Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2021 OCAK Cilt 64 Sayı 1
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Stratigraphic Evolution of the Midyan Basin and its Hydrocarbon Potential (NW Saudi Arabia)
Muhittin Şenalp Sema Tetiker
View as PDF

Abstract: The hydrocarbon-producing Midyan Basin  is located in northwestern Saudi Arabia and is surroundedby the Proterozoic igneous basement of the Arabian Shield. It includes thick hydrocarbon-producing sedimentarysequences deposited in half-grabens that formed during rifting of the Red Sea and the gulfs of Suez and Aqabain the Early Miocene  (23.3 Ma). The early syn-rift succession consists of arid alluvial fan sediments and playa evaporates followed by shallow marine carbonates. The late syn-rift sequences consist of  progradational deep seaturbidites and Alpine-type glacial deposits indicating strong vertical uplift during the climax of the rifting (19 Ma). The post-rift succession overlies the late syn-rift successions and consist of shallow marine marls and evaporites. The aim of this study is to examine the hydrocarbon potential of the turbidite sandstones and the formation of varioustypes of glacial deposits in the Burqan Formation. This study also encompasses the importance of various geologicprocesses in order to understand their significant influence on the geometry continuity and reservoir quality of oiland gas producing genetically different sandstones in the subsurface of the Burqan Formation in the Midyan Basin. The Alpine-type glacial deposits provide an excellent opportunity to study the presence of continuous vertical and lateral facies variations between true glacial glacio-fluvial and glacio-marine deposits in the direction of sediment transportation.  Unsorted moraines deposited in the deep and U-shaped glacial valleys occupy the northwestern partof the basin. They pass gardually in glacio-fluvial sandstones. that contain large polished and striated boulders.  Inthe southeastern part of the deep basin , the glacio-marine deposits are associated with deep sea turbidites and pelagicshales. Many stratigraphic and sedimentologic sections were measured from well-exposed outcrops in every partof the basin to establish various depositional environments. A large number of sandstone samples was collected toexamine their reservoir quality.

  • Glacio-fluvial

  • glacio-marine

  • Gulf of Aqaba

  • Gulf of Suez

  • Midyan Peninsula

  • Sinai Peninsula

  • true glacial

  • Al-Laboun, A., 2012. Did glaciers exist during Pleistocene in the Midyan region northwest corner of the Arabian Peninsula? Arabian Journal of Geosciences, 5(6), 1333-1339.

  • Al-Laboun, A., Al-Quraishi, A., Zaman H. & Benaafi, M., 2014. Reservoir characterization of the Burqan Formation sandstone from Midyan Basin, northwestern Saudi Arabia. Turkish Journal of Earth Sciences, 23(2), 204-214.

  • Al-Ramadan, K, Dogan, U. & Şenalp, M., 2013. Sedimentology and diagenesis of the Miocene Nutaysh Member of the Burqan Formation in the Midyan area (northwestern Saudi Arabia). Geological Quarterly, 57(1), 165–174.

  • Alsharhan, A.A., 2003. Petroleum Geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. American Association of Petroleum Geologists, 87(1), 143-180.

  • Alsharhan, A. & Nairn, A., 1997. Sedimentary Basins and Petroleum Geology of the Middle East. Amsterdam, Elsevier. https://doi.org/10.1016/ B978-0-444-82465-3.X5000-1.

  • Clark, M.D., 1986. Explanatory notes to the geologic map of the Al-Bad’ Quadrangle, Kingdom of Saudi Arabia: Geoscience Map Series GM81A scale 1:250.000 sheet, 28A. Saudi Arabian Deputy Ministry for Mineral Resources, 46 p.

  • Dullo, W.C., Hotzl, H. & Jado, R.A., 1983. New stratigraphical results from the Tertiary Sequence of the Midyan area, NW Saudi Arabia. Newsletter Stratigraphy, 12(2), 75-83.

  • Evans, A.L., 1988. Neogene tectonic and stratigraphic events in the Gulf of Suez rift area, Egypt. Tectonophysics, 153, 235-247.

  • Eyles, N., 1993. Earth’s glacial record and its tectonic setting. Earth-Science Reviews, 35, 1-248.

  • Eyles, N., 2004. Frozen in time: concepts of ‘global glaciation’ from 1837 (die Eiszeit) to 1998 (the Snowball Earth). Geoscience Canada, 31, 157- 166.

  • Eyles, N.K., 2006. The role of meltwater in glacial processes. Sedimentary Geology, 190(1-4), 257– 268.

  • Eyles, N. & Januszczak, N., 2004a. ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews, 65, 1-73.

  • Eyles, N. & Januszczak, N., 2004b. Interpreting the Neoproterozoic glacial record: the importance of tectonics. In G.S. Jenkins, M.A.S. McMenamin, C.P. McKey & L. Sohl (Eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical M

  • Eyles, N. & Januszczak, N., 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciation?. Basin Research, 19, 179-198.

  • Eyles, C.H., Eyles, N. & Miall, A.D., 1985. Models of glacio-marine sedimentation and their application to the interpretation of ancient glacial sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 51, 15-84.

  • Gardner, W.C., Khan, M.A. & Al-Hinai, K.G., 1996. Interpretation of Midyan and Sinai geology from a Landsat TM image. Arabian Journal Science, 21(4A), 571-586.

  • Garfunkel, Z., 1988. Relation between continental rifting and uplifting: evidence from the Suez rift and northern Red Sea. Tectonophysics, 150, 33– 49.

  • Garfunkel, Z. & Bartov, Y., 1977. The tectonics of the Suez rift. Geological Survey of Israel Bulletin, 71, 1-44.

  • Hirst, J.P.P., Benbakir, A., Payne, D.F. & Westlake, I.R., 2002. Tunnel valleys and density flow processes in the upper Ordovician glacial succession, Illizi Basin, Algeria: influence on reservoir quality. Journal of Petroleum Geology, 25, 297-324.

  • Hughes, G.W. & Filatoff, J., 1995. New biostratigraphic constraints on Saudi Arabian Red Sea pre-and synrift sequences. In M.I. Al-Husseini (Ed.), Middle East Petroleum Geosciences GEO’94 (517-528). Gulf PetroLink, Bahrain, 2.

  • Hughes, G.W. & Johnson, R.S., 2005. Lithostratigraphy of the Red Sea Region. GeoArabia, 10(3). 49-129.

  • Le Heron, D.P., Craig, J. & Etienne, J.L., 2009. Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East. Earth-Science Reviews, 93(3-4) 47-76.

  • Le Heron, D.P., Armstrong, H.A., Wilson, C., Haward, J.P. & Gindre, L., 2010. Glaciation and deglaciation of the Libyan desert: the Late Ordovician record. Sedimentary Geology, 223, 100-125.

  • Matthew, R.B., Doyle, P. & Mather, A.E., 1996. Dropstones: their origin and significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 121(3-4), 331-339.

  • Molnia, B.F., 2004. Glossary of Glacier Terminology: A glossary providing the vocabulary necessary to understand the modern glacier environment: U.S. Geol Surv Open-File Rep 1216 p.

  • Motti, E., Teixido, L., Vazquez-Lopez, R. & Vial, A., 1982. Magna Massif Area: Geology and Mineralization: Saudi Arabian Deputy Ministry for Mineral Resources, BRGM-OF-02-16, 44 p.

  • Rasul, N.M.A. & Stewart, I.C.F., (Ed.). 2018. Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-319-99408-6

  • Schack Pedersen, S.A., 2012. Glaciodynamic sequence stratigraphy. In M. Huuse, J. Redfern, D. Le Heron, R.J. Dixon, A. Moscarıello & J. Craig (Eds.), Glaciogenic Reservoirs and Hydrocarbon Systems (29-51). Geological Society Special Publication, 29-5

  • Şenalp, M., 2016. Kızıl Denizin açılımı ve Midyan Havzası’nın stratigraphic evrimi (KB Suudi Arabistan). Türkiye Petrol Jeologları Derneği Bülteni, 28, 19-58.

  • Şenalp, M., 2006b. Stratigraphy and Sedimentology of the Paleozoic Successions in Saudi Arabia, (Volume 2). Upstream Ventures Department of Saudi Aramco.

  • Şenalp, M., 2016. Kızıl Denizin açılımı ve Midyan Havzası’nın stratigraphic evrimi (KB Suudi Arabistan). Türkiye Petrol Jeologları Derneği Bülteni, 28, 19-58.

  • Şenalp, M. & Al-Laboun, A., 2000. New Evidence on the Late Ordovician Glaciation in Central Saudi Arabia. Saudi Aramco Journal of Technology, 11- 40

  • Şenalp, M., Bahtiyar, I., Isıkalp, U., Uz, E. & Kaya, M. 2018. Sequence Stratigraphy and Sedimentology of the Paleozoic Successions on the Arabian Platform and Their Impact to Hydrocarbon Explorations in Southeast Turkey. Turkish Association of Petro

  • Stern, R.J. & Johnson, P., 2010. Continental Lithosphere of the Arabian Plate; a Geologic, Petrologic, and Geophysical Synthesis. Earth Science Reviews, 101, 29-67.

  • van der Vegt, P., Janszen, P. & Moscarifello, A., 2012. Tunnel valleys: current knowledge and future perspectives. In M. Huuse, J. Redfern, D. Le Heron, R.J. Dixon, A. Moscariello, J. Craig (Eds.), Glaciogenic Reservoirs and Hydrocarbon Systems (pp.


  • Şenalp, M , Tetiker, S . (2020). Stratigraphic Evolution of the Midyan Basin and its Hydrocarbon Potential (NW Saudi Arabia) . Türkiye Jeoloji Bülteni , 64 (1) , 1-40 . DOI: 10.25288/tjb.663574

  • Geochemical Properties of Phyllosilicates in Göksun, Afşin and Ekinözü Metamorphites (Kahramanmaraş, Turkey)
    Deniz Hozatlioğlu Ömer Bozkaya Hüseyin Yalçin
    View as PDF

    This study determined the geochemical properties of phyllosilicates in the Upper Palaeozoic-Lower Mesozoic metamorphic units outcropping from west to east in the vicinities of Göksun, Afşin and Ekinözü towns in the north of Kahramanmaraş province in the westerly part of the Eastern Taurus mountains. Geochemical examination of phyllosilicates (major and trace elements, stable isotope) was carried out on pure K-micas and illite/K-micas separated from low-medium grade metamorphic samples. According to the main oxide composition of the phyllosilicates, illite/K-micas from the areas of Afşin and Göksun contain higher SiO2 and Al2O3 and lower MgO, Fe2O3, MnO and Na2O compared to those in the area of Ekinözü. The minerals represented by schists in the Ekinözü K-micas are close to having a biotite-celadonite composition while those with phyllites in Afşin and Ekinözü are close to muscovite composition. Chlorites have a trioctahedral composition between chamosite and clinochlor. Illite/K-micas with both trioctahedral and dioctahedral characteristics show a composition between muscovite and biotite (biotite-celadonite, muscovite-phlogopite, muscovite-ferriphengite, muscovite-ferrobiotite, Al-phlogopite-Alannite) in general. In the trace element content of phyllosilicate minerals, transition metals and granitoid elements are at high concentrations while other elements, especially elements with low (LFSE) and high field strength (HFSE), display low concentrations. In the chondrite-normalized trace element content of phyllosilicate minerals, chlorites have higher values compared to K-micas and trioctahedral K-micas show lower values compared to dioctahedral K-micas. Rare earth element (REE) distribution of chlorite and sericite/K-mica minerals is normalised to chondrite and North American Shale Composition (NASC); the dioctahedral K-mica of Afşin region has the highest depletion, while the trioctahedral mica of Ekinözü has the highest enrichment. The oxygen and hydrogen isotope composition of the phyllosilicate minerals show that they are in the hypogene region, which represents high temperature and deep environment conditions. The oxygen and hydrogen isotope values of sericite/K-mica and chlorites indicate that the formation temperatures of these minerals varied between 375 and 500 °C. 40Ar/39Ar radiometric age data for the metamorphic rocks show that the metamorphism developed during the Upper Cretaceous (Santonian-Campanian) in the Afşin and Göksun regions and the Lower-Middle Eocene (Ypresian-Bartonian) periods in the Ekinözü region. 

  • Major and trace elements

  • metamorphism

  • metamorphites

  • phyllosilicates

  • stable and radiogenic isotopes

  • Taurus mountains

  • Aktaş, G., & Robertson, A.H.F., 1990. Tectonic evolution of Tethys Suture Zone in S.E. Turkey: Evidence from the petrology and geochemistry of Late Cretaceous and Middle Eocene extrusives. In Malpas and others (eds.), Ophiolites Oceanic Crustal Analo

  • Aslaner, M., 1973. İskenderun-Kırıkhan Bölgesindeki Ofiyolitlerin Jeoloji ve Petrografisi. Maden Tetkik ve Arama Enstitüsü Yayınları, Ankara, 150, 78 s.

  • Asutay, H.J., 1987. Baskil (Elazığ) çevresinin jeolojisi ve Baskil magmatitlerinin petrolojisi. Maden Tetkik ve Arama Dergisi, 107, 49-72.

  • Bailey, S.W., 1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1-7.

  • Baştuğ, C., 1976. Bitlis napının stratigrafisi ve Güneydoğu Anadolu sütur zonunun evrimi. Yeryuvarı ve İnsan, 1/3, 55-61.

  • Baştuğ, C., 1980. Sedimentation, defromation and melange emplacement in the Lice basin, Dicle-Karabegan area, southeast Turkey (Yayımlanmamış Doktora Tezi). Orta Doğu Teknik Üniversitesi.

  • Bedi, Y., Usta, D., Özkan, M.K., Beyazpirinç, M., Yıldız, H. ve Yusufoğlu, H., 2005. Doğu Toroslar’da (Göksun-Sarız-Elbistan) Allokton İstiflerin Tektono-Stratigrafik Özellikleri. 58.Türkiye Jeoloji Kurultayı (11-17 Nisan 2005 Ankara) Bildiriler Kita

  • Bedi, Y., Yusufoğlu, H., Beyazpirinç, M., Özkan, M.K., Usta, D., Yıldız, H., 2009. Doğu Toroslar’ın Jeodinamik Evrimi (Afşin-Elbistan-Göksun)- Sarız Dolayı) (Derleme Rapor No:11150). Maden Tetkik ve Arama Genel Müdürlüğü 388 s. (yayımlanmamış).

  • Bilgiç, T., 2002. 1/500.000 ölçekli Türkiye Jeoloji Haritaları No:10 Sivas Paftası (Ed.: M. Şenel). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Bozkaya, Ö., 1999. Alanya Metamorfitleri doğu kesiminin (Anamur Kuzeyi) mineralojisi: Kristalinite, b0 ve politipi. 11. Mühendislik Haftası, Yerbilimleri Sempozyumu, 20-23 Ekim 1999, Isparta, 183-192.

  • Bozkaya, Ö., 2001. Demirtaş-Alanya yöresinde Alanya naplarının metamorfizmasına ilişkin yeni mineralojik bulgular, Orta Toroslar, Türkiye. Yerbilimleri, 23, 71-86.

  • Bozkaya, Ö. & Yalçın, H., 2004. New mineralogical data and implications for the tectono-metamorphic evolution of the Alanya Nappes, Central Tauride Belt, Turkey. International Geology Review, 46, 347-365.

  • Bozkaya, Ö. & Yalçın, H., 2013. Geochemical monitoring of clays for diagenetic evolution of the Paleozoic-Lower Mesozoic sequence in the northern Arabian plate: Hazro and Amanos regions, Southeastern Turkey. Journal of African Earth Sciences, 86, 10-

  • Bozkaya, Ö., Yalçın, H. ve Başıbüyük, Z., 2003. Pütürge (Malatya) bölgesindeki pirofillit oluşumlarının mineralojisi (Rapor No: M-200). Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projesi, 63 s., (yayımlanmamış).

  • Bozkaya, Ö., Yalçın, H., Başıbüyük, Z., Özfırat, O. & Yılmaz, H., 2007a. Origin and evolution of the Southeast Anatolian Metamorphic Complex (Turkey). Geologica Carpathica, 58, 197-210.

  • Bozkaya, Ö., Yalçın, H., Başıbüyük, Z. & Bozkaya., G., 2007b. Metamorphic-hosted pyrophyllite and dickite occurrences from the hydrous alsilicate deposits of the Malatya-Pütürge region, Central Eastern Anatolia, Turkey. Clays and Clay Minerals, 55 (4

  • Brill, B.A., 1988. Illite crystallinity, b0 and Si content of K-white mica as indicators of metamorphic conditions in low-grade metamorphic rocks at Cobar, New South Wales. Australian Journal of Earth Sciences, 35, 295-302.

  • Candan, O., Çetinkaplan, M., Topuz, G., Koralay, E., Oberhaensli, R., Yiğitbaş, E. ve Li, Q., 2012. Berit Yöresindeki (Kahraman Maraş) Eklojit – Granat Piroksenitlere Ait Ön Bulgular. 65.Türkiye Jeoloji Kurultayı (2-6 Nisan 2012, Ankara), Bildiriler

  • Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471-485.

  • Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702-1703.

  • Çoğulu, H.E., Delaloye, M, Vuagnat, M. & Wagner, J.J., 1976. Some Geochemical, Geochronological and Petrophysical Data on the Ophiolitic Massif from the Kızıl Dağ Hatay-Turkey. Compte Rendu Des Seances de la Societe de Physique et D’historic Naturell

  • Deer, W.A., Howie, R.A. & Zussman, J., 1962. Rockforming Minerals. Longmans, London, 270 p.

  • Delaloye, M., Pişkin, Ö., Voldet, P., Vuagnat, M. & Wagner, J.J., 1979. Rare Earth Element Concentrations in Mafics from the Kızıldağ Ophiolite (Hatay, Turkey). Schweizerisch Mineralogische und Petrographische Mitteilungen, 59, 67-73.

  • Delaloye, M., Selçuk, H., Vuagnat, M. & Wagner, J., 1980a. Geological section through the Hatay ophiolite along the Mediterranean coast, southern Turkey. Ofioliti, 5, 205-216.

  • Delaloye, M., De Souza, H., Wagner, J. & Hedley, I., 1980b. Isotopic ages on ophiolites from the eastern Mediterranean. In A. Panayiotou (ed.), International Symposium on Ophiolites, Lefkoşe, 292-295.

  • Dilek, Y. & Thy, P., 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos, 113, 68-87.

  • Dubertret, L., 1953. Géologie des roches vertes du NW de la Syrie et du Hatay (Turquie) Notes Mémoire, Moyen Orient, 6, 227 p.

  • Erdem, E. ve Bingöl, A.F., 1997. Pütürge (Malatya) Masifi’ndeki gnaysların petrografik ve petrolojik özellikleri. Selçuk Üniversitesi, MühendislikMimarlık Fakültesi 20. Yıl Jeoloji Sempozyumu (12-16 Mayıs 1997, Konya) Bildiriler Kitabı, 217- 227.

  • Ferronsky, V.I. & Polyakov, V.A., 2012. Isotopes of the Earth’s Hydrosphere. Springer, Netherlands, 630 p.

  • Fleet, A.J., 1984. Aqueous and Sedimentary Geochemistry of the Rare Earth Elements. In P. Henderson (ed.), Rare Earth Elements, Developments in Geochemistry 2 (pp. 343-373). EIsevier, Amsterdam.

  • Foster, M.D., 1960. Interpretation of Composition of Trioctahedral Micas. United States Geological Survey Professional Paper, 354B, 1-49.

  • Foster, M.D.,1962. Interpretation of the Composition and a Classification of the Chlorites. United States Geological Survey Professional Paper, 414A, 1-33.

  • Fourcade, S., Peucat, J., Martineau, F., Cuesta, A., Corretgé, L.G. & Gil Ibarguchi, J.I., 1991. Análisis de isótopos de oxígeno y edad Rb-Sr del plutón zonado de Caldas de Reyes (Galicia. España). Geogaceta, 6, 7-9.

  • Frey M., 1987. Very low-grade metamorphism of clastic sedimentary rocks. In M. Frey (ed.), Low Temperature Metamorphism (pp. 9-58). Blackie, Glasgow and London.

  • Gat, J.R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulos, D., and co-authors., 1996. The Stable Isotope Composition of Waters of the Eastern Mediterranean Sea. Journal of Geophysical Research-Oceans, 101, 6441-6451.

  • Genç Ş.C, Yiğitbaş, E. ve Yılmaz, Y., 1993. Berit Metaofiyolitinin jeolojisi. A. Suat Erk Jeoloji Sempozyumu, 2-5 Eylül 1991, Ankara Üniversitesi Fen Fakültesi Jeoloji Mühendisliği Bölümü, Ankara, 37-52.

  • Göncüoğlu, M.C., 2010. Türkiye Jeolojisine Giriş: Alpin ve Alpin Öncesi Tektonik Birliklerin Jeodinamik Evrimi. Maden Tetkik ve Arama Genel Müdürlüğü, Monografi Serisi No. 5, Ankara, 69 s.

  • Göncüoğlu, M.C., Dirik, K. & Kozlu, H., 1997. PreAlpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Géologique Pays Hellénique, 37, 515-536.

  • Graham, S.A., McCloy, C., Hitzman, M., Ward, R. & Turner, R., 1984. Basin evolution during change from convergent to transform continental margin in central California. American Association of Petroleum Geologists Bulletin, 68, 233-249.

  • Gromet, L.P., Dymek, R.F., Haskin, L.A. & Korotev, R.L., 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.

  • Guidotti, C.V., 1984. Micas in metamorphic rocks. In S.W.Bailey (ed.), Micas. Reviews in Mineralogy, Mineralogical Society of America, 13, 357-467.

  • Hall, C.M., 2013. Direct Measurement of Recoil Effects on 40Ar/39Ar Standards. In F. Jourdan, D.F. Mark & C. Verati, (eds.), Advances in 40Ar/39Ar Dating: from Archaeology to Planetary Sciences. Geological Society, London, Special Publications, 378,

  • Hall, R., 1976. Ophiolite emplacement and evolution of the Taurus suture zone, southeast Turkey. Geological Society of America Bulletin, 87, 1078- 1088.

  • Hall, R., 1980. Unmixing a melange: The petrology and history of a distrupted and metamorphosed ophiolite, SE Turkey. Geological Society of London Journal, 137, 195-206.

  • Harris, N.B.W. & Holland, T.J.B., 1984. The significance of cordierite-hypersthene assemblages from the Beitbridge region of the Central Limpopo Belt; evidence for rapid decompression in the Archaean. American Mineralogist, 69, 1036-1049.

  • Haskin, L.A., Haskin, M.A., Frey, F.A. & Wildeman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In L.H. Ahrens (ed.), Origin and Distribution of the Elements (889-912.). Pergamon Press.

  • Heizler, M.T. & Harrison, T.M., 1988. Multiple trapped argon isotope components revealed by 40Ar/39Ar isochron analysis. Geochimica et Cosmochimica Acta, 52, 1295-1303.

  • Helvacı, C., 1983. Avnik (Bingöl) bölgesi Bitlis Masifi Metamorfik kayalarının Rb/Sr jeokronolojisi. Türkiye Jeoloji Kurumu, 37. Bilimsel ve Teknik Kurultayı (21-25 Şubat 1983, Ankara) Bildiri Özleri Kitabı, 111-111.

  • Hickmott, D.D., Shimizu, N., Spear, F.S. & Selverstone, J., 1987. Trace-element zoning in a metamorphic garnet. Geology, 15, 573-576.

  • Hozatlıoğlu, D., 2018. Göksun-Binboğa ve Engizek Metamorfitleri’nin Mineralojik-Petrografik ve Jeokimyasal İncelenmesi (Yayımlanmamış Doktora Tezi). Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas, 384 s.

  • Hozatlıoğlu, D., Bozkaya, Ö., Yalçın, H., Yılmaz, H. 2020. Mineralogical characteristics of metamorphic massif units outcropping in Göksun, Afşin and Ekinözü (Kahramanmaraş) region. Bulletin of The Mineral Research and Exploration 162, 103-143. https

  • Huebner, M., Kyser, T.K. & Nisbet, E.G., 1986. Stableisotope geochemistry of high-grade metapelites from the Central zone of the Limpopo belt. American Mineralogist, 71, 1343-1353.

  • Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Fredrichsen, H., Flehmig, W., Hochstrasser, K., Roggviler, P. & Schwander, H., 1986. The evolution of illite to muscovite. Mineralogical and isotopic data from the Glarus Alps, Switzerland. Contr

  • Ireland, B.J., Curtis C.D. & Whiteman J.A., 1983. Compositional variation within some glauconites and illites and implications for their stability and origins. Sedimentology, 30, 769-786.

  • Juteau, T., 1980. Ophiolites of Turkey. Ofioliti, 2, 199- 238.

  • Karaoğlan, F., 2012. Güneydoğu Anadolu Orojenik Kuşağındaki Ofiyolitik ve Granitik Kayaçların Jeokronolojisi (Yayımlanmamış Doktora Tezi). Çukurova Üniversitesi, Adana, 288 s.

  • Karaoğlan F., Parlak O., Klötzli U., Thöni M. & Koller F., 2013. U-Pb and Sm-Nd geochronology of the Kizildag (Hatay, Turkey) Ophiolite: Implications for the timing and duration of suprasubduction zone type oceanic crust formation in the southern Neo

  • McDougall, I., Harrison, T.M., 1999. Geochronology and Thermochronology by the 40Ar-39Ar method. Oxford Monographs on Geology and Geophysics, New York, 2nd Edition, 288 p.

  • McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In B.R. Lipin, G.A. McKay (eds.), Geochemistry and mineralogy of rare earth elements (pp. 169-200). Reviews in Mineralogy. Mineralogica

  • Merriman, R.J. & Frey, M., 1999. Patterns of very low-grade metamorphism in metapelitic rocks. In M. Frey & D. Robinson, (eds.), Low Grade Metamorphism, (pp. 61-107) .Blackwell Sciences Ltd., Oxford, United Kingdom.

  • Merriman, R.J. & Peacor D.R., 1999. Very lowgrade metapelites: mineralogy, microfabrics and measuring reaction progress. In M. Frey & D. Robinson, (eds.) (10-60). Blackwell Sciences Ltd., Oxford, United Kingdom.

  • Meunier, A. & Velde, B., 1989. Solid solutions in I/S mixed-layer minerals and illite. American Mineralogist, 74, 1106-1112.

  • Michard, A., Whitechurch, H., Ricou, L.E., Montigny & R., Yazgan, E., 1984. Tauric subduction (Malatya-Elazığ provinces) and its bearing on tectonics of the Tethyan realm in Turkey. In J.E. Dixon & A.H.F. Robertson (eds.), The Geological Evolution of

  • Middleton, A.W., Uysal, I.T., Bryan, S.E., Hall, C.M. & Golding, S.D., 2014. Integrating 40Ar/39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology of authigenic illite to evaluate tectonic reactivation in an intraplate setting, central Australia. Geochimica

  • Oberhänsli, R., Bousquet, R., Candan, O. & Okay, A., 2012. Dating Subduction Events in East Anatolia, Turkey. Turkish Journal of Earth Sciences, 21 (1), 1-17.

  • Oberhänsli, R., Koralay, E., Candan, O., Pourteau, A. & Bousquet, R., 2014. Late Cretaceous eclogitic high-pressure relics in the Bitlis Massif. Geodinamica Acta, 26(3-4), 175-190. https://doi. org/10.1080/09853111.2013.858951

  • Ohr, M., Halliday, A.N. & Peacor, D.R., 1994. Mobility and fractionation of rare earth elements in argillaceous sediments: implications for dating diagenesis and low-grade metamorphism. Geochimica et Cosmochimica Acta, 58, 289-312

  • Okay, A.I., Zattin, M. & Cavazza, W., 2010. Apatite fission-track data for Miocene Arabia-Eurasia collision. Geology, 38, 35-38.

  • Özgül, N., 1976. Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeoloji Kurumu Bülteni, 19, 65-78.

  • Özgül, N., 1984. Stratigraphy and tectonic evolution of the Central Taurides. In O. Tekeli & M.C. Göncüoğlu (eds.), International Symposium on the Geology of Taurus Belt (26-29 September 1983, Ankara), 77-90.

  • Özkaya, İ., 1978. Ergani-Maden yöresi stratigrafisi. Türkiye Jeoloji Kurumu Bülteni, 21(2), 129-139.

  • Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F. & Höck, V., 2009. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473, 173-187.

  • Perinçek, D., 1980a. Arabistan Kıtası kuzeyindeki tektonik evrimin kıta üzerinde çökelen istifteki etkileri. Türkiye 5. Petrol Kongresi Tebliğleri, 77- 93.

  • Perinçek, D., 1980b. IX. Bölge Hakkari, Yüksekova, Çukurca, Beytüşşebap, Uludere, Pervari dolayının jeolojisi (Rapor No:1481). Türkiye Petrolleri Anonim Ortaklığı, Arama Grubu Başkanlığı, 80 s.

  • Perinçek, D. ve Özkaya, İ ., 1981. Arabistan levhası kuzey kenarı tektonik evrimi. Yerbilimleri, 7(8), 91-102.

  • Rızaoğlu, T., Parlak, O., Höck, V., Koller, F., Hames, W.E., Billor, Z., 2009. Andean-type active margin formation in the eastern Taurides: Geochemical and geochronogical evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics, 473, 18

  • Robertson, A.H.F., Ustaömer, T., Parlak, O., Ünlügenç, U.C., Taşlı, K. & İnan, N., 2006. The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous-Early Cenozoic accretionary/ collisional processes related to closure of the Southern Ne

  • Robinson, D., Nicholls R.A. ve Thomas L.J., 1980. Clay mineral evidence for low-grade Caledonian and Variscan metamorphism in south-western Dyfed, South Wales. Mineralogical Magazine, 43, 857-863.

  • Roddick, J.C., Cliff, R.A. & Rex, D.C., 1980. The evolution of excess argon in Alpin biotites-A 40Ar/39Ar analysis. Earth and Planetary Science Letters, 48, 185-208.

  • Rye, R.O., Schuiling, R.D., Rye, D.M. & Jansen, J.B.H., 1976. Carbon, hydrogen and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece. Geochimica et Cosmochimica Acta, 40, 1031-1049.

  • Savin, S.M. & Lee, M., 1988. Isotopic studies of phyllosilicates. In S.W. Bailey (ed.), Hydrous Phyllosilicates (pp. 189-223). Reviews in Mineralogy, Mineralogical Society of America.

  • Selçuk, H., 1981. Etude geologique de la partie meridionale du Hatay (Turquie) (Unpublished doctoral dissertation). University de Geneve, 116 p

  • Sharp, Z.D., 1990. Laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 1353-1357.

  • Sheppard, S.M.F., 1981. Stable isotope geochemistry of fluids. In D.T. Rickard & F.E. Wickman, (eds.), Chemistry and Geochemistry of Solutions at High Temperatures and Pressures. Physics and Chemistry of the Earth, 13/14, 419-445.

  • Sheppard, S.M.F. & Gilg, H.A., 1996. Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 1-24.

  • Sheppard, S.M.F., Nielsen, R.L. & Taylor, H.P. Jr., 1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 64, 755-777.

  • Sun, S.S. & McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A.D. Saunders & M.J. Norry (eds.), Magmatism in the Ocean Basins, Special Publication (313- 345). Geologica

  • Şengör, A.M.C. & Yılmaz, Y., 1981. Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics, 75, 181-241.

  • Şengör, A.M.C. ve Yılmaz, Y., 1983. Türkiye’de Tetis’in evrimi: Levha tektoniği açısından bir yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Sayısı, No:1, 75 s.

  • Tarhan, N., 1984. Göksun-Afsin-Elbistan dolayının jeolojisi. Jeoloji Mühendisliği Dergisi, 19, 3-9.

  • Taylor, H.P., 1974. The Application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843-883.

  • Turan, M., Aksoy, E. ve Bingöl, F.A., 1995. Doğu Torosların jeodinamik evriminin Elazığ civarındaki özellikleri. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 7, 177-199.

  • Ulu, Ü., 2002. 1/500.000 ölçekli Türkiye Jeoloji Haritaları No:16 Hatay Paftası (Ed.: M. Şenel). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Uysal, I.T., Golding, S.D. & Baublys, K., 2000. Stable isotope geochemistry of authigenic clay minerals from Late Permian coal measures, Queensland, Australia: implications for the evolution of the Bowen Basin. Earth and Planetary Science Letters, 18

  • Uysal, T., Mutlu, H., Altunel, E., Karabacak, V. & Golding, S.D., 2006. Clay mineralogical and isotopic (K-Ar, δ18O, δD) constraints on the evolution of the North Anatolian Fault Zone, Turkey. Earth and Planetary Science Letters, 243, 181-1

  • Uysal, İ., Ersoy, E.Y., Karslı, O., Dilek, Y., Sadıklar, M.B., Ottley, C.J., Tiepolo, M. & Meisel, T., 2012. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: constraints from mineral compo

  • Yalçın, H., Bozkaya, Ö. ve Başıbüyük, Z., 1999. Üst Paleozoyik yaşlı çok düşük dereceli Malatya metamorfitlerinin fillosilikat mineralojisi. 52. Türkiye Jeoloji Kurultayı (10-12 Mayıs, Ankara) Bildiriler Kitabı, 271-278.

  • Yazgan, E., 1981. Doğu Toroslarda etkin bir paleo-kıta kenarı etüdü (Üst Kretase-Orta Eosen) MalatyaElazığ, Doğu Anadolu. Yerbilimleri, 7, 83-104.

  • Yazgan, E., 1983. A geotraverse between the Arabian Platform and the Munzur Nappes. International Symposium on the Geology of Taurus Belt, Guide Book for Excursion V., Ankara, 17 p.

  • Yazgan, E., 1984. Geodynamic evolution of the Eastern Taurus region. In O. Tekeli & M.C. Göncüoğlu (eds.), International Symposium on the Geology of Taurus Belt (26-29 September 1983, Ankara), 199-208.

  • Yazgan, E. & Chessex, R., 1991. Geology and Evolution of the Southeastern Taurides in the Region of Malatya. Türkiye Petrol Jeologları Derneği Bülteni, 3, 1-42.

  • Yazgan, E, Michard, A., Whitechurch, H. & Montigny, R., 1983. Le Taurus de Malatya (Turquie orientale), élément de la suture sud-téthysienne. Bulletin de la Société Géologique de France, 25, 59-63.

  • Yıldırım, M. ve Yılmaz, Y., 1991. Güneydoğu Anadolu orojenik kuşağının ekaylı zonu. Türkiye Petrol Jeologları Derneği Bülteni, 3(1), 57-73.

  • Yılmaz, A., Bedi, Y., Uysal, Ş. ve Aydın, N., 1997. 1/100.000 Ölçekli Türkiye Jeoloji Haritaları. Elbistan E-23 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etüdleri Dairesi, Ankara, 18 s.

  • Yılmaz, A., Bedi, Y., Uysal, Ş., Yusufoğlu, H. ve Aydın, N., 1993. Doğu Torodlar’da Uzunyayla ile Beritdağı arasının jeolojik yapısı. Türkiye Petrol Jeologları Derneği Bülteni, 5, 69-87.

  • Yılmaz, Y., 1993. New Evidence and Model on the Evolution of the Southeast Anatolian Orogen. Geological Society of America Bulletin, 105 (2), 251-271.

  • Yılmaz, Y., Dilek, Y. ve Işık, H., 1981. Gevaş (Van) ofiyolitinin jeolojisi ve sinkinematik bir makaslama zonu. Türkiye Jeoloji Kurumu Bülteni, 24, 37-44.

  • Yılmaz, Y. ve Gürer, Ö.F., 1996. Andırın (Kahramanmaraş) Dolayında Misis-Andırın Kuşağının Jeolojsi ve Evrimi. Turkish Journal of Earth Sciences, 5, 39-55.

  • Yılmaz, Y., Gürpınar, O., Kozlu, H., Gül, M.A., Yiğitbaş, E., Yıldırım, M., Genç, Ş.C. ve Keskin, M., 1987. Maraş kuzeyinin jeolojisi (AndırınBerit-Engizek-Nurhak-Binboğa Dağları) Cilt (IIIII) (Rapor No: 2028). Türkiye Petrolleri Anonim Ortaklığı, An

  • Yılmaz, Y., Gürpınar, O. ve Yiğitbaş, E., 1988. Amanos dağları ve Maraş dolaylarında Miyosen havzalarının tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 1, 52-72.

  • Yılmaz, Y. ve Yıldırım, M., 1996. Geology and Evaluation of the Nap Region (the Metamorphic Massifs) of the Southeast Anatolian Orogenic Belt, Turkish Journal of Earth Sciences, 5(3), 21- 38.

  • Yılmaz, Y. ve Yiğitbaş, E., 1990. SE Anadolu’nun farklı ofiyolitik-metamorfik birlikleri ve bunların jeolojik evrimdeki rolü. Türkiye 8. Petrol Kongresi (16-20 Nisan 1990, Ankara) Bildirileri, 128-140.

  • Yılmaz, Y., Yiğitbaş, E. & Genç, Ş.C., 1993. Ophiolitic and metamorphic assemblages of Southeast Anatolia and their significance in the geological evolution of the Orogenic Belt. Tectonics, 12, 1280-1297.

  • Yılmaz, Y., Yiğitbaş, E., Yıldırım, M. ve Genç, Ş.C., 1992. Güneydoğu Anadolu metamorfik masiflerinin kökeni. Türkiye 9. Petrol Kongresi (17-21 Şubat 1992, Ankara) Bildirileri, 296-306.

  • Zheng, Y.F., 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247-263.


  • Hozatlıoğlu, D , Bozkaya, Ö , Yalçın, H . (2020). Göksun, Afşin ve Ekinözü (Kahramanmaraş) Metamorfitlerindeki Fillosilikatların Jeokimyasal Özellikleri . Türkiye Jeoloji Bülteni , 64 (1) , 41-74 . DOI: 10.25288/tjb.672813

  • New Petrophysical Equations for the Tanuma-Ahmadi Interval in the East-Baghdad Oil Field
    Maan H. Abdullah Al-Majid
    View as PDF

    Abstract: Porosity and density information were taken from five well logs scattered in East Baghdad oil field. Newempirical equations (porosity-depth, density-depth) were established for all the geological formations within theTanuma-Ahmadi interval. The correlation coefficient (R) of these equations derived for each formation ranged from0.04 to 0.61 which was attributed to variable lithological effects.The depth information for (126) velocity analysis sites covering the field were used to apply those new equations.After the new empirical equations were applied on the whole field, porosity and density contour maps for theperiod (Tanuma-Ahmadi) were produced. The locations of high porosity zones were identified and related to thecompaction and petroleum distribution in the field.

  • East Baghdad oil field

  • empirical equations

  • petrophysical parameters

  • seismic velocity analyses

  • Al-Ameri, T.K. & Al-Obaydi, 2011. Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Journal of Marine and Petroleum Geology, Elsevier, 28, 880-894.

  • Al-Jawad M. S. & Kareem K. A., 2016. Geological Model of Khasib Reservoir- Central Area/East Baghdad Field. Iraqi Journal of Chemical and Petroleum Engineering, 17(3), 1-10.

  • Al-majid, M., 1992. The study of compaction in the east Baghdad oil field by using seismic velocity analyses (Unpublished MSc thesis), University of Mosul, Iraq.

  • Asquith, G. B. & Krygowski, D., 2004, Basic Well Log Analysis, 2nd Edition: AAPG Methods in Exploration Series 16. The American Association of Petroleum Geologists Tulsa, Oklahoma, 244 p.

  • Dieokuma. T., Ming, G.H., Uko, E.D., Tamunoberetonari, I. & Emudianughe, J.E., 2014. Porosity modeling of the south-east Niger deltbasin, Nigeria. International Journal of Geology, Earth and Environmental Sciences, 4(1), 49-60.

  • Fuchtbauer H (1967). Influence of different types of diagenesis on sandstone porosity. Proceedings of the 7th World Petroleum Congress 2, 353 – 369

  • Kharaka, Y.K. & Berry, E.A.E., 1976. Chemistry of waters expelled from sands and sandstones. In G.V. Chilingarian & K.H. Wolf (Eds.), Compaction of Coarse-Grained Sediments II (pp. 41-68). Elsevier, Amsterdam.

  • Schmidt, V., McDonald, D.A. & Platt, RL. 1977, Pore geometry and reservoir aspects of secondary porosity in sandstones. Bulletin of Canadian Petroleum Geology, 25, 271 – 290.

  • Telford, W.M., Geldart, L.P., & Sheriff, R.E.,1976. Applied Geophysics 2nd edition. Cambridge University Press.

  • Wolf, K.H. & Chilin A.G., 1976. Diagenesis of sandstones and compaction. In G.V. Chilingarian & K.H. Wolf (Eds.), Compaction of CoarseGrained Sediments II (pp. 69-444). Elsevier, Amsterdam.


  • Abdullah, M . (2020). New Petrophysical Equations for the Tanuma-Ahmadi Interval in the East-Baghdad Oil Field . Türkiye Jeoloji Bülteni , 64 (1) , 75-82 . DOI: 10.25288/tjb.587368

  • Neogene Stratigraphy and Structural Elements of the Aksu Basin (Antalya, Turkey)
    Muhammad Harbi Wasoo Ayten Ece Koç
    View as PDF

    Abstract: The Tauride fold and thrust belt formed during ~N-S convergence between African and Eurasian platessince Cretaceous time. This movement led to the development of a complex morpho-tectonic structure, so-called‘Isparta Angle’ during the early stage of the Neogene time. In Miocene time, the western and central Tauridesand the inner part of the Isparta Angle became overlain by marine sedimentary basins which are characterized byclastics and carbonates. Aksu Basin which is determined as study area is one of these marine basins and is locatedin the center of the Isparta Angle. Therefore, Aksu Basin contains the geological records of the crustal deformationoccurred during the Neogene period.The sedimentary infill of the Aksu Basin is mainly characterized by marine clastics with more than 1 km thickfrom the Middle Miocene to Pliocene. The pre-Pliocene basin infill was subjected to intense deformation. Sedimentarysequence of the Aksu Basin starts with Burdigalian-Langhian Oymapınar Limestone which unconformably overliesthe basement unit. The lithostratigraphy in the north is different from that of the south of the basin. The youngestMiocene unit in the north of the basin is the Tortonian aged and the units deposited between Tortonian and Pleistoceneis missing in the sequence. On the other hand, the sequence is more complete in the south of the basin. In additionto lithostratigraphic features, the structural elements which are forming the Aksu Basin are also carried out duringthis study. These are the Aksu and Kapıkaya thrusts. Field observations and results obtained from the kinematicmeasurements along the key structural zones show that Aksu Basin developed through four different tectonic phases.While the first phase is ~E-W extensional phase which is related to opening of the basin, the second phase is ~N-Scompressional Lycian phase. The third phase is ~E-W compressional (Aksu) phase, which is the most prominentphase in the basin. N-S extensional phase is determined as the fourth and the last tectonic phase.Under the light of whole data, presence of the E-W shortening which is active between Serravalian and EarlyPliocene in the center of the Isparta Angle is interesting given the plate tectonic setting driven by N-S convergenceof the Africa and Eurasia. The seismic tomography images of the mantle below the Isparta Angle indicates that thereare two separate slab segments (Cyprus and Antalya slabs). Therefore, an important impact of the Antalya slabshould be expected in the Mio-Pliocene and even modern evolution of the Isparta Angle and the uplift of the Taurides.

  • Aksu Basin

  • crustal deformation

  • Isparta Angle

  • Miocene marine basins

  • Akay, E., Uysal, S., Poisson, A., Cravatte, J. & Muller, C. (1985). Stratigraphy of the Antalya Neogene Basin. Bulletin of the Geological Society of Turkey, 28(2), 105-119.

  • Akay, E., ve Uysal, S. (1985). Orta Torosların batısındaki (Antalya) Neojen çökellerinin stratigrafisi, sedimantolojisi ve yapısal jeolojisi (Rapor No:7799). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Alçiçek, M.C., & ten Veen, J.H. (2008). The late Early Miocene Acıpayam piggy-back basin: Refining the last stages of Lycian nappe emplacement in SW Turkey. Sedimentary Geology 208(3-4), 101– 113. https://doi.org/10.1016/j.sedgeo.2008.05.003

  • Alçiçek, M.C., Mayda, S., ten Veen, J.H., Boulton, S.J., Neubauer, T.A., Alçiçek, H., Tesakov, A.S., Saraç, G., Hakyemez, H.Y., Göktaş, F., Murray, A.M., Titov, V. V., Jiménez-Moreno, G., Büyükmeriç, Y., Wesselingh, F.P., Bouchal, J.M., Demirel, F.A.

  • Andrew, T., & Robertson, A.H.F. (2002). The Beyşehir– Hoyran–Hadim Nappes: genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society, 159(5), 529-543.

  • Angelier, J. (1989). From orientation to magnitudes in paleostress determinations using fault slip data. Journal of Structural Geology, 11(1-2), 37-50.

  • Barrier, E., & Vrielynck, B. (2008). Atlas MEBE - Paleotectonic maps of the Middle East. Atlas of 14 maps.

  • Biryol, C. B., C., Beck, S. L., Zandt, G., & Özacar, A.A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057

  • Blumenthal, M. (1951). Recherches geologiques dans le Taurus occidental dans l’arriere- pays d’Alanya. Maden Tetkik Arama Enstitüsü Publications, no. D5, 134, 1955.

  • Blumenthal, M. (1963). Le systeme structural du Taurus sud-anatolien. In Livre a’memoire du Professeur P. Fallot. Mem. Soc. Geol. Fr. hors, 2, 611-662.


  • Colby, B. R. (1963). Fluvial Sediments: A Summary of Source, Transportation, Deposition, and Measurement of Sediment Discharge (No. 1181). US Government Printing Office.

  • Collins, A.S. & Robertson, A.H.F. (1997). Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology, 25(3), 255-258.

  • Collins, A.S. & Robertson, A.H.F. (1998). Processes of Late Cretaceous to Late Miocene episodic thrustsheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society, 155(5), 759-772.

  • Collins, A.S. & Robertson, A.H.F. (2003). Kinematic evidence for Late Mesozoic–Miocene emplacement of the Lycian Allochthon over the western Anatolide belt, SW Turkey. Geological Journal, 38(3-4), 295-310.

  • Cosentino, D., Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N. & Strecker, M.R. (2012). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. GSA Bulletin, 124(1-2)

  • Çiner, A., Karabıyıkoğlu, M. & Monod, O. (2008). Late Cenozoic sedimentary evolution of the Antalya Basin, southern Turkey. Turkish Journal of Earth Sciences, 17(1), 1-41.

  • De Boorder, H., Spakman, W., White, S.H. & Wortel, M.J.R. (1998). Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth and Planetary Science Letters, 164(3-4), 569-575.

  • Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V. & San’kov, V. (1997). Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1-4), 1-38.

  • Deynoux, M., Çiner, A., Monod, O., Karabıyıkoglu, M., Manatschal, G. & Tuzcu, S. (2005). Facies architecture and depositional evolution of alluvial fan to fan-delta complexes in the tectonically active Miocene Köprüçay Basin,

  • Dewey, J. F. & Şengör, A.C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84- 92.

  • Dumont, J.-F., Gutnic, M., Marcoux, J., Monod, O. & Poisson, A. (1972). Le Trias des Taurides occidentales (Turquie). Definition du bassin pamphylien: un nouveau domain a ophiolites a la marge externe de la chaine taurique. Zeitschrift der Deutschen

  • Dumont, J.F. & Kerey, K. (1975). Basement geological study in the south of Egirdir lake. Bulletin of the Geological Society of Turkey, 18(2), 169-174.

  • Eroskay, S. O. (1968). Köprüçay-Beşkonak Rezervuarı Jeolojik İncelemesi (Rapor no: II-06-5). Elektrik İşleri Etüt İdaresi, Ankara.

  • Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. & Regard, V. (2006). Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242(1-2), 85-97.

  • Faccenna, C., Becker, T.W., Auer, L., Billi, A., Boschi, L., Brun, J.P., Capitanio, F.B., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F. & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean. Reviews of Geop

  • Flecker, R. (1995). Miocene basin evolution of the Isparta Angle, Southern Turkey [Unpublished doctoral dissertation]. University of Edinburgh.

  • Flecker, R., Ellam, R.M., Müller, C., Poisson, A., Robertson, A.H.F., & Turner, J. (1998). Application of Sr isotope stratigraphy and sedimentary analysis to the origin and evolution of the Neogene basins in the Isparta Angle, southern Turkey.

  • Flecker, R., Poisson, A. & Robertson, A.H.F. (2005). Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional eastern Mediterranean context. Sedimentary Geology, 173(1-4), 277-314.

  • Gans, C.R., Beck, S.L., Zandt, G., Biryol, C.B. & Ozacar, A.A. (2009). Detecting the limit of slab break-off in central Turkey: new high-resolution Pn tomography results. Geophysical Journal International, 179(3), 1566-1572.

  • Glover, C. & Robertson, A.H.F. (1998a). Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298(1- 3), 103-132.

  • Glover, C.P. & Robertson, A.H.F. (1998b). Role of regional extension and uplift in the PlioPleistocene evolution of the Aksu Basin, SW Turkey. Journal of the Geological Society, 155(2), 365-387.

  • Govers, R. & Wortel, M.J.R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1-2), 505- 523.

  • Göncüoğlu, M.C. & Dirik, K. (1996). Neotectonic characteristics of central Anatolia. International Geology Review, 38(9), 807-817.

  • Göncüoğlu, M.C., Dirik, K. & Kozlu, H. (1997). General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. In Annales Geologique de Pays Hellenique, 37, 515-536.

  • Gutnic, M. (1979). Géologie des Taurides Occidentales (Turquie) (No. 137). Société géologique de France.

  • Hall, J., Aksu, A.E., King, H., Gogacz, A., Yaltırak, C. & Çifçi, G. (2014). Miocene– Recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Marine Geology, 349, 1-23.

  • Hayward, A.B. (1984). Miocene clastic sedimentation related to the emplacement of the Lycian Nappes and the Antalya Complex, SW Turkey. Geological Society, London, Special Publications, 17(1), 287- 300.

  • Hüsing, S.K., Zachariasse, W.J., van Hinsbergen, D.J., Krijgsman, W., Inceöz, M., Harzhauser, M .& Kroh, A. (2009). Oligocene–Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geolog

  • Jackson, J. & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.

  • Kalyoncuoğlu, Ü.Y., Elitok, Ö., Dolmaz, M.N., & Anadolu, N. C. (2011). Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. Journal of Geodynamics, 52(1), 70- 82.

  • Karabıyıkoğlu, M., Çiner, A., Monod, O., Deynoux, M., Tuzcu, S., & Örçen, S. (2000). Tectonosedimentary evolution of the Miocene Manavgat Basin, western Taurides, Turkey. In E. Bozkurt, J.A. Winchester & J.D.A. Piper (Eds.), T

  • Karabıyıkoğlu, M., Tuzcu, S., Çiner, A., Deynoux, M., Örçen, S. & Hakyemez, A. (2005). Facies and environmental setting of the Miocene coral reefs in the late- orogenic fill of the Antalya Basin, western Taurides, Turkey: impl

  • Kaymakci, N., Inceöz, M., Ertepinar, P. & Koç, A. (2010). Late Cretaceous to recent kinematics of SE Anatolia (Turkey). In M. Sosson, N. Kaymakci, R. Stephenson, V. Starostenko & F. Bergerat, F. (Eds.), Sedimentary basin tectonics from the Black Sea

  • Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A.A., Gülyüz, E., Uzel, B. & Sözbilir, H. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters

  • Kempler, D. & Ben-Avraham, Z., 1987. The tectonic evolution of the Cyprean Arc. Annales Tectonicae, 1, 58-71

  • Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subductionaccretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24).

  • Khair, K. & Tsokas, G.N. (1999). Nature of the Levantine (eastern Mediterranean) crust from multiple-source Werner deconvolution of Bouguer gravity anomalies. Journal of Geophysical Research: Solid Earth, 104(B11), 25469-25478.

  • Kissel, C. & Laj, C. (1988). The Tertiary geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics, 146(1-4), 183- 201.

  • Koç, A., Kaymakçı, N., van Hinsbergen, D.J., Kuiper, K.F. & Vissers, R.L. (2012). Tectono-Sedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides,

  • Koç, A., van Hinsbergen, D.J., Kaymakçı, N. & Langereis, C.G. (2016a). Late Neogene oroclinal bending in the central Taurides: A record of terminal eastward subduction in southern Turkey?. Earth and Planetary Science Letters, 434, 75-90.

  • Koç, A., Kaymakçı, N., Van Hinsbergen, D.J., & Vissers, R.L. (2016b). A Miocene onset of the modern extensional regime in the Isparta Angle: constraints from the Yalvaç Basin (southwest Turkey). International Journal of Earth Scienc

  • Koç, A., Kaymakçı, N., van Hinsbergen, D.J. & Kuiper, K.F. (2017). Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau. Global and Planetary Change, 158,

  • Koçyiğit, A. & Saraç, G. (2000). Episodic graben formation and extensional neotectonic regime in west Central Anatolia and the Isparta Angle: a case study in the Akşehir-Afyon Graben, Turkey. Geological Society, London, Special Publications, 173(1),

  • Koşun, E. (2012). Facies characteristics and depositional environments of Quaternary tufa deposits, Antalya, SW Turkey. Carbonates and evaporites, 27(3-4), 269-289.

  • McKenzie, D.P. (1972). Active tectonics of the mediterranean region. Geophysical Journal International, 30(2), 109-185. https://doi. org/10.1111/j.1365-246X.1972.tb02351.x

  • McKenzie, D.P. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25-32.

  • Meijers, M. J., Peynircioğlu, A.A., Cosca, M.A., Brocard, G.Y., Whitney, D.L., Langereis, C.G. & Mulch, A. (2018). Climate stability in central Anatolia during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 498, 53-

  • Mercier, J.L., Sorel, D. & Vergely, P. (1989). Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Research, 2, 49-71.

  • Monod, O. (1977). Recherches Geologiques dans le Taurus occidental au Sud de Beyşehir (Turquie) [Unpublished doctoral dissertation]. Université Paris Sud (Orsay).

  • Oberhänsli, R., Bousquet, R., Candan, O. & Okay, A.I. (2012). Dating subduction events in east Anatolia, Turkey. Turkish Journal of Earth Sciences, 21(1), 1-17.

  • Okay, A.I. (1986). High-Pressure/low-Tempemture Metamorphic Rocks of Turkey. In B.W. Evans, E.H. Brown (Eds.), Blueschists and Eclogites. Geological Society of America Memoir 164. https://doi.org/10.1130/MEM164-p333

  • Okay, A.I., Satır, M., Maluski, H., Siyako, M., Monié, P., Metzger, R. & Akyuz, H.S. (1996). Paleoand Neo-Tethyan events in northwest Turkey: geological and geochronological constraints. In A.Yin & T.M. Harrison (Eds.), The Tectonic Evolution of Asia

  • Okay, A.I., Zattin, M. & Cavazza, W. (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology, 38(1), 35-38.

  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.

  • Öğretmen, N., Cipollari, P., Frezza, V., Faranda, C., Karanika, K., Gliozzi, E., Radeff, G. & Cosentino, D. (2018). Evidence for 1.5 km of uplift of the Central Anatolian Plateau’s southern margin in the last 450 kyr and implications for its multipha

  • Özgül, N.,1976. Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeoloji Kurumu Bülteni 19(1), 65-78.

  • Özgül, N., 1984. Stratigraphy and tectonic evolution of the central Taurus. In O. Tekeli & M.C. Göncüoğlu, (Eds.), Geology of the Taurus Belt (pp. 77-90). MTA, Ankara..

  • Papadopoulos, G.A., Kondopoulou, D.P., Leventakis, G.A. & Pavlides, S.B. (1986). Seismotectonics of the Aegean region. Tectonophysics, 124(1-2), 67- 84.

  • Papazachos, B.C. & Papaioannou, C.A. (1999). Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics, 308(1-2), 193-204.

  • Poisson, A. (1977). Recherches géologiques dans les Taurides occidentales (Turquie) [Unpublished doctoral dissertation]. Université de Paris-Sud, Orsay, France.

  • Poisson, A., Wernli, R., Saǧular, E. K., & Temı̇z, H. (2003a). New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geo

  • Poisson, A., Yağmurlu, F., Bozcu, M. & Şentürk, M., (2003b). New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal, 38(3-4), 257- 282.

  • Poisson, A., Orszag-Sperber, F., Kosun, E., Bassetti, M.A., Müller, C., Wernli, R. & Rouchy, J.M., 2011. The Late Cenozoic evolution of the Aksu basin (Isparta Angle; SW Turkey). New insights. Bulletin de la Société Géologique

  • Pourteau, A., Candan, O. & Oberhänsli, R. (2010). High-pressure metasediments in central Turkey: Constraints on the Neotethyan closure history. Tectonics, 29(5), Article TC5004. https://doi. org/10.1029/2009TC002650

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H. Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva,

  • Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S. & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488(1-4), 22-30.

  • Robertson, A.H.F. (2000). Mesozoic-Tertiary tectonicsedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. Geological Society, London, Special Publications, 173(1), 97-138.

  • Robertson, A.H.F., Clift, P.D., Degnan, P.J. & Jones, G. (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4), 289-343.

  • Robertson, A.H.F. & Dixon, J.E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17(1), 1-74.

  • Robertson, A.H.F. & Ustaömer, T. (2009). Formation of the Late Palaeozoic Konya Complex and comparable units in southern Turkey by subduction–accretion processes: Implications for the tectonic development of Tethys in the Eastern Mediterranean

  • Robertson, A.H.F., Ustaömer, T., Pickett, E.A., Collins, A.S., Andrew, T. & Dixon, J. E. (2004). Testing models of Late Palaeozoic–Early Mesozoic orogeny in Western Turkey: support for an evolving open-Tethys model. Journal of the Geological So

  • Robertson, A.H.F. & Mountrakis, D. (2006). Tectonic development of the Eastern Mediterranean region: an introduction. Geological Society, London, Special Publications, 260(1), 1-9.

  • Robertson, A.H.F. & Woodcock, N.H. (1982). Sedimentary history of the south- western segment of the Mesozoic-Tertiary Antalya continental margin, south- western Turkey. Eclogae Geologicae Helvetiae, 75(3), 517-562.

  • Robertson, A.H.F. & Woodcock, N.H. (1984). The SW segment of the Antalya Complex, Turkey as a Mesozoic-Tertiary Tethyan continental margin. Geological Society, London, Special Publications, 17(1), 251-271.

  • Schildgen, T.F., Cosentino, D., Caruso, A., Buchwaldt, R., Yıldırım, C., Bowring, S.A. & Strecker, M.R (2012). Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Cent

  • Schildgen, T.F., Yıldırım, C., Cosentino, D. & Strecker, M.R. (2014). Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Science Reviews, 128, 147-168.

  • Seyitoğlu, G., Scon, B. & Rundle, C.C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of Geological Society, London, 149(4), 533-538. https://doi.org/10.1144/gsjgs.149.4.0533

  • Seyitoğlu, G. & Scott, B. C. (1996). Age of the Alaşehir graben (west Turkey) and its tectonic implications. Geological Journal, 31(1), 1-11.

  • Stampfli, G. M. & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2), 17-33.

  • Storetvedt, K.M. (1990). The Tethys Sea and the Alpine-Himalayan orogenic belt; mega- elements in a new global tectonic system. Physics of the Earth and Planetary Interiors, 62(1-2), 141-184.

  • Şenel, M. (1997). 1:250.000 Scale Geological Maps of Turkey, No: 4, Isparta Sheet; N°3, Antalya Sheet. Mineral Research and Exploration Institute of Turkey (MTA) Publication, Ankara.

  • Şenel, M., Dalkiliç, H., Gedik, İ., Serdaroğlu, M., Bolukbaşi, A.S., Metin, S., Esentürk, K., Bilgin, A.Z., Uguz, F., Korucu, M. ve Özgül, N. (1992). 1:100.000 Ölçekli Türkiye Jeoloji Haritası Isparta J11 paftası. Maden Tetkik Arama Genel Müdür

  • Şenel, M., Dalkılıç, H., Gedik, İ., Serdaroğlu, M., Metin, S., Esentürk, K. ve Özgül, N. (1998). Orta Toroslar’da Güzelsu koridoru ve kuzeyinin stratigrafisi, Türkiye. Maden Tetkik ve Arama Dergis

  • Şengör, A.M.C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N.Christie-Blick (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentatio

  • Şengör, A.M.C., Özeren, S., Genç, T. & Zor, E. (2003). East Anatolian high plateau as a mantlesupported, north-south shortened domal structure. Geophysical Research Letters, 30(24), 8045.

  • Şengör, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.

  • Taymaz, T., Eyidog̃ an, H. & Jackson, J. (1991). Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International, 106(3), 537-550.

  • Tuzcu S. ve Karabıyıkoğlu M. (2001). Batı Toros Kuşağı Miyosen Mercan Resiflerinin Paleontolojisi Stratiğrafisi Fasiyesleri ve Çökelme Ortamları. (Rapor No:10438). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Üner, S., Özsayın, E., Kutluay, A. & Dirik, K. (2015). Polyphase tectonic evolution of the Aksu Basin, Isparta Angle (Southern Turkey). Geologica Carpathica, 66(2), 157-169.

  • Üner, S., Özsayın, E., Dirik, R.K., Çiner, T.A. & Karabıyıkoğlu, M. (2018). Reconstructing the sedimentary evolution of Miocene Aksu Basin based on fan delta development (eastern Mediterranean-Turkey). Turkish Journal of Earth Scien

  • Van Hinsbergen, D.J., Dekkers, M.J., Bozkurt, E. & Koopman, M. (2010a). Exhumation with a twist: Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics, 29(3), Article TC3009. https:// doi.org/1

  • Van Hinsbergen, D.J., Dekkers, M.J. & Koç, A. (2010b). Testing Miocene remagnetization of Bey Dağları: Timing and amount of Neogene rotations in SW Turkey. Turkish Journal of Earth Sciences, 19(2), 123-156.

  • Wasoo, M. H. (2019). Comparison of strain ellipsoid shape based on the results of the magnetic susceptibility anisotropy and paleostress methods: case study of Aksu Basin (Antalya, SW Turkey) [Yayımlanmamış yüksek lisans tezi]. Van Yüzüncü Yıl Üniver

  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251-2

  • Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: the Gauss method. Journal of Structural Geology, 29(11), 1798-1810.

  • Wasoo, M , Koç, A . (2020). Aksu Havzası`nın (Antalya, Türkiye) Neojen Stratigrafisi ve Yapısal Unsurları . Türkiye Jeoloji Bülteni , 64 (1) , 83-128 . DOI: 10.25288/tjb.682776

  • Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate
    Raj Kumar Priya Vinod Chandra Tewari Rakesh Kumar Ranjan
    View as PDF

    Abstract: The Permo-Carboniferous depositional sequence of Lower Gondwana in Sikkim Lesser Himalaya wasinvestigated through an integrated approach of lithological, petrological, and geochemical studies. Lithologically,it is characterized by glacial diamictite at the base and shale-sandstone facies at the top of a sequence which isinterpreted as a glaciomarine deposit. Coarser sandstone and massive diamictite composed of quartz, feldspar,muscovite, zircon, and other lithic fragments are observed in thin section. Geochemistry of all studied samples fromthe Rangit Pebble Slate Formation shows the dominance of silicon dioxide compared to other elemental oxides.The tectonic discrimination diagram positively infers passive margin sedimentation from a felsic-rich provenance.Chemical Index of Alteration was used to depict the weathering trends of all studied samples which reflect paleosedimentation under humid to sub-humid climatic conditions.

  • Gondwana

  • Geochemistry

  • Paleoclimate

  • Rangit Pebble Slate Formation

  • Sikkim Lesser Himalaya

  • Acharyya, S.K. (1971). Rangit Pebble-Slate A New Formation from Darjeeling Foothills. Indian Minerals, Geological Survey of India, 25(1), 60- 64.

  • Acharyya, S.K., Ray, K.K. (1977). Geology of the Darjeeling-Sikkim Himalaya, guide to excursion No.4. 4th International Gondwana Symposium, India. 23 pp.

  • Aristizabal, E., Roser, B. & Yokota, S. 2005. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburra´ Valley, northern Colombian Andes. Engineering Geology, 81, 389–406.

  • Bhatia M.R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611-627.

  • Bhatia M.R. & Crook K.A.W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181-193. https://doi.org/10.1007/BF00375292

  • Chakraborty, S., Anczkiewicz, R., Gaidies, F., Rubatto, D., Sorcar, N., Faak, K., Mukhopadhyay, D.K., Dasgupta, S. (2016). A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for r

  • Condie, K.C., Marais, D.J.D., Abbott, D. (2001). Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes and paleoclimates. Precambrian Research, 106(3-4), 239–260. https://doi.org/10.1016/S0301-9268(00)00097-8

  • Crook, K.A.W. (1974). Lithogenesis and geotectonics: the significance of compositional variations in flyscharenites (graywackes), In: R.H. Dott, & R.H. Shaver, (Eds.), Modern and ancient geosynclinal sedimentation (pp304- 310). SEPM Special Publicati

  • Dabard, M.P. (1990). Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology 69(1-2), 45-58. https://doi.org/10.101

  • Dickinson, W.R. & Suczek, C.A. 1979: Plate tectonics and sandstone compositions. The American Association of Petroleum Geologists Bulletin, 63(12), 2164-2182. https://doi.org/10.1306/2F9188FB-16CE-11D7- 8645000102C1865D

  • Dickinson, W.R., Beard L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. GSA Bulletin, 94(2), 2

  • Dobrzinski, N., Bahlburg, H., Strauss, H. & Zhang, Q.R. (2004). Geochemical climate proxies applied to the Neoproterozoic glacial succession on the Yangtze Platform, South China. In: G. Jenkins, M. McMenamin, C.P. McKay & L. Sohl (Eds), The Extreme P

  • Geological Survey of India (GSI), (2012). Geology and mineral resources of the state of India. (Miscellaneous Publication No.30, Part-19), Sikkim, 19-21.

  • Gupta, S.S & Roy, S.S. (1981). Pebble-Slates in parts of eastern Himalaya-evidence for Pre-Gondwana deformation in Himalayan rocks. Journal Geological Society of India, 122, 346-350.

  • Kahmann, J. A., Seaman, J. III & Driese, S.G. (2008). Evaluating trace elements as paleoclimate indicators: multivariate statistical analysis of Late Mississippian Pennington Formation paleosols, Kentucky, U.S.A. Journal of Geology, 116(3) 254–268.

  • Mahanta, Bashab N., Syngai, B.R., Sarmah, R.K. Goswami, T. K. & Kumar, A. (2020). Geochemical signatures of Lower Gondwana sandstones of eastern Arunachal Himalayas, India: Implications for tectonic setting, provenance and degree of weathering. Russi

  • McLennan, S.M., Hemming S., McDaniel, D.K. & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: M.J. Johnsson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (21-40). Geological S

  • Mukherjee, S., Dey, A., Snyal, S. & Sengupta, P. (2019). Proterozoic Crustal Evolution of the Chotanagpur Granite Gneissic Complex, Jharkhand-Bihar-West Bengal, India: Current Status and Future Prospect. In: S. Mukherjee (Ed), Tectonics and Structura

  • Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715-717.

  • Priya, R.K., Tewari V.C.& Ranjan, R.K. (2019): Permian Tethyan transgression in SikkimDarjeeling Himalaya with special reference to the Paleoclimatic event. Bulletin of Nepal Geological Society, (36), 233-240.

  • Raichaudhri, A.K, (2002). Study of marine megainvertebrates of the Permian rocks of DarjeelingSikkim Himalaya. Rec., Geol. Surv. India, E.R,133(3), 25-26.

  • Rashid, S.A. & Ganai, J.A. (2015). Preservation of glacial and interglacial phases in Tethys Himalaya: evidence from geochemistry and petrography of Permo-Carboniferous sandstones from the Spiti region, Himachal Pradesh, India. Arabian Journal of Geo

  • Ray, S.K. & Neogi, S. (2011). Extent and analogues of the Rangit window in the Sikkim Himalaya. Indian Journal of Geosciences 65 (4), 275-286.

  • Roser, B.P. & Korsch, R.J. 1986: Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2 O/Na2 O ratio. The Journal of Geology 94(5), 635-650. https://doi.org/10.1086/629071

  • Roy, S.S. (1973). Gondwana Pebble Slate in the Rangit valley tectonic window, Darjeeling Himalayas and its significance. Journal of Geological Society of India, 14(1), 31-39.

  • Scheffler, K., Hoernes, S. & Schwark, L. (2003). Global changes during carboniferous– Permian glaciation of Gondwana: linking polar and equatorial climate evolution by geochemical proxies. Geology, 31(7), 605–608. https://doi.org/10.1130/0091-7613(20

  • Suttner, L.J. & Dutta, P.K. (1986). Alluvial sandstone composition and paleoclimate; I Framework mineralogy. Journal of Sedimentary Research 56(3), 329–345. https://doi.org/10.1306/212F8909-2B24-11D7- 8648000102C1865D

  • Takahashi, G. (2015). Sample preparation for X-ray fluorescence analysis III. Pressed and loose powder methods. Rigaku Journal, 31(1), 26–30.

  • Tewari, V.C. (2011). Stromatolites, organic walled microorganisms, Laser Raman Spectroscopy and Confocal Laser Scanning Microscopy of the Meso-Neoproterozoic Buxa Formation, Ranjit Window, Sikkim Lesser Himalaya, NE India. In: V.C. Tewari & J. Seckba


  • Prıya, R , Tewari, V , Ranjan, R . (2020). Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate . Türkiye Jeoloji Bülteni , 64 (1) , 129-142 . DOI: 10.25288/tjb.731580

  • ISSUE FULL FILE
    View as PDF