Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2019 OCAK Cilt 62 Sayı 1
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Foraminiferal Biostratigraphy, Microfacies Analysis and Depositional Environments of Upper Triassic Carbonates of Bitlis Massif, Palu (Elazığ)
Ayşe Atakul Özdemir
View as PDF

Abstract: In this study, it is aimed to reveal the foraminiferal content and microfacies properties of the the UpperTriassic carbonates, cover units of the Bitlis massif exposed in the vicinity of the Çakmakkaya village (Palu, Elazığ).Stratigraphically significant foraminiferal species characterizing Triassic have been recorded throughout themeasured section. Triasina hantkeni, the most common taxa documented in the studied sequence, is considered as azonal marker for Late Triassic. Besides the zonal marker species, the section includes Aulotortus sinuosus, Aulotortusfriedli, Involutina sp., Galeanella? sp., Duostomina sp., Glomospira sp., Glomospirella sp., Duotaxis birmanica,Siphovalvulina sp., and Reophax sp. foraminiferal assemblages. On the basis of the determined foraminiferal taxa,Triasina hantkeni zone is defined within the studied succession and a late Norian-Rhaetian age is attributed. Inaddition to foraminiferal assemblages, megalodontids, algae, gastrapods and corals are also present within thelimestone units. Three facies types, mudstone, wackestone-packstone, pelloidal bioclastic packstone-grainstone,were described based on microfacies studies to determine the depositional environments of the Upper Triassiccarbonates exposed in the region. The described microfacies types suggest that the depositional environment was alagoon and shallow marine platform environments. 

  • Bitlis Massif

  • foraminifera

  • late Triassic

  • microfacies

  • Palu

  • Aktaş, G., and Robertson, A.H.F., 1990. Tectonic evolution of the Tethys suture zone in SE Turkey: evidence from the petrology and geochemistry of Late Cretaceous and Middle Eocene extrusives. In: Malpas, J. et Al. (Eds) Ophiolites, Oceanic Crustal A

  • Aktaş, G., and Robertson, A.H.F., 1984. The Maden Complex, SE Turkey: evolution of a Neotethyan active margin. Geological Society, London, Special Publications, 17, 375–405.

  • Al-Shaibani, S.K., Altıner, D., Brönnimann, P., Carter, D.J., et Zaninetti, L., 1982. Triasina hantkeni Majzon, 1954 (Foraminifère), dans le Trias supérieur de la Téthys (Europe et Asie). Archive Des Sciences de Genève, 35, 137–142.

  • Al-Shaibani, S.K., Carter, D.J., and Zaninetti, L., 1983. Geological and micropalaeontological investigations in the Upper Triassic (Asinepe Limestone) of Seram, Outer Banda Arc, Indonesia. Archive Des Sciences de Genève, 36, 297–313.

  • Altıner, D., et Zaninetti, L., 1980. Le Trias dans la region de Pinarbasi, Taurus oriental, Turquie: unites lithologiques, micropaleontologie, milieux de. Rivista Italiana Di Paleontologia e Stratigrafia, 86, 705–760.

  • Beccaletto, L., Bartolini, A.-C., Martini, R., Hochuli, P.A., and Kozur, H., 2005. Biostratigraphic data from the Çetmi Melange, northwest Turkey: Palaeogeographic and tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 221, 215

  • Çağlayan, M.A., Önal, R.N., Şengün, M., and Yurtsever, A., 1984. Structural setting of the Bitlis Massif. Geology of the Taurus Belt. Proceedings of the International Symposium on the Geology of the Taurus Belt, Ankara, 245–254.

  • Chablais, J., Martini, R., Kobayashi, F., Stampfli, G., and Onoue, T., 2011. Upper Triassic foraminifers from Panthalassan carbonate buildups of Southwestern Japan and their paleobiogeographic implications. Micropaleontology, 57, 93–124.

  • Chablais, J., Onoue, T., and Martini, R., 2010. Upper Triassic reef-limestone blocks of southwestern Japan: New data from a Panthalassan seamount. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 206–222.

  • Ciarapica, G., et Zaninetti, L., 1984. Foraminifères et biostratigraphie dans le Trias supérieur de la série de la Spezia (Dolomies de Coregna et Formation de la Spezia, nouvelles forma- tions), Apennin septentrional. Revue de Paléobiologie, 117–134

  • Dunham, R.J., 1962. Classification of Carbonate Rocks according to Depositional Texture. American Association of Petroleum Geologists, 1, 108–121.

  • Ekmekçi, E., Özkan-Altıner, S., Altıner, D., Yılmaz, Ö., Erdoğan, K., Şener, S., Coşkun, B., Şenel, ve M., İşintek, İ., 2006. Torosların Geç Triyas-Liyas yaşlı istiflerinin foraminifer Biyostratigrafisi ve Mikrofasiyes özellikleri. MTA Rapor No. 1088

  • Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. SpringerVerlag Berlin Heidelberg. 976 p.

  • Gale, L., Kolar-Jurkovšek, T., Šmuc, A., and Rožič, B., 2012. Integrated Rhaetian foraminiferal and conodont biostratigraphy from the Slovenian Basin, eastern Southern Alps. Swiss Journal of Geosciences, 105, 435–462.

  • Gazdzicki, A., 1983. Foraminifers and biostratigraphy of Upper Triassic and Lower Jurassic of the Slovakian and Polish Carpathians. Acta Palaeontologica Polonica, 44, 109–169.

  • Gazdzicki, A., 1974. Rhaetian microfacies, stratigraphy and facial development in the Tatra Mis. Acta Geologica Polonica, 25, 17–120.

  • Göncüoğlu, M.C., and Turhan, N., 1984. Geology of the Bitlis Metamorphic Belt., Geology of the Taurus Belt. International symposium, Ankara, 237-245.

  • Grgasović, T., 1997. Upper Triassic biostratigraphy and algae from Žumberak (Croatia). Geologica Croatica, 50, 201–214

  • Hall, R., 1976. Ophiolite emplacement and the evolution of the Taurus suture zone, southeastern Turkey. Bulletin of the Geological Society of America, 87, 1078–1088.

  • İşintek, İ., 2002. Foraminiferal and algal biostratigraphy and petrology of the Triassic to Early Cretaceous carbonate assemblages in the Karaburun Peninsula (Western Turkey). Tez, 263 s. (yayınlanmamış)

  • Kamoun, F., Martini, R., Peybernes, B., and Zaninetti, L., 1994. Micropalaeontological characterization of the “Rhaetian’’ along the North-South Axis (central Tunisia); comparison with the Rhaetian of the Dorsale and the Saharan Shelf | Caracterisati

  • Kamoun, F., Peybernès, B., Martini, R., Zaninetti, L., Vila, J.-M., Trigui, A., et Rigane, A., 1998. Associations de foraminifères benthiques dans les séquences de dépôt du Trias moyen?-supérieur de l’Atlas Tunisien central et méridional. Geobios, 31

  • Mackintosh, P.W., and Robertson, A.H.F., 2012. Late Devonian-Late Triassic sedimentary development of the central Taurides, S Turkey: Implications for the northern margin of Gondwana. Gondwana Research, 21, 1089–1114.

  • Mancinelli, A., Chiocchini, M., Chiocchini, R.A., and Romano, A., 2005. Biostratigraphy of Upper Triassic-Lower Jurassic carbonate platform sediments of the central-southern Apennines (Italy). Rivista Italiana Di Paleontologia e Stratigrafia, 111, 27

  • Márquez, L., Calvet, F., Arnal, I., and Trifonova, E., 1994. Foraminiferal assemblage in the Isabena Formation, southern Pyrenees, Upper Triassic, Spain. Boletín de La Real Sociedad Española de Historia Natural, Sección Geológica, 89, 189–197.

  • Martini, R., Vachard, D., Zaninetti, L., Cirilli, S., Cornée, J.-J., Lathuilière, B., and Villeneuve, M., 1997. Sedimentology, stratigraphy, and micropalaeontology of the upper triassic reefal series in Eastern Sulawesi (Indonesia). Palaeogeography,

  • Martini, R., Zaninetti, L., Lathuillière, B., Cirilli, S., Cornée, J.J., and Villeneuve, M., 2004. Upper Triassic carbonate deposits of Seram (Indonesia): Palaeogeographic and geodynamic implications. Palaeogeography, Palaeoclimatology, Palaeoecology

  • Maurer, F., Rettori, R., and Martini, R., 2007. Triassic stratigraphy, facies and evolution of the Arabian shelf in the northern United Arab Emirates. International Journal of Earth Sciences, 97, 765.

  • MTA. 2011. 1/100.000 ölçekli Elazığ K-43 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara

  • Okay, A.I., and Altıner, D., 2007. A condensed mesozoic succession North of İzmir: A fragment of the anatolide-tauride platform in the Bornova Flysch Zone. Turkish Journal of Earth Sciences, 16, 257–279.

  • Okay, A.I., Arman, M.B., and Göncüoglu, M.C., 1985. Petrology and phase relations of the kyaniteeclogites from eastern Turkey. Contributions to Mineralogy and Petrology, 91, 196–204.

  • Okay, A.I., Zattin, M., and Cavazza, W., 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology, 38, 35–38.

  • Perinçek, D., 1990. Hakkari ili ve dolayının stratigrafisi, Güneydoğu Anadolu, Türkiye. Türkiye Petrol Jeologları Derneği Bülteni, 2, 21–68.

  • Perinçek, D., 1980. Bitlis metamorfitlerinde volkanitli Triyas. Türkiye Jeoloji Kurumu Bülteni, 23, 201– 211.

  • Robertson, A.H.F., 1998. Mesozoic-Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. Proceedings of the Ocean Drilling Program, 160 Scientific Results. 723–782.

  • Robertson, A.H.F., Parlak, O., Rızaoğlu, T., Ünlügenç, Ü., İnan, N., Tasli, K., and Ustaömer, T., 2007. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elaziğ region, SE Turkey). Geological Society, London,

  • Robertson, A.H.F., Parlak, O., Yıldırım, N., Dumitrica, P., and Taslı, K., 2016. Late Triassic rifting and Jurassic–Cretaceous passive margin development of the Southern Neotethys: evidence from the Adıyaman area, SE Turkey. International Journal of

  • Schäfer, P., and Senowbari-Daryan, B., 1981. Facies Development and Paleoecologic Zonation of Four Upper Triassic Patch-Reefs, Northern Calcareous Alps Near Salzburg, Austria. In: Toomey, D.F. (Ed.), European Fossil Reef Models. SEPM Society for Sedi

  • Şengün, M., 1993. Bitlis masifinin metamorfizması ve örtü çekirdek ilişkisi. Maden Tetkik ve Arama Dergisi, 115, 1–13.

  • Tunaboylu, B., Altıner, D., İşintek, I., and Demirci, D., 2014. Foraminiferal biostratigraphy and sequence stratigraphy of peritidal carbonates at the TriassicJurassic boundary (Karaburun Peninsula, Western Turkey). Journal of Asian Earth Sciences, 9

  • Varol, E., Tekin, U.K., and Temel, A., 2007. Age and geochemistry of middle to late carnian basalts from the alakirçay nappe (antalya nappes, sw turkey): Implications for the evolution of the southern branch of neotethys. Ofioliti, 32, 163–176.

  • Velić, I., 2007. Stratigraphy and Palaeobiogeography of Mesozoic Benthic Foraminifera of the Karst Dinarides (SE Europe). Geologia Croatica, 60, 1–86.

  • Wilson, J.L., 1975. Carbonate Facies in Geologic History. Springer Verlag, New York.

  • Yılmaz, Y., Yiğitbaş, E., and Genç, C., 1993. Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics, 12, 1280–1297.

  • Yümün, Z.Ü., Kılıç, A.M., Martini, R., Metzger, J., and Tunç, M., 2013. Late Triassic and Lower Jurassic Foraminifera of the carbonate platform of the Beyaz Aladağ Group (Eastern Taurus, Turkey): New stratigraphic implications. Geobios, 46, 447– 459.

  • Zaninetti, L., 1976. Les foraminiferes du Trias. Essai de synthese et correlation entre les domaines mesogeens europeen et asiatique. Rivista Italiana Di Paleontologia e Stratigrafia, 82, 1–258.


  • Atakul Özdemir, A . (2019). Palu (Elazığ) Civarında Yüzeylenen Bitlis Masifi Üst Triyas Karbonatlarının Foraminifer Biyostratigrafisi, Mikrofasiyes Analizleri ve Çökelim Ortamları . Türkiye Jeoloji Bülteni , 62 (1) , 1-16 . DOI: 10.25288/tjb.496325

  • Field Evidence for Southeast Black Sea Fault of Quaternary Age and IIts Tectonic Implications, Eastern Pontides, Turkey
    Mustafa Softa Tahir Emre Hasan Sözbilir Joel Q.g. Spencer Mehmet Turan
    View as PDF

    Abstract: The Eastern Pontides, which is the under transpressional deformation zone, is an active mountain beltin northern Turkey that has been uplifting at a rate of more than 0.5 mm/year, along with push-up geometry. Thisuplift is accommodated by the dip/oblique slip normal fault segments of an en-echelon geometry mountain frontmapped here for the first time. According to our geological mapping studies, the Southeast Black Sea Fault zoneis about 65 km total long and more than 1 km wide and comprises nine fault segments. In the kinematic analysisconducted along the fault zone, fault planes have dip angles between 60o-90o to the north. The measured fault planeshave rake angles range from 32o to 90o. Our findings indicate that (i) the faulting observed in the mountain frontof the Eastern Pontides, the crustal thickness has increased due to thrust component strike-slip faults formed in acompressive regime where σ1 was horizontal at the initially, as a result of this, σ1 which is the horizontal positionwent in a vertical position, and lastly the former weakness zones were re-activated as normal faults, (ii) thisweakness is defined as an Southeast Black Sea Fault that produces earthquakes have resulted in surface rupture inthe Quaternary and therefore this fault should be considered in the class of "Quaternary Fault" in Turkey’s activefault maps.

  • Eastern Pontides

  • kinematic analysis

  • Southeast Black Sea Fault

  • tectonic geomorphology

  • Adamia, S. A., Lordkipanidze, M. B., & Zakariadze, G. S., 1977. Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics, 40, 183-189.

  • Akçar, N., Tikhomirov, D., Özkaymak, Ç., Ivy‐Ochs, S., Alfimov, V., Sözbilir, H., Uzel, B., Schlüchter, C., 2012. 36Cl exposure dating of paleoearthquakes in the Eastern Mediterranean: First results from the western Anatolian Extensional Provin

  • Akkar, S., Azak, T., Çan, T., Çeken, U., DemircioğluTümsa, M.B., Duman, T. Y., Erdik, M., Ergintav, S., Kadirioğlu, F. T., Kalafat, D., Kale, Ö., Kartal, R. F., Kekovalı, K., Kılıç, T., Özalp, S., Altuncu Poyraz, S., Şeşetyan, K., Tekin, S., Yakut, A

  • Ardel, A., 1943. Trabzon ve Civarının Morfolojisi Üzerine Gözlemler. Türk Coğrafya Dergisi, 1, 71- 82.

  • Avagyan, A., Sosson, M., Karakhanian, A., Philip, H., Rebai, S., Rolland, Y., Melkonyan, R., Davtyan, V., 2010. Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions, M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Sta

  • Aytaç, A., 2012. An Approach to the Sea Level Changes to Base on The Marine Terraces of the Turkish Black Sea Coasts. (Abstracts) Quaternary International, 30, 279-280.

  • Beaumont, C., Fullsack, P., Hamilton, J., 1994. Styles of crustal deformation in compressional orogens caused by subduction on the underlying lithosphere. Tectonophysics, 232, 119-132.

  • Beaumont, C., Ellis, S., Hamilton, J., & Fullsack, P.,1996. Mechanical model for subductioncollision tectonics of Alpine-type compressional orogens. Geology, 24, 675-678.

  • Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., Özgür, S., 1995. Cretaceous rifting of the easternPontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57 (1-2), 233-24

  • Bektaş, O., Şen, C., Atıcı, Y., Köprübası, N., 1999. Migration of the Upper Cretaceous Subduction Related Volcanism Towards the Back-arc Basin of the Eastern Pontide Magmatic Arc (NE Turkey). Geological Journal, 34, 95-106.

  • Bektaş, O., Çapkınoğlu, S., Akdağ, K., 2001. Successive extensional tectonic regimes during the Mesozoic as evidenced by neptunian dikes in the Pontide Magmatic Arc, Northeast Turkey. International Geology Review, 43(9), 840-849.

  • Berndt, C., Yıldırım, C., Çiner, A., Strecker, M. R., Ertunç, G., Sarıkaya, M.A., Ozcan, O., Ozturk, T., Güneç Kıyak, N., 2018. Quaternary uplift of the northern margin of the Central Anatolian Plateau: New OSL dates of fluvial and delta-terrace depo

  • Bonini, M., Sokoutis, D., Talbot, C.J., Boccaletti, M., & Milnes, A.G., 1999. Indenter growth in analogue models of Alpine-type deformation. Tectonics, 18, 119-128.

  • Bonini, M., Sokoutis, D., Mulugeta, G., Katrivanos, E., 2000. Modelling hanging wall accommodation above rigid thrust ramps. Journal of Structural Geology, 22, 1165-1179

  • Bull, W. B., 2007. Tectonic geomorphology of mountains: A new approach to paleoseismology (1th ed.). Wiley-Blackwell, Oxford.

  • Chen, Y., Li, S.H., Li, B., 2012. Slip rate of the Aksay segment of Altyn Tagh Fault revealed by OSL dating of river terraces. Quaternary Geochronology, 10, 291-299.

  • Chorowics, J., Dhont, D., Adıyaman, Ö., 1998. Black Sea-Pontid relationship:interpretation in terms of subduction. Abstract of Third International Turkish Geology Symposium, Ankara, 258.

  • Çifçi, G., Dondurur, D., Ergun, M., 2002. Sonar and high resolution seismic studies in the Eastern Black Sea. Turkish Journal of Earth Sciences, 11(1), 61-81.

  • Demir, G., Aytekin, M., Akgün, A., İkizler, S. B., Tatar, O., 2013. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods.

  • Demircioğlu, M. B., Şeşetyan, K, Duman, T. Y., Çan, T., Tekin, S., & Ergintav, S., 2017. A probabilistic seismic hazard assessment for the Turkish territory: Part II-fault source and background seismicity model, Bulletin Earthquake Engineering. https

  • Dempsey, D., Ellis, S., Archer, R., Rowland, J., 2012. Energetics of normal earthquakes on dip-slip faults. Geology, 40, 279-282.

  • Dewey, J. F., Pitman, W. C., Ryan, W. B. F., & Bonnin, J., 1973. Plate tectonics and evolution of the Alpine system. Geological Society of America Bulletin, 84, 3137-3180.

  • Doglioni, C., Barba, S., Carminati, E., Riguzzi, F., 2011. Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Int. 184, 160-171.

  • Doglioni, C., Barba, S., Carminati, E., Riguzzi, F., 2014. Fault on-off versus coseismic fluids reaction. Geoscience Frontiers 5, 767-780.

  • Emre, Ö., Ateş, Ş., Duman, T.Y., Keçer, M., Erkal, T., Doğan, A., Durmaz, S., Osmançelebioğlu, R., Karakaya, F., ve Özalp, S., Koçyiğit, A., Göncüoğlu, M.C., Toprak, V., Bozkurt, E., Dirik, K., Rojay, B., Yılmaz, İ.Ö., Teksöz, B., Cihan, M., ve Özaca

  • Emre, O., Tüysüz, O., Yıldırım, C., 2009. Uplift of Pontide orogenic belt since the late Miocene. Abstract book of Second International Symposium on the Geology of the Black Sea Region (66-67), Ankara.

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S., Şaroğlu, F., 2013. Active fault map of Turkey with an explanatory text 1:1,250,000 scale. General Directorate of Mineral Research and Exploration, Special Publication Series, 30.

  • Erol, O., 1952. Trabzon Sekileri Hakkında Bir Not. Dil ve Tarih Coğrafya Fakültesi Dergisi, 10, 125-136.

  • Eyüboğlu, Y., Bektaş, O., Seren, A., Maden, N., Jacoby, W. R., Özer, R., 2006. Three directional extensional deformation and formation of the Liassic rift basins in the eastern Pontides (NE Turkey). Geologica Carpathica, 57(5), 337-346.

  • Eyüboğlu, Y., Bektaş, O., Pul, D., 2007. Mid-Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). International Geology Review, 49(12), 1103-1126.

  • Eyüboğlu, Y., Santosh, M., Bektaş, O., Ayhan, S., 2011. Arc magmatism as a window to plate kinematics and subduction polarity: Example from the eastern Pontides belt, NE Turkey. Geoscience Frontiers, 2(1), 49-56.

  • Eyüboğlu, Y., Dudas, F.O., Santosh, M., Zhu, D.C., Yi, K., Chatterjee, N., Akaryalı, E., Liu Z., 2016. Cenozoic forearc gabbros from the northern zone of the Eastern Pontides Orogenic Belt, NE Turkey: implications for slab window magmatism and conver

  • Fattahi, M., Walker, R., Hollingsworth, J., Bahroudi, A., Nazari, H., Talebian, M., Armitage, S., Stokes, S., 2006. Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL). Earth and Planetar

  • Frankel, K.L., Wegmann, K.W., Bayasgalan, A., Carson, R.J., Bader, N.E., Adiya, T., Bolor, E., Durfey, C.C., Otgonkhuu, J., Sprajcar, J., Sweeney, K.E., Walker, R.T., Marstellar, T.L., Gregory, L., 2010. Late Pleistocene slip rate of the Höh Serh–Tsa

  • Giaconia, F., Booth-Rea, G., Martínez-Martínez, J.M., Azañón, J.M., Pérez-Peña, J.V., 2012. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constructional domain of conjugate strikeslip faults: The Palomares and Polopos fault zones

  • Gök, R., Mellors, R. J., Sandvol, E., Pasyanos, M., Hauk, T., Takedatsu, R., Yetirmishli, G., Teoman, U., Turkelli, N., Godoladze, T., Javakishvirli, Z., 2016. Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region, Journal

  • Gündüz, S., 2015. Investigation of Active Tectonism Structure of The Eastern Black Sea with Using Multichannel Seismic Data. MSc Thesis, Dokuz Eylül University, Izmir.

  • Güven, İ. H., 1993. Geological and Metallogenic Map of the Eastern Black Sea Region; 1:250,000 Map. General Directorate of Mineral Research and Exploration, Trabzon.

  • Hamilton, W. J., 1842. Researches in asia minor, pontus and armenia with some account of their antiquities and geology (1th ed.). London: J. Murray

  • Hässig, M., Duretz, T., Rolland Y., Sosson M., 2016. Obduction of old oceanic lithosphere (80 Ma) due to thermal rejuvenation and the role of postobduction extension, insights from NE AnatoliaLesser Caucasus ophiolite and numerical modelling. Journal

  • ISC, 2018. Uluslararası Sismoloji Merkezi, Son depremler, 2018, http://www.isc.ac.uk/

  • Karajiyan, H., 1920. Mineral Resources of Armenia and Anatolia (1th ed.). Newyork: Armenia Press.

  • Keskin, S., 2007. Güneydoğu (GD) Karadeniz Sahil Kesiminin (Trabzon Yöresi) Denizel Taraçaları ve Aktif Tektoniği. Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Trabzon.

  • Keskin, S., Pedoja, K., Bektaş, O., 2011. Coastal uplift along the eastern Black Sea coast: new marine terrace data from Eastern Pontides, Trabzon (Turkey) and a Review. Journal of Coastal Resesearch, 27, 63-73.

  • Ketin, İ., 1969. Über die nordanatolische Horizontalverschiebung. Bull. Miner. Res. Explor. Inst. Turk. 72:1-28

  • Koçyiğit, A., Yılmaz, A., Adamia, S., Kuloshvili, S., 2001. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta 14: 177-95.

  • Kurushin, R. A., Bayasgalan, A., Ölziybat, M., Enkhtuvshin, B., Molnar, P., Bayarsayhan, C., Hudnut, K. W., Lin, J., 1997. The surface rupture of the 1957 Gobi-Altay, Mongolia, earthquake, Geological Society of America, 320, Special Paper.

  • Maden, N., Özturk, S., 2015. Seismic b-values, bouguer gravity and heat flow data beneath Eastern Anatolia, Turkey: Tectonic implications. Surv Geophys. 36, 549-570.

  • Maillot, B., Koyi, H.A., 2006. Thrust dips and thrust refraction in fault-bend faults: analogue experiments and theoretical predictions. Journal Structural Geology, 28, 36-49.

  • Merle, O., Abidi, N., 1995. Approche experimentale du functionnement des rampes emergentes. Bulletin de la Société géologique de France, 166, 439-450.

  • Mozafari, A. N., Sümer, Ö., Tikhomirov, D., Özkaymak, Ç., Uzel, B., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H., Akçar, N., 2016. Holocene Time-slip history of normal fault scarps in western Turkey: 36Cl surface exposure dating. AGU Fall Meeting, 12-

  • Mulugeta, G., Sokoutis, D., 2003. Hanging wall accommodation style in ramp-flat thrust models. In: D.A. Nieuwland (Ed.). New Insights into Structural Interpretation and Modelling (197- 207), Geological Society of London Special Publication.

  • Nadeau, R., Foxall, W., McEvilly, T. 1995. Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science, 267, 503-507.

  • Nefeslioğlu, H. A., Duman, T.Y., Durmaz, S., 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94 (3-4), 401-418.

  • Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Ma

  • Oswald, F. (1906). Geology of Armenia. PhD Thesis, University of London, London.

  • Özkaymak, C., Sözbilir, H., Uzel, B., H. Akyüz, S., 2011. Geological and Palaeoseismological Evidence for Late Pleistocene−Holocene Activity on the Manisa Fault Zone, Western Anatolia. Turkish Journal of Earth Sciences, 20, 449-474.

  • Özsayar, T., Pelin, S., Gedikoğlu, A., 1981. Doğu Pontidler`de Kretase. K.Ü. Yerbilimleri Dergisi, 1, 65-114.

  • Persson, K., 2001. Effective indenters and the development of double-vergent orogens; insights from analogue sand models. In: H.A. Koyi, N.S. Mancktelow, (Eds.). Tectonic Modelling; a Volume in Honor of Hans Ramberg (191-206), Geological Society of A

  • Persson, K.S., Sokoutis, D., 2002. Analogue models of orogenic wedges controlled by erosion. Tectonophysics, 356, 323-336.

  • Philip, H., Cisternas, A., Gvishiani, A., Gorshkov, A., 1989. The Caucasus: an actual example of the initial stages of continental collision. J. Tectonoph., 161, 1-21.

  • Rau, R.‐J., Chen, K. H., Ching, K.‐E., 2007. Repeating earthquakes and seismic potential along the northern Longitudinal Valley fault of Eastern Taiwan. Geophysical Research Letter, 34, L24301.

  • Ring, U., Reischmann, T., 2002. The weak and superfast Cretan detachment, Greece: exhumation at subduction rates in extruding wedges. Journal of the Geological Society, 159, 225-228.

  • Robinson, A. G., Banks, C. J., Rutherford, M. M., Hirst, J. P. P., 1995. Stratigraphic and structural development of the Eastern Pontides, Turkey. Journal of the Geological Society, 152, 861-872.

  • Rosas, F.M., Duarte, J.C., Almeida, P., Schellart, W.P., Riel, N., Terrinha, P., 2017. Analogue modelling of thrust systems: Passive vs. active hanging wall strain accommodation and sharp vs. smooth faultramp geometries. Journal of Structural Geology

  • Scholz, C. H., 1990. The Mechanics of Earthquakes and Faulting. Cambridge, New York, Cambridge University Press, Ref. QE534.2.S37.3

  • Semerci, A., 1990. Trabzon İli Yerleşim Alanının Mühendislik Jeolojisi Açısından İncelenmesi. Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Trabzon

  • Softa, M., Spencer, J.Q.G., Emre, T., Sözbilir, H., Turan, M., 2016. “Timing of Quaternary Marine Terrace Formation and Uplift Rates in the Eastern Pontides, NE Turkey”, Abstracts of American Geopyhsical Union, San Fransisco. (2016AGUFMEP11A0989S)

  • Softa, M., Spencer, J. Q. G., Emre, T., Sözbilir, H., Turan, M., 2017. Late Quaternary rapid uplift deduced from marine terraces in Eastern Pontides, Turkey. Geological Society of America Abstracts with Programs, 49(6). doi: 10.1130/ abs/2017AM-30512

  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q. G., Turan, M., 2018. Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey, Geodinamica Acta, 30:1, 249-264.

  • Softa, M., 2018. Tektonik Jeomorfoloji ve Denizel Taraçaların Yaş Verileri Işığında Doğu Karadeniz Havzası Güney Kenarının Aktif Tektoniği. Doktora Tezi, Dokuz Eylül Üniversitesi, İzmir.

  • Solmaz, F., 1990. Vakfıkebir-Yomra Arası Kıyı Şeridinin Morfolojisi ve Taraçalar. Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul.

  • Sosson, M., Stephenson, R., Sheremet, Y., Rolland, Y., Adamia, S., Melkonian, R., Kangarli, T., Yegorova, T., Avagyan, A., Galoyan, G., Danelian, T., Hässig, M., Meijers, M., Müller, C., Sahakyan, L., Sadradze, N., Alania, V., Enukidze, O., Mosar, J.

  • Şengör, A. M. C., Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.

  • TPAO, 2010. Türkiye Petrolleri Anonim Ortaklığı, Sismik kesitler. 2010, http://www.tpao.gov.tr

  • Tsereteli, N., Tibaldi, A., Alania, V., Gventsadse, A., Enukidze, O., Varazanashvili, O., Müller, B. I. R., 2016. Active tectonics of central-western Caucasus, Georgia. Tectonophysics, 691, 328- 344.

  • Ustaömer, T., Robertson, A. H. F., 1996. Paleotethyan tectonic evolution of the north Tethyan margin in the central Pontides, N Turkey. In: A. Erler, T. Ercan, E. Bingol, S. Orcen, (Ed.). Proceedings of the International Symposium on the Geology of t

  • Westaway, R., 1994. Present‐day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research, 99, 12071-12090.

  • Yıldırım, C., Schildgen, T.F., Echtler, H., Melnick, D., Strecker M.R., 2011. Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: implications for the northern margin of the Central Anatolian Pla

  • Yıldırım, C., Melnick, D., Ballato, P., Schildgen, T. F., Echtler, H., Erginal, A. E., Kıyak, N. G., Strecker, M. R., 2013. Diferential uplift along the northern margin of the Central Anatolian Plateau: inferences from marine terraces. Quaternary Sci

  • Yılmaz, B.S., Güç, A.R., Gülibrahimoğlu, İ., Yazıcı, E.N., Konak, O., Yaprak, S., Köse, Z., 1998. Trabzon İlinin Çevre Jeolojisi ve Doğal Kaynakları. Maden Tetkik ve Arama Genel Müdürlüğü. Rapor No: 9997.

  • Yılmaz, C., Şen, C., Şener, S., Kandemir, R., Karslı, O., Bak, T. K., 2005. Trabzon Kıyı Bölgesinin PliyoKuvaterner Stratigrafisi. Türkiye Kuvaterner Sempozyumu, 5, 111-117.

  • Yılmaz, Y., 2017. Morphotectonic Development of Anatolia and the Surrounding Regions, In: I. Çemen, Y. Yılmaz, (Ed.). Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region (11-91). American Geophysical Un


  • Softa, M , Emre, T , Sözbilir, H , Spencer, J , Turan, M . (2019). Kuvaterner Yaşlı Güneydoğu Karadeniz Fayı’nın Arazi Verileri ve Bunun Tektonik Önemi, Doğu Pontidler, Türkiye . Türkiye Jeoloji Bülteni , 62 (1) , 17-40 . DOI: 10.25288/tjb.504050

  • Petrology of the Plio-Quaternary Göbekören Volcanics (Kangal-Sivas)
    Taner Ekici Sultan Taş
    View as PDF

    Abstract: The study area is located at 15 km W-SW of Kangal district of Sivas province. Lithological units are observedin the study area ranging from Late Miocene to Plio- Quaternary in age. The rock units start with Late MiocenePliocene Kangal Formation and Upper Pliocene Uzunyayla Formation conformably overlies this unite. UzunyaylaFormation is uncomfortably overlain by the Plio-Quaternary Göbekören volcanics and again uncomfortably overthe Quaternary alluvium.The Late Miocene-Pliocene Kangal Formation has a thickness of about 200 m in the study are and consists ofsandstone, mudstone and lignite bands in some places. Uzunyayla Formation forms of marl and lacustrine limestonewhich was placed in conformity to Kangal Formation. Above units, Late Pliocene Göbekören Volcanics with darkbrown-black colour, porous, air-bubbled, massive columnar and an approximate thickness of 10 m is composedmostly from basalt and less from trachybasalt.Göbekören volcanics characterizes alkaline as geochemically. Both geochemical analyses and mineralogicalobservations show that there are olivine and clinopyroxene fractionation from basalts to trachybasalt. As a result ofthe geochemical investigations, it was observed that Göbekören volcanics has more enriched light rare earth elementsthan heavy rare earth elements which suggest that the crustal material may be added during the crystallization in themagmatism. In addition, the amount of partial melts increases from trachybasalt to basalts.Göbekören volcanics which is located in Sivas Basin is continental plate basalts which is formed as a result oflithospheric thinning.

  • Göbekören Volcanics

  • Major and Trace Elements Geochemistry

  • Mineralogy and Petrography

  • Sivas

  • Aktimur, H.T., Atalay, Z., Ateş, Ş., Tekirli, M.E. ve Yurdakul, M.E. 1988. Munzur Dağları ile Çavuşdağı arasının jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 8320, Ankara (yayınlanmamış).

  • Alıntı, İ.E. 1961. Kayadibi-Şarkışla bölgesinin jeolojisi ve hidrojeolojisi. İstanbul Üniversitesi Fen Fakültesi Mecmuası 26, 162-199.

  • Alpaslan, M., Temel, A. 2000. Petrographic and Geochemical Evidence for Magma Mixing and Crystal Contamination in the Post-Collisional CalcAlkaline Yozgat Volcanics, Central Anatolia, Turkey, International Geology Review, Vol.42, p. 850-863.

  • Atabey, E., Bağırsakçı, S., Canpolat, M., Gökkaya, K.Y., Günal, S. ve Kılıç, N. 1994. Gürün Kangal (Sivas) Darende-Hasançelebi arasının jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 9760, Ankara (yayımlanmamış).

  • Atabey, E. ve Aktimur, H.t. 1997. 1/100.000 Ölçekli Açınsama Nitelikli Türkiye Jeolojisi Haritaları Serisi, Sivas-G24 Paftası, No: 48. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.

  • Aziz, A., Erakman, B., Kurt, G. ve Meşhur, M. 1982. Pınarbaşı-Sarız-Gürün ilçeleri arasında kalan alanın jeoloji raporu. Türkiye Petrolleri Anonim Ortaklığı Genel Müdürlüğü Rapor No: 1601, Ankara (yayımlanmamış).

  • Bayhan, H. 1980. Güneş-Soğucak (Divriği) yöresinin jeolojik, minerolojik, petrografik, petrolojik ve metalojenik incelemesi. Doktora Tezi, HÜ, 206 s., Ankara

  • Bayhan, H. ve Baysal, O. 1982. Güneş-Soğucak (Divriği/Sivas) Yöresinin Petrografik -Petrolojik İncelenmesi. Türkiye Jeoloji Kurumu Bülteni, C. 25, 1-13, Şubat, 1982.

  • Baykal, R. 1944. Malatya-Kayseri arasındaki Torosların jeolojik yapısı, MTA, Derleme Raporu, No: 1701 / yayınlanmamış).

  • Baykal, F. 1966. 1/500.000 ölçekli Türkiye Jeoloji haritası, Sivas paftası, MTA yayınları.

  • Bilgiç, T. ve Terlemez, İ. 2007. 1/100.000 ölçekli Açınsama Nitelikli Türkiye Jeolojisi Haritaları Serisi, Sivas-J36 Paftası, No: 712. Maden Tetkik ve Arama Genel Müdürlüğü.

  • Bilgiç, T. 2014. 1/100.000 ölçekli Türkiye Jeoloji Haritaları, Sivas-J38 Paftası. No:211 Maden Tetkik Arama Genel Müdürlüğü Yayını, Ankara.

  • Blumnethal, M.M. 1944. Kayseri ile Malatya arasındaki Toros bölümünün Permo-Karbonifer arazisi, MTA, Dergi, 1/31, 105-118.

  • Boynton, W.V. 1984. Geochemistry of the rare elements: meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry. Elsevier, pp. 63-114.

  • Ekici, T. 2016. Collision-related slab break-off volcanism in the Eastern Anatolia, Kepez volcanic complex (Turkey) Geodinamica Acta, Vol.28, No.3, 223-239.

  • Erkan, Y. 2011. Kayaç Oluşturan Önemli Minerallerin Mikroskopta İncelenmesi, TMMOB Jeol. Müh. Odası, 5. Baskı. Sayfa, 436. ISBN: 975-395-137- X

  • Göç, D., 1993. Yazyurdu (Gürün-Sivas) Yöresinin Stratigrafik ve Sedimanter Petrolojik Özellikleri (Yüksek Lisans Tezi), Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas.

  • Gökten, E. 1993. Ulaş (Sivas) doğusunda Sivas havzası güney kenarının jeolojisi: İç Toros Okyanusu’nun kapanımıyla ilgili tektonik gelişi. TPJD Bülteni 5/1, 35-55.

  • Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre Le Bas M.J., Sabine P.A., Schmid R., Sorensan, H., Streckeisen, A., Wolley, A.R. and Zonettin, B. 1989. A classification of igneous rocks and glossory of terms. Blackwell, Oxford.

  • MacKenzie, W.S. and Guilford, C. 1980. Atlas of rock forming minerals in thin section. John Wiley and Soons, Inc, New York.

  • Moorhouse, W.W. 1969. The study of rocks in thin section. Harper and Row, New York, 514 pp.

  • Narin, R. Ve Kavuşan, G. 1993. Sivas-kangalKalburçayırı linyit yatağının jeolojisi. Cunhuriyet Üniversitesi Mühendislik Fakültesi Dergisi Seri A, Yerbilimleri, Cilt 10, Sayı 1.

  • Özgül, N., Turşucu, A., Özyardımcı, N., Bingöl, İ., Şenol, M. ve Uysal, Ş. 1981. Munzur Dağlarının jeolojisi. Maden Tetkik ve Arama Enstitüsü Rapor No:6995, Ankara (yayımlanmamış).

  • Parlak, O., Yılmaz, H., Boztuğ, D., and Höck, V. 2005. Geochemistry and tectonic setting of Divriği ophiolite in the east central Anatolia (Sivas, Turkey): evidence for melt generation within an asthenospheric window prior to ophiolite emplacement on

  • Parlak, O., Yılmaz, H., Boztuğ, D. 2006. Origin and tectonic significance of the metamorphic sole and isolated dykes of the Divriği ophiolite (Sivas, Turkey): Evidence fors lan berak-off prior to ophiolite emplacement Turkish Journal of Earth Science

  • Rudnick, R. L., Fountain, D. M. 1995. and Composition of the Continental Crust: A Lower Crustal Perspective. Review of Geophysics, 33(3): 267– 309.

  • Said, N., Kerrich. R., Cassidy. K. And Champion. C. 2012. Chracteristics and geodynamic setting of the 2-7 Ga Yilgan heterogeneous plume and its interaction with continental lithosphare; evidence from komatitic basalt andbasalt geochemistey of the Ea

  • Sun, S.S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D. and Norry M.J. (Eds.), Magmatism in ocean basins. Geol. Soc. London. Spec. Publ. no.42, pp.

  • Sümengen, M., Terlemez, İ., Bilgiç, T., Gürbüz, M., Ünay, E., Ozaner, S. Ve Tüfekçi, K. 1987. Şarkışla-Gemerek dolayı Tersiyer havsının stratigrafisi, sedimantolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 8118, Ankara (yayımlanmamış).

  • Taylor, S. R. 1967. The Origin and Growth of Continents. Tectonophysics, 4(1):17–34.

  • Taylor, S. R. 1977. Island Arc Models and the Composition of the Continental Crust. In: Talwani, M., Pitman III III, W.C., eds., Island Arcs, Deep Sea Trenches, and Back-Arc Basins. Maurice Ewing Series, American Geophysical Union, Washington, D.C.,

  • Taylor, S.R. and McLennan, S.M. 1985. The continental crust:its composition and evolution. Blackwell, Oxford.

  • Türkcan, A., Yıldırım, T., Satır, M. Harlavan, Y., Açıkgöz, S. 2000. Neogene volcanism of SivasKangal-Gürün-Gemerek-Şarkışla area (abs). In IESCA-2 İzmir.

  • Wilson, M. 1989. Igneous petrogenesis: London, Chapman and Hall, 466 p.

  • Yardley, B.W.D., MacKenzie W.S. ve Guilford, C. 1990. Atlas of metamorphic rocks and their textures. John Wiley and Soons, Inc, New York.

  • Yılmaz, A., Sümengen, M., Terlemez, İ. ve Bilgiç, T. 1989. 1/100.000 Açınsama Nitelikli Türkiye Jeolojisi Haritaları Serisi, Sivas-G23 Paftası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.

  • Yılmaz, A., Sümengen, M., Terlemez, İ. ve Bilgiç, T. 1990. Sivas ile Şarkışla arasındaki bölgenin jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 9090, Ankara (yayımlanmamış).

  • Yılmaz, H., Arıkal, T. ve Yılmaz, A. 2001. Güneş ofiyolitinin (Divriği-Sivas) jeolojisi. 54. Türkiye Jeoloji Kurultayı Bildiriler Kitabı, Ankara.


  • Ekici, T , Taş, S . (2019). Pliyo-Kuvaterner Yaşlı Göbekören Volkaniklerinin Petrolojisi (Kangal-Sivas) . Türkiye Jeoloji Bülteni , 62 (1) , 41-62 . DOI: 10.25288/tjb.504069

  • Stratigraphy of the Neogene Sedimentation and Volcanism in Çubukludağ Basin, Western Anatolia
    Fikret Göktaş
    View as PDF

    Abstract: The Lower-Middle Miocene fill of Çubukludağ basin, formed as an asimetric depression under thecontrol of strike-slip Tuzla Fault, comprises Çatalca, Bahçecik, Yeniköy and Tahtalı formations, all of which arestudied under the name Çubukludağ group, as well as Cumaovası volcanics. Composed of lacustrine and fluvialdeposits with coal-bearing marsh interbeds, Çatalca formation has not any observed lower stratigraphic contact.Bahçecik formation, which overlies the Çatalca formation with an unconformity marked by an abrupt change in thedepositional environment, consists of red-claret red conglomerates deposited in a lacustrine fan delta, includingfreshwater alga-bearing lacustrine limestone interbeds (Sarımustafa Member). Yeniköy formation overlies theBahçecik formation unconformably and contains fan deltaic and lacustrine deposits. The lower part of a fan deltasuccession, named as Akselvi member, is made from red-claret red fluvial conglomerates with a low-textural maturity.The upper part is a succession that is dominated by fluvial sandstone, pebbly sandstone, conglomerate with interbedsof lacustrine claystone-siltstone. Lacustrine Edil member, overlying Akselvi member with a relationship of lateralvertical transition, contains a laminated-shale dominated succession and bears felsic pyroclastic interbeds, productsrepresenting an earlier period for Cumaovası volcanism.Became active in late periods of the sedimentation during which Yeniköy formation occurred, Cumaovası volcanismhas two stages of volcanism marked by calc-alkaline rhyolitic volcanics, showing a lateral interfingering relationshipwith the deposition of Tahtalı formation. K-Ar ages ranging from 13,0±0,4 Ma to 13,8 Ma were obtained from rhyolitelavas emplaced on first-stage pyroclastics. The initial stage of phreatomagmatic volcanism originated in the lakewhere Edil member was deposited. The lake was entirely filled in the main explosion stage marked with pyroclasticflow deposits and rhyolite lavas. With the emplacement of first-stage Cumaovası volcanics, the basin in which Yeniköyformation had been deposited was closed and the sub basin was formed in the area where Tahtalı formation wasfilled, located in east of the volcanic axis. Composed of mainly braided river deposits, Tahtalı formation has a lateralinterfingering relationship with second-stage Cumaovası volcanics. Intermittent lacustrine deposits, described asÇamköy limestone member, rest on/within Tahtalı formation initiated with alluvial fan deposits (Sakartepe member)overlying over Bornova Flysch Zone at the southern margin of the basin unconformably.Gaziemir group, which is built from lower alluvial Akçaköy formation and upper lacustrine Buca formation, indicatesthe sedimentation occurred during Late Miocene-Early Pliocene. Akçaköy formation reflects sedimentation of theLate Miocene basin, took place on an alluvial fan from its western and eastern basin margins toward its center.Lacustrine Buca formation comprises limestone-dolomitic limestone and green claystone-siltstone successions(Develi member), overlying Akçaköy alluvial succession laterally passing at the basin margins and vertically alongthe interior parts.

  • Neogene Çubukludağ basin

  • Neogene Stratigraphy

  • Neogene volcanism

  • West Anatolia

  • Akartuna, M. 1962. İzmir-Torbalı-Seferihisar-Urla bölgesinin jeolojisi hakkında. Maden Tetkik ve Arama Dergisi 59, 1-18.

  • Arni, P. 1937. Yeniköy Seydiköy Cumaovası kömür sahasındaki tetkikata ait muvakkat rapor. Maden Tetkik ve Arama Genel Direktörlüğü Rapor No: 149 (yayımlanmamış).

  • Akdeniz, N., Konak, N., Öztürk, Z. ve Çakır, M.H., 1986, İzmir-Manisa dolayının jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No: 7929 (yayımlanmamış).

  • Christie-Blick, N., Biddle, K.T., 1985. Deformation and basin formation along strike-slip faults. In: Biddle, K.T., Christie-Blick, N. (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation Society of Economic Paleontologists and Mineral

  • Borsi, J., Ferrara, G., Innocenti, F., Mazzuoli, R., 1972. Geochronology and petrology of recent volcanics in the eastern Aegean Sea (West Anatolia and Lesbos Island). Bulletin of Volcanology 36, 473– 496.

  • Bruıjn, H. de, Mayda, S., Ostende, L., Kaya T. ve Saraç, G. 2006. Small mammals from the Early Miocene of Sabuncubeli (Manisa, SW Anatolia, Turkey). Beitrage zur Paläontologie 30, 57-87.

  • Candan, O.,Dora, O.Ö., Oberhänsli, R., Oelsner, F., Dürr, S. 1997. Blueschist relics in the Mesozoic cover series of the Menderes Massif and correlations with Samos Island, Cyclades. Schweizerische Mineralogische und Petrographische Mitteilun 77, 95-

  • Çetinkaplan, M., Candan, O., Oberhänsli, R. 2007. Menderes Masifi’nin Batısında Yer Alan Kikladik Kompleksin Tersiyer Yaşlı Yüksek Basınç/Düşük Sıcaklık Metamorfizması-Türkiye. Menderes Masifi Kollokyumu, 5-10 Kasım 2007, İzmir, Genişletilmiş Bildiri

  • Emre, Ö., Özalp, S., Duman, T.Y. 2011. 1:250.000 ölçekli Türkiye D Fay Haritası Serisi. İzmir NJ 35-7) Paftası, Seri No:6, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.

  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. ve Göktaş, F. 2005. İzmir yakın çevresinin diri fayları ve deprem potansiyelleri. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 10754 (yayımlanmamış).

  • Engin, O. 1965. Cumaovası (İzmir) civarındaki linyit ihtiva eden sahanın jeolojisi hakkında rapor. Maden Tetkik ve Arama Genel Direktörlüğü Rapor No: 3765 (yayımlanmamış).

  • Eşder, T. ve Şimşek, Ş. 1975. Geology of İzmirSeferihisar geothermal area. Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, California, USA, 20-29 May 1975, Proceedings 1, 349-361.

  • Eşder, T. 1988. Gümüldür-Cumaovası (İzmir) alanının jeolojisi ve jeotermal enerji olanaklarının araştırılması. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Bölümü Anabilim Dalı, 401 s. (yayımlanmamış).

  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. ve Yılmaz, Y. 2001. The Cumaovası graben, South of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta 14, 45-55.

  • Göktaş, F. 2012. Kemalpaşa-Torbalı (İzmir) havzası ve yakın çevresindeki Neojen-Kuvaterner tortullaşması ile magmatizmasının jeolojik etüdü. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 11575.

  • Göktaş, F. 2013. Cumaovası volkanitlerinin zamanstratigrafik konumuna ilişkin yeni veriler hakkında kısa not. Maden Tetkik ve Arama Dergisi 147, 179-183.

  • Göktaş, F. ve Ünay, E. 2000, The stratigraphy of the NW parts of the Akhisar (Manisa) Neogene basin. International Earth Sciences Colloquium on the Aegean Region (IESCA), 25-29 Eylül 2000, İzmir, Abstracts, 72.

  • Hasözbek, A. 2000. Geology of the Cumaovası (Menderes) region and the forming of the volcanics. BSc thesis, Dokuz Eylul University Department of Geology Engineering, Izmir.

  • Hilgen, F., Lourens, L.J., Van Dam, J.A., with contributions by Beu, A.G., Boyes, A.F., Cooper, R.A., Krigsman, W., Ogg, J.G., Piller, W.E., Wilson, D.S. 2012. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G. (Eds), The Geolog

  • Irvine, T. N. ve Baragar, W. R. A. 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences 8, 523- 548

  • Innocenti, F. ve Mazzuoli, R. 1972. Petrology of İzmirKaraburun volcanic area (West Turkey). Bulletin of Volcanology 36, 83-104.

  • Karacık, Z. ve Genç, Ş. C. 2011. Volcano-stratigraphy of the extension-related silicic volcanism in the Çubukludag graben, western Turkey: implications for generation of thephretomagmatic eruptions triggered by dome emplacement. Geophysical Research,

  • Karacık, Z. ve Genç, Ş. C. 2012. Petrology of the Miocene volcanism at around the Karaburun Peninsula and Cumaovası graben (Western Anatolia, Turkey): Geochemical and radiochronological data for its regional implications. International Earth Sciences

  • Karacık, Z., Genç, Ş.C., Gülmez, F. 2013. Petrochemical features of Miocene volcanism around the Çubukludağ graben and Karaburun peninsula, western Turkey: Implications for crustal melting related silicic volcanism. Journal of Asian Earth Sciences 73

  • Karacık, Z. ve Genç, Ş.C. 2013. Volcano-stratigraphy of the extension-related silicic volcanism of the Çubukludağ Graben, western Turkey: an example of generation of pyroclastic density currents. Geological Magazine 151/3, 492-516.

  • Kaya, O. 1979. Ortadoğu Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği. Türkiye Jeoloji Kurumu Bülteni 22/1, 35-58.

  • Kaya, O., Ünay, E., Göktaş, F. ve Saraç, G. 2007. Early Miocene stratigraphy of Central West Anatolia, Turkey: implications for the tectonic evolution of the Eastern Aegean area. Geological Journal 42, 85-109.

  • Kayseri-Özel, M.S., Sözbilir, H., Akgün, F. 2014. Miocene palynoflora of the Kocaçay and Cumaovası basins: a contribution to the synthesis of Miocene palynology, palaeoclimate, and palaeovegetation in western Turkey. Turkish Journal of Earth Sciences

  • Le Maitre, R. W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Scientific Publications, Oxford, 208 p.

  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. ve Zanettin, B. 1986, A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology 27, 745-750.

  • Müller, H. 1937. Cumaovası kömür zuhuratına ait 20.2.1937 ve 23.3.1937 tarihli raporlara zeyil. Maden Tetkik ve Arama Genel Direktörlüğü Rapor No: 167 (yayımlanmamış).

  • Okay, A. ve Siyako, M. 1991. İzmir ve Balıkesir arasında İzmir-Ankara Neotetis kenedinin yeni konumu. Ozan Sungurlu Sempozyumu, Kasım 1991, Ankara, Genişletilmiş Bildiri Özleri Kitabı, 333-355.

  • Özgenç, İ. 1975. İzmir-Cumaovası bölgesi perlit yataklarının jeolojisi. TÜBİTAK V. Bilim Kongresi, Bildiriler Kitabı, 261-272.

  • Özgenç, İ. 1978a. Cumaovası (İzmir) asit volkanitlerinde saptanan iki ekstrüzyon aşaması arasındaki göreli yaş ilişkisi. Türkiye Jeoloji Kurumu Bülteni 21, 31-34.

  • Özgenç, İ. 1978b. İzmir bölgesi perlit yataklarının jeolojisi ve petrolojisi, perlitlerin fiziksel, kimyasal ve genleşme özellikleri. Dokuz Eylül Üniversitesi Mühendislik Mimarlık Fakültesi, Jeoloji Mühendisliği Bölümü, Doktora Tezi, 190 s

  • Özgenç, İ. 1992. Batı Anadolu bölgesi riyolitik camsı kayaçların yapı gereçleri açısından kullanılma olanakları. Türkiye Jeoloji Kurultayı Bülteni 7, 233-239.

  • Özgenç, İ. 1993. Perlitler içindeki suyun kimyasal yapısı ve bu yapının genleşme özelliğine etkisi. Jeoloji Mühendisliği 42, 60-63.

  • Özkaymak, Ç., Sözbilir, H., Uzel, B. 2012. Neogene– Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the ˙Izmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics 65, 117-135.

  • Sözbilir, H., Sarι, B., Uzel, B., Sümer, Ö. ve Akkiraz, S. 2011. Tectonic implications of transtensional supradetachment basin development in an extension parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research 23 (4)

  • Uzel, B. ve Sözbilir, H. 2008. A first record of a strikeslip basin in Western Anatolia and its tectonic implication: The Cumaovası basin. Turkish Journal of Earth Sciences 17, 559-591.

  • Ünay, E. ve Göktaş, F. 2000. Kınık (Gördes) çevresindeki Erken Miyosen yaşlı linyitli çökellerin küçük memeli biyokronolojisi: ön sonuçlar. Türkiye Jeoloji Bülteni 43, 1-6.

  • Ünay, E. ve Göktaş, F. 2000. Kınık (Gördes) çevresindeki Erken Miyosen yaşlı linyitli çökellerin küçük memeli biyokronolojisi: ön sonuçlar. Türkiye Jeoloji Bülteni 43, 1-6.

  • Ürgün, S. 1970. İzmir vilayeti Seferihisar kazası civarının hidrojeolojik ve jeotermik etüdü. Maden Tetkik ve Arama Genel Direktörlüğü Rapor No: 4344 (yayımlanmamış).

  • Wipp, Ç. L., 2006,İzmir-Cumaovası-Görece köyü civarı volkanitleri ve Menderes Masifi metamorfitleri içindeki bazı granatların mineralojik-petrografik ve jeokimyasal incelenmesi ve olası arkeogemolojik bağlantıları. Doktora tezi, Hacettepe Üniversites

  • Zucchi, F. 1970. Batı Türkiye Perlit yatakları (İzmirManisa bölgesi). Maden Tetkik ve Arama Genel Direktörlüğü Rapor No: 4704 (yayımlanmamış).


  • Göktaş, F . (2019). Çubukludağ Havzasındaki Neojen Tortullaşması ve Volkanizmasının Stratigrafisi, Batı Anadolu . Türkiye Jeoloji Bülteni , 62 (1) , 63-98 . DOI: 10.25288/tjb.521497

  • Applications of Unmanned Aerial Vehicle (UAV) in open-pit mines
    Yavuz Gül
    View as PDF

    Abstract: In recent years, mapping operations in open-pit mines are made by using Unmanned Aerial Vehicles (UAV)having the advantages of cost, time and occupational safety. Using UAVs, easy, fast, high sensitive and economicmeasurements can be done in difficult field conditions. The advantages of UAV based mapping applications inopen-pit mines are explained in this study. Within this scope, orthophoto maps produced by UAV, digital elevationmodels (DEM), amount of stripping and production calculations, stock and dumping volume determinations anddeformation measurement studies are presented.

  • 3D modelling

  • open-pit mine

  • photogrammetry

  • UAV

  • Akyürek, S., Yılmaz, M.A., Taşkıran, M., 2012. İnsansız hava araçları: Muharebe alanında ve terörle mücadelede devrimsel dönüşüm. Bilge Adamlar Stratejik Araştırmalar Merkezi Yayınları, Rapor no: 53, İstanbul, 63 s.

  • Babinec, A., Apeltauer, J., 2016. On accuracy of position estimation from aerial imagery captured by low-flying UAVs. International Journal of Transportation Science and Technology, 5(3), 152-166.

  • Barry, P., Coakley, R., 2013. Accuracy of UAV photogrammetry compared with network RTK GPS. Int. Arch. Photogramm. Remote Sens, 2, 27- 31.

  • Beretta, F., Shibata, H., Cordova, R., Peroni, R.D.L., Azambuja, J., Costa, J.F.C.L., 2018. Topographic modelling using UAVs compared with traditional survey methods in mining. REM-International Engineering Journal, 71(3), 463-470.

  • Bing-jun S, Xu L, Lin-xiu L., 2013. Application of UAV in open-pit mine disaster monitoring. Opencast Mining Technology, 6, 69-71.

  • Bui, D.T., Long, N.Q., Bui, X.N., Nguyen, V.N., Van Pham, C., Van Le, C., Kristoffersen, B., 2017. Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for openpit coal mine area and its ac

  • Câmara, T., Fontoura, D., Peroni, R., Capponi, L., 2013. Controlling dilution and mine planning. 36th APCOM symposium applications of computers and operations research in the mineral industry, Porto Alegre, Brazil, 1-10.

  • Carvajal F, Agüera F, Pérez M., 2011. Surveying a landslide in a road embankment using unmanned aerial vehicle photogrammetry. ISPRS Zurich 2011 Workshop, International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 38(1/

  • Cryderman, C., Mah, S.B., Shufletoski, A., 2014. Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309-317

  • Deffontaines, B., Chang, K.J., Champenois, J., Fruneau, B., Pathier, E., Hu, J.C., Liu, Y.C., 2016. Active interseismic shallow deformation of the Pingting terraces (Longitudinal Valley–Eastern Taiwan) from UAV high-resolution topographic data combin

  • Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A., 2016. Image-based surface reconstruction in geomorphometry–merits, limits and developments. Earth Surface Dynamics, 4(2), 359-389.

  • Gonçalves, J. A., Henriques, R., 2015. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.

  • Gorkovchuk, D., Gorkovchuk, J., Hutnyk, B., 2017. Low-cost UAS photogrammetry for mining. GIM International, The Global Magazine for Geomatics, 31(11), 20-23.

  • Gül, Y., Hastaoğlu, K.Ö., Poyraz, F., 2018. Fimar, Emmioğlu ve Alternatif Mermer A.Ş.’ye ait Amasya mermer ocağı döküm sahası şevlerinde deformasyonların jeodezik yöntemle izlenmesi ve değerlendirilmesi. Nihai Rapor, Sivas Cumhuriyet Üniversitesi Müh

  • Harwin, S., Lucieer, A., 2012. Assessing the accuracy of georeferenced point clouds produced via multiview stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6), 1573- 1599.

  • Hemmelder, S., Marra, W., Markies, H., De Jong, S. M., 2018. Monitoring river morphology & bank erosion using UAV imagery–A case study of the river Buëch, Hautes-Alpes, France. International Journal of Applied Earth Observation and Geoinformation, 73

  • Hugenholtz, C.H., Whitehead, K., Brown, O.W., Barchyn, T.E., Moorman, B.J., LeClair, A., Hamilton, T., 2013. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-der

  • Immerzeel, W.W., Kraaijenbrink, P.D.A., Shea, J.M., Shrestha, A.B., Pellicciotti, F., Bierkens, M.F.P., De Jong, S.M., 2014. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150,

  • Kılınçoğlu D.B., 2016. Farklı insansız hava araçları ile elde edilen görüntülerin otomatik fotogrametrik yöntemlerle değerlendirilmesi ve doğruluk analizi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 131 s

  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., Zelizňaková, V., 2016. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276-2

  • McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Elder, J.H., 2013. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 67(3), 173-180.

  • Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., Joswig, M., 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.

  • Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., Joswig, M., 2011. Open source image-processing tools for low-cost UAV-based landslide investigations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Scienc

  • Peterman, V., 2015. Landslide activity monitoring with the help of unmanned aerial vehicle. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1/W4), 215-218.

  • Popescu, G., Iordan, D., Păunescu, V., 2016. The resultant positional accuracy for the orthophotos obtained with unmanned aerial vehicles (UAVs). Agriculture and Agricultural Science Procedia, 10, 458-464.

  • Rau, J.Y., Jhan, J.P., Lo, C.F., Lin, Y.S., 2011. Landslide mapping using imagery acquired by a fixed-wing UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 38(1/C22), 195-200.

  • Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., Capra, A., 2017. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. European Journal of Remote Sensing, 50(1), 211-221.

  • Seki, M., Tiryakioğlu, İ., Uysal, M., 2017. Farklı veri toplama yöntemleriyle yapılan hacim hesaplarının karşılaştırılması. Geomatik Dergisi, 2(2), 106-111.

  • Shahbazi, M., Sohn, G., Théau, J., Ménard, P., 2015. UAV-based point cloud generation for open-pit mine modelling. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40(1/W4), 313-320.

  • Shi J., Jinling W, Yaming X., 2011. Object-based change detection using georeferenced UAV images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 177-182.

  • Tong X, Liu X, Chen P, Liu S, Luan K, Li L, Liu S, Liu X, Xie H, Jin Y, Hong Z., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6

  • Udin, W.S., Ahmad, A., 2014. Assessment of photogrammetric mapping accuracy based on variation flying altitude using unmanned aerial vehicle. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 18(1), 012027.

  • Ulusoy, İ., Şen, E., Tuncer, A., Sönmez, H., Bayhan, H., 2017. 3D multi-view stereo modelling of an open mine pit using a lightweight UAV. Türkiye Jeoloji Bülteni/Geological Bulletin of Turkey, 60(2), 223- 242.

  • Yusoff, A.R., Ariff, M.F.M., Idris, K.M., Majid, Z., Chong, A.K., 2017. Camera calibration accuracy at different UAV flying heights. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W3), 595- 600.

  • Url-1 < https://www.pix4d.com/>, erişim tarihi: 2018.


  • Gül, Y . (2019). Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları . Türkiye Jeoloji Bülteni , 62 (1) , 99-112 . DOI: 10.25288/tjb.519506

  • ISSUE FULL FILE
    View as PDF