Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2007 AĞUSTOS Cilt 50 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Mineralogical Investigation of Claystone in the Neogene (Miocene-Pliocene) Lacustrine Basin of the Sazak Biçer area (NE of Sivrihisar)
Zehra Semra Karakaş Özge Karakaş Baki Erdoğan Varol
View as PDF

Abstract: The Neogene sequence around Sazak and Biçer (NE Sivrihisar) which deposited in  two different depositionalsystems as the Sakarya and Porsuk formations, has been studied by being divided in 7 facies. The firstdepositional system is the Miocene Sakarya formation, which is characterized by andesitic-basaltic volcanics(Lower-Middle Miocene), detritic and carbonate facies(Upper Miocene). The Pliocene Porsuk formation, whichis the second depositional system of the lithological units, rests on this lithological group at a low angularunconformity. The main facies of the Porsuk formation are characterized by conglomerate-sandstone, greencoloured mudstone-claystone, carbonate and grey-beige coloured gypsiferous mudstone-claystone.In the field, the claystones of the Porsuk formation are characterized by different colours (brown, creambeige, white, green) and different lithology (clayey limestone, dolomitic claystone, gypsiferous claystone). In thewhole basin area, clay paragenesis is represented by sepiolite, palygorskite, smectite, chlorite and illite. In thesouthern part of the basin, sepiolite is the dominant clay mineral in the dark brown and cream-beige colouredclaystones-limestones. In the whole basin area, green coloured claystone, gypsiferous claystone, mudstone andmarl are characterized by palygorskite, smectite, chlorite and illite paragenesis. In scanning electron microscopyexaminations, sepiolite minerals have been observed as ballshaped fiber bunches, palygorskite has been observedas parallel fibers, and smectite mineral is formed of flat leafs with a honeycomb texture in the form of frequentwavy leaves being detected.According to field and laboratory data, sepiolite, palygorskite and smectite minerals must have been formedby in-situ deposition and independently of each other. During the mineral formation in the basin, salinity,alkalinity and water controlled these factors and mineral formation. Sepiolites were formed in lake margin swampenvironments and also partially under humid conditions as a result of Mg and Si enrichment. Al, which originatedfrom the detritic materials transported in the lake basin, enabled the formation of palygorskite and smectiteminerals. Evaporitic mud flats served as suitable environments for the precipitation of smectite, palygorskite andchlorite. In addition, these minerals were preferentially deposited in the deep lake environment with greenmudstone and claystones.

  • Neogene basin

  • Palygorskite

  • Sepiolite

  • Smectite

  • Sivrihisar


  • Akbulut, A. ve Kadir, S., 2003. The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam basin, Denizli, SW Turkey. Clays and Clay Minerals, 51,279-292.

  • Bayhan , E. ve Yalçın, H., 1990. Burdur gölü çevresindeki Üst Kretase-Tersiyer yaşlı sedimanter istifin tüm kayaç ve kil mineralojisi. M.T. ADergisi, 111,73-87.

  • Bellanca, A., Karakaş, Z., Neri, R. Ve Varol, B., 1993. Sedimentology and isotope geochemistry of lacustrine dolomite-evaporite deposite and associated clays (Neogene, Turkey): environmental implication. Miner. Petrogr. Acta, XXXVI, 245-264.

  • Bilgin, H., 1972. Eskişehir ili kil imkanlarının genel ekonomik prospeksiyon raporu, MTA Rapor No. 4708, Ankara (yayınlanmamış).

  • Biscaye, P. E., 1965. Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Gelogical Society of American Bulletin, 76,803-832.

  • Boyraz, S., 2004. Mülk-Demirci Yöresi (Eskişehir-Sivrihisar) Neojen (Üst Miyosen-Pliyosen) Birimlerinin Kil Mineralojisi. A. Ü Fen Bilm. Ens. Yüksek Lisans Tezi, 85 s, Ankara (yayınlanmamış).

  • Brindley, G. W., 1980. Quantitative X-Ray Mineral Analysis of Clays: Crystal Structures of Clay Minerals and Their X-Ray Identification. G W. Brindley and G. Brown, editors. Monograph 5, Mineralogical Society, London, 411-438.

  • Caillere, S., 1951. Sepiolite. In G. W. Brindley, X-ray identification and structures of clay minerals. Mineral Soc.; London, 224-233.

  • Chamley, H., 1989. Clay Formation Through Weathering. Chamley, H. (eds.), Clay Sedimentology, New York, Springer, 21-50.

  • Çoban, F., 1993. Geology of the Kayakent (Eskişehir) region and mineralogical investigation of sepiolites in the area. Proc. Geol. Symp. of Suat Erk, 283-289, Ankara Univ. Pres.

  • Ece, Ö.I. ve Çoban, F., 1990. Origin and significance of the sepiyolite beds and nodules in the Miocene lacustrine basin, Eskişehir, Turkey. International Earth Sciences Congress on Agean Regions Proceedings I (M.Y. Savaşçın and A. H. Eronat eds), 234-245.

  • Ece, Ö. I . ve Çoban, F., 1994. Geology, occurrence, and genesis of Eskişehir sepiolite, Turkey. Clays and Clay Minerals, 42,81-92.

  • Galan, E. ve Ferrero, A., 1982. Palygorskite-Sepiolite clays of Lebriya, Southern Spain. Clays and Clay Minerals, 30,191-199.

  • Galindo, A. L., Aboud, A. B., Hach-Alı, P.F. ve Ruiz, J. C. 1996. Mineralogical and Geochemical Characterization Of Palygorskite From Gabasa (NE SPAIN). Evidence of a detrial precursor: Clay Minerals, 31,33-44.

  • Gençoğlu, H., 1996. Eskişehir-Sivrihisar-Oğlakçı Köyü sepiyolit sahasının ait madenjeolojisi. MTA Rapor No. 9858, Ankara, 33 s. (yayınlanmamış).

  • Gençoğlu, H. ve İrkeç,T., 1994. Ankara-Polatlı-Türktaciri sahasının madenjeolojisi. MTA Rapor No. 9487, Ankara, 253 s. (yayınlanmamış).

  • Gözler, M. Z., Cevher, F., Ergül, E. veAsutay, H. J., 1996. Orta Sakarya ve güneyinin jeolojisi. MTA Rapor No. 9973, Ankara (yayınlanmamış).

  • Gündoğdu, M.N., 1982. Neojen yaşlı Bigadiç sedimanter baseninin jeolojik-mineralojik ve jeokimyasal incelenmesi. H.Ü. Fen Bilm. Ens. Doktora Tezi, Ankara, 386 s. (yayınlanmamış).

  • Isphording, W. C., 1973. Discussion of the occurence and origin of sedimentary palygorskite - sepiolite deposits. Clays and Clay Minerals, 21,391-401.

  • Jones, B. F. ve Galan, E., 1988. Palygorskite-sepiolite in hydrous phyllosiscates (Exlusive of Micas). S. W. Bailey, ed., Mineral. Soc. Am., Rev. Mineral., 19, 631-674, Washington.

  • Kadıoğlu, Y.K., 1996. Anklavlarm mineral Kimyası ve Petrografik Özelliklerinden Yararlanılarak Kökeninin İncelenmesi: Karakaya (Eskişehir) graniti. SDÜMüh Sempozyumu, 161-170.

  • Kadir, S., Baş, H. ve Karakaş, Z., 2002. Origin of sepiolite and loughlinite in a Neogene volcano-sedimentary lacustrine environment, Mihalıççık-Eskişehir, Turkey. The Canadian Mineralogist, 40, 1091¬1102.

  • Karakaş, Z., 1992. Ballıhisar-İlyaspaşa (Sivrihisar-Eskişehir güneyi) yöresinin jeolojik, petrografik ve mineralojik incelenmesi. A. Ü. Fen Bilim. Enst. Doktora Tezi, Ankara, 184 s. (yayınlanmamış).

  • Karakaş, Ö., 2006. Sivrihisar-Biçer Civarı Neojen (Üst Miyosen) Basenindeki Kil Parajenezlerinin Ortamsal Yorumu. A. Ü Fen Bilm. Ens. Yüksek Lisans Tezi, Ankara, 98 s. (yayınlanmamış).

  • Karakaş, Z. ve Varol, B., 1993. Sivrihisar-İlyaspaşa civarı sepiyolitlerinm elektron mikroskop incelemesi, A. Suat Erk Jeoloji Sempozyumu (2-5 Eylül 1991) Bildirileri, 303-310.

  • Karakaş, Z. ve Varol, B., 1994. Sivrihisar Neojen basenindeki gölsel dolomitlerin petrografisi ve oluşum koşullarının duraylı izotoplar (S18O-SnC) yardımıylayorumlanması. MTA Dergisi, 116, 81¬95.

  • Karakaya, N., Karakaya, M.Ç., Temel, A., Küpeli, Ş. ve Tunoğlı, C., 2004.Mineralogical and chemical characterization of sepiolite occurrences at Karapınar (Konya Basin, Turkey). Clays and Clay Minerals, 52, 4,495-509.

  • Kibar, M. Gökten, E., Lünel, T. ve Kadıoğlu, Y.K., 1992. Sivrihisar İntrüzifKompleksive Civarının Jeoloji ve Petrografisi. Türkiye Jeoloji Kurultayı Bülteni, 7,78-86.

  • Me Lean, S. A., Allen, B. L., ve Craig, J. R., 1972. The Occurence of Sepiolite and Attapulgite on the Southern high plains, Clays and Clay Minerals, 20, 143-149.

  • Milton, C. ve Eugster, H. P., 1959. Mineral assembleges of the Green River Formation. In P.H. Abelson, Ed., Researches in Geochemistry, New York, 1, 118¬150.

  • Moore, D.M. ve Reynolds, R.C., Jr., 1997 X-ray diffraction and the Identification and Analyses of Clay Minerals. Oxford university Pres, Oxford, UK, 378 s.

  • Özbaş, Ü., 2001. Mineralogic and geochemical investigation of zeolite and related minerals of Mülk-Oğlakçı region, Sivrihisar. D. E. Ü. Fen Bilm. Ens.Yüksek Lisans Tezi, YÖK Dokümantasyon Merkezi Rapor No:109623.

  • Sanchez , C. ve Galan, E. 1995. An Approach to the genesis of palygorskite in aNeogene-Quatemary Continental Basin Using Principal Factor Analysis. Clay Minerals, 30,215-238.

  • Singer, A., 1979. Palygorskite in Sediments Detrial, Diagenetic or Neoformed. A Critical Review: Geol. Rund., 68, 996-1008.

  • Singer, A ve Galan, E., 1984. Palygorskite-Sepiolite: Occurrence, Genesis and Uses. Elsevier, Amsterdam, The Netherlands, 352 s.

  • Singer A., 1989. Palygorskite and sepiolite group minerals. In Minerals in Soil Environments (J.B. Dixon and S.B. Weed, eds). Soil Society of America, Inc., 829-872.

  • Sirocko, F. ve Lange, H., 1991. Clay mineral accumulation in the Arabian Seaduringlate Quaternary. Marine Geology, 97,105-119.

  • Starkey, H.C. ve Blackmon, P.D., 1979. Clay mineralogy of Pleistocene lake Tecopa,Inyo County, California. Geological Survey Professional Paper 1061,34 s.

  • Suarez, M., Armenteros, I., Navarrete, J. ve Martin Pozas, J. M., 1989. El Yacimiento de Palygorskta de Bercimuel genesis y Propiedades Tecnologicas: StudiaGeol., 26,27-37.

  • Tardy, Y., Paquet, H. ve Millot, G., 1970. Trios modes de genese des montmorrillonites dans et les sols. Geochim. Cosmochim. Acta, 36,397-412.

  • Temel, A., 2001. Post-collisional Miocene alkaline volcanism intheOğlakçıRegion, Turkey: Petrology and geochemistry. International Geology Review, 43, 640-660.

  • Türkbey, S. P., 2005. Sazılar (Polatlı) yöresindeki Neojenyaşlı sedimanter birimlerin mineralojik ve jeokimyasal incelenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 86 s (yayınlanmamış).

  • Velde, B., 1985. Clay Minerals. A Physico-chemical explanation of their occurrence. Developments in Sedimantology, 40, Elsevier, Amsterdam, 427 s.

  • Verrecchia, E. P. ve Le Coustumer, M. N., 1996. Clay Minerals. Occurence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sae Boqer, Negev Desert, Israel. Clay Minerals, 31,183-202.

  • Yalçın, H., ve Bozkaya, Ö., 1995. Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, 43,705-717.

  • Yeniyol, M., 1992. Yenidoğan (Sivrihisar) sepiyolit yatağının jeolojisi, mineralojisi ve oluşumu. MTA Dergisi, 114,71-84.

  • Yeniyol, M., 1993. Sivrihisar`da (Eskişehir) sedimanter- diyajenetik oluşumlu yeni bir lületaşı türü. MTA Dergisi, 115,81-90.

  • Weaver, C. E., 1989. Clays, Muds and Shales. Development in sedimentology, 44. Elsevier. Amsterdam-Oxford- New York- Tokyo, 819s.

  • Weaver, C. E. ve Beck, K. C., 1977. Miocene of the S. E. United States: A model for chemical sedimentation in a peri-marine environment, Sedimentary Geology, 17,1-234.

  • Karakaş, Z , Karakaş, Ö , Varol, B . (2007). Sazak-Biçer (Sivrihisar KD`su) civarı Neojen (Miyosen-Pliyosen) göl basenindeki kiltaşlarının mineralojik incelemesi / Mineralogical investigation of claystone in the Neogene (Miocene-Pliocene) lacustrine basin of Sazak-Biçer area (NE of Sivrihisar) . Türkiye Jeoloji Bülteni , 50 (2) , 57-70 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28420/302627

  • Geochemical and Geostatistical Investigation of Upper Miocene Evaporites in the Polatlı-Sivrihisar Neogene Basin (Demirci Village, NE Sivrihisar; Central Anatolia, Turkey)
    Pelin Güngör Yeşilova Erdoğan Tekin
    View as PDF

    Abstract: The gypsum member of the upper Miocene aged Sakarya formation in the Polatli-Sivrihisar Neogene basin isrepresented by five different sub-lithofacies. These are: a) secondary massive gypsums b) primary laminatedanhydrite c) secondary laminated brecciated-nodular gypsum d) clastic gypsum (gypsum arenite) and e) chevronselenitic gypsum. Among these, massive gypsum with iron-manganese bands separated by sparse sulphur crystalsand primary laminated anhydrite with algal stromatolithic structures are important in respect of their formationmechanisms. The geochemical and geostatistical evaluation of different minerallization types from gypsumanhydrite samples of these sub-facies provide evidence of their possible source of origin. For this purpose 24samples of different types including 13 major oxides, 15 trace elements and 13 rare earth elements were analyzedand from these results the correlation coefficient values for couple elements were determined and statisticalgraphics were prepared. After these geostatistical studies, three main groups of elements were identified. Amongthese: Group-I comprised SiO , Al O , K O, Rb, ∑ Fe O , MgO, MnO, As,V, TiO , P O , Zr, Zn, Ni, Co and Cu, 2 2 3 2 2 3 2 2 5Group II comprised Ba, Sr, Mo, Pb, W, F, Au and Na O and Group III comprised CaO and SO combinations. These 2 3combinations commonly show excessive vug-filling diagenetic clay minerals and/or carbonization withinevaporites. On the other hand, the results of geochemical analysis of trace elements show higher values than thechemistry of evaporitic playa lake sedimentary environments. The reasons for these high values are considered tobe: the fact that during the evaporation process the upper Miocene paleolake was under the influence of freshground water input, variation in climatic conditions for a short period of time (like dryness and wetness), limitedreducing environmental conditions in isolated parts of the lake and post depositional hydrothermal dissolutioning.The geochemical and geostatistical evaluation of upper Miocene evaporites of the gypsum member ofSakarya formation have identified that these evaporites were deposited in a playa lake complex with differentdepositing lithologies (siliciclastics and carbonates) which were affected by paleoclimatic conditions, periodicterrestrial volcanism and syn-sedimentary tectonics. 

  • Gypsum

  • Anhydrite

  • Major and Minor elements

  • Cluster Analyze

  • Polatli-Sivrihisar

  • Turkey


  • A.S.T.M., 1972. Inorganic index to the powder diffraction file. Joint committee on powder diffraction standards. Pensylvania, 1432s.

  • Aydoğdu, M. N., 2004. Oğlakçı ve Demirci köyleri (KD Sivrihisar) civarı Üst Miyosen yaşlı evaporitik birimlerin sedimantolojisi. Ank. Üniv. Fen. Bil. Enst. Yüksek Lisans Tezi., 75s. (yayınlanmamış), Ankara

  • Bain, R.J., 1990. Diagenetic non-evaporitic origin for gypsum. Geology, 18, 447-450.

  • Baysal, O. ve Ataman, G., 1979. Sedimentology, mineralogy and geochemistry of a sulfate series, Sivas-Turkey. Sediment. Geol., 25, 67-81.

  • Calvo, J.P., Zarza, A. M. A. ve Garcia, D. C., 1989. Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). P a l a e o g e o g r a p h y P a l a e o c l i m a t o l o g y Palaeoecology, 70, 199-214.

  • Cody, R.D., 1991. Organo-crystalline interraction in evaporite system: The effect of crystallization inhibition. Jour. of Sed. Petro., 61, 704-718.

  • Cody, R.D. ve Cody A.M., 1998. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. Jour. of Sed. Petro., 58, 247-255.

  • Dean, W. E ve Anderson, R. Y., 1974. Trace and minor element variations the Permien Castile Fm. Delaware Basin. Texas and New Mexico revealet by varve calibration, Forthy International Symposium on Salt, Cleveland, Northern Ohio Geological Society, 1, 275-285.

  • Derman, S., 1980. Tuz Gölü ve kuzeyinin jeolojisi. TPAO. Rap. No: 1512, Ankara

  • Emelyanov, E.M. ve Shimhus, K.M., 1986. Geochemistry and sedimentology of the Mediterranean Sea. 176s. Paris.

  • Gençoğlu, H., 1996. Eskişehir-Sivrihisar-Oğlakçı Köyü ÖİR:5877 No`lu sepiyolit sahasına ait maden jeolojisi raporu. MTARapor No: 9858.

  • Gençoğlu, H. ve İrkeç, T., 1994. Ankara-Polatlı-Türktaciri ÖİR-4790 No`lu sepiyolit sahasına ait maden jeolojisi raporu. MTARapor No: 9687.

  • Gözler, M.Z. Cevher, F. Ergül, E. ve Asutay, H.J., 1996. Orta Sakarya ve güneyinin jeolojisi, MTA Derleme Rapor no: 9973.

  • Hardie, L.A. ve Eugster, H.P., 1971. The depositional environment of marine evaporites: A case for shallow, clastic accumulation: Sedimentology, 16, 187-220.

  • Hardie, L.A., 1984. Evaporites: Marine or non-marine. Amer. Jour. Scien., 284, 193-240.

  • Hasselöv, M. Lyven, D. Haraldsson, C. ve Sirnawin, W., 1999. Determination of continous size and trace element distrubition of field-flow fractination with ICPMS. Anal. Chem., 71, 3497-3502.

  • Holiday, D. W., 1970. The Petrology of secondary gypsum rocks: Areview. Jour of Sed. Petro., 40,2,734-744.

  • Hsü, K.J., Çita, M.B., Ryan, W.B.F., 1973. The orijin of the Mediterranean evaporites. In: Ryan, W.B.F., Hsü, K.J., et al., (Eds.) , Inital Rep. Deep Sea Drill. Prog., vol. 13, U.S. Govt. Printing Office, Washington, DC, 1203-1231.

  • Karadenizli, L., 1995. Beypazarı havzası (Ankara Batısı) Üat Miy o sen-Pliy o s en jipsli serilerinin sedimantolojisi., Türkiye Jeoloji Bülteni, 38/1, 63¬74.

  • Karakaş, Z., 1992. Ballıhisar-İlyaspaşa (Sivrihisar-Eskişehir Güneyi) yöresinin jeolojik, petrografik ve mineralojik incelemesi, A.Ü. Fen Bil. Enst. Doktora Tezi, 184 s.

  • Karakaş, Z. ve Varol, B., 1994. Sivrihisar Neojen Basenindeki gölsel dolomitlerin petrografisi ve oluşum koşullarının duraylı izotoplar (8 O; 8 C) yardımıyla yorumlanması. MTA Dergisi, 11, 81¬95.

  • Krauskopf, K.B. ve Bird, D.K., 1995. Introduction to Geochemistry, 3rd. Ed.: McGraw-Hill, New York, 647s.

  • Magee, J.W., 1991. Late Quaternary lacustrine, groundwater, aeolian and pedogonic gypsum in the Prungle lakes, Southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 84,3-42.

  • Mandado, J. ve Tena, J.M., 1985. A peel technique for sulfate and carbonate rocks: Research methods papers, 548-549.

  • Necdet, M.veAmi, M.,2006. The geology and geochemistry of the gypsum deposits in northern Cyprus. Geosound, 48-49,11-49.

  • Noirish, K. ve Chappel, B. W., 1977. X-Ray fluorescence spectrometry: Phsyical Methods in Determinative Minerology, 2nd.ed, Academic Press, 201-272.

  • Ogniben, L., 1955. Inverse graded bedding in primary gypsum of chemical deposition. Jour, of Sed. Petro., 25, 273-281.

  • Oktay, F., 1982.Ulukışla ve çevresinin stratigrafisi vejeolojik evrimi,TJKBült.,25,15-23

  • Orti, C. F., 1976. An approach to the petrological study of secondary gypsum microstructures and their origin. Unpublished D. I. C. Thesis, Imperial College,140s.

  • Orti, F., 1997. Evaporitic sedimentation in the South Pyrenean Fore-deep and the Ebro basin during Tertiary: a general view. In: Busson, G., Schreiber, B. C. (Eds.), Sedimentary Deposits in Rift and Foreland Basins in France and Spain. Columbia University Press, New York, 319-334.

  • Orti, F., Gündoğan, î., ve Helvacı, C., 2002. Sodium sulphate deposists of Neogene Age: the Kirmir Formation, Beypazarı Basin, Turkey: Sedimentary Geology, 146,305-333.

  • Orti, F., Rosell, M., Ingles, M., ve Playa, E., 2007. Depositional models of lacustrine evaporites in the SE margin of the Ebro Basin (Paleogene, NE Spain). Geologica Acta, 5/1,19-34.

  • Palmer, M.R., Helvacı, C., ve Fallick, A. E., 2004. Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites. Chemical Geology, 114,101-117.

  • Playa, E. Orti, F. ve Rosell, L., 2000. Marine to non marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence. Sedim. Geol., 133, 135¬166.

  • Rouchy, J. M.ve Caruso, A., 2006. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188-189,35-67.

  • Sinha, R. Ve Raymahashay, B. C., 2004. Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment. Geology, 166, 59-71.

  • Sonnenfeld, P., 1984. Brines and evaporites. Academic Press, 631s.

  • Tekin, E., 1995. Sivas Tersiyer Havzası (Ulaş KB`sı) Sölestin oluşumlarının kökeni, sedimantolojik ve petrografik özellikleri. A. Ü. Fen Bil. Enst. Doktora tezi, 173 s. (yayımlanmamış).

  • Tekin, E., 2001. Stratigraphy, geochemistry and depositional environment of celestite-bearing gypsiferous formations, in Tertiary Ulaş- Sivas Basin, Turkey. TÜBİTAK Turkish Journal of Earth Science, 10, 35-49.

  • Tekin, E. veVarol, B., 1993. Sivas (İç Anadolu) havzasındaki sölestin yataklarının petrografik incelemesi. A. Suat Erk Jeo. Simp. Bildiri., 319-327, Ankara.

  • Tekin, E. Ayan, Z. ve Varol, B., 1994. Sivas- Ulaş sölestin oluşumlarının (Tersiyer) mikrodokusal özellikleri ve sıvı kapanım çalışmaları. Türkiye Jeoloji Bülteni, 37/1,61-76,

  • Tekin, E. Çiftçi, D. ve Özgönül, R., 1998. Körtuzla sölestin yatağı (Ulaş kuzeyi Sivas) sölestin oluşumlarının kökenine jeoistatsitiksel açıdan bir ön yaklaşım. Fırat Üniv. Jeo. Müh. Eğitiminin 20. Yılı Simp. Bildiri., s. 509-520, Elazığ.

  • Tekin, E., Ayyıldız, T., Güngör, P. ve Aydoğdu, N., 2005. Demirci Köyü (KD Sivrihisar) civarı Miyo- Pliyosen yaşlı evaporitli serilerin jeokimyası ve kökeni. TÜBİTAK, Proje No: YDABAG- 102 Y 125, s.113, Ankara, (yayımlanmamış).

  • Temel, A. 2001. Post-collisional Miocene alkaline volcanism in the Oğlakçı region, Turkey: Petrology and Geochemistry. International Geology Review, 43, 610-660.

  • Umut, M. ve Acarlar, M. 1991. Çifteler-Holanta (Eskişehir), Çeltik (Konya) ve dolaymmjeolojisi. MTA Rapor No: 9204 (yayımlanmamış).

  • Usdowski, E., 1973. Das geochemiche Verhalten des strontiums bei der genese und diagenese von Ca- carbonat und Ca-sulfat: minerallen cont. Mineral Petrology, 38,177-195.

  • Ünlü, T. ve Stendal, H., 1989. Jeokimya verilerinin çok değişkenli jeoistatsitik analizlerle değerlendirilmesine bir örnek: Divriği bölgesi demiryatakları, Orta Anadolu. MTA Dergisi, 109, 127-140.

  • Varol, B., Kazancı, N. ve Tekin, F. G., 2000. (Özler kitabı) Tuzgölü ve yakın civarı Eosen-Oligosenjipslerinin sedimantolojik ve izotopik özellikleri, Haymana- Tuzgölü-Ulukışla basenleri uygulamalı çalışma (Workshop), N. Ü. Aksaray Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü, s. 38, Aksaray.

  • Varol, B., Araz, H., Karadenizli, L., Kazanci, N., Seyitoğlu, G. ve Sen, S., 2002. Sedimentology of the Miocene evaporitic succession in the north of Çankırı- Çorum Basin, central Anatolia, Turkey. Carbonate Evaporite, 17/2,197-209.

  • Varol, B.,Tekin, E.,Aydoğdu, M. N. ve Güngör, P., 2003. Demirci Köyü (KD Sivrihisar) Erken Pliyosen evaporitlerinin fasiyes analizi ve mikrodokusal özellikleri., 16,h National Electron Microscopy Congress (With International Participation), s. 83, İzmir.

  • Varol, B.,Tekin, E., Ayyıldız, T. ve Karakaş, Z., 2005. Polatlı- Sivrihisar Neojen Baseni gölsel evaporitlerinin sedimantolojisi., 58. Türkiye Jeoloji Kurultayı, s. 113-117, MTA-Ankara.

  • Warren, J., 1999. Evaporites: their evolution and economics. Blackwell Science Ltd., 438s, London.

  • Weingart, W. ve Erol, O., 1954. 56/2, 56/4 (Sivrihisar) ve 57/1, 57/3 (Ankara) paftalarının jeolojisi. MTA Rapor No:2473 (yayımlanmamış).

  • Yağmurlu, F. ve Helvacı, C., 1994. Sedimentological characteristics and facies of the evaporite-bearing Kirmir Formation (Neogene), Beypazarı Basin, Central Anatolia, Turkey. Sedimentology, 41, 847¬860.

  • Güngör Yeşilova, P , Tekin, E . (2007). Polatlı-Sivrihisar Neojen Havzası Üst Miyosen Evaporitlerinin Jeokimyasal ve Jeoistatistiksel İncelemesi (Demirci Köyü, KD Sivrihisar-İç Anadolu) . Türkiye Jeoloji Bülteni , 50 (2) , 71-94 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28420/302629

  • Geology and Geochemistry of Süleymaniye (Mihalıcçık-Eskişehir) Area Magnesite
    Asuman Yilmaz Mustafa Kuşçu
    View as PDF

    Abstract: This study investigated the magnesite occurrences which are hosted by Triassic aged serpantinized peridoditelocated south of the Izmir-Ankara Suture Zone. The magnesite indicates two different depositional forms withindividual veins and stokwork type magnesite in fractures and cracks which altered ultramafic rocks. Both types ofmagnesite occurences include magnesite and dolomite, while individual magnesite veins besides this have a littlecalcite. The average contents of the individual magnesite veins in the major-oxides are MgO 43,73%, SiO2 2,95%, 2FeO3 0,75%, and CaO 3,73% while the stokwork magnesite is MgO 47,04%, SiO2 0,39%, FeO3 0,55%, CaO 1,15% and a low amount of SiO2 and CaO. The content of the stokwork magnesite is determined to be the better for sintermagnesite. Some trace element contents of both types of this magnesite are correlated with the graphics of traceelement distribution in magnesite given by Möller (1989), and it is found that Cr, Ni, Co, Cu, Fe, Mn, Ba, Hg, Ti, B,Ba distrubution corresponds with magnesite related to ultramafics. Higher Sr contents in individual vein  occurences results from content of calcite. The REE (Rare Earth Element) distribution of both types of magnesiteshows positive La, Eu, Lu anomalies and negative Ce, Sm, Tb, Y anomalies. An oxidizing condition duringdeposition and a lower temperature environment are indicated.

  • Trace Elements

  • Geochemistry

  • Magnesite

  • Süleymaniye

  • Turkey


  • Abu-Jaber, N.S., Kimberley, M.M., 1992. Origin of Ultramafik-Hosted Magnesite on Margarita Island, Venezüella: Mineral Deposita 27,234-241.

  • Bames, L., ve O`Neil, J.R., 1969. The Relationship Between Fluids in Some Fresh Alpine-type Ultramafics and Possible Modem Serpentinisation, Western United States: Geological Society of America Bulletin, 80, 1947-1960.

  • Bau, M. ve Möller, P. (1992) Rare earth element fractionation in metamorphiogenetic hydrotermal calcite, magnesite and siderite. Miner.Petrol., 45, 231-246

  • Bucher, K., ve Frey, M., 1994. Petrogenesis of Metamorphic Rocks 6th Edition Complete Revision ofWinkler`s Textbook, Springer-Verlag Berlin Heidelberg New York, 144-169.

  • Brydie, J.R., Fallick, A.E., Ilich, M., Maliotis, G., ve Russell, M. J., 1993. A Stable Isotopic Study Of Magnesite Deposits In The Akamas Area, N.W. Cyprus: Institution Of Mining And Metallurgy Transactions, V. 102, Sec.B, P. B50-B53.

  • Cengiz, O., Kuşçu, M., 2003. Madenli (Gelendost-Isparta) Manyezit Cevherleşmesinin Jeoloji ve Jeokimyasal Özellikleri: Geosound Yerbilimleri Dergisi, 43,45-61. Adana.

  • Demirhan, M., 1991. Kumaş Genel Müdürlüğüne Ait Kütahya ve Eskişehir Yörelerinde Yeralan 5 Adet Manyezit Sahasının Prospeksiyon ve Detay Etüt Raporu, MTARaporNo: 9173, Ankara

  • Dabitzias, S., 1980. Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, Northern Greece. Econ. Geol. 75: 1138-1151.

  • Dulski, P. & Morteani, G., 1989. Magnesite formation by CO2 metasomatism during regional metamorpgism of the ultrabazic rock of the Ochsner serpentine (ZillertalerAlpen, Tyrol, Austria). Monograph Ser. Mineral Deposits, 28,95 -104.

  • Fallick, A.E., Ilich, M., Russell, M.J., 1991. A stable Isotope Study of the Magnesite Deposits Associated with the Alpine-Type Ultramafic Rocks ofYugoslavia, Economic Geology, 86,847- 861.

  • Gözler, Z., Cevher, F.,Erdem, E., Asutay H.J, 1996. Orta Sakarya ve Güneyinin Jeolojisi, MTA Rapor No: 9973, Ankara.

  • Ilich, M., 1968. Problems Of The Genesis And Genetic Classification Of Magnesite Deposits. Geol. Caro. 19.149-160.

  • Kuşçu, M ve Cengiz, O., 2004. Geohemical Properties of Different Genesis Magnesite Deposits In The Lake District (Isparta-Burdur) of Turkey: 5th International Symposium on Eastern Mediterranean Geology, Greece, 3,1601-1604.

  • Kümaş A.Ş., 2006. İşlenmiş Manyezitlerin Oksit Değerleri, www.kumasref.com, 28.12.2006.

  • Manav. H., 2001. Harmancık Bölgesi (Batı Anadolu) Manyezit Yataklarının Jeolojisi ve Oluşumu Geosound Yerbilimleri, 36

  • Martiny, E. & Rojkovic, I. 1977. Trace elements in magnesites of Slovakia (Central West Carphathians)-Geol. Zbor. Geol. Carpath., 28,311-322.

  • Möller. P, 1989. Minor and Trace Elements In magnesite Monograph Series On Mineral Deposits 28. 173¬195. Gebrüder Bomtrager. Berlin-Stutgart.

  • O` Neil, J.R. ve Bames, I., 1971. C13 and O18 composition in some fresh-water carbonate associated with ultramafic rocks: Western United States: GeochimitaetCosmachimitaActa, 35,687-697.

  • Okay, A.I., 1984. Kuzeybatı Anadolu Yer alan Metamorfik Kuşaklar, Ketin Sempozyumu, Türkiye Jeoloji Kurumu, 83-92.

  • Pohl, W., 1990. Genesis of magnesite deposits-models and trends. Geol. Rundschau79,291-299.

  • Rao, B.K., Sethumadhv, M.S., Prasad, M.H., Mahabaleshwar, T.D., Rao, A.V., 1999. Features and Genesis of Vein-Ytpe Magnesite Deposits in the Doddakanya Area of Karnataka, India: Journal of the Geological Society of India, 54/5,449-465.

  • Sarıiz, K., 1990. Türkmentokat-Kartepe (Eskişehir) Manyezit Yataklarının Oluşumu, MTADergisi, 110,77-96.

  • Scroll. E., 2002. Genesis of magnesite deposits in the view of isotope geochemistry, Boletim Paranaense de Geociencias, 50.59-68.

  • Tuncay, A., 2000. Çayırbağı-Meram (Konya) Manyezitlerinin Kökeni Üzerine, Türkiye Jeoloji Bülteni, 43/2, 21¬29.

  • Zachmann, D.W. ve Johannes, W., 1989. Cryptocrystalline mangesite In: magnesite. Geology, Mineralogy, Geochemistry and Formation of Mg-Carbonates (Monograph Series on mineral deposits, 28) (Ed. By. pMöller), 15-28.

  • Zedef, V., Russell, M.J., Fallick, A. E., 2000. Genesis ofVein Stockwork and Sedimantary Magnesite and Hydromagnesite Deposits in the Ultramafic Terranes of Southwestern Turkey: A stable Isotope Study, Economic Geology, 95,429-446.

  • Yılmaz, A , Kuşcu, M . (2007). Süleymaniye (Mihallıcçık-Eskişehir) bölgesindeki manyezitlerin jeolojisi ve jeokimyasal özellikleri / Geology and geochemistry of Süleymaniye (Mihallıcçık-Eskişehir) area magnesite . Türkiye Jeoloji Bülteni , 50 (2) , 95-108 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28420/302632

  • Petrological Characteristics of Ankara Melange Around the Yuvaköy Region
    Asuman Yilmaz Üner Çakir
    View as PDF

    Abstract: The Yuvaköy neigbourhood is an area where Ankara-Çankırı ophiolite crops out. Yuvaköy ophiolite consists ofascending formations of tectonic complex, volcanic-sedimentary sequence, tectonites and cumulates. These unitsare covered byCretaceous and Tertiary sedimentary units. Miocene volcanics are represented by Tekke volcanics.The examined field is a tectonic complex containing heterogenous harzburgite, gabbro, diabase, basalt,radiolarite and limestone blcoks. Tectonites are represented by serpentinized harzburgites. Volcanic andsedimentary sequences comprise basalt, radiolarite, and limestone in chert alternations. The Tekke volcanics arecomprised of andesitic lava, agglomerate and tuffs.Results of chemical analyses showed that the diabase dikes are tholeiitic and the basalts are alkaline incharacter. The andesites of the Tekke volkanics are of intermediate, sub-alkaline character and are andesiticdacitic compositions.Harzburgites underwent serpentinization to an advanced level . Such a transformation results from the factthat the area has been subjected to a low-medium grade metamorphism of greenschist facies conditions. Thisstudydetermined that the basaltic rocks were spilitized due to the effect of metasomatism. Chemichal Alteration Index(CIA) values indicated that the rocks in the area underwent chemical alteration at the beginning stages of themedium zone.The outcrops in the units in the studied are, bear traces of Alpine Orogenic Movements. Deformationstructures occurred during and aftersettlement in the studied area, and these are observed as overthrust faults.

  • Ankara-Çankırı Ophiolite

  • Petrology

  • Yuvaköy

  • Turkey


  • Akyürek, B., 1981, Ankara Melanjmm kuzey bölümünün temel jeoloji özellikleri, T.J.K.35. Bilimsel ve Teknik Kurultayı `İç Anadolu Jeolojisi Sempozyumu` Tebliğler Kitabı, 41-45.

  • Akyürek, B., Bilginer, E., Aktaş, B., Hepşen, N., Pehlivan, S., Sunu, O., Sosyal, Y., Dağer, Z., Çatal, E., Sözeri, B., Yıldırım, H. ve Hakyemez., 1984, Ankara- Elmadağ-Kalecik dolayının Jeoloji özellikleri, Jeoloji Mühendisliği, 20,31- 46.

  • Bailey, E.B., Me Callien.W.C., 1950, Ankara Melanjı ve AnadoluŞaryaji, MTADergisi, 40,12-16.

  • Boccaletti, M., Bortolotti, V., Sagri, M.,1966, Richerche sulle ofiolite della Catene Alpine. I. Osservazioni sull, Ankara Melange nella zona di Ankara, Boll. Soc. Geol.Lt.,85,485-508.

  • Büyükönal, G. 1971, Microscopical study ofthe volkanic rocks around Ankara. Communications. De la Faculte des Science De L` Universite d`Ankara, 15c.l- 27

  • Coleman, R.G., 1971. Plate Tectonic Emplacment Of Upper Mantle Peridodites Along Continental Edges, J. Geophys. Res., 76,1212-1222.

  • Çapan, U., ve Buket, E., 1975, Aktepe-Gökdere bölgesinin jeolojisi ve ofiyolitli melanj : TJK Bülteni, 18/1¬11-16.

  • Evans, B.W., Frost, B.R., 1975. Chromite spinel in progressive metamorphism-A preliminary Analysis, Geochim. Acta, 39,959-972.

  • Irvine, T.N. ve Baragar, W.R.A., 1971, A guide to the chemical classification of the common volkanic rocks, Canadian Journal of Earth Sciences, 8,523- 548.

  • Hsü, K.J., 1968, Principles of melange and their bearing on the Franciscan-Knoxville paradox Geol. Soc. America Bull., 79,1063-1074.

  • Hsü, K.J., 1974. Melanges and their distinction from olistroms. Soc. Econ. Pal. Min. Spec. Publ.19,321-333.

  • Koçyiğit, A., 1991, An example of an accretionary fore arc basin from northern Central Anatolia and its implications for the history of subduction of Neo¬Tethys in Turkey, Geological Society of America Bulletion, 103,22-36.

  • Le Bas, M.J., Le Martre, R.W., Streckeisen, A., ve Zannettin. B., (1986), a chemical classification of volkanik rocks based on the total alkali-silica diagram, Journal patrol., 27,745- 750.

  • Mac Donald, G.A. ve Katsura, T., 1964, Chemical composition of Hawaiian lavas, J. Petrol., 5,82-133.

  • Miyashiro, A., 1975, Gasification, characteristics and origin of ophiolites: Journal of Geology., 83,249-281.

  • Nesbitt, H.W. ve Young, G.M., 1982, Early Proterozoic climates and plate motion inferred from major element chemistry of lutits, Nature, 299,715-717.

  • Peccerillo, A., ve Taylor, S.R., (1975), Geochemistry of Upper Cretaceous Volkanicks Rocks from the Pontic Chain, Northern Turkey, Bull. Volkanol., 39, 557¬569.

  • Seyitoğlu, G., Büyukönal, G., 1995, Geochemistry of Ankara Volkanics and the implications of their K-Ar Dates on the Cenozoik Stratigraphy of Central Turkey, Turkish Journal of Earth Sciences, 4,87-92.

  • Sestini, G., 1971, The relation between flysh and serpantinites in North Central Turkey, in A.S. Compbell (Edit.) Geology and History of Turkey, The Petrol. Exp. Soc. of Libya, Tripoli, 369-383

  • Şengör, A.M.C. ve Yılmaz, Y, 1981, Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75,181-241.

  • Tankut, T., Dilek, Y., Önen, P., 1998, Petrology and Geochemistry of the Neo-Tethyan volcanism as revealed in the Ankara melange, Turkey, Journal of volcanology and geothermal reseach, 85, 265¬284.

  • Tekkaya, î., Atalay, Z., Gürbüz, M., Ünay, E. ve Ermumcu, M.,1975, Çankırı-Kalecik Bölgesi Karasal Neojenin biyostratigrafi Araştırması, TJK Kurultayı Bülteni, 18,1,77- 80.

  • Yılmaz, A., 2003, Yuvaköy Civarındaki Ankara Karmaşığının Petrolojik Özellikleri, H.Ü. Fen Bilimleri Enstitüsü YüksekLisans Tezi,Ankara, 84s (Yayınlanmamış)

  • Yoder, H.S. ve Tilley, C.E., 1962, Origin of basalts magmas, An experimental study of natural and synthetic rock systems, Journal Petrology, 3,342-532.

  • Yılmaz, A , Çakır, Ü . (2007). Yuvaköy civarındaki Ankara karmaşığının petrolojik özellikleri / Petrological characteristics of Ankara melangé around the Yuvaköy region . Türkiye Jeoloji Bülteni , 50 (2) , 109-129 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28420/302630

  • ISSUE FULL FILE
    View as PDF