Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2010 AĞUSTOS-ARALIK Cilt 53 Sayı 2-3
View as PDF
View as PDF
View as PDF
The Alteration Mineralogy and Mass Change of the Zigana (Gümüşhane) Volcanics of NE Turkey
Ferkan Sipahi M. Burhan Sadiklar
View as PDF

Abstract: The Late Cretaceous volcanic rocks around Zigana Mountain (Gümüşhane) in the eastern Black Seametallogenic province in NE Turkey show intensive hydrothermal alteration but less weatheringalteration. The basement of the study area is formed by Late Cretaceous basalt, andesite and theirpyroclastics. These rocks are overlain by dacitic rocks of the same age, namely Dacite-I and Dacite-II.These volcanic rocks are bimodal in character and have developed in a volcanic arc environment.The volcanic rocks in the study area have been altered to the sericite/illite–chlorite facieses,and contain sericite/illite, chlorite, quartz, carbonate minerals (ankerite and calcite), iron-oxide, andrare kaolinite, smectite and epidote as the products of alteration. Sericitization/illitization is themost common type of hydrothermal alteration associated with these volcanics, and chloritization isthe most common alteration type after illitization; pyritisation is seen in all volcanics, and is the mostcommon in dacites. In some fields limonitisation is occasionally present. Epidotization is rare, andespecially seen in basalt and andesite. Isocon analysis was undertaken to estimate the mass gains andlosses of the Zigana Volcanics as a result of hydrothermal alteration. In general terms, the resultsshows that, basalt and andesite have 2-61% mass gain, Dacite-I 71% mass gain and 42 % mass loss,and Dacite-II 44% mass gain and 32% mass loss. Namely, both mass gain and mass loss occurred inthe volcanics during the hydrothermal alteration of the parent materials. From less altered rock tohighly altered rock there was an increase in illite-chlorite-kaolinite whereas there was a decrease incarbonate minerals. In the volcanics, fluids which cause sericitization and chloritization did notincrease metals like Cu, Pb and Zn and, in fact, it can be said that these fluids are poor in point ofthese metals. This also shows that the metals developed under different hydrothermal conditions. 

  • Hydrothermal alteration

  • mass change

  • volcanic rocks

  • Zigana

  • Turkey

  • Abdioğlu, E., 2008. Kutlular (Sürmene-Trabzon) Masif Sülfit Yatağı Hidrotermal Alterasyonunun Kil Mineralojisi, Jeokimyası, Duraylı İzotop Özellikleri ve Kökeni/ (Nature and Origin of Hydrothermal Alteration of the Kutlular (Sürmene-Trabzon) Massive Sulphide Deposit, Using Clay Mineralogy, Geochemistry and Stable Isotopes). Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon, 240s.

  • Adamia, S.A., Chlehotva, M.B., Kekelia, M., Lordkipanidze, M., Shavishili, I. ve Zachariazadze, G.S. 1981. Tectonic Of The Caucaus and Adjoining Regions. Journal of Structural Geology 3, 437–44.

  • Akçay, M. ve Arar, M., 1999. Geology, mineralogy and geochemistry of the Çayeli massive sulphide ore deposit, Rize, NE Turkey. In: Stanley et al., (Eds.), Mineral Deposits: Processes to Processing. Balkema, Rotterdam, pp. 459-462.

  • Akçay, M. ve Moon, C.J., 2001. Geochemistry of pyrite-bearingand purple dacites in north-eastern Turkey: a new exploration tool for the Kuroko type deposits. In: Piestrzyski, A. (ed) Mineral Deposits at the Beginning of the 21st Century. Krakow, Poland, p. 210–213.

  • Akıncı, Ö.T., 1980. Major copper metallogenetic units and genetic igneous complexes of Turkey. In: Jankoviç, S. & Sillitoe, R. (eds), European Copper Deposits. Belgrade, Belgrade University, Faculty of Geology and Mining, 199–208.

  • Akıncı, Ö.T., 1984. The Eastern Pontide volcano-sedimantery belt and associated massive sulphide deposits, In: Dixon, J.E. and Robertson, A.H.F. (Eds.) The geological evolution of the Eastern Mediterranean. Geol. Soc. Lond. Spec. Publ., 17, 415- 428.

  • Altun, Y., 1972. Geology of the Madenköy (1) area. Maden Tekik ve Arama Enstitüsü (MTA) Rept. 553, 10 p. (in Turkish).

  • Arribas, A.J.R., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson, J.F.H. (ed), Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada, Short Course 23, 419– 454.

  • Arslan, M., Tüysüz, N., Korkmaz, S., and Kurt, H., 1997. Geochemistry and petrogenesis of the eastern pontide volcanic rocks, Northeast Turkey. Chemie der Erde, 57, 157- 187.

  • Barrett, T.J. ve MacLean, W.H., 1991. Chemical, mass, and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, Noranda, Qebec. Econ. Geol., 86, 40- 414.

  • Barrett, T.J., 1992. Mass changes in the Galapagos hydrothermal mounds: near-axial sediment transformation and mineralization. Geology 20, 1075–1078.

  • Barrett, T.J., Cattalani, S. ve MacLean, W.H., 1993. Volcanic lithogeochemistry and alteration at the Delbridge massive sulphide deposits, Noranda Quebec. Journal of Geochemical Exploration, 48, 135-173.

  • Barrett, T.J. ve MacLean, W.H., 1994. Mass Changes in Hydrothermal Alteration Zones Associated with VMS Deposits of the Noranda Area. Exploration and Mining Geology, 3, 131-160.

  • Barrett, T.J. ve Maclean, W.H., 1999. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. In: Barrie, C.T. & Hannington, M.D. (eds), Volcanic-Associated Massive Sulfide Systems: Processes and Examples in Modern and Ancient Settings. Reviews in Economic Geology 8, 101– 131.

  • Bektaş, O., 1987. Volcanic belts as markers of the Mesozoic active margins of the Eurasia-Discussion. Tectonophysics, 141, 345-347.

  • Buser, S. ve Cvetic, S., 1973. Geology of the environs from the Murgul copper deposits, Turkey, MTA Bull., 81, 22- 45.

  • Callaghan, T., 2001. Geology and host-rock alteration of the Henty and Mount Julia gold deposits, Western Tasmania. Economic Geology 96,1073-1088.

  • Çağatay, M.N., 1977. Development of geochemical exploration techniques for massive sulphide ore deposits, eastern Black Sea region, Turkey. Unpub. Ph.D thesis, University of London, 364 p.

  • Çağatay, M.N. ve Boyle, D.R., 1980. Geochemical prospecting for volcanogenic sulfide deposits, eastern Black Sea region, Turkey. Jour. of Geochem. Explor., 8, 49-71,

  • Çağatay, M.N., 1993. Hydrothermal alteration associated with volcanogenic massive sulfide deposits: Examples from Turkey. Economic Geology, 88, 606-621.

  • Çelik, M., Karakaya, N. ve Temel, A., 1999. Clay minerals in Hydrothermal altered volcanic rocks, Eastern Pontides, Turkey. Clays and Clay Minerals, 77, 6, 708-717.

  • Date, J., Watanabe, Y. ve Saeki, Y., 1983. Zonal alteration around the Fukazawa Kuroko deposits, Akita Prefecture, Japan. Economic Geology Monograph 5, 365-386.

  • Dixon, J.C. ve Pereira, J., 1974. Plate tectonics and mineralization in the Tethyan Region, Min. Deposita, 9, 185-198.

  • Dulski, P., 2001. Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values. The Journal of Geostandards and Geoanalysis, 25, 87-125.

  • Eastone, C.J., Solomon, M. ve Walshe, J.L., 1987. District-scale alteration associated with massive sulphide deposits in the Mount Read volcanics, Western Tasmania. Economic Geology, 82, 1239-1258.

  • Eğin, D., 1978. Polymetallic sulphide ore deposits and associated volcanic rocks from the Harşit river area, NE Turkey. Unpub. Ph.D thesis, University of Durham, 276 p.

  • Elliot-Meadows, S. ve Appleyard, E.C., 1991. The alteration geochemistry and petrology of the Lar Lake Cu-Zn depositi, Lynn lake are, Manitoba, Canada. Economic Geology, 86, 486-505.

  • Finlow-Bates, T. ve Stumpfl, E.F., 1981. The behaviour of socalled immobile elements in hydrothermal altered rocks associated with volcanogenic submarine-exhalative ore deposits. Mineral Dep., 16, 319-328.

  • Gemmell, J.B. ve Large, R.R., 1992. Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania. Economic Geology, 87, 620-649.

  • Grant, J.A., 1986, The isocon diagram a simple solution to Gresens equations for metasomatic alteration. Econ. Geol., 81, 1976-1982.

  • Halbach, P., Pracejus, B. ve Karg, M., 2003. BANDAMIN-I project (Unpub.).

  • Hill, I.G., Worden, R.H. ve Meighan, I.G., 2000. Yttrium: the immobilitymobility transition during basaltic weathering. Geology 28, 923 926.

  • Huston, D.L., 1993. The effect of alteration and metamorphism on wall rock to the Balcooma and Dry River South volcanichosted massive sulfide deposits, Queensland, Australia. Journal of Geochemical Exploration, 48, 277-307.

  • Huston, D.L. ve Cozens, G.J., 1994. The geochemistry and alteration of the White Devil Porphyry implications to intrusion timing. Mineral Deposita, 29, 275-287.

  • Ishikawa, Y., Sawaguchi, T., Iwaya, S. ve Horiuchi, M., 1976. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration haloes. Mining Geology 26, 105–117.

  • Jackson, M.L., 1956. Soil Chemical Analysis–Advanced Course department of Soil Science. University of Wisconsin, Madison.

  • J.I.C.A., 1985. The Republic of Turkey report on the cooperative mineral exploration of Gümüşhane Area. MTA Yayını, Ankara, 76 s.

  • Jenner, G.A., 1996. Trace elementry of igneous rock: Geochemical nomenclature and analytical geochemistry; in trace element geochemistry of volcanic rocks: Applications for massive sulfide exploration, (Ed.) D.A. Wyman, Geological Association of canada, Short Course Notes, 12, 51-77.

  • Jenner, G.J., Longerich, L.P., Jackson, S.E. ve Fryer, B.J., 1990. ICPMS a powerful tool for high precision trace-element analysis in earth sciences; evidence from analysis of selected U.S.G.S. reference samples. Chem. Geology, 83, 133-148.

  • Karakaya, N. ve Karakaya, M.Ç., 2001. Şaplıca (Şebinkarahisar,Giresun) Volkanitlerinin Hidrotermal Alterasyon Türlerinin Mineralojik ve Jeokimyasal Özellikleri. Türkiye Jeoloji Bülteni, 44/2, 75-90.

  • Karakaya, N., Karakaya M.Ç., Nalbantçılar, M.T. ve Yavuz F., 2007. Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey). Journal of Geochemical Exploration, 93, 35-46.

  • Kunze, G.W., 1965. Pretreatments for mineralogical analysis. Pp. 568–577 in: Methods of Soil Analysis Part I. Physical and mineralogical properties including statistics of measurement and sampling (C.A. Black, editor). Agronomy Society of America Inc., Madison, Wisconsin.

  • Large, R.R., 1992. Australian volcanic-hosted massive sulphide deposits: features, styles, and genetic models. Economic Geology 87, 549–572.

  • Large, R.R., Allen, R.L., Blake, M.D. ve Herrmann, W., 2001. Hydrothermal Alteration and Volatile Element Halos for the Rosebery K Lens Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania. Economic Geology, 96, 1055-1072.

  • Lentz, D.R., 1996. Recent advances in lithogeochemical exploration for massive-sulphide deposits in volcanosedimentary environments: Petrogenetic, chemostratigraphic, and alteration aspects with examples from the Bathurst camp, New Brunswick. New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division Mineral Resource, 96-1, 73-119.

  • Lentz, D.R., 1999. Petrology, geochemistry, and oxygen isotope interpretation of felsic volcanic and related rocks hosting the Brunswick 6 and 12 massive sulfide deposits (Brunswick Belt), Bathurst Mining Camp, New Brunswick, Canada. Economic Geology, 94, 57-86.

  • Lesher, C.M., Goodwin, A.M., Campbell, I.H. ve Gorton, M.P., 1986. Trace elements of or-associated and barren felsic metavolcanic rocks in the Superior Province, Canada. Canadian Jour. Earth. Sci., 23, 222-241.

  • Longerich, H.P., Jenner, G.A., Fryer, B.J. ve Jackson, S.E., 1990. Inductively coupled plasma mass spectrometric analysis of geological samples: Case studies. Chemical Geology, 83, 105- 118.

  • MacLean, W.H. ve Kranidiotis, P., 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82, 951-962.

  • MacLean, W.H., 1990. Mass change calculations in altered rock series. Mineral Deposita, 25, 44-49.

  • MacLean, W.H. ve Hoy, L.D., 1991. Geochemistry of hydrothermal altered rocks at the Horne Mine, Noranda, Quebec. Economic Geology, 86, 3, 506-528.

  • MacLean, W.H. ve Barrett, T.J., 1993. Lithochemical techniques using immobile elements. Journal of Geochemical Exploration, 48, 109-133.

  • McClay, K.R. ve Ellis, P.G., 1984. Deformation of pyrite. Economic Geology, 79, 400-403.

  • Mehra, O.P. ve Jackson, M.L., 1960. Iron oxides removed from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.

  • Myers, R.E. ve MacLean, W.H., 1983. The geology of the New Insco copper deposit, Noranda District, Quebec. Canadian Jour. Earth. Sci., 20, 1291-1304.

  • Nebioğlu, T.Y., 1975. Geologic map of the Madenköy (1) Area (1: 1000 Scale) MTA Map 31134.

  • Nesbitt, H.W. ve Young, G.M., 1982. Early Proterozoic Climates and Plate Motions İnferred from Major Element Chemistry of Lutites. Nature, 299, 715-717.

  • Nesbitt, H.W. ve Young, G.M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based upon Thermodynamic and Kinetic Considerations. Geochim. Cosmochim. Acta, 48, 1523-1534.

  • Okay, A.I. ve Şahintürk, O., 1997. Geology of the eastern Pontides, In Robinson A.G. (Ed), Regional and Petroleum Geology of the Black Sea and Surrounding Region. AAPG Memoir, 68, 291-311.

  • Pearce, J.A, 1996. A user’s guide to basalt discrimination diagrams. In: Wyman, D. A., (Ed.), Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12, pp. 79-113.

  • Pejatoviç, S., 1979. Metallogeny of the Pontid-type massive sulfide deposits. Spec. Publ. No: 177, MTA Yayını, Ankara, 98 pp.

  • Sato, T., 1977. Kuroko deposits: their geology, geochemistry and origin. In: Volcanic Processes in Ore Genesis. Geological Society of London, Special Publications 7, 153–161.

  • Schardt, C., Cooke, D.R., Gemmell, J.B. ve Large, R.R., 2001. Geochemical Modeling of the Zoned Footwall Alteration Pipe, Hellyer Volcanic-Hosted Massive Sulfide Deposits, Western Tasmania, Australia. Economic Geology 96, 1037– 1054.

  • Schneieder, H.-J., Özgür, N. ve Palacios, C.M., 1988. Relationship between alteration, rare earth elements distribution, and mineralization of the Murgul copper deposits, northeastern Turkey. Economic Geology, 83, 1238-1246.

  • Shriver, N.A. ve MacLean, W.H., 1993. Mass, volume and chemical changes in the alteration zone at the Norbec mine, Noranda, Quebec. Min. Deposita, 28, 157-166.

  • Sillitoe, R.H., 1993. Epithermal models: genetic types, geometrical controls and shallow features. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. ve Duke, J.M. (eds), Mineral Deposit Modeling. Geological Association of Canada, Special Paper 40, 403–417.

  • Sipahi, F. ve Sadıklar, M.B., 2004. Chemical properties and discrimination of dacites in Zigana area (NE-Turkey) by using trace elements diagrams. Eur. J. Mineralogy, Karlsruhe-Deutschland, Abstract, 16/1, pp. 134.

  • Sipahi, F., 2005. Zigana Dağı (Torul–Gümüşhane) volkanitlerindeki hidrotermal ayrışmaların mineraloji ve jeokimyası (mineralogy and Geochemistry of Hydrothermal Alterations in Zigana Mountain (Torul-Gümüşhane) volcanics). Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon, 229 s.

  • Sipahi, F. ve Sadıklar, M.B., 2006. Discrimination of dacites with trace elements (Zigana, NE-Turkey). Geochimica et Cosmochimica ACTA, 16 th Goldschmidt Conference Abstracts, 70, 18/1:1188, August-September 2006, s. A593.

  • Şengör, A.M.C. ve Yılmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach, Tectonophysics, 75, 181-241.

  • Taylor, S.R. ve McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford, 312 pp.

  • Tüysüz, N., 1995. Lahanos (Espiye-Giresun) masif sülfit yatağına ait cevher mineralleri ve dokularının cevher oluşumu açısından incelenmesi. Geosound/Yerbilimleri, 26, 79-92.

  • Tüysüz, N., 1999. Artvin-Ordu arasındaki masif sülfit bakır, kurşun, çinko yataklarının jeokimyasal yöntemlerle araştırılması. Sonuç Raporu, KTÜ Araştırma Fonu Başkanlığı, Proje Kodu:

  • Tüysüz, N., 2000. Geology, lithogeochemistry and genesis of the Murgul massive sulfide deposit, NE-Turkey. Chemie der Erde, 60, 231-250.

  • Urabe, T. ve Marumo, K., 1991. A new model for Kuroko-type deposits of Japan. Episodis 14, 246-251.

  • Van Gerven, M., 1995. Geochemische Nebengesteinsalterationen und Erfassung Signifikanter Zonierungen im Bereich des Jade-Erzfeldes, Okinawa-Trog, Japan, Dipl.-Geol., Freie Universitäte, Rohstoff- und Umweltgeologie, Berlin, 186 s.

  • Winchester, J.A. ve Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.

  • Petrology of Metamorphic and Magmatic rocks in the Vicinity of Çelikhan (Adıyaman), Turkey
    Özlem Şahin Veysel Işik
    View as PDF

    Abstract: SE Anatolia contains large exposed metamorphic rocks and intruded igneous rocks of variouscompositions. The study area described here includes Pütürge and Malatya metamorphites withlarge exposing in the region. Rocks of the Maden complex and local intrusion bodies constitute otherlithologies of the area.Based on petrographic studies, Pütürge metamorphites consist of mica schist/mica gneiss,garnet mica schist/garnet mica gneiss, calc-silicatic schist/ calc-silicatic gneiss, quartzo-feldspathicmica gneiss, quartz schist/quartzite, marble and amphibolite. Typical index minerals such as garnet,staurolite, kyanite, and sillimanite in these rocks characterize Barrovian zones. Mineral assemblagesof these rocks indicate that the Pütürge metamorphites were metamorphosed by the uppergreenschist and amphibolite facies conditions of the regional metamorphism. In this respect,estimates for peak temperature and pressure have been estimated as ~700 °C and 9 kbar,respectively, which implies a depth of at least 25 km. The Malatya metamorphites include mainlymarble and lesser amounts of slates, phyllites and schists. The presence of chloritoid, epidote andtremolite/actinolite minerals in the Malatya metamorphites suggest a temperature of ~500 °C and apressure of approximately 6 kbar, which coincides with a ~15 km depth.Metamorphites with progressive regional metamorphism in the study area were overprintedby products of retrograde metamorphism. The formation of the products of retrograde metamorphism has been closely related with the exhumation process of metamorphites and neo-tectonicevents in the region. 

  • Metamorphic rocks

  • index mineral

  • amphibolite facies

  • Pütürge

  • Southeast Anatolia

  • Asutay, H.J., 1985. Baskil (Elazığ) çevresinin jeolojik ve petrografik incelenmesi. Ankara Üniversitesi Fen Fakültesi Jeoloji Mühendisliği Bölümü, Ankara, Doktora Tezi, 156 s (yayınlanmamış).

  • Barker, A.J., 1990., Introduction to Metamorphic Textures and Microstructures. Blackie&Son Limited, New York, 170 p.

  • Bingöl, A.F., 1984. Geology of the Elazığ area in the eastern Taurus region. International Symposium on the Geology of the Taurus Belt, 209-217.

  • Boray, A., 1975. Bitlis dolayının yapısı ve metamorfizması. Türkiye Jeoloji Bülteni, 18, 81-84.

  • Çağlayan, M.A., İnal, R.N., Şengün, M. and Yurtsever, A., 1984. Structural setting of the Bitlis massive. International Symposium on the Geology of the Taurus Belt, 245-254.

  • Dewey, J.F., Pitman, W.C., Ryan, W.B.F. and Bonnin, J., 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin, 84, 3137-3180.

  • Erdem, E. 1994. Pütürge (Malatya) metamorfitlerinin petrografik ve petrolojik özellikleri. Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, Doktora Tezi, 119 s.

  • Erdem, E. ve Bingöl, A.F., 1997. Pütürge (Malatya) masifindeki gnaysların petrografik ve petrolojik özellikleri. Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi 20. Yıl Jeoloji Sempozyumu, 217-227.

  • Erdoğan, B. ve Dora, O.Ö., 1983. Bitlis masifi apatitli demir yataklarının jeolojisi ve oluşumu. Türkiye Jeoloji Bülteni, 26, 133-144.

  • Flöttmann, T., 1991. Fibrolitic sillimanite in retrograd shear zones of the Central Schwarzwald basement (Southwest Germany): Deformation-dehydration interaction: microstructural implications. Journal of Metamorphic Geology, 9, 162-175.

  • Genç, S., 1990. Bitlis masifi, Çökekyazı-Gökay (Hizan, Bitlis) yöresi metamorfitlerinin petrografisi, metamorfizması ve kökeni. Türkiye Jeoloji Bülteni, 33, 1-14.

  • Göncüoğlu, M.C. and Turhan, N., 1984. Geology of the Bitlis metamorfik belt. International Symposium on the Geology of the Taurus Belt, 237-244.

  • Grambling, J.A., 1981. Kyanite, andalusite, sillimanite, and related mineral assemblages in the Truchas Peaks region, New Mexico. American Mineralogist, 66, 702–722

  • Hall, R., 1976. Ophiolite emplacement and evolution of the Taurus suture zone, Southeastern Turkey. Geological Society of America Bulletin, 87, 1078-1088.

  • Helvacı, C., 1983. Bitlis masifi Avnik (Bingöl) bölgesi metamorfik kayaçlarının petrojenezi. Türkiye Jeoloji Bülteni, 26 (2), 117- 132.

  • Helvacı, C. and Griffin, W.L., 1984. Rb-Sr geochronology of the Bitlis massif, Avnik (Bingöl) area, SE Turkey. In: Dixon, J.E. and Robertson, A.H.F. (eds). Geological Evolution of the Eastern Mediterranean. Special Publication of the Geological Society of London, 17, 403-413.

  • Hempton, M.R., 1984. Results of detailed mapping near leak Hazar (Eastern Taurus Mountains. International Symposium on the Geology of the Taurus Belt, 223-228.

  • Hsu, L.C., 1968. Selected phase relationships in the system AlMn-Fe-Si-O; a model for garnet equilibria. Journal of Petrology, 9, 40-83.

  • Karaman, T., Poyraz, N., Bakırhan, B., Alan, İ., Kadınkız, G., Yılmaz, H. ve Kılınç, F., 1993. Malatya-Doğanşehir-Çelikhan dolayının jeolojisi. MTA Derleme No: 9587, 57 s.

  • Kerrick, D.M., 1990. The Al2SiO5 polymorphs. Mineralogical Society of America Reviews in Mineralogy, 22, 406 s.

  • Ketin, İ., 1966. Anadolu’nun tektonik birlikleri. MTA Dergisi, 66, 20-34.

  • Kipman, E., 1981. Keban’ın jeolojisi ve Keban şariyajı. İstanbul Üniversitesi Yerbilimleri Dergisi, 1, 75-81.

  • Mason, R., 1975. Bitlis masifinin tektonik durumu. Cumhuriyetin 50. yılı Yerbilimleri Kongresi, Özetler, 31-41.

  • Michard, A., Whitechurch, H., Ricou, I.E., Montigny, R. and Yazgan, E., 1984. Tauric subduction (Malatya-Elazığ provinces) and its bearing on tectonics of the Tethyan realm in Turkey. In: Dixon, J.E. and Robertson, A.H.F. (eds). Geological Evolution of the Eastern Mediterranean. Special Publication of the Geological Society of London, 17, 361-374.

  • Miyashiro, A., 1972. Metamorphism and Metamorphic Belts. George Allen&Unwin, London, 492 p.

  • Özgül, N. and Turşucu, A., 1984. Stratigraphy of the Mesozoic carbonate sequence of the Munzur Mountains (Eastern Taurides). International Symposium on the Geology of the Taurus Belt, 173-180.

  • Özkaya, İ., 1982. Upper Cretaceous plate rupture and development of leaky transcurrent fault ophiolites in SE Turkey. Tectonophysics, 88, 103-116.

  • Perinçek, D., 1979. Geological investigation of the ÇelikhanSincik-Koçali area (Adıyaman province). İstanbul Üniversitesi Fen Fakültesi Dergisi, Seri B44, 127-147.

  • Perinçek, D., 1980, Arabistan Kıtası Kuzeyindeki Tektonik Evrimin Kıta Üzerinde Çökelen İstifteki Etkileri. Türkiye 5. Petrol Kongresi Bildirileri, 77-93.

  • Ricou, L.E., Marcoux, J. and Whitechurch, H., 1984. The Mesozoic organization of the Taurides: one or several oceanic basins. In: Dixon, J.E., Robertson, A.H.F. (eds.), The Geological Evolution of the Eastern Mediterranean. Special Publication of the Geological Society of London, 17, 349-360.

  • Robertson, A.H.F. and Dixon, J.E., 1984. Intruduction: Aspects of the Geological Evolution of the Eastern Mediterranean. Special Publication of the Geological Society of London, 17, 1-74.

  • Şengör, A.M.C. and Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.

  • Şengün, M., 1984. Tatvan güneyinin (Bitlis masifi) jeolojik/petrografik incelenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı, Ankara, Doktora Tezi, 157 s.

  • Şengün, M., 1993. Bitlis masifinin metamorfizması ve örtü çekirdek ilişkisi. MTA Dergisi, 115, 1-13.

  • Vidal, O., Goffe, B., Bousquet, R. and Parra, T., 1999. Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exhance thermometer and thermodynamic data for daphnite. Journal of Metamorphic Geology, 17, 25-39.

  • Winkler, H.G.F., 1979. Petrogenesis of Metamorphic Rocks. 4th ed., Springer-Verlag, New York, 348 p.

  • Wintsch R.H. and Andrews, M.S., 1988. Deformation induced growth of sillimanite:’stress’ minerals revisited. Journal of Geology, 96, 143-161.

  • Yardley, B.W.D., 1989. An Introduction to Metamorphic Petrology. Longman Scientific &Technical, New York, 248 p.

  • Yazgan, E., 1984. Geodynamic evolution of the Eastern Taurus region. International Symposium on the Geology of the Taurus Belt, 199-208.

  • Yazgan, E. and Chessex, R., 1991. Geology and tectonic evolution of the Southeastern Taurides in the region of Malatya. Turkish Association of Petroleum Geologists Bulletin, 3 (1), 1-42.

  • Yılmaz, H., 1999. Doğu Toroslar’da Sürgü (Doğanşehir-Malatya) çevresinin jeolojisi. Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi, Seri A-Yerbilimleri, 16 (1), 95-106.

  • Yılmaz, O., 1975. Cacas bölgesi (Bitlis masifi) kayalarının petrografik ve stratigrafik incelemesi. Türkiye Jeoloji Bülteni, 18, 33-40.

  • Yılmaz, Y., Yiğitbaş, E. ve Yıldırım, M., 1987. Güneydoğu Anadolu’da Triyas sonu tektonizması ve bunun jeolojik anlamı. Türkiye 7. Petrol Kongresi, 65-77.

  • Yılmaz, Y., Yiğitbaş, E., Yıldırım, M. ve Genç, Ş.C., 1992. Güneydoğu Anadolu metamorfik masiflerinin kökeni. Türkiye 9. Petrol Kongresi, 296-306.

  • Hydrogeochemical and Hydrogeological Investigation of the Çan Geothermal Field
    Ozan Deniz Alper Baba Gültekin Tarcan
    View as PDF

    Abstract: The Çan Geothermal Field is located on a central part of the Biga Peninsula in northwest Turkey.Volcanics are the dominant rock type in this region. Alteration zones and clay minerals are verycommon in these rocks. Sedimentary rocks, low-grade metamorphics and alluvium are othergeological units observed around Çan. These units include common fracture zones because of thetectonic activity in the region. Thermal waters have reached the surface via these fracture zones.Alluvium is the most productive aquifer in all geological units. Wells drilled in this unit yieldbetween 5-30 L/s. The transmissibility and permeability coefficients of this unit are of 50-421 m2/dayand of 1.01-16.8 m/day, respectively. In this aquifer, groundwater depth changes between 0.1 and8.3m. According to the IAH (1979) water classification, these thermal waters are of the Na-Ca-SO4type, the cold waters are of the Ca-Mg-HCO3 type and the snow samples are of a mixed water type.Geothermal waters have a meteoric origin. The mean temperature, electrical conductivity and pH ofthe thermal waters have values of 44.4C, 2941 S/cm and 6.9, respectively.Geothermometer equations were used for prediction of reservoir fluid temperatures of thegeothermal system and temperature values were obtained between 46 and 203C. δD, δT and δ18Oisotope analysis showes that thermal waters in the Çan region have a meteoric origin and are aminimum of 45-50 years old. 

  • Geothermal

  • groundwater geochemistry

  • Çan

  • Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The chemistry of geothermal waters in Iceland III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica Acta, 46, 1513–1532.

  • Baba, A., Gündüz., O., Save, D., Gürdal, G., Bozcu, M., Sulun, S. ve Özcan, H., 2008. Çan Kömür Havzası’ndaki madencilik faaliyetlerinin tıbbi jeoloji açısından değerlendirilmesi. TÜBİTAK proje no: 106Y041, (yayınlanmamış).

  • Bjarnason, J.O., 1994. The speciation program WATCH, upgrade version 2.3 (January 2004) Orkustofnun, Reykjavik. 7pp.

  • Calmbach, L., 1997. AquaChem Computer Code-Version 3.7.42, Waterloo Hydrogeologic. Canada.

  • Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702-1703.

  • D’Amore, F. ve Arnórsson, S., 2000. Geothermometry. S. Arnórsson, (Ed.), Isotopic And Chemical Techniques In Geothermal Exploration, Development And Use içinde (152- 199). International Atomic Energy Agency, Vienna, 351 s.

  • Dönmez, M., Akçay, E. A., Genç, Ş. C. ve Acar, Ş., 2005. Biga Yarımadası’nda Orta-Üst Eosen volkanizması ve denizel ignimbiritler. MTA Dergisi, 131, 49-61.

  • Dönmez, M., Akçay, A. E., Duru, M., Ilgar, A., ve Pehlivan, Ş., 2008. 1:100000 ölçekli Türkiye Jeoloji Haritaları-Ayvalık-H17 paftası. MTA Yayın No: 98, 27 s.

  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M. ve Akçay, A. E., 2007. 1:100000 ölçekli Türkiye Jeoloji Haritaları-Ayvalık-İ17 paftası. MTA Yayın No: 98, 36 s.

  • Eisenlohr, T., 1995. Die Thermalwässer der Armutlu-Halbinsel (NW Türkei) und deren Beziehung zu Geologie und aktiver Tektonik. Dissertation, ETH Zurich No: 11340, 165 s.

  • Erzeneoğlu, Z. ve Şaroğlu, F., 1993. Çan (Çanakkale) Kaplıcası sıcak su sondajı yer belirleme çalışması. MTA Rapor No: 42897, (yayımlanmamış).

  • Fouillac, C. ve Michard, G., 1981. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs, Geothermics, 10, 55-70.

  • Fournier, R. O., 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5, 41-50.

  • Fournier, R. O., 1979. Geochemical and hydrological considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems, Journal of Volcanology and Geothermal Research , 5, 1-16.

  • Fournier, R. O., 1991. Water geothermometers applied to geothermal energy. F. D’Amore (Ed.). Applications of Geochemistry In Geothermal Reservoir Development içinde (37-69). UNITAR/UNDP Centre on Small Energy Resources, Rome, 408 s.

  • Gat, J. R. ve Garmi, L., 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranian Sea area. Journal of Geophysical Research, 75, 3039-3048.

  • Giggenbach, W. F., Confiantini, R., Jangi, B. L. ve Truesdell, A. H., 1983. Isotopic and chemical composition of Partabi Valley geothermal discharges, northwest Himalaya, India, Geothermics, 12, 199-222.

  • Giggenbach, W. F., 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 55, 2749–2765.

  • Golden Software, 2005. Grapher Trial Version 5.00. Golden Software Inc., Colorado-USA.

  • Güleç, N. ve Mutlu, H., 2002. Jeotermal alanlarda izotop jeokimyası, Jeotermalde Yerbilimsel Uygulamalar Yaz Okulu Ders Notları içinde (74-103), Dokuz Eylül Üniversitesi, İzmir, 301 s.

  • IAH (International Association of Hydrogeologists), 1979. Map of Mineral and Thermal Water of Europe Scale: 1:500000, United Kingdom.

  • Kendall, C. ve Caldwell, E. A., 2006. Fundamentals of isotope geochemistry. C. Kendall ve J. J. McDonnell, (Eds.), Isotope Tracers In Catchment Hydrology (4. Baskı) içinde (51-84), Elsevier, The Netherlands, 839 s.

  • Kharaka, Y. K, Lico, M. S. ve Law, L. M., 1982. Chemical geothermometers applied to formation waters, Gulf of Mexico and California basins, American Association of Petroleum Geologists Bulletin, 66, 588.

  • Mazor, E., 2004. Chemical And Isotopic Groundwater Hydrology (3.Baskı). Marcel Dekker Inc., New York, 453 s.

  • MTA, 2002. 1/500000 Ölçekli Türkiye Jeoloji Haritaları No1 ve No7. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Nicholson, K., 1993. Geothermal Fluids, Chemistry and Exploration Techniques. Springer-Verlag, Berlin, 263 s.

  • Nieva, D. ve Nieva, R., 1987. Development in geothermal energy in Mexico, part 12-A cationic composition geothermometer for prospection of geothermal resources. Heat recovery systems and CHP, 7, 243-258.

  • Öktü, G. ve Dilemre, A., 1997. Türkiye termal ve mineralli sular envanteri-Çanakkale. MTA Rapor No: 10393, 62 s.

  • Önder, İ., 2002. Çan Jeotermal Alanı sıcak su aramaları jeofizik rezistivite (DES) ve SP-türev etütleri raporu, 10 s. (yayınlanmamış).

  • Piper, A. M., 1944. A graphic procedure in the geochemical interpretation of water analyses. Transactions - American Geophysical Union, 25, 914-923.

  • Siyako, M., Bürkan, K. A. ve Okay, A.İ., 1989. Biga ve Gelibolu Yarımadaları’nın Tersiyer jeolojisi ve hidrokarbon olanakları. Turkish Association of Petroleum Geologists Bulletin, 1, 183-199.

  • Sheppard, S. M. F., 1981. Stable isotope geochemistry of fluids. D. T. Rickard ve F.E. Wickman (Eds.), Chemistry and geochemistry of solutions at high temperatures and pressures. Physics and Chemistry of the Earth, 13/14, 419- 445.

  • Tarcan, G., 2002. Jeotermal su kimyası, Jeotermalde Yerbilimsel Uygulamalar Yaz Okulu Ders Notları içinde (230-271), Dokuz Eylül Üniversitesi, İzmir, 301 s.

  • Taylor, H. P., Jr., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843-883.

  • Tonani, F., 1980. Some remarks on the application of geochemical techniques in geothermal exploration. Adv. Eur. Geoth. Res. Second Symp., Strasbourg, 428-443.

  • Truesdell, A. H., 1976. Summary of Section III. Geochemical techniques in exploration. 2nd UN Symposium on the development and use of geothermal resources, San Francisco, 1975, 1, liii-lxxix.

  • TS266, 2005. İnsani Tüketim Amaçlı Sular. Türk Standartları Enstitüsü, Ankara.

  • Yaltırak C. ve Okay, A.İ., 2004. Edremit Körfezi kuzeyinde Paleotetis birimlerinin jeolojisi. İTÜ Dergisi, 3 (1), 67-79.

  • 17-06/28, 2001. TEAŞ sondajı DSİ kuyu kütüğü. Çanakkale.

  • 17-06/30, 2001. TEAŞ sondajı DSİ kuyu kütüğü. Çanakkale.

  • 17-06/32, 2001. TEAŞ sondajı DSİ kuyu kütüğü. Çanakkale.

  • 17-06/33, 2001. TEAŞ sondajı DSİ kuyu kütüğü. Çanakkale.

  • 17-06/41, 2004. Çan-Büyüktepe sulama suyu sondajı DSİ kuyu kütüğü. Çanakkale.

    View as PDF