. (2001). Two contrasting magmatic associations of NW Anatolia and their tectonic significance. Journal of Geodynamics, 31(3), 243-271.

  • Wilson, F. H. (1989). Geologic setting, petrology and age of Plicene to Holocene volcanoes of the stepovak Bay area, western Alaska Peninsula. In Dover, J. H. & Galloway, J. P. (Eds.), Geological studies in Alaska by the U.S. Geological Survey. United State Geological Survey Bulletin, 1903, 84-95.

  • Wones, D. R. (1989). Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist, 74(7-8), 744-749.

  • Zellmer, G. F., Annen, C., Charlier, B. L. A., George, R. M. M., Turner, S. P. & Hawkesworth, C. J. (2005). Magma evolution and ascent at volcanic arcs: Constraining petrogenetic processes through rates and chronologies. Journal of Volcanology and Geothermal Research, 140, 171-191.

  • Zhu, D. C., Pan, G. T., Mo, X. X., Liao, Z. L., Jiang, X. S., Wang, L. Q. & Zhao, Z. (2007). Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume–lithosphere interaction. Journal of Asian Earth Science, 29(2), 320-335.

  • Bozan, F. & Aslan, Z. (2022). Büyükbostancı-Çiçekpınar (Balıkesir, KB Türkiye) Yöresindeki Oligosen-Miyosen Yaşlı Kalk-alkalen Volkanik Kayaçların Mineral Kimyası, Jeokimyası ve Petrolojisi . Türkiye Jeoloji Bülteni , 65 (2) , 117-148 . DOI: 10.25288/tjb.1018440

  • Termination of Little Ice Age in Northeastern Anatolia: A Multi-proxy Paleolimnology Study of Lake Aygır Sediments, (Kars, NE Anatolia)
    Ahmet Evren Erginal Nurettin Yakupoğlu Çağlar Çakir Abdullah Akbaş Serkan Kükrer
    View as PDF

    Abstract: Sedimentary, geochemical and stable isotope analyses of a sediment core (core AY) recovered from LakeAygır (NE Anatolia) provide evidence of the climatic shifts during the last ~500 yrs. Sediments in Lake Aygırare composed of silty clay with a modeled ~0.16 cm/yr sedimentation rate. Multi-proxy analyses of the downcoredistribution of detritally-deposited proxy elements, total calcium carbonate, organic carbon and stable isotopes revealclimatic records of the Industrial Epoch (IE; 18th-19th centuries) and the termination of the Little Ice Age (LIA; AD1350 to 1850), represented by fluctuating Total Organic Carbon (TOC), Ca, Sr and relatively low detrital precursors(Fe, Ti, K, Rb, Zr), indicating low chemical weathering and dry conditions. The upper part of the core (192 cal yrsBP to present), identified with high detrital input, contains an increasing trend of Fe, Ti, K, Rb, and Zr together withhigh δ18O and δ13C values, indicating warmer conditions during the IE.

  • Lake Aygır

  • NE Anatolia

  • paleoclimate

  • sediment coring

  • stable isotope

  • Akçer-Ön S. (2011). Küçükçekmece Lagünü, Yeniçağa, Uludağ Buzul ve Bafa Gölleri’nin (Batı Türkiye) Geç Holosen’deki İklim Kayıtları: Avrupa ve Orta Doğu İklim Kayıtları ile Karşılaştırılması [Unpublished PhD thesis]. İstanbul Technical University, İstanbul, Turkey


  • Aktimur H. T., Tekirli, M.E., Yurdakul, M. E., Ürgün, B. M. ve Ercan, T. (1992). 1/100 000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Serisi No: 40 Kars-D36 Paftası. Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü.

  • Anonymous (2017). 13th Regional Directorate of the Ministry of Forestry and Water Affairs. Available at: http://bolge13.ormansu.gov.tr/13bolge (accessed April 6, 2017).

  • Atalay, İ. (1994). Türkiye Vejetasyon Coğrafyası. Bornova, İzmir: E.Ü. Basımevi.

  • Blaauw, M. (2010). Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology, 5, 512-518.

  • Çağatay M. N., Eriş, K. K., Makaroğlu, Ö., Yakupoğlu, N., Henry, P., Leroy, S. A. G. Uçarkuş, G., Sakınç, M., Yalamaz, B., Bozyiğit, C. & Kende, J. (2019). The Sea of Marmara during Marine Isotope Stages 5 and 6. Quaternary Science Reviews, 220, 124-141. https://doi.org/10.1016/j. quascirev.2019.07.031

  • Çağatay, M. N., Öğretmen, N., Damcı, E., Stockhecke, M., Sancar, Ü., Eriş, K. K. & Özeren, S. (2014). Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quaternary Science Reviews 104, 97-116. https://doi.org/10.1016/j.quascirev.2014.09.027

  • Cronin, T. M., De Martino, D. M., Dwyer, G. S. & Rodriguez-Lazaro, J. (1999). Deep-sea ostracode species diversity: response to late Quaternary climate change. Marine Micropaleontology, 37(3- 4), 231-249.

  • Danladi, I. B. & Akçer-Ön, S. (2018). Solar forcing and climate variability during the past millennium as recorded in a high-altitude lake: Lake Salda (SW Anatolia). Quaternary International, 486: 185- 198.

  • Deveciler, E., Altun, İ., Canpolat, M., Karabalık, N., Keskin, H. et al. (1990). Göle Dolayı’nın (Kars İli) Jeolojisi (Rapor No: 9040). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Eastwood, W. J., Leng, M.J., Roberts, N. & Davis, B. (2007). Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Gölhisar, southwest Turkey. Journal of Quaternary Science, 22(4), 327-341. https://doi.org/10.1002/jqs.1062

  • England, A., Eastwood, W. J., Roberts, C. N., Turner, R. & Haldon, J. F. (2008). Historical landscape change in Cappadocia (central Turkey): a palaeoecological investigation of annually laminated sedimentsfrom Nar lake. The Holocene, 18(8), 1229-1245.

  • Erginal, A. E., Cagatay, M. N., Selim, H. H., Karabiyikoglu, M., Çakır, Ç., Yakupoğlu, N., Acar D., Akbaş, A. & Kaya, H. (2019). MultiProxy Sedimentary Records of Dry-Wet Climate Cycles During the Last 2 Ka from Lake Çıldır, East Anatolian Plateau, Turkey. Geografia Fisica e Dinamica Quaternaria, 42(1), 61-70. https://doi. org/10.4461/GFDQ.2019.42.5

  • Eriş, K. K. (2013). Late Pleistocene–Holocene sedimentary records of climate and lake-level changes in Lake Hazar, eastern Anatolia, Turkey. Quaternary International, 302, 123-134.

  • Eriş, K. K., Akçer-Ön S., Çağatay, M. N., Ülgen, U. B., Ön, Z. B., et al. (2018). Late Pleistocene to Holocene paleoenvironmental evolution of Lake Hazar, Eastern Anatolia, Turkey. Quaternary International 486, 4-16.

  • Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F. & E.I.M.F. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75(1-4), 105-153. https://doi.org/10.1016/j. earscirev.2005.08.003

  • Gąsiorowski, M. & Sienkiewicz, E. (2010). 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Science of the Total Environment, 408(5), 1091-1101.

  • Gaudette, H. E., Flight, W. R., Toner, L. & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research 44(1), 249-253.

  • Göktürk, O. M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards. R. L. et al. (2011). Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quaternary Science Reviews 30(19- 20), 2433-2445. https://doi.org/10.1016/j. quascirev.2011.05.007

  • Jones, M. D. & Roberts, C. N (2008). Interpreting lake isotope records of Holocene environmental change in the Eastern Mediterranean. Quaternary international 181(1), 32-38.

  • Jones, M. D., Roberts, C. N., Leng, M. J. & Türkeş, M. (2006). A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34(5), 361-364.

  • Kadioğlu, M., Şen, Z. & Batur, E. (1997). The greatest soda-water lake in the world and how it is influenced by climatic change. Annales Geophysicae 15(11),1489-1497.

  • Kükrer, S. (2018). Vertical and horizontal distribution, source identification, ecological and toxic risk assessment of heavy metals in sediments of Lake Aygır, Kars, Turkey. Environmental Forensics 19(2), 122-133.

  • Kuniholm, P. I. (1990). Archaeological evidence and non-evidence for climatic change. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 330(1615), 645-655.

  • Kuzucuoğlu, C., Dörfler, W. & Kunesch, S. (2011). Mid- to Late-Holocene Climate Change in Central Turkey: The Tecer Lake Record. The Holocene 21(1), 173–188.

  • LeTreut, H.,Cubasch, U. &Allen, M.(2007). Historical overview of climate change science. In: Solomon S, Qin D, Manning M, et al. (Eds), Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press.

  • Leng, M. J. & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23(7-8): 811-831.

  • Leroy, S.A., Schwab, M. J. & Costa PJ (2010). Seismic influence on the last 1500-year infill history of Lake Sapanca (North Anatolian Fault, NW Turkey). Tectonophysics 486(1-4), 15-27.

  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P.C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews 104, 30-41.

  • McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23(7-8), 901- 918.

  • Ocakoğlu, F., Dönmez, E. O., Akbulut, A., Tunoğlu, C., Kır, O et al. (2016). A 2800-year multi-proxy sedimentary record of climate change from Lake Çubuk (Göynük, Bolu, NW Anatolia). The Holocene 26(2), 205-221.

  • Ocakoğlu, F., Kır, O., Yılmaz, İ.Ö.,Açıkalın, S., Erayık, C. et al. (2013). Early to Mid-Holocene lake level and temperature records from the terraces of Lake Sünnet in NW Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 175-184.

  • Ogilvie, A. E. J. & Jónsson, T. (2001). `Little Ice Age` Research: A Perspective from Iceland. Climatic Change, 48(1), 9-52.

  • Roberts, N., Moreno, A., Valero-Garcés, B. L., Corella, J. P., Jones, M. et al. (2012). Palaeolimnological evidence for an east–west climate see-saw in the Mediterranean since AD 900. Global and Planetary Change 84, 23-34.

  • Roberts, N., Reed, J. M., Leng, M. J., Kuzucuoğlu, C., Fontugne, M., et al.(2001).The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11(6), 721-736.

  • Roeser, P.A., Franz, S. O., Litt, T., Ülgen, U. B., Hilgers, A., et al. (2012). Lithostratigraphic and geochronological framework for the paleoenvironmental reconstruction of the last ∼ 36 ka cal BP from a sediment record from Lake Iznik (NW Turkey). Quaternary International 274, 73- 87.

  • Rolland, Y. (2017). Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Research 49,130–146.

  • Sheth, H., Meliksetian, K., Gevorgyan, H., Israyelyan, A., Navasardyan, G. (2015). Intracanyon basalt lavas of the Debed River (northern Armenia), part of a Pliocene–Pleistocene continental flood basalt province in the South Caucasus. Journal of Volcanology and Geothermal Research 295, 1-15.

  • Stuiver, M., Reimer, P. J. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1): 215-230.

  • Touchan R, Akkemik Ü, Hughes MK, Erkan N (2007). May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quaternary Research 68(2): 196-202.

  • Tudryn, A., Tucholka, P., Özgür, N., Gibert, E., Elitok, O., et al. (2013). A 2300-year record of environmental change from SW Anatolia, Lake Burdur, Turkey. Journal of Paleolimnology 49(4): 647-662.

  • Ülgen, U.B., Franz, S. O., Biltekin, D., Çagatay, M. N., Roeser, P. A., et al. (2012). Climatic and environmental evolution of Lake Iznik (NW Turkey) over the last ∼4700 years. Quaternary International 274, 88-101.

  • Wang, L. C., Behling, H., Lee, T. Q., Li, H. C., Huh, C. A., Shiau, L. J., Chen, S. H. & Wu, J. T. (2013). Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake. Journal of Paleolimnology, 49(4), 619-631.

  • White, S. (2011). The climate of rebellion in the early modern Ottoman Empire. Cambridge, England: Cambridge University Press.

  • Erginal, A. E. , Yakupoğlu, N. , Çakır, Ç. , Akbaş, A. & Kükrer, S. (2022). Termination of Little Ice Age in Northeastern Anatolia: A Multi-proxy Paleolimnology Study of Lake Aygır Sediments, (Kars, NE Anatolia) . Türkiye Jeoloji Bülteni , 65 (2) , 149-158 . DOI: 10.25288/tjb.1033421

  • Geophysical Study to Identify Iron Mineralization Anomalies Using Terrestrial Magnetometry in the Chak-Chak Exploration Area, Iran
    Ali Akbar Aali Aref Shirazi Adel Shirazi Shayan Khakmardan Abbas Maghsoudi Ardeshir Hezarkhani
    View as PDF

    Abstract: Mineral exploration is the underlying theme of industry and discoveries because humans havebeen exploring for minerals from the very beginning, based on their needs. This research aims to find promisingareas of iron ore mineralization in Chak-Chak Exploration area of Yazd province, Iran. The study’s range lies ata latitude of 32-33 degrees north and a longitude of 54-55 degrees east. This study collected data using terrestrialmagnetometry at 6222 points in a 20 m x 10 m grid. Initially, these data were pre-processed, such as removing themagnetic field effect of the Earth’s core. Subsequently, processes such as applying polarisation filters, trend surfacecorrection, upward and downward conversions, vertical derivatives and analytical signals on the terrestrial magneticdata were performed. The Exploration range contains numerous peaks in the southwest and other summits in thenortheast, according to the research findings. These anomalies are consistent with igneous rock units (rhyolites) andfaults. Consequently, it may be stated that one of the most rapid and least costly methods of detecting iron anomaliesis terrestrial magnetism, which produces satisfactory results.

  • Chak-Chak

  • iron

  • magnetic field

  • mineralization

  • terrestrial magnetism


  • Abubakar, R., Muxworthy, A., Sephton, M., Southern, P., Watson, J., Fraser, A., & Almeida, T. (2015). Formation of magnetic minerals at hydrocarbongeneration conditions. Marine and Petroleum Geology, 68, 509-519.

  • Alahgholi, S., Shirazy, A., & Shirazi, A. (2018). Geostatistical studies and anomalous elements detection, Bardaskan Area, Iran. Open Journal of Geology, 8(7), 697-710.

  • Bao-xian, Y. (2013). Data sharing between different proton magnetometer [J]. Inner Mongolia Coal Economy, 5.

  • Chelotti, L., Acosta, N., & Foster, M. (2009). Cátedra de Geofísica Aplicada. Universidad Nacional de la Patagonia San Juan Bosco, Argentina.

  • Company, K. (2016). Gravimetric studies and combining the results with magnetometric studies of the Hoz Vali iron ore range.

  • Company, Y. Z. Y. M. C. (2018). Kahrang Iron Ore Mine Exploration Report.

  • Currenti, G., Napoli, R., Carbone, D., Del Negro, C., & Ganci, G. (2007). Inverse modeling in geophysical applications. In Applied And Industrial Mathematics In Italy II (pp. 279-290). World Scientific.

  • Dobrin, M. B., & Savit, C. (1988). Introduction to Geophysical Prospecting. McGraw-Hill Book Co. New York.

  • Doodran, R. J., Khakmardan, S., Shirazi, A., & Shirazy, A. (2020). Minimalization of Ash from Iranian Gilsonite by Froth Flotation. Journal of Minerals and Materials Characterization and Engineering, 9(1), 1-13.

  • Edelstein, A. (2007). Advances in magnetometry. Journal of Physics: Condensed Matter, 19(16), 165217.

  • Ghorbani, M. (2013a). Economic geology of Iran (Vol. 581). Springer.

  • Ghorbani, M. (2013b). A summary of geology of Iran. In The economic geology of Iran (pp. 45-64). Springer.

  • Khakmardan, S., Doodran, R. J., Shirazy, A., Shirazi, A., & Mozaffari, E. (2020). Evaluation of Chromite Recovery from Shaking Table Tailings by Magnetic Separation Method. Open Journal of Geology, 10(12), 1153-1163.

  • Khakmardan, S., Shirazi, A., Shirazy, A., & Hosseingholi, H. (2018). Copper oxide ore leaching ability and cementation behavior, mesgaran deposit in Iran. Open Journal of Geology, 8(09), 841.

  • Khayer, K., Shirazy, A., Shirazi, A., Ansari, A., Nazerian, H., & Hezarkhani, A. (2021). Determination of Archie’s Tortuosity Factor from Stoneley Waves in Carbonate Reservoirs. International Journal of Science and Engineering Applications (IJSEA), 10, 107-110.

  • Khosravi, V., Shirazi, A., Shirazy, A., Hezarkhani, A., & Pour, A. B. (2022). Hybrid Fuzzy-Analytic Hierarchy Process (AHP) Model for Porphyry Copper Prospecting in Simorgh Area, Eastern Lut Block of Iran. Mining, 2(1), 1-12.

  • Liu, H., Dong, H., Liu, Z., Ge, J., Bai, B., & Zhang, C. (2017). Construction of an Overhauser magnetic gradiometer and the applications in geomagnetic observation and ferromagnetic target localization. Journal of Instrumentation, 12(10), T10008.

  • Minshull, T. (2003). Kearey, P., Brooks, M. & Hill, I. 2002. An Introduction to Geophysical Exploration, ix+ 262 pp. Oxford: Blackwell Science. Geological Magazine, 140(3), 366-366.

  • Nabighian, M. N., Grauch, V., Hansen, R., LaFehr, T., Li, Y., Peirce, J. W., Phillips, J. D., & Ruder, M. (2005). The historical development of the magnetic method in exploration. Geophysics, 70(6), 33ND-61ND.

  • Shirazi, A., Hezarkhani, A., Shirazy, A., & Shahrood, I. (2018a). Exploration Geochemistry DataApplication for Cu Anomaly Separation Based On Classical and Modern Statistical Methods in South Khorasan, Iran. International Journal of Science and Engineering Applications, 7, 39-44.

  • Shirazi, A., Hezarkhani, A., Shirazy, A., & Shahrood, I. (2018b). Remote sensing studies for mapping of iron oxide regions, South of Kerman, Iran. International Journal of Science and Engineering Applications, 7(4), 45-51.

  • Shirazi, A., Shirazy, A., & Karami, J. (2018c). Remote sensing to identify copper alterations and promising regions, Sarbishe, South Khorasan, Iran. International Journal of Geology and Earth Sciences, 4(2), 36-52.

  • Shirazi, A., Shirazy, A., Saki, S., & Hezarkhani, A. (2018d). Geostatistics studies and geochemical modeling based on core data, sheytoor iron deposit, Iran. Journal of Geological Resource and Engineering, 6, 124-133.

  • Shirazy, A., Shirazi, A., Heidarlaki, S., & Ziaii, M. (2018a). Exploratory Remote Sensing Studies to Determine the Mineralization Zones around the Zarshuran Gold Mine. International Journal of Science and Engineering Applications, 7(9), 274- 279.

  • Shirazy, A., Shirazi, A., & Hezarkhani, A. (2018b). Predicting gold grade in Tarq 1: 100000 geochemical map using the behavior of gold, Arsenic and Antimony by K-means method. Journal of Mineral Resources Engineering, 2(4), 11-23.

  • Shirazy, A., Shirazi, A., Ferdossi, M. H., & Ziaii, M. (2019). Geochemical and geostatistical studies for estimating gold grade in tarq prospect area by k-means clustering method. Open Journal of Geology, 9(6), 306-326.

  • Shirazy, A., Ziaii, M., & Hezarkhani, A. (2020a). Geochemical Behavior Investigation Based on K-means and Artificial Neural Network Prediction for Copper, in Kivi region, Ardabil province, Iran. Iranian Journal of Mining Engineering, 14(45), 96-112.

  • Shirazy, A., Ziaii, M., Hezarkhani, A., & Timkin, T. (2020b). Geostatistical and remote sensing studies to identify high metallogenic potential regions in the Kivi area of Iran. Minerals, 10(10), 869.

  • Shirazy, A., Hezarkhani, A., Timkin, T., & Shirazi, A. (2021a). Investigation of Magneto-/Radio-Metric Behavior in Order to Identify an Estimator Model Using K-Means Clustering and Artificial Neural Network (ANN) (Iron Ore Deposit, Yazd, Iran). Minerals, 11(12), 1304.

  • Shirazy, A., Shirazi, A., & Nazerian, H. (2021b). Application of Remote Sensing in Earth Sciences–A Review. International Journal of Science and Engineering Applications, 10, 45-51.

  • Shirazy, A., Shirazi, A., Nazerian, H., & Hezarkhani, A. (2021c). Investigation of Geochemical Sections in Exploratory Boreholes of Mesgaran Copper Deposit in Iran. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 9(8), 2364-2368.

  • Shirazy, A., Shirazi, A., Nazerian, H., Khayer, K., & Hezarkhani, A. (2021d). Geophysical study: Estimation of deposit depth using gravimetric data and Euler method (Jalalabad iron mine, Kerman province of Iran). Open Journal of Geology, 11(8), 340-355.

  • Shirazy, A., Ziaii, M., & Hezarkhani, A. (2021e). Geochemical behavior investigation based on k-means and artificial neural network prediction for titanium and zinc, Kivi region, Iran. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 332(3), 113-125.

  • Shirazy, A., Hezarkhani, A. , Shirazi, A. , Khakmardan, S. & Rooki, R. (2022). K-Means Clustering and General Regression Neural Network Methods for Copper Mineralization probability in ChaharFarsakh, Iran. Geological Bulletin of Turkey, 65(1), 79-92. https://doi.org/10.25288/tjb.1010636

  • Spaldin, N. A. (2010). Magnetic materials: fundamentals and applications. Cambridge University press.

  • Tian, W.-f., Hao, J.-J., Yan, J.-y., Li, C.-z., & Zhao, X.- w. (2010). Application of synthetic geophysical methods to deep exploration of Hanxing-type iron deposit. Progress in Geophysics, 25(4), 1442- 1452.

  • Aali, A. A. , Shirazi, A. , Shirazy, A. , Khakmardan, S. , Maghsoudi, A. & Hezarkhani, A. (2022). Geophysical Study to Identify Iron Mineralization Anomalies Using Terrestrial Magnetometry in the Chak-Chak Exploration Area, Iran . Türkiye Jeoloji Bülteni , 65 (2) , 159-170 . DOI: 10.25288/tjb.1035354

  • A Geoscientist Approach to Palaoclimate Reconstruction Based on Pollen Analysis of Lake Deposits; Problems and Solutions
    Güldem Kamar
    View as PDF

    Abstract: Lakes contain sediments rich in organic material where pollen analysis and palaeoclimate studies canideally be carried out. Lakes provide a habitat for many organisms, where the pollen grains are best preserved, andlake sediments also offer an archive where climatic and environmental changes are preserved. In order to makea palaeoclimatic reconstruction based on pollen analysis, the study area needs to be investigated in detail from ageological, biological, and archaeological point of view. This study aims to present a methodological perspective toresearchers who want to conduct paleoclimate reconstruction through pollen analysis. The geological structure ofthe region, its volcanic activity, archaeological history and the effects of the structural elements of the lake floor onthe changes in the pollen diagrams are described in detail by the proposed method of this study .For this purpose, the data from studies carried out in the lakes at a close distance to each other (Eastern Anatolianplateau high altitude lakes) and the terrace deposits of Lake Van were examined under the headings of volcanicactivity, human impact, sedimentation ratio and structural characteristics of the lake floor to reveal the differences.According to the results, before performing a paleoclimate reconstruction,identification of the deposit packages,local vegetative changes and current flora, the structural elements of the lake floor, human impact and volcanismshould be investigated first of all under separate headings.

  • Eastern Anatolia

  • Human impact

  • Lake Van

  • Palaeoclimate reconstruction

  • Pollen analysis

  • Acarlar, M., Bilgin, E., Elibol, E., Erkal., T., Gedik, İ., Güner, E., Hakyemez, Y., Şen, A. M., Oğuz, M. F. ve Umut, M. (1991). Van Gölü Doğu ve Kuzeyinin Jeolojisi (Rapor No:9469). MTA Genel Müdürlüğü Jeoloji Etüt Dairesi Yayını (yayımlanmamış).

  • Akcar, N. & Schlüchter, C. (2005). Paleoglaciations in Anatolia: a schematic review and first results. Eiszeitalter und Gegenwart. Quaternary Science Journal 55, 102–121.

  • Akkiraz, M. S., Nazik, A., Özgen Erdem, N. & Durak, S. D. (2022). First micropalaeontological record from the early and middle Eocene Mamuca Formation of the Dümrek Basin, western Central Anatolia, Turkey: Biostratigraphy, depositional history and palaeoclimate. Journal of Asian Earth Sciences, 224 (2022), Article 105036.

  • Alan, H., Bozkurt, E., Çağlan, D., Dirik, K., Özkaymak, Ç., Sözbilir, H., & Topal, T. (2011). Van Depremleri (Tabanlı-Edremit) Raporu Kasım 2011. TMMOB Jeoloji Mühendisleri Odası Yayını, No 110. Ankara, 60 pp. https://www.jmo.org.tr/resimler/ ekler/1461f966ce57540_ek.pdf

  • Atalay, İ. (1997). Türkiye Coğrafyası. Ege Üniversitesi Yayınları.

  • Barlas Şimşek, F. (2015). Late Holocene high resolution multi-proxy climate and environmental records from Lake Van [Unpublished PhD Thesis]. İTÜ Avrasya Yer Bilimleri Enstitüsü 176 p.

  • Behre, K. E. (1990). Some reflections on anthropogenic indicators and the record of prehistoric occupation phases in pollen diagrams from the Near East. In S. Bottema, G. Entjes-Nieborg & W. van Zeist, (Eds.), Man’s Role in the Shaping of the Eastern Mediterranean Landscape (219-230).

  • Behre, K. E. (1981). The interpretation of anthropogenic indicators from pollen diagrams. Pollen et Spores, 23, 225–245.

  • Bıçakçı, A., Altunoğlu, M. K., Tosunoğlu, A., Çelenk, S., Canıtez, Y., Malyer, H. ve Sapan, N. (2009). Türkiye’de Oleaceae familyasına ait allerjenik Olea (zeytin ağacı) ve Fraxinus (dişbudak ağacı) polenlerinin havadaki dağılımları. Astım Alerji İmmünoloji, 7, 133-146.

  • Biltekin, D. (2018). Late Pleistocene-Holocene environmental change in eastern Turkey: multiproxy palaeoecological data of vegetation and lake-catchment changes. Journal of Quaternary Science, 33(5), 575-585.

  • Biltekin, D., Eriş, K. K., Çağatay, M. N., Akçer-Ön, S. & Akkoca, D. B. (2018). Late PleistoceneHolocene environmental change in eastern Turkey: a multiproxy palaeoecological data of vegetation and lake-catchment changes. Journal of Quaternary Science, 33(5) 575-585.

  • Biltekin, D., Eriş, K. K. & Bulut, S. (2021). Anthropogenic influences and climate changes in Lake Hazar (eastern Turkey) during the Late Holocene. Quaternary International, 583, 70–82.

  • Bottema, S. (1975). A Pollen Diagram from the Syrian Anti Lebanon. Paleorient 3, 259-268.

  • Bottema, S. (1986). A Late Quaternary Pollen Diagram From Lake Urmia (Northwest Iran). Review of Palaeobotany and Palynology, 47, 241-261.

  • Bottema, S. (1995). Holocene vegetation of the Van area: palynological and chronological evidence from Söğütlü, Turkey. Vegetation History and Archaeobotany, 4, 187-193.

  • Çukur, D., Krastel, S., Demirel-Schlüter, F., Demirbağ, E., Imren, C., Niessen, F. & Toker, M. (2013). Sedimentary evolution of Lake Van (Eastern Turkey) reconstructed from high-resolution seismic investigations. International Journal of Earth Sciences, 102, 571-585.

  • Çukur, D., Krastel, S., Tomonaga, Y., Schmincke, H.-U., Sumita, M., Meydan, A.F., Çağatay, M.N., Toker, M., Kim, S.-P. & Kong, G.-S. (2016). Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications. International Journal of Earth Sciences (Geologische Rundschau), 106, 239-253.

  • Djamali, M., de Beaulieu, J.-L., Shah-Hosseini, M., Andrieu-Ponel, V., Amini, A., Akhani, H., Leroy, S.A.G., Stevens, L., Alizadeh, H., Ponel, P. & Brewer, S. (2008). An Upper Pleistocene long pollen record from the Near East, the 100 m-long sequence of Lake Urmia, NW Iran. Quaternary Research, 69, 413-420.

  • Donner, J. & Çolak, A. H. (Editör) (2007). Türkiye Bitkileri yayılış Haritaları. 2. 975-6221-22-4, İstanbul.

  • Eastwood, W. J., Roberts, N., Lamb, H. F. & Tibby, J. C. (1999). Holocene Environmental Change in Southwest Turkey: a palaeoecological record of lake and catchment-related changes. Quaternary Science Reviews, 18, 671-695.

  • Ediger, V. Ş. (1986). Sieving techniques in palynological sample processing with special reference to the MRA system. Micropaleontology, 32(3), 256-270.

  • Eken, G., Bozdoğan, M., İsfendiyaroğlu, S., Kılıç, D. T., & Lise, Y. (Editörler) 2006. Türkiye’nin Önemli Doğa Alanları. Doğa Derneği, Ankara.

  • Göncüoğlu, M. C. ve Turhan, N. (1985). Bitlis Metamorfik kuşağı orta bölümünün temel jeolojisi. Rapor no 7707). M.T.A. Raporu.

  • İnceoğlu, Ö. ve Pehlivan, S. (1987). İç Anadolu Bölgesindeki Tuz Gölü Kuvaterner Tabakalarında Palinolojik Bir Araştırma. DOĞA TU Botanik D. 56-85.

  • Kamar, G. (2018a). Palynology of Lake Arin (Eastern Anatolia, Turkey) deposits and its relation with water level change of Lake Van: Preliminary findings. Quaternary International, 486, 83-88.

  • Kamar, G. (2018b). Nazik Gölü (Bitlis, Türkiye) Güneybatısından Alınan N3 Karotunun Palinolojik İlk Bulguları. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 291-296.

  • Kamar, G. (2021). Holocene Palynology and PollenBased Palaeoclimate Reconstruction of Lake Erçek (Eastern Anatolia); Short-Term Climatic Fluctuations and their Relation with Global Palaeoclimatic Change; Results of Cores E1 and E10. Geological Bulletin of Turkey, 64 (3), 253- 266. https://doi.org/10.25288/tjb.927117

  • Kaplan, G. (2010). Van Gölü Kuzey Havzası’nın Geç Holosen Palinolojisi [Yayımlanmamış Doktora tezi]. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 234s.

  • Kaplan, G. (2013). Palynological analysis of the Late Pleistocene terrace deposits of Lake Van, eastern Turkey: Reconstruction of paleovegetation and paleoclimate. Quaternary International, 292, 168- 175.

  • Karlıoğlu Kılıç, N., Caner, H., Rauh, N. K., Akkemik, Ü., Köse, N. & Conor E. M. (2016). Palynological evidence for human occupation in western Rough Cilicia South West Turkey. Quaternary International, 401, 109–122

  • Karlıoğlu Kılıç¸ N., Caner, H., Erginal, A. E., Ersin, S., Selim, H. H. & Kaya, H. (2018). Environmental changes based on multi-proxy analysis of core sediments in Lake Aktaş, Turkey, Preliminary results. Quaternary International, 486, 89–97.

  • Karlıoğlu Kılıç, N. & Ersin, S. (2019). Determination of Late Holocene Vegetation of Lake Aktaş and Its Surrounding Area by Palynological Analysis. Comptes rendus de l’Acade‘mie bulgare des Sciences, 72(1) 100-106.

  • Kempe, S., Landmann, G., & Müller, G. (2002). A floating varve chronology from the last glacial maximum terrace of Lake Van/Turkey. Zeitschrift für Geomorphologie, 126, 97-114.

  • Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subductionaccretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letter, 30(24), 8046-8050.

  • Keskin, M. (2007). Eastern Anatolia: A hot spot in a collision zone without a mantle plume. GSA Special Paper, 430, 695-722.

  • Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., Franz, S. O., Ülgen, U. B. & Niessen, F. (2009). ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews, 28, 1555–1567.

  • Litt, T., Pickarski, N. & Heumann, G. (2014). A 600,000 Year Long Continental Pollen Record from Lake Van, Eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41.

  • Ocakoğlu, F., Akkiraz, M. S. (2019). Lower Pleistocene to Holocene terrestrial record from the Eskişehir Graben (Central Anatolia): Paleoclimatic and morphotectonic implications. Quaternary International, 510(2019) 88–99.

  • Oyan, V. (2004). Bölükyazı-Hizan (Bitlis Masifi) Çevresindeki Na-Feldispat Oluşumlarının Jeolojik Özellikleri ve Ekonomik Önemi [Yayımlanmamış, Yüksek Lisans tezi]. Y.Y.Ü Fen Bilimleri Enstitüsü, Van.

  • Oyan, V., Ünal, E., Tolluoğlu, A.Ü. & Keskin, M. (2007). Volcanostratigraphic and Petrologic Properties of the Etrüsk Stratovolcano, SE Turkey. The 2nd International Scientific Conference of Young Scientists and Students, `New Directions of Investigations in Earth Sciences` (pp. 63-64). October 08-09, Baku, Azerbaijan.

  • Öner, B. (2019). Aygır Gölü (Doğu Anadolu, Türkiye) Taban Çökellerinin Palinolojisi [Yayımlanmamış, Yüksek Lisans tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü.

  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A. Ü. & Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolia High Plateau): The most recent post-collisional volcanism in Turkey. Chemical Geology, 226, 189-211.

  • Pickarski, N., Kwiecien, O., Djamali, M. & Litt, T. (2015). Vegetation and environmental changes during the last interglacial in eastern Anatolia (Turkey): a new high-resolution pollen record from Lake Van. Palaeogeography Palaeoclimatology Palaeoecology, 435, 145–158.

  • Roberts, N. (1998). The Holocene, Second Edition. Blackwell, USA. 316 p.

  • Roberts, N., Reed, J. M., Leng, M. J., Kuzucuoğlu, C., Fontugne, M., Bertaux, J., Woldring, H., Bottema, S., Black, S., Hunt E. & Karabıyıkoğlu, M. (2001). The Tempo of Holocene Climatic Change in the Eastern Mediterranean Region: New HighResolution Crater-Lake Sediment Data From Central Turkey. The Holocene, 11(6), 721-736.

  • Seçmen, Ö., Gemici, Y., Görk, G., Bekat, L. & Leblebici, E. (2004). Tohumlu Bitkiler Sistematiği, 7. baskı. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi No:16. 394 s.

  • Şengör, A. M. C. & Kidd, W. S. F. 1979. Post collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55, 361- 376.

  • Şengör, A. M. C., Özeren, S., Keskin, M., Sakınç, M., Özbakır, A. D., & Kayan, I. (2008). Eastern Turkish high-plateau as a small Turkish type orogen: Implications for post-collisional crustforming processes in Turkic type orogens, Earth sciences Reviews, 90, 1-48.

  • Şengün, M. (1984). Bitlis Masifi Tatvan güneyinin jeolojik/petrografik incelenmesi [Yayımlanmamış, Doktora tezi]. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.

  • Tatlı, A. (2004). Türkiye Vejetasyonu, 2. Baskı. Kütahya. 142 s.

  • Toker, M., Pınar, A. & Tur, H. (2017). Source mechanisms and faulting analysis of the aftershocks in the Lake Erçek area (Eastern Anatolia, Turkey) during the 2011 Van event (Mw 7.1): implications for the regional stress field and ongoing deformation processes. Journal of Asian Earth Science, 150, 73–86.

  • Toker, M. & Tur, H., (2018). Structural patterns of the Lake Erçek Basin, Eastern Anatolia (Turkey): evidence from single-channel seismic interpretation. Marine Geophysical Research, 39, 567-588.

  • Ülgen, U. B., Franz, S. O., Biltekin, D., Cagatay, M. N., Roeser, P. A., Doner, L. & Thein, J., (2012). Climatic and environmental evolution of Lake İznik (NW Turkey) over the last similar to 4700 years. Quaternary International, 274, 88-101.

  • Üner, S. (2003). Van Gölü Doğusu (BeyüzümüGöllü Dolayı) Pliyo-Kuvaterner Yaşlı Karasal Çökellerin Sedimantolojisi (Yayımlanmamış, Yüksek Lisans tezi). Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü.

  • Wick, L., Lemcke, G. & Sturm, M. (2003). Evidence of Late glacial and Holocene climatic change and human impact in eastern Anatolia: high resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van. The Holocene, 13, 665-675.

  • van Zeist, W. & Woldring, H. (1978). A pollen profile from Lake Van: A Preliminary Report. In: E.T. Degens, F. Kurtman (Eds.), The Geology of Lake Van, (115-123).

  • Yaltırık, F. (1975). Türkiye’de Garig Vejetasyonunun Floristik Kompozisyonu. Biyoloji Dergisi, 24, 28- 40.

  • Yılmaz, O. (1971). Etude Petrographique et Geochronologique de la region de Cacas [Yayımlanmamış, Doktora tezi]. Univ. Grenoble, Fransa.

  • Grain Size Distribution and Depositional Environment of Quaternary Sediments in Moralli Stream System (Tusba, Van, Turkey)
    Gül Şen Türker Yakupoğlu
    View as PDF

    Abstract: This study aimed to determine the grain size distribution trend of the Quaternary aged fluvio-lacustrinesediments of the Moralli Stream system, which is located within the borders of Van province to the east of Lake Van ,and to reveal the effects of hydrodynamic energy on the erosion, transportation ,and depositional processes. Moreover,it aimed to define the sedimentary facies ,and geomorphological characteristics of the depositional environment. Inorder to determine the grain size distribution trends of the sediments, a grain size analysis was carried out by usinga total of 42 sediment samples taken from the source area of the Moralli Stream in the area where it spills in Lake Van. It was determined that the grain size of the sediments taken from the stream source area was dominantlybetween 0.42-0.25 mm, and the grain size of the sediments taken from the downstream parts of the channel bed wasbetween 0.125-0.037 mm. The mean grain size of the fluvial sediments is fine-very fine, the sorting parameter isgenerally in the poorly sorted class, the skewness degree is strongly negatively skewed, and the degree of kurtosiswas determined as platykurtic. The grain size of the sediment samples taken from the delta plain is 4.75-025 mm,the grain size of the sediment samples taken from the delta channels is 1.00-0.25 mm, and the grain size of sedimentsamples taken from the delta front ranged between 0.074-0.037 mm. The delta plain sediments is a coarse sand withpoor sorting, positively skewed and mesokurtic, the delta channel sediments is medium-fine sand with poor sorting,positively skewed and platykurtic, and the delta front sediments is very fine sand with moderate sorting, negativelyskewed and leptokurtic. The grain size of the beach sediments was determined in the range of 1-0.42 mm. Whilesediments contained fine grains of 0.074-0.037 mm in size in the coastal area, especially in the low-energy foreshorearea, it was determined that sediments containing >4.75 mm in size pebbles were deposited in the rip channel andshore break areas. The mean grain size of the beach sediments of Lake Van is very coarse sand and coarse-mediumsand size, and is represented with moderate, moderate-well sorting, symmetric-positive skewness and leptokurticparameters. With the grain size and statistical parameter data obtained as a result of the sedimentological analysescarried out within the scope of this study, the hydrodynamic energy of Moralli Stream has the potential to carry sandsilt-clay size grains, and the wave energy of Lake Van has the potential to transport gravel and sand-size grains.Moreover, it was found that the sediment’s grain size decreased downstream in the drainage basin. In addition, thefacies of sediments deposited in fluvial, delta and lacustrine environments formed by the rise and fall of the waterlevel of Lake Van due to climatic changes were defined and geomorphological structures (coastal arrows, coastalspits, beach barriers, lake and river terraces) emerging from tectonic and hydrodynamic activity were determined

  • Depositional environments

  • fluvio-lacustrine sediments

  • grain size analysis

  • Lake Van

  • Moralli Stream

  • Quaternary


  • Acarlar, M., Bilgin, E., Elibol, E., Erkal., T. ve Gedik, İ. (1991). Van Gölü doğu ve kuzeyinin jeolojisi (Rapor no: 9469). Maden Tetki ve Arama Genel Müdürlüğü, (yayımlanmamış).

  • Akça, E., Çimrin, K. M., Ryan, J., Nagano, T., Topaksu, M. & Kapur, S. (2008). Differentiating the natural and man-made terraces of Lake Van, Eastern Anatolia, utilizing earth science methods. Lakes and Reservoirs: Research and Management, 13(1), 83-93.

  • Akın, M., Özvan, A., Akın, M. K. & Topal, T. (2013). Evaluation of liquefaction in Karasu River floodplain after the October 23, 2011, Van (Turkey) earthquake. Natural Hazards, 69(3), 1551-1575.

  • Akköprü, E. & Christol, A. (2019). Lake Van. In C. Kuzucuoğlu, C., A. Çiner, N. Kazancı (Eds.), Landscapes and Landforms of Turkey (369-382). Springer Nature Switzerland AG.

  • Akköprü, E., Aydın, F. A. ve Doğu, A. F. (2019). Van Gölü seviye değişimlerinin Engil Çayı Deltası jeomorfolojisi üzerine etkisi ve Dilkaya Höyüğü ile ilişkisi. Türk Coğrafya Dergisi, 72, 45-51.

  • Aksoy, E. (1988). Van İli Doğu-Kuzeydoğu Yöresinin Stratigrafi ve Tektoniği [Yayımlanmamış, Doktora Tezi]. Fırat Üniversitesi Fen Bilimleri Enstitüsü.

  • Alaeddinoğlu, F., Avşin, N. ve Yılmaz, E. (2016). Van Gölü güneydoğusunun jeomorfolojik özellikleri ve ekoturizm. Karabük Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(2), 291-310.

  • Arni, P. (1938). Van vilayetinin jeolojisi hakkında rapor (Arşiv no: 883). MTA, (yayımlanmamış).

  • Avşin, N. ve Aras, M., 2021. Aras Nehri vadisi ve yakın çevresinin jeomorfolojisi (Kağızman-Gaziler arası). Sosyal, Beşeri ve İdari Bilimler Dergisi, 4(5), 368-386.

  • Balkaş, Ö., Serdar, S. H., Erakman, B., Güngör, A., Pasin, C., Aksu, R. ve İşbilir, M. (1980). Başkale-Gürpınar-Çatak-Van alanının jeolojisi ve petrol olanakları (Rapor no: 1455). TPAO (yayımlanmamış).

  • Bellizia, E., Boaga, J., Fontana, A., D’Alpaos, A., Cassiani, G. & Ghinassi, M. (2021). Impact of genesis and abandonment processes of a fluvial meander on geometry and grain-size distribution of the associated point bar (Venetian Plain, Italy). Marine and Petroleum Geology, 127, Article 104951.

  • Bhattacharya, F., Shukla, A. D., Patel, R. C., Rastogi, B. K. & Juyal, N. (2017). Sedimentology, geochemistry and OSL dating of the alluvial succession in the northern Gujarat alluvial plain (western India)-A record to evaluate the sensitivity of a semiarid fluvial system to the climatic and tectonic forcing since the late Marine Isotopic Stage 3. Geomorphology, 297, 1-19.

  • Bridge, J. S. (2009). Rivers and floodplains: forms, processes, and sedimentary record. John Wiley and Sons, New York, 512 s.

  • Bulum, B. Ö. (2015). Bendimahi Çayı’nın (Van) su kalite kriterleri üzerine bir araştırma [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 126 s.

  • Christol, A., Kuzucuoğlu, C., Fort, M. & Lamothe, M. (2013). Première chronologie OSL des formations fluvio-lacustres de la vallée de la Karasu: implications sur la paléogéographie du bassin du lac de Van (Turkey). Géomorphologie: relief, processus, environnement, 19(4), 393-406.

  • Çiftçi, Y., Işık, M. A., Alkevli, T. ve Yeşilova, Ç. (2008). Van Gölü havzasının çevre jeolojisi. Jeoloji Mühendisliği Dergisi, 32(2), 45-77. https:// dergipark.org.tr/tr/pub/jmd/issue/52384/686287

  • Dade, W. B. & Friend, P. F. (1998). Grain-size, sediment-transport regime, and channel slope in alluvial rivers. The Journal of Geology, 106(6), 661-676.

  • de Almeida, R. P., Marconato, A., Freitas, B. T. & Turra, B. B. (2016). The ancestors of meandering rivers. Geology, 44(3), 203-206.

  • Degens, E. T., Wong, H. K., Kempe, S. & Kurtman, F. J. G. R. (1984). A geological study of Lake Van, Eastern Turkey. Geologische Rundschau, 73(2), 701-734.

  • Dengiz, O. (2010). Morphology, physico-chemical properties and classification of soils on terraces of the Tigris River in the south-east Anatolia region of Turkey. Journal of Agricultural Sciences, 16, 205-212.

  • Dicle, S. & Üner, S. (2017). New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (eastern Anatolian Plateau, Van-Turkey). Geologica Acta: An International Earth Science Journal, 15(2), 107- 120.

  • Du, X., Gama, C., Liu, J. T. & Baptista, P. (2015). Sediment sources and transport pathway identification based on grain-size distributions on the SW coast of Portugal. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 26(4), 397.

  • Erinç, S. (2012). Jeomorfoloji I. (Güncelleştirenler: T. A. Ertek - C. Güneysu). Der Yayınları, İstanbul, 284 s.

  • Fazelpoor, K., Yousefi, S., Martínez-Fernández, V. & de Jalón, D. G. (2021). Geomorphological evolution along international riverine borders: The flow of the Aras River through Iran, Azerbaijan, and Armenia. Journal of Environmental Management, 290, Artcile 112599.

  • Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary rock nomenclature. The Journal of Geology, 62(4), 344-359.

  • Folk, R. L. (1974). Petrology of Sedimentary Rocks. Hemphill Press, Second Edition, Austin, Texas, 182.

  • Folk, R. L. & Ward, W. C. (1957). Brazos River bar (Texas); a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3-26.

  • Friedman, G. M. (1958). Determination of sieve-size distribution from thin-section data for sedimentary petrological studies. The Journal of Geology, 66(4), 394-416.

  • Gallagher, E., Wadman, H., McNinch, J., Reniers, A. & Koktas, M. (2016). A conceptual model for spatial grain size variability on the surface of and within beaches. Journal of Marine Science and Engineering, 4(2), 38.

  • Gao, S., Collins, M. B., Lanckneus, J., De Moor, G. & Van Lancker, V. (1994). Grain size trends associated with net sediment transport patterns: An example from the Belgian continental shelf. Marine Geology, 121(3-4), 171-185.

  • Görür, N., Çağatay, M., Zabcı, C., Sakınç, M., Akkök, R., Şile, H. & Örçen, S. (2015). The late Quaternary tectono-stratigraphic evolution of the Lake Van, Turkey. Bulletin of the Mineral Research and Exploration, 151, 1-46. https://dergi. mta.gov.tr/dosyalar/images/mtadergi/makaleler/ eng/20151218214147_162_164e7559.pdf

  • Husain, F. (2021). Sediment of the Tigris and Euphrates rivers: an early modern perspective. Water History, 13 13-32. https://doi.org/10.1007/s12685-020- 00256-2

  • Jotheri, J., Allen, M. B. & Wilkinson, T. J. (2016). Holocene avulsions of the Euphrates River in the Najaf area of Western Mesopotamia: impacts on human settlement patterns. Geoarchaeology, 31(3), 175-193.

  • Kadhim, W. M. & Kadhim, L. M. (2020). Geomorphological characteristics of Tigris and Euphrates Rivers in the Iraqi sedimentary plain and their impact on the extinction and change of Mesopotamian Civilization Centers (A Study in Historical Geomorphology). The Islamic College University Journal, 2(57), 139-160.

  • Kamar, G., 2005. Yüzüncü Yıl Üniversitesi Kampüs Alanındaki Çökellerin Palinostratigrafisi ve Paleoklimatolojisi [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü.

  • Kamar, G. (2021). Holocene palynology and pollenbased palaeoclimate reconstruction of Lake Erçek (Eastern Anatolia); short-term climatic fluctuations and their relation with global palaeoclimatic change; results of cores E1 and E10. Geological Bulletin of Turkey, 64(3), 1-14. https://doi.org/10.25288/tjb.927117

  • Kazancı, N., Gürbüz, A. ve Boyraz, S. (2011). Büyük Menderes nehri’nin jeolojisi ve evrimi. Türkiye Jeoloji Bülteni, 54(1-2), 25-56. https://dergipark. org.tr/tr/pub/tjb/issue/46966/589505

  • Kazak, M. (2019). Akın ve Taşkonak Köyleri (Van) Çevresinde Yüzeyleyen Orta-Geç Miyosen Yaşlı Killi Kayaçların Mineralojik ve Jeokimyasal İncelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 119 s.

  • Kıraner, F. (1959). Van Gölü doğu bölgesinin jeolojik etüdü. Türkiye Jeoloji Bülteni,7(1), 30-57. https:// dergipark.org.tr/tr/pub/tjb/issue/52950/700212

  • Koçyiğit, A. (2013). New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences, 62, 586-605.

  • Korkmaz, K. (2020). Van Formasyonunun Nannoplankton Biyostratigrafisi ve Yaşı [Yayımlanmamış Yüksek Lisans Tezi]. Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray, 57 s.

  • Kutman, F., Akkusş, A. F. & Gedik, A. (1978). The geology and oil potential of the Muş-Van region. In E.T.Degens & F. Kurtman (Eds.), The geology of Lake Van (pp. 124-133). MTA Arşiv No: 169.

  • Kuzucuoğlu, C., Christol, A., Mouralis, D., Doğu, A. F., Akköprü, E., Fort, M., Brunstein D., Zorer H., Fontugne M., Karabiyikoğlu M., Scaillet S., Reyss J.-L. & Guillou, H. (2010). Formation of the upper pleistocene terraces of Lake Van (Turkey). Journal of Quaternary Science, 25(7), 1124-1137. https:// doi.org/10.1002/jqs.1431

  • Lazim, A. A., Hussein, M. A. & Khazaal, H. F. (2020). The effect of West Qurna oilfield on the part of Euphrates River, northern Basra governorate, Iraq: geomorphic and structural geology integrated analysis. The Iraqi Geological Journal, 53(1c) 90-103. https://doi.org/10.46717/ igj.53.1C.6Rx-2020-04/06

  • Maurya, D. M., Malik, J. N. & Raj, R. (1997). Quaternary sediments of the Lower Mahi river basin, Western India. Current Science, 72(7), 519.

  • cLaren, P. (1981). An interpretation of trends in grain size measures. Journal of Sedimentary Research, 51(2), 611-624.

  • McLaren, P. & Bowles, D. (1985). The effects of sediment transport on grain-size distributions. Journal of Sedimentary Research, 55(4), 457-470.

  • Miall, A. D. (1996). The Geology of Fluvial Deposits. Springer Verlag, Berlin, 582 p.

  • Mikhailov, V. N., Kravtsova, V. I. & Magritskii, D. V. (2003). Hydrological and morphological processes in the Kura River delta. Water Resources, 30(5), 495-508.

  • Moiola, R. J. & Weiser, D., 1968. Textural parameters; an evaluation. Journal of Sedimentary Research, 38(1), 45-53.

  • Muhaimeed, A. S., Ibrahim, A. & Abdulateef, R. K. (2017). Using of remote sensing for monitoring geomorphological temporal changes for Tigris river in Baghdad city. The Iraqi Journal of Agricultural Science, 48(1), 215.

  • Nicoll, K. (2010). Landscape development within a young collision zone: implications for postTethyan evolution of the Upper Tigris River system in southeastern Turkey. International Geology Review, 52(4-6), 404-422.

  • Okuldaş, C. ve Üner, S. (2013). Alaköy Fayı’nın jeomorfolojik özellikleri ve tektonik etkinliği (Van Gölü Havzası, Doğu Anadolu). Yerbilimleri, 34(3), 141-168.

  • Özalp, S. (2020). Late Pleistocene-Holocene lake terraces, water level change, and active tectonics: Eastern coast of Lake Van, Eastern Anatolia, Turkey. Quaternary International, 542, 54-64.

  • Özkaymak, Ç. (2003). Van Şehri ve Yakın Çevresinin Aktif Tektonik Özellikleri [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 76 s.

  • Perinçek, D. (1978). 5-6-9. Bölge (Güneydoğu Anadolu otokton-allokton birimleri) jeoloji sembolleri (Arşiv No: 6657). TPAO, (yayımlanmamış).

  • Reimer, A., Landmann, G. & Kempe, S. (2009). Lake Van, Eastern Anatolia, hydrochemistry and history. Aquatic Geochemistry, 15(1), 195-222.

  • Reniers, A. J. H. M., Gallagher, E. L., MacMahan, J. H., Brown, J. A., van Rooijen, A. A., van Thiel de Vries, J. S. M. & van Prooijen, B. C. (2013). Observations and modeling of steep-beach grainsize variability. Journal of Geophysical Research: Oceans, 118, 577-591,

  • Saber, R., Işık, V. & Çağlayan, A. (2020). Tectonic geomorphology of the Aras drainage basin (NW Iran): Implications for the recent activity of the Aras fault zone. Geological Journal, 55(7), 5022- 5048.

  • Sissakian, V. & Al-Ansari, N. (2019). Geography, geomorphology, stratigraphy and tectonics of the Euphrates River Basin. Journal of Earth Sciences and Geotechnical Engineering, 9(4), 315-337.

  • Stewart Jr, H. B. (1958). Sedimentary reflections of depositional environment in San Miguel lagoon, Baja California, Mexico. AAPG Bulletin, 42(11), 2567-2618.

  • Sümengen, M. (2008). 1/100000 ölçekli Türkiye jeoloji haritaları, Van K50 Paftası. MTA Arşiv No:65, 18 s.

  • Syvitski, J. P., Peckham, S. D., Hilberman, R. & Mulder, T. (2003). Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology, 162(1-2), 5-24.

  • Şen, G. (2015). Moralli Deresinin (Tuşba, Van) ve Çevresinin Sedimantolojik, Mineralojik ve Jeokimyasal Özelliklerinin İncelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 140 s.

  • Şenel, M., Acarlar, M., Çakmakoğlu, A., Dağer, Z., Erkanol, O., Örence, S., Taşkıran, M. A., Ulu, Ü., Ünal, M.F. ve Yıldırım, H. (1984). Özalp (Van)- İran sınırı arasındaki alanın jeolojisi (Rapor No: 7623). MTA, 18 s. (yayımlanmamış).

  • Şenel, M. (1987). 1/100000 ölçekli açınsama nitelikli Türkiye jeoloji haritaları serisi, Başkale-H38 Paftası. MTA Arşiv No: 52, 17 s.

  • Udden, J.A. (1914). Mechanical composition of clastic sediments. Bulletin of the Geological Society of America, 25, 655-744.

  • Utlu, M. & Ghasemlouni̇a, R. (2021). Flood prioritization watersheds of the Aras River, based on geomorphometric properties: case study Iğdır province. Jeomorfolojik Araştırmalar Dergisi, (6), 21-40. https://doi.org/10.46453/jader.781152

  • Üçler, N. (2019). Akım verilerinin bulanık mantık yöntemiyle tahmini: Bendimahi Çayı örneği. ALKÜ Fen Bilimleri Dergisi, 1(3), 110-119.

  • Üner, S., (2003). Van Gölü Doğusu (Beyüzümü-Göllü Dolayı) Pliyo-Kuvaterner Yaşlı Karasal Çökellerin Sedimantolojisi [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.

  • Üner, S. (2018). Evolution of Çolpan barrier and lagoon complex (Lake Van-Turkey): sedimentological and hydrological approach. Quaternary International, 486, 73-82.

  • Üner, S. (2019). The effect of tectonism on deltaic wetland migration: A case study from Bendimahi River Delta System (Lake Van-Eastern Turkey). Journal of Great Lakes Research, 45(5), 864-871.

  • Üner, S., Yakupoğlu, T. ve Şenol, M. (2003). Beyüzümü delta kompleksinin (Beyüzümü-Van) fasiyes özellikleri ve gelişim modeli. Türkiye Kuvaterneri Çalıştayı IV, Bildiri Özleri Kitabı (s. 195-200). 29-30 Mayıs 2003, İTÜ Avrasya Yerbilimleri Enstitüsü, İstanbul.

  • Valeton, I. (1978). A Morphological and petrological study of the terraces around Lake Van. In E. T. Degens & F. Kurtman (Eds.), The geology of Lake Van. MTA Arşiv No: 169, 158s.

  • Vincent, S. J., Davies, C. E., Richards, K. & Aliyeva, E. (2010). Contrasting Pliocene fluvial depositional systems within the rapidly subsiding South Caspian Basin; a case study of the palaeo-Volga and palaeoKura river systems in the Surakhany Suite, Upper Productive Series, onshore Azerbaijan. Marine and Petroleum Geology, 27(10), 2079-2106.

  • von Suchodoletz, H., Gärtner, A., Hoth, S., Umlauft, J., Sukhishvili, L. & Faust, D. (2016). Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering-The Kura River (southern Caucasus). Geomorphology, 266, 53-65.

  • Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377-392.

  • Winsemann, J., Lang, J., Polom, U., Loewer, M., Igel, J., Pollok, L. & Brandes, C. (2018). Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture. Boreas, 47(4), 973- 1002.

  • Yalçın, H., Gülen, L. ve Utkucu, M. (2013). Türkiye ve yakın çevresinin aktif fayları veri bankası ve deprem tehlikesinin araştırılması. Yerbilimleri, 34(3), 141-168.

  • Yılmaz, A. V. (2017). Ağartı-Özyurt Civarında (Van Gölü Doğusu) Yüzeyleyen Orta Eosen ve Orta Miyosen Türbiditlerinin Sedimantolojik ve Yapısal Özelliklerinin İncelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 57 s.

  • Zorer, Ö. S. (2006). Bendimahi Çayı’nda ve Çayın Van Gölü’ne Döküldüğü Noktada Doğal Radyoaktivite Seviyesinin Belirlenmesi [Yayımlanmamış Doktora Tezi]. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.

  • Şen, G. & Yakupoğlu, T. (2022). Moralli Deresi Sisteminin Kuvaterner Yaşlı Tortullarının Tane Boyu Dağılımı ve Depolanma Ortamları (Tuşba, Van, Türkiye) . Türkiye Jeoloji Bülteni , 65 (2) , 187-216 . DOI: 10.25288/tjb.1041321

  • ISSUE FULL FILE
    View as PDF