-
2024
-
2023
-
2022
- 2021
-
2020
-
2019
-
2018
-
2017
-
2016
-
2015
-
2014
-
2013
-
2012
-
2011
-
2010
-
2009
-
2008
-
2007
-
2006
-
2005
-
2004
-
2003
-
2002
-
2001
-
2000
-
1999
-
1998
-
1997
-
1996
-
1995
-
1994
-
1993
-
1992
-
1991
-
1990
-
1989
-
1988
-
1987
-
1986
-
1985
-
1984
-
1983
-
1982
-
1981
-
1980
-
1979
-
1978
-
1977
-
1976
-
1975
-
1974
-
1973
-
1972
-
1971
-
1970
-
1969
-
1968
-
1966
-
1964
-
1963
-
1961
-
1959
-
1958
-
1955
-
1954
-
1953
-
1952
-
1951
-
1950
-
1949
-
1948
-
1947
The hydrocarbon potentials of the carbonates and siliciclastic rocks forming the continuous Paleozoic successions in Southeast Turkey are well understood. In this study, every aspect of the sequence stratigraphy was investigated and the erosional unconformity surfaces of different origin and transgressive surfaces were defined. In this way, the Paleozoic successions of Southeast Turkey were correlated with the hydrocarbon-producing Paleozoic successions of Saudi Arabia. Based on fieldwork, new formations and members were defined and formation boundaries were slightly modified. The stratigraphic sequence extending between the Neoproterozoic igneous basement (Telbesmi Formation) and the Early Ordovician (Konur Formation) is best represented along Zabuk Valley (Derik town). Middle-Late Ordovician successions are exposed between Bedinan (Gürmeşe) and Yurteri villages, west of Kızıltepe town. The outcrops and subsurface indicated that the thick Middle Cambrian stromatolitic algal limestone (Koruk Formation) has both source rock and reservoir rock potentials. The glaciogenic Yurteri Formation has deeply incised in to the Bedinan Formation. The well-sorted and porous glaciofluvial sandstones produce oil and gas in southeast Turkey and other countries located on the Gondwana continent. The organic rich shale deposited at the base of the Silurian Dadaş Formation forms a very productive source rock for the entire Paleozoic successions. Crude oil has been produced from the Late Silurian Hazro sandstone. In order to locate exploration wells in the right place, depositional environment models of all the formations, their lithofacies, isopach maps and hydrocarbon migration pathways were prepared. This is crucial for geological exploration and oil and gas production.
Abstract: Van and its vicinity have been a prominent region with settlements recording many civilizations since the earliest periods in history. The most stunning remains of civilizations in this region belong to the Urartian Kingdom, which was established in the centre of Van from the middle of the 9th century BC. The capital city of the Urartian Kingdom was Tushpa (Van Castle), which was established on the Van Castle rock cliffs rising on the eastern shore of Lake Van. In addition to Tushpa, the capital of the Kingdom of Urartu, the architectural remains of many castles, urban settlements, and other architectural structures, including dams and water canals, are extensively observed in the eastern part of Lake Van. Considering the geological structure of this central region, it appears that the Kingdoms settlements and architectural structures were founded on the Van formation, which consists of Bitlis Metamorphics, Upper Cretaceous Ophiolites and Tertiary deep-sea sediments that form the basement rocks in the region. This study was carried out to determine petrographic characteristics and classify rock types of natural stones used as building materials in Van Castle, Çavuştepe, Ayanis, Toprakkale, Zivistan, Keçikıran Castle, Körzüt Castle and Menua Canal belonging to the Urartian Kingdom. A secondary purpose was to use a geological approach to determine the quarries from which they were extracted. For this purpose, representative natural stone samples were taken from the architectural structures and their remains in the settlement centres of Urartian Kingdom in order to prepare rock thin sections of natural stone samples. The thin sections were examined under polarising petrographic microscope to determine petrographic features and classify the rock types. When the architectural building groups in Urartian settlements are examined, different natural stones were mostly used as building materials. The rock types of these natural stones used in construction of these structures are generally classified under two main groups as igneous and sedimentary origin. Sedimentary rock types such as limestone, travertine and sandstone were preferred as the main building material in settlement centres around the Lake Van Basin. Additionally, igneous rocks types such as gabbro, basalt, andesite and serpentinite were preferred more intensely in centres which are located around the north and western part of Lake Van. At the point of determining the sources of rock types used as natural stone building materials in the Urartian centres, it was concluded that Urartu primarily supplied those materials from the nearest quarry sites. The use of this material is also possible especially from rocky or other nearby areas on which the structure was built. However, in line with the materials used in cuneiform inscriptions and monumental architectural structures such as temples, etc, the supply of building materials was also provided by distant sources. Considering the geology of the region, it is suggested that essential findings were obtained showing that igneous rocks were brought from the areas north and west of Lake Van, while sedimentary rocks are represented by limestones from the southern part of Lake Erçek, and travertine rocks from quarries in the Edremit region.
Abstract: This study examines the evaluation of empirical equations related to primary seismic velocity with density and porosity. The empirical equations have been used in 128 sites based on a seismic grid covering the east Baghdad oil field. The average of density of the geological formations between each seismic reflectors and another (each interval) was extracted from well log data for four wells scattered in the field. Those reflectors were arranged from top to bottom of the studied Formations (Fatha, Hartha, Tanuma, Ahmadi, Shuaiba, and Gutnia Formations). In order to determine the best empirical equations, several previous equations were tested to obtain the best that correspond to the density rates taken from well records. The most suitable equations were used in calculating density for all intervals in the whole field. Using the strong relationship (porosity-density) taken from the well log data, the porosity values for all the studied intervals were found. Later, the porosity and density contour maps for each interval in the whole field were established. The locations of high porosity zones were identified and related to the petroleum distribution in the field.
Abstract: In this study, hydrogeochemical characteristics and the origin of geothermal springs and mineral waters southwest of Uludağ (Bursa) Mountain were investigated. Temperatures of thermal waters are 37-64.5 °C and those of mineral waters range from 15.6 to 22.5 °C. Total dissolved solid (TDS) content of waters is in the range of 451 to 2026 mg/l. The pH of mineral waters (6.2 - 6.7) is much more acidic than thermal waters (7.1 - 7.3). Thermal waters are represented by Na-Ca-HCO3 facies type, while mineral waters are Mg-Na-Ca-HCO3 type. Tritium measured in the Bursa mineral waters is 0.34 to 5.96 TU. Thermal waters (0.34 to 1.95 TU) have lower tritium content than mineral waters (1.57 to 5.46 T). These results indicate that most of studied fluids are regarded as modern waters. δ18O of samples is -11.08 to -7.97 (VSMOW) and δD values are in the range of -73.81 to -57.64 (VSMOW). Stable isotope compositions of Bursa mineral water are located between Global and Mediterranean Water Lines, indicating meteoric origin. δ13C values measured in dissolved inorganic carbon (HCO3) are between -15.3 and +10.12 (VPDB). Carbon isotope compositions of thermal waters are about 15 lower than those of mineral waters, implying that carbon in thermal springs is derived from an organic source. Carbon in mineral waters originates from marine limestones. Using the deuterium-altitude relationship, the recharge zone for Bursa mineral waters was at 1180-2300 m.
Abstract: The Middle Pleistocene stage in the International Chronostratigrahic Chart has been ratified as Chibanian. Its time interval is from 0.774 Ma to 0.129 Ma. Lower boundary of this stage corresponds to the MIS 19 (marine isotope stage - 19) and also palaeomagnetic polarity reversal of Matuyama-Brunhes. The data source and locality are the Chiba section (Japan). Based on investigation in detail and dating by different methods of the marine Chiba deposits, the relevant section has been adopted as the stratotype section and type locality of the Chibanian stage in January 2020. Chiba section is now an international geosite and geological heritage.