Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2023 NİSAN Cilt 66 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Geochemistry, Mineral Chemistry and Crystallization Conditions of Late Cretaceous Alkaline Plutonic and Subvolcanic Rocks in Avanos (Nevşehir, Central Anatolia)
Erman Divilioğlu Ayşe Orhan
View as PDF

Abstract: Karahıdır plutonic and subvolcanic rocks exposed to the northwest of Avanos (Nevşehir) are included inthe Central Anatolian Granitoids. Subvolcanic rocks presenting porphyritic texture with coarse K-feldspar crystalswere emplaced in the region by cutting in the medium-coarse grained plutonic rocks. These rocks, which havesimilar mineral content, contain orthoclase, plagioclase, quartz, amphibole and biotite minerals. According to theresults of mineral chemistry, plagioclases are in andesine-albite-anorthoclase (Ab57-98), biotites are in Fe biotite(annite-sideophyllite), and amphibole are in Mg-Fe hornblende (magnesiohastingsite-ferroparhasite) compositions. Hornblende and biotite compositions represent a subalkaline–alkaline magma character. The geothermobarometricresults of the minerals indicated that the Karahıdır pluton and subvolcanic rocks crystallized under the 0.41-1.91kbar pressure (P) and 692-804 °C temperature (T) conditions.Geochemically, Karahıdır pluton and subvolcanic rocks have quartz syenite and dacite porphyry, andesite porphyryand trachyandesite porphyry compositions. They are characterized by high total alkali (K2O+Na2O) content, Feindex value, large ion lithophile (LIL: Rb, Sr, Ba, K) and rare earth (REE) element content and low abundances ofCo, Ni and Sc and a low CaO/Al2O3 ratio and low Mg# value. The rocks exhibit shoshonitic, alkali-calcic to alkaline,metaluminous to peraluminous and ferroan in composition. In the chondrite normalized REE diagram, samplesexhibit enrichment of light rare earth elements (LREE) with a pattern (La/Ybn=16.33–29.80) and negative-Eu [(Eu/Eu*)n=0.39–0.,66] anomaly. The rocks are relative to the primary mantle, enriched in some large ion lithophile (LIL;Rb, K and Th) and rare earth elements (REE), while depleted in field strength elements (such as HFSE; Nb, Zr, andTi). The Karahıdır pluton and subvolcanic rocks show typical post-collisional aluminum A-type granite featuresbearing subduction component. Plutonic and subvolcanic rocks derived from the lithospheric and asthenosphericmantle, which contains an important continental crust component 

  • A-type granite

  • geochemistry

  • mineral chemistry

  • Nevşehir

  • Central Anatolia


  • Advokaat, E., Van Hinsbergen, D. V., Kaymakçı, N., Vissers, R. & Hendriks, B. (2014). Late Cretaceous extension and Palaeogene rotationrelated contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. International Geology Review, 56(15), 1813–1836.

  • Akıman, O., Erler, A., Göncüoğlu, M. C., Güleç, N., Geven, A., Türeli, T. K. & Kadıoğlu, Y. K. (1993). Geochemical characteristics of granitoids along the western margin of the Central Anatolian Crystalline Complex and their tectonic implications. Geological Journal, 28, 371–382.

  • Alçiçek, Ö. N. (2016). Dadağı (Gülşehir-Nevşehir) Çevresinde Uranyum İçin Jeokimyasal Arama Çalışmaları [Yayımlanmamış Doktora Tezi]. T.C. Fırat Üniversitesi Fen Bilimleri Enstitüsü.

  • Anderson, J. L. & Smith, D. R. (1995). The effects of temperature and ƒO2 on the Al-in-hornblende barometer. American Mineralogist, 80, 549–559.

  • Atabey, E. (1989). 1/100.000 ölçekli açınsama nitelikli Türkiye Jeoloji Haritaları Serisi, Kayseri-H 19 paftası. MTA Genel Müdürlüğü.

  • Atabey, E., Tarhan, N., Yusufoğlu, H. & Canpolat, M. (1988). Geology of between Hacıbektaş, Gülşehir and Kalaba (Nevşehir)-Himmetdede (Kayseri) (Rapor no: 8523). General Directorate of Mineral Research and Exploration (MTA), (yayımlanmamış).

  • Aydın, N. S., Göncüoğlu, M. C. & Erler, A. (1998). Latest Cretaceous magmatism in the Central Anatolian Crystalline Complex: Review of field, petrographic and geochemical features. Turkish Journal of Earth Sciences, 7, 259–268.

  • Bonin, B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2), 1–29.

  • Bonin, B., Azzouni-Sekkal, A., Bussy, F. & Ferrag, S. (1998). Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrological constraints and geodynamic settings. Lithos, 45, 45–70.

  • Boztuğ, D. & Harlavan, Y. (2008). K-Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and Central Anatolia, Turkey. International Journal of Earth Sciences, 97, 585–599.

  • Boztuğ, D. (1998). Post-collisional Central Anatolian alkaline plutonism Turkey. Turkish Journal of Earth Sciences, 7, 145–165.

  • Boztuğ, D., Arehart, G.B., Platevoet, B., Harlavan, Y. & Bonin, B. (2007). High-K, calc-alkaline I-type granitoids from the composite Yozgat batholith generated in a post-collisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Mineralogy and Petrology, 91, 191–223.

  • Chappell, B. W. & White, A. J. R., 1974. Two contrasting granite types. Pacific Geology, 8, 173–174.

  • Clemens, J. D., Holloway, J. R. & White, A. J. R. (1986). Origin of an A-type granite: experimental constraints. American Mineralogist, 71, 317–324.

  • Collins, W. J., Beams, S. D., White, A. J. R., Chappell, B. W. (1982). Nature and origin of A-type granite with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189–200.

  • Deer, W. A., Howie & R. A., Zussman, J. (1992). An Introduction to the Rock-forming Minerals. Longman Scientific and Technical, ISBN 0470218096, 696 p.

  • Demircioğlu, R. (2014). Gülşehir-Özkonak (Nevşehir) Çevresindeki Kırşehir Masifi ve Örtü Birimlerinin Jeolojisi ve Yapısal Özellikleri [Yayınlanmamış Doktora Tezi]. T.C. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.

  • Deniz, K. & Kadıoğlu, Y. K. (2016). Assimilation and fractional crystallization of foid-bearing alkaline rocks: Buzlukdağ intrusives, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 25(4), 341–366.

  • Divilioğlu, E. (2022). Avanos (Nevşehir) Civarındaki Plütonik ve Subvolkanik Kayaçların Mineralojik ve Jeokimyasal Özellikleri [Yayınlanmamış Yüksek Lisans Tezi]. T.C. Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü.

  • Eby, G. N. (1992). Chemical subdivision of the A-Type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641–644.

  • Edwards, C., Menzies, M. & Thirlwall, M. (1991). Evidence from Muriah, Indonesia, for The Interplay of Supra-Subduction Zone and Intraplate Processes in The Genesis of Potassic Alkaline Magmas. Journal of Petrology, 32(3), 555–592.

  • Frost, B. R. (1991). Oxide Minerals: Petrologic and Magnetic Significance, (D. H. Lindsley (Ed.)), Volume 25, New York, 509 p.

  • Frost, B.R., Barnes, C. G., Collins, W. J. & Arculus, R. J. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033–2048.

  • Frost, C. D. & Frost, B. R. (2011). On ferroan (A-type) granites: their compositional variability and modes of origin. Journal of Petrology 52, 39–53.

  • Giret, A., Bonin, B. & Leger, J. M. (1980). Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Canadian Mineralogist, 18, 481–495.

  • Göncüoğlu, M. C. (1986). Geochronological data from the southern part (Nigde Area) of the Central Anatolian Massif. Mineral Research Exploration Bulletin, 105-106, 83–96.

  • Göncüoğlu, M.C., Toprak, V., Kusçu, İ., Erler, A. & Olgun, E. (1991). Geology of the western part of the Central Anatolian Massif Part 1: Southern Section (Report no: 2909, unpublished).

  • Hammarstrom, J.M. & Zen, E.A. (1986). Aluminium in hornblende: An empirical igneous geobarometer. American Mineralogist, 71, 1297–1313.

  • Ishihara, S. (1977). The magnetite-series and ilmeniteseries granitic rocks. Mining Geology, 27, 293– 305.

  • İlbeyli, N., Pearce, J. A., Thirlwall, M. F. & Mitchell, J.vG. (2004). Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72, 163–182.

  • Jahn, B. M., Wu, F. Y., Lo, C. H. & Tsai, C. H. (1999). Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157, 119–146.

  • Kadıoğlu, Y. K., Dilek, Y. & Foland, K. A. (2006). Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex. Geological Society of America (special paper), 409, 381–415.

  • King, P. L., White, A. J. R., Chappell, B. W., Allen, C. M. (1997). Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38, 3, 371–391.

  • Koç, A. (2021). Ayhan Havzası’nın (Orta Anadolu) litolojik haritalaması ve jeolojik çıkarımlar: Bir uzaktan algılama ve arazi çalışması entegrasyonu. Türkiye Jeoloji Bülteni, 64(3), 309–348. https:// doi.org/10.25288/tjb.913294

  • Köksal, S. (1996). İdiş Dağı-Avanos yöresinin jeolojik ve petrolojik özellikleri (Nevşehir-Orta Anadolu) [Yayımlanmamış Yüksek Lisans Tezi]. Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü.

  • Köksal, S. & Göncüoğlu, M. C. (2008). Sr and Nd isotopic characteristics of some S-I and A-type granitoids from Central Anatolia. Turkish Journal of Earth Sciences, 17, 111–127.

  • Köksal, S., Göncüoğlu, M. C. & Floyd, P. A. (2001). Extrusive members of postcollisional A-Type magmatism in Central Anatolia: Karahıdır volcanics, Idisdagı-Avanos area, Turkey. International Geology Review, 43, 683–694.

  • Köksal, S., Romer, R. L., Göncüoğlu, M. C. & Toksoy, F. (2004). Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences, 93, 974–989.

  • Le Maitre, R. (1984). A proposal by the IUGS Sub commission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Sciences, 31, 243– 255.

  • Leake, B. E., Woolly, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J. & Krivovichev, V. G. (1997). Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names. European Journal of Mineralogy, 9, 623–651.

  • Lefebvre, C., Peters, M. K., Wehrens, P. C., Brouwer, F. M., Van Roermund, H. L. M. (2015). Thermal history and extensional exhumation of a hightemperature crystalline complex (Hırkadağ Massif, Central Anatolia). Lithos, 238(15), 156– 173.

  • Loiselle, M. C. & Wones, D. R. (1979). Characteristics of anorogenic granites. Geological Society of America (Abstracts with Programs), 11, 468 p.

  • Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. (1984). The 1982 eruptions of El Chicón Volcano, Chiapas, Mexico: Mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research, 23, 69– 108.

  • Maniar, P. D. & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643.

  • Molina, J. F., Scarrow, J. H. & Montero, F. B., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalichybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158, 69–98.

  • Nachit, H., Razafimahefa, N., Stussi, J. M. & Carron, J. P. (1985). Composition chimique des biotites et typologie magmatique des granitoides. Comptes Rendus Hebdomadaires de I’Acadimie del Sciences, 301(11), 813–818.

  • Okay, A. & Tüysüz, O. (1999). Tethyan Sutures of northern Turkey. Geological Society London Special Publications, 156(1), 475–515.

  • Orhan, A., Akçe, M. A. & Divilioğlu, E. (2022). Nevşehir-Niğde Bölgesi Plütonik Kayaçların Mineral Bileşimleri ve Kristalizasyon Koşullarının (P-T) Araştırılması (Proje no: ABAP21F22,). NEÜBAP Nevşehir, 74 s. (yayınlanmamış).

  • Orhan, A. & Demirbilek, M. (2018). Kapadokya bölgesi (Nevşehir, Orta Anadolu) kalk-alkalen ve alkalen plütonik/subvolkanik kayaçların petrografik ve jeokimyasal özellikleri. Türkiye Jeoloji Bülteni, 61(1), 23–50. https://doi.org/10.25288/tjb.358171

  • Patino Douce, A.E. (1997). Generation of metaluminous A-type granites by low-pressure melting of calcalkaline granitoids. Geology, 25, 743–746.

  • Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22, 47–263.

  • Ridolfi, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals, 11(3), 324.

  • Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160, 45–66.

  • Rollinson, H. R. (1993). Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical, 352.

  • Rudnick, R. L. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309.

  • Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304–310.

  • Seymen, İ. (1981). Kaman (Kırşehir) dolayında Kırşehir Masifi’nin stratigrafisi ve metamorfizması. Türkiye Jeoloji Bülteni, 24(2), 7–14. https://jmo. org.tr/resimler/ekler/049a9571563f351_ek.pdf

  • Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In A.D. Saunders & M.J. Norry, (Eds.), Magmatism in the Ocean Basins (pp. 313-345). Geological Society, London, Special Publications, 42.

  • Tischendorf, G., Gottesmann, B., Förster, H. J. & Trumbull, R. B. (1997). On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(408), 809–834.

  • Tulloch, A. J., Challis, G. A. (2000). Emplacement depths of Paleozoic- Mesozoic plutons from western New Zealand estimated by hornblende- AI geobarometry. New Zealand Journal of Geology and Geophysics, 43(4), 555–567.

  • Uchida, E., Endo, S., Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47–56.

  • Uçakcıoğlu, S. (1988). Nevşehir (Gülşehir) ve Civarı Uranyum Aramaları Raporu (Rapor no: 8453). MTA Derleme Raporu.

  • Vache, R. (1963). Akdağmadeni kontakt yatakları ve bunların Orta Anadolu Kristalinine karşı olan jeolojik çevresi. Maden Tetkik ve Arama Dergisi, 60, 22–36.

  • Van Hinsbergen, D. J. J., Maffione, M., Plunder, A., Kaymakçı, N., Ganerød, M., Hendriks, B. W. H., Corfu, F., Gürer, D., Gelder, G.I.N.O., Peters, K., McPhee, P. J., Brouwer, F. M., Advokaat, E., Vissers, R. L. M. (2016). Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, 35(4), 983–1014.

  • Whalen, J. B., Currie, K. L, Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419.

  • Whalen, J. B., Jenner, G. A., Longstaffe, F. J., Robert, F. & Gariepy, C. (1996). Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 37(6), 1463–1489.

  • Whitney, D. L., Hamilton, M. A. (2004). Timing of high-grade metamorphism in central Turkey and the assembly of Anatolia. Journal of the Geological Society, 161(5), 823–828.

  • Whitney, D. L., Teyssier, C., Dilek, Y., Fayon, A. K., (2001). Influence of orogen-normal collision vs. wrench-dominated tectonics on metamorphic P-T-t paths, Central Anatolia Crystalline Complex, Turkey. Journal of Metamorphic Geology, 19(4), 411–432.

  • Winchester, J., Floyd, P. A. (1977). Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20, 325–343.

  • Wones, D. R. (1989), Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist, 74, 744–749.

  • Wu, F., Sun, D., Huimin, L., Jahn, B. & Wilds, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187, 143–173.

  • Yalınız, K. M., Floyd, P. & Göncüoğlu, M. C. (1996). Suprasubduction zone ophiolites of Central Anatolia: geochemical evidence from the Sarıkaraman ophiolite, Aksaray, Turkey. Mineralogical Magazine, 60, 697–710.

  • Yalınız, M. K. ve Göncüoğlu, M. C. (1998). Orta Anadolu ofiyolitlerinin genel jeolojik özellikleri ve dağılımı. Yerbilimleri, 19(2), 19–30.

  • Yang, Z. Y., Wang, Q., Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X. P. & Zhao, Z. H. (2018). Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: new insights into the genesis of highly evolved granites. Lithos, 312–313, 258–73.

  • Divilioğlu, E. & Orhan, A. (2023). Avanos (Nevşehir, Orta Anadolu) Yöresindeki Geç Kretase Yaşlı Alkalen Plütonik ve Subvolkanik Kayaçların Jeokimyası, Mineral Kimyası ve Kristallenme Koşulları . Türkiye Jeoloji Bülteni , 66 (2) , 159-188 . DOI: 10.25288/tjb.1212341

  • Mineralogical and Geochemical Changes During Hydrothermal Alteration of Pyroclastic Rock in the Central Anatolian Volkanic Province (CAVP): Simulating Natural Formation Conditions
    Lütfiye Akin Hüseyin Evren Çubukçu
    View as PDF

    Abstract: The majority of the pyroclastic flow deposits in the Central Anatolia Volcanic Province (CAVP) havealready been subjected to hydrothermal alteration. In this study, we aimed to identify the dominant alteration typeunder different conditions and reveal the physicochemical conditions and geological processes that influencedsecondary mineral formation. The Zelve ignimbrite represents one of the most hydrothermally altered pyroclasticflow units in the study area. Juvenile pumice fragments from the Zelve ignimbrite were reacted with alkaline solutionsunder controlled experimental conditions, and reaction products in the form of zeolites were identified. Experimentalstudies were carried out under autogenic pressure and using alkaline solution activity agents such as NaOH, KOH,and NaHCO3 at a temperature of 150 °C, considering the most effective hydrothermal conditions in the region. Thereaction products obtained in experimental studies were identified by X-ray diffraction (XRD) and characterized  by scanning electron microscopy (SEM). As a result, zeolite minerals such as phillipsite (K- and Na-), analcime,mordenite, and chabazite were synthesized. We concluded that NaOH alkaline solution is an effective activity agentin the formation of zeolite minerals during hydrothermal alteration of a juvenile volcanic product. In addition,zeolite phases naturally crystallizing in the region (analcime, phillipsite, chabazite, mordenite, clinoptilolite, anderionite) mostly coincide with the reaction products from experimental studies. Major and trace element compositionsof reaction products exhibited distinct differences with respect to starting composition. Reaction products wereenriched in major oxides of Na2O, K2O and CaO, whereas they were depleted in trace element concentrations of Rb,Ba and P. This indicates elemental exchange occurred between the solution and starting material to form zeolites.

  • Alteration

  • experimental mineralogy

  • hydrothermal reaction

  • ignimbrite

  • synthesis

  • zeolites


  • Akin, L., Aydar, E., Schmitt, A. K. & Çubukçu, H. E. (2019). Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective. Turkish Journal of Earth Science, 28(3), 351–371. http://doi.org/10.3906/yer-1806-20

  • Akin, L., Aydar, E., Schmitt, A. K., Çubukçu & H. E., Gerdes, A. (2021). Zircon geochronology and O-Hf isotopes of Cappadocian ignimbrites: New insights into continental crustal architecture underneath the Central Anatolian Volcanic Province, Turkey, Gondwana Research, 91, 166- 187. https://doi.org/10.1016/j.gr.2020.12.003

  • Alderton, D. (2021). Zeolites, Encyclopedia of Geology (Second Edition). Academic Press, 313–325. https://doi.org/10.1016/B978-0-08-102908- 4.00041-2

  • Armbruster, T. & Gunter, M. E. (2001) Crystal Structures of Natural Zeolites. Reviews in Mineralogy and Geochemistry, 45. Natural Zeolites: Occurrence, Properties, Applications, 1–116.

  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akin, L., Ersoy, O., Sen, E., Duncan, R.A. & Atici, G. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213–214, 83–97. https://doi.org/10.1016/j. jvolgeores.2011.11.005

  • Banfield, J.F. & Barker, W. W. (1998). Low-Temperature Alteration in Tuffs from Yucca Mountain, Nevada. Clays and Clay Minerals. 46, 27–37. https://doi. org/10.1346/CCMN.1998.0460104

  • Barrer, R. M. (1948). Synthesis of a zeolitic mineral chabazite-like sorptive properties. Journal of the Chemical Society, p.127.










  • Akın, L. & Çubukçu, H. E. (2023). Orta Anadolu Volkanik Bölgesi`nde (OAVB) Piroklastik Kayacın Hidrotermal Alterasyonu Sırasında Gözlenen Mineralojik ve Jeokimyasal Değişimler: Doğal Oluşum Koşullarının Simülasyonu . Türkiye Jeoloji Bülteni , 66 (2) , 189-210 . DOI: 10.25288/tjb.1214770

  • Potentially Toxic Element-Induced Ecological Risk Assessment of Kilitbahir Port, Çanakkale, Türkiye
    Uğur Oran Ahmet Evren Erginal
    View as PDF

    Abstract: This study discusses the results of ecological risk analysis of sediments taken from Kilitbahir Port,one of the most active ports along the Çanakkale Strait (Dardanelles). ICP-MS analyses of the collected samplesrevealed moderate enrichment in Mo, Cu, and Zn in relation to anthropogenic activities in the studied sediments.The compatibility of the geoaccumulation and enrichment factor data indicates that the pollution is anthropogenic.No significant toxic risk was detected, although Mo is the most enriched potentially toxic element. The ecologicalrisk determined in terms of Hg and Cd is likely to be related to oil and fuel leaks caused by marine vessels passingto/from the Kilitbahir port and road traffic moving over the study area.

  • Çanakkale

  • ecological risk

  • Kilitbahir Port

  • potentially toxic element


  • Acquavita, A., Floreani, F. & Covelli, S. (2021). Occurrence and speciation of arsenic and mercury in alluvial and coastal sediments. Current Opinion in Environmental Science & Health 22, Article 100272.

  • Akarsu, T. (2021). Çanakkale Kentsel Gelişim Alanı Boyunca Sarıçay’ın Ekolojik Risk Analizi ve Coğrafya Öğretmeni Adaylarının Görüşleri [Unpublished Msc Thesis]. Çanakkale Onsekiz Mart Ünivesitesi Lisansüstü Eğitim Enstitüsü.

  • Akarsu, T., Kükrer, S. & Erginal, A. E. (2022). Trace metal-induced ecological risk analysis of Sarıçay River sediments, Çanakkale, NW Turkey. International Journal of Environment and Geoinformatics, 9(2): 45-53. https://doi. org/10.30897/ijegeo.989882

  • Ashayeri, N. Y. & Keshavarzi, B. (2019). Geochemical characteristics, partitioning, quantitative source apportionment, and ecological and health risk of heavy metals in sediments and water: A case study in Shadegan Wetland, Iran. Marine Pollution Bulletin, 149, Article 110495.

  • Baba, A. & Deniz, O. (2004). Effect of warfare waste on soil: a case study of Gallipoli Peninsula (Turkey). International Journal of Environment and Pollution, 22(6): 657-675.

  • Botello, A. V., Villanueva, F. S., Rivera, R. F., Velandia, A. L. & de la Lanza, G. E. (2018). Analysis and Tendencies of Metals and POPs in a Sediment Core from the Alvarado Lagoon System (ALS), Veracruz, Mexico. Archives of Environmental Contamination and Toxicology 75(1): 157-173.

  • Brady, J. P., Ayoko, G. A., Martens, W. N. & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, Article 306. https://doi. org/10.1007/s10661-015-4563-x

  • Chen, Z., Huang, B., Hu, W., Wang, W., Muhammad, I., Lu, Q., Jing, G. & Zhang, Z. (2021). Ecologicalhealth risks assessment and source identification of heavy metals in typical greenhouse vegetable production systems in Northwest China. Environmental Science and Pollution Research, 28(31): 42583-42595.

  • Çayır, A., Coşkun, M. & Coşkun, M. (2012). Evaluation of metal concentrations in mussel M. galloprovincialis in the Dardanelles Strait, Turkey in regard of safe human consumption. Bulletin of Environmental Contamination and Toxicology,89(1): 91-95. https://doi.org/10.1007/ s00128-012-0658-z

  • Demir, N. & Akkuş, G. (2018). Çanakkale Boğazı (Kepez) Midye (Mytilus galloprovincialis L., 1819) Örneklerinde Ağır Metal ve Antioksidan Enzim Düzeylerinin Mevsimsel Değişimi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4): 659–666.

  • Duodu, G. O., Goonetilleke, A. & Ayoko, G. A. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin 117(1): 523- 531.

  • Oran, U. & Erginal, A. E. (2023). Potentially Toxic Element-Induced Ecological Risk Assessment of Kilitbahir Port, Çanakkale, Türkiye . Türkiye Jeoloji Bülteni , 66 (2) , 211-222 . DOI: 10.25288/tjb.1220278

  • Formation and Origin of Magnesite Veins in Yakacık Area (NW-Ankara)
    Habibe Eren Köroğlu Elif Ahiska Zehra Semra Karakaş Sinan Ahiska
    View as PDF

    Abstract: Magnesite occurrences in Turkey are generally formed as veins and stockworks in fractures and fissuresof sedimentary rocks and altered ultramafic rocks. Ophiolitic units and magnesite formations crop out in the CentralAnatolia part of the Anatolian Block within the İzmir-Ankara-Erzincan Suture Belt and around Yakacık village,located 15 km northwest of Ankara.  The genetical investigation of the ore-forming fluid(s) was carried out using mineralogy and petrography, XRDcharacteristics, geochemical investigations and C-O isotope studies of ophiolitic units and magnesite formationsin this study. Magnesite mineralizations were observed in two different forms, as quartz magnesite veins and asvein-stockworks, within the serpentinites of the Kapaklı member, which consists of olistostromal layers containingserpentinite, gabbro, diabase, basalt, radiolarite, and limestones around Yakacık. The vein-type magnesites showcryptocrystalline and microcrystalline structures and are accompanied by quartz, chlorite, dolomite, and serpentineminerals. Quartz, serpentine, olivine, calcite, and dolomite were determined in stockwork-type magnesite. The clayminerals were chlorite, smectite, and kaolinite.In mineralogical and Raman spectroscopic studies, both the vein- and stockwork-type mineralizations,alterations from olivine to kammererite and kammererite minerals were detected. The values obtained from the resultsof the geochemical analysis indicate that magnesites are associated with ultramafic rocks. In order to determine theorigin of magnesites, δ13C (VPDB) and δ18O (VSMOW) stable isotope studies were carried out on magnesite andlimestone. The δ13C and δ18O values are -3.07 to 9.67‰ and 23.05 to 27.49‰ for magnesites and 0.20 to 3.74‰ and27.05 to 28.96‰ for limestones, respectively. The most important rocks that could be the main source for the C andO of magnesite formations are Jurassic limestones.In conclusion, the movement of surface waters towards the depths, the heating role of volcanism during theearly-middle Miocene, the decarbonation of limestones due to the warming of the deep-flowing fluids, and theincorporation of CO2, partly from a magmatic contribution, are the main formation mechanisms of magnesite formedin the fractures of serpentinized ultramafic rocks.

  • C-O isotope

  • kammererite

  • magnesite

  • ultramafic

  • XRD


  • Eren Köroğlu, H. , Akıska, E. , Karakaş, Z. & Akıska, S. (2023). Yakacık (KB-Ankara) Bölgesi Manyezit Damarlarının Oluşumu ve Kökeni . Türkiye Jeoloji Bülteni , 66 (2) , 223-256 . DOI: 10.25288/tjb.1242468

  • Physical, Chemical and Mineralogical Properties of Gallstones obtained from Antalya Province of Turkey
    Dilek Kabakçi Mustafa Gürhan Yalçin Gülsüm Özlem Elpek Iosif Volfson
    View as PDF

    Abstract: Gallbladder stone disease is the most common disease with a high prevalence in many societies in theword. In the literature, the primary risk factors discussed for this disease have been evaluated as gaining and losingweight rapidly, obesity, age, gender, genetic factors, having given birth too many children, life style and medications.The aim of this investigation is to find out the chemical and physical properties of gallstones in patients living inthe province of Antalya, Turkey. For this purpose, the chemical and mineralogical properties of 1243 gallstonesamples from 69 patients were analyzed using X-ray diffractometer (XRD), scanning electron microscopy (SEM)and Fourier-transform infrared spectroscopy (FTIR) applications.In accordance with the outcome of SEM and FTIR analysis, cholesterol, calcium carbonate, calcium bilirubinate,calcium phosphate, carbonate apatite, and protein contents were observed. Cholesterol was detected in 95% of 69patients; with 44 samples obtained from female patients. X-Ray Diffractometer (XRD) analysis showed newberyite,struvite, and aragonite minerals were found in the composition of gallstones. Newberyite was present in 59% ofthe samples. The physical, chemical and mineralogical characteristics of these gallstones are very important for theunderstanding of gallstone formation. The results of the study are consistent with the 5F Rule (Female, Forty, Fatty,Fair, Fertile). The relationship between bilirubinate and the presence of bacteria was determined. The presence ofbarium acetate and aluminum silicate in gallstones revealed the relationship with environmental pollutants.

  • Aragonite

  • Gallstone properties

  • medical geology

  • newberyite

  • struvite


  • Kabakci Kurgun, D. , Yalcın, M. G. , Elpek, G. Ö. & Volfson, I. (2023). Physical, Chemical and Mineralogical Properties of Gallstones obtained from Antalya Province of Turkey . Türkiye Jeoloji Bülteni , 66 (2) , 257-274 . DOI: 10.25288/tjb.1233117

  • FULL FILE ISSUE
    View as PDF