Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2025 NİSAN Cilt 68 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Earthquake Hazard in Urban Areas of Bursa Province: Paleosismological Properties of the Ulubat, Bursa and İnegöl Active Faults
Volkan Karabacak Taylan Sançar
View as PDF

Abstract: This study provides a detailed mapping of active fault segments in Bursa and its surrounding regions, along with a comprehensive analysis of seismic behavior derived from paleoseismological data. As one of Türkiye`s strategic economic centers with a dense population and industrial infrastructure, Bursa requires a holistic seismicrisk assessment for effective disaster preparedness and mitigation. Paleoseismological analyses of the eastern segment of the Ulubat Fault indicate that it has been in a seismic quiescence period for approximately 1855 years. This prolonged period of inactivity highlights the potential for a large earthquake in the future around the Nilüfer Region of Bursa. Trench investigations conducted in Bursa citycentre reveal that the Bursa Fault has produced at least six surface ruptures over the past 12000 years, recurring approximately every 2000 years. Additionally, trench studies on the İnegöl Fault indicate that the İnegöl Fault hasproduced at least five surface ruptures over the last 12000 years, with the most recent major earthquake occurring more than 2500 years ago. Obtained results emphasize the potential for the Bursa and İnegöl faults to rupture simultaneously either in close succession, possibly triggering one another. Thus, the surface rupture caused by the1855 Bursa earthquake is evaluated to have potentially triggered stress accumulation along the İnegöl Fault. Thissituation reveals a high probability of a surface-rupturing earthquake (M=6.2-6.9) occurring at any time on the İnegöl Fault, after 2500 years of seismic silence. Overall, these findings underscore the critical role of the faults in Bursa and its surroundings within the regionalseismicity. In particular, the potential for sequential ruptures along the Bursa and İnegöl faults presents a significant earthquake hazard. This comprehensive analysis contributes to a deeper understanding of the seismotectonic dynamics of the region, providing valuable insights for seismic hazard assessment and risk mitigation efforts.

  • Paleoseismology

  • Bursa

  • active fault

  • seismic hazard

  • Aktuğ, B., Nocquet, J. M., Cingoz, A., … & Tekgül, A. (2009). Deformation of western Turkey from a combination of permanent and campaign GPS data: limits to block-like behaviour. Journal of Geophysical Research: Solid Earth, 114(B10), 1-22. https://doi.org/10.1029/2008JB006000

  • Alçiçek, M. C., Karabacak, V., Okay, A. I. ve Kaya, T. T. (2023). İnegöl Havzası’nın Stratigrafisi ve Tektono-Sedimanter Gelişimi (KB Anadolu), (Proje no: 119Y208). TÜBİTAK 1001 Projesi Final Raporu.

  • Ambraseys, N. N, Finkel, C. F. (1991). Long-term seismicity of Istanbul and the Marmara Sea region. Terra Nova, 3(5), 527–539. https://doi. org/10.1111/j.1365-3121.1991.tb00188.x

  • Barka A. A. &Kadinsky-Cade K. (1988). Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7(3), 663-684. https://doi.org/10.1029/TC007i003p00663

  • Barka, A. (1992). The North Anatolian Fault Zone. Annales Tectonicae, 6, 164-195.

  • Barka, A., Reilinger, R., Şaroğlu, F. & Şengör, A. M. C. (1995). The İsparta angle: its importance in the neotectonics of the eastern Mediterranean region. Pişkin, Ö., Ergün, M., Savaşçın, M.Y. & Tarcan, G. (Ed.,). IESCA-1995 Proceedings da, 3-17.

  • Barka, A. A. (1997). Neotectonics of the Marmara Region, Active Tectonics of the northernwestern Anotolia-the Marmara poly-project, ETH, Zurich, 55-87.

  • Elma, İ., Özçelik, B., Karabacak, V., Özkaymak, Ç., ve Sümer, Ö. (2024). Eskişehir Fayının İnönüOklubalı Segmentine ait İlk Paleosismolojik Bulgular. Türk Deprem Araştırma Dergisi, 6(2), 349-368. https://doi.org/10.46464/tdad.1465558

  • Elma İ., Safarov M. A., Karabacak V., Özkaymak Ç. ve Sümer Ö. (2025). Eskişehir Fayı’nın Uzun Dönem Kayma Hızı ve Paleosismolojisi. 77. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı, 14-21 Nisan 2025, MTA, Ankara.

  • Emre, Ö., Doğan, A., Duman, T. Y. & Özalp, S. (2011a). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Bursa (NK 35-12) Paftası. Seri No: 9. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Emre, Ö., Doğan, A., Özalp, S., Yıldırım, C. (2011b). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Bandırma (NK 35-11b) Paftası. MTA 1:250.000 Ölçekli Diri Fay Haritaları Serisi, Seri No: 3, 55 s., Ankara-Türkiye.

  • Emre, Ö., Duman, T. Y., Özalp, S. (2011c). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Kütahya (NJ 35-4) Paftası. Seri No: 10, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active fault map of Turkey with an explanatory text 1:1.250.000 scale. General Directorate of Mineral Research and Exploration Special Publication Series 30, Ankara, Turkey.

  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275. https://doi.org/10.1007/s10518- 016-0041-2

  • Eyidogan, H., Akinci, A. & Polat, O. (1997). The characteristics of site, source and regional attenuation in the vicinity of Bursa city, northwestern Turkey. In Cakmak, A.S., Erdik M. & Durukal E. (Eds.), Proceedings of 8th international conference on soil Dynamics and earthquake engineering. İstanbul, 32-33.

  • Karabacak, V., Sancar, T., Sağlam Selçuk, A. & Büyükdeniz, Y. (2021). Paleoseismicity of the Ulubat Fault: Inferences on Seismic Behaviour of the Southern Branch of the North Anatolian Fault Zone, South Marmara. Turkish Journal of Earthquake Research 3(1), 1-19. https://doi. org/10.46464/tdad.909358

  • Karabacak, V., Sançar, T., Yıldırım, G. & Uysal, I. T. (2022). When did the North Anatolian fault reach southern Marmara, Turkey?. Geology, 50(4), 432– 436. https://doi.org/10.1130/G49726.1

  • McKenzie, D. (1978). Active tectonics of the AlpineHimalayan Belt. The Aegean Sea and Surrounding regions. Geophysical Journal International, 55(1), 217-254. https://doi.org/10.1111/j.1365- 246X.1978.tb04759.x

  • Meade, B.J., Hager, B.H., McClusky, S. C., … & Özener, H. (2002). Estimates of seismic potential in the Marmara region from block models of secular deformation constrained by GPS measurements. Bulletin of the Seismological Society of America, 92(1), 208-215.

  • Okay, A. I. (1984). Kuzeybatı Anadolu’da yer alan metamorfik kuşaklar. Ketin Sempozyumu, 20-21 Şubat 1984, Türkiye Jeoloji Kurumu Yayını, 83- 92.

  • Okay, A. I., Satır, M., Zattin, M., Cavazza, W., Topuz, G. (2008). An Oligocene ductile strikeslip shear zone: the Uludağ massif, northwestern Turkey - Implications for the westward translation of Anatolia. Bulletin of the Geological Society of America, 120, 893-911. https://doi.org/10.1130/ B26229.1

  • Özaksoy, V. (2018). On the distinction of tectonic and nontectonic faulting in palaeoseismological research: a case study from the southern Marmara region of Turkey. International Journal of Earth Sciences (Geologische Rundschau), 107, 1777- 1788. https://doi.org/10.1007/s00531-017-1571-9

  • Özalp, S., Emre, O. & Dogan, A. (2013). The segment structure of Southern Branch of the North Anatolian Fault and paleoseismological behaviour of the Gemlik Fault, NW Anatolia. Bulletin of the Mineral Research and Exploration, 147, 1-17.

  • Öztin F. & Bayülke N. (1990). Historical earthquakes of İstanbul, Kayseri and Elazığ. Earthquake Research Department, General Directorate of Disaster Affairs, Ministry of Public Works and Settlement Report, Ankara, 22 p.

  • Ramsey B. C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. https://doi. org/10.1017/S0033822200033865

  • Reilinger, R., McClusky S., Vernant P., … & Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5), Article B05411. https://doi. org/10.1029/2005JB004051

  • Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Ramsey B.C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M. & van der Plicht J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0 50,000 years cal BP. Radiocarbon 55(4),1869-1887. https://doi. org/10.2458/azu_js_rc.55.16947

  • Sandison, D. (1855). Notice of the Earthquakes at Brussa. The Quaternely Journal of the Geological Society of London, 11, 543-544.

  • Selim, H. H. & Tuysuz, O. (2013). The BursaGönen Depression, NW Turkey: a complex basin developed on the North Anatolian Fault. Geological Magazine, 150(5), 801-821. https:// doi.org/10.1017/S0016756812000945

  • Selim, H. H., Tuysuz, O., Karakas, A. & Tas, K. O. (2013). Morphotectonic evidence from the southern branch of the North Anatolian Fault (NAF) and basins of the south Marmara sub-region, NW Turkey. Quaternary International, 292, 176- 192. https://doi.org/10.1016/j.quaint.2012.11.022

  • Şaroğlu, F., Emre, Ö. & Boray, A. (1987). Türkiye’nin aktif fayları ve depremsellikleri (Rapor No: 8174). Maden Tetkik Arama Genel Müdürlüğü, 394s. Ankara (yayımlanmamış).

  • Şengör, A. M. C. (1979). The North Anatolian transform fault: its age, offset and tectonic significance. Journal of the Geological Society London, 136, 269-282. https://doi.org/10.1144/gsjgs.136.3.0269

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip deformation basin formation and sedimentation: Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Biddle, K. T. & Christie-Blick, N. (Eds.), Strike-slip faulting and basin formation. The Society of Economic Paleontologists and Mineralogists Special Publications 37, pp 227- 264.

  • Şengör, A. M. C., Tüysüz, O., Imren, C., Sakınc, M., Eyidogan, H., Görür, N., Le Pichon, X., Rangin, C. (2005). The North Anatolian Fault: A New Look. Annual Review of Earth and Planetary Sciences, 33, 37-112.

  • Seyitoglu G., Kaypak B., Aktug B., Gurbuz E., Esat K. & Gurbuz A. (2016). A hypothesis for the alternative southern branch of the North Anatolian Fault Zone, Northwest Turkey. Geological Bulletin of Turkey, 59(2), 115- 130. https://doi. org/10.25288/tjb.298155

  • Seyitoğlu, G. & Korhan, E. (2022). Uludağ Extensional Metamorphic Core Complex: Preliminary Field Observations. Bulletin of the Mineral Research and Exploration, 169, 49-61. https://doi.org/10.19111/ bulletinofmre.1029034

  • Sieberg, A. (1932). Erdbebengeographie. In Gutenberg, B. (Ed.), Handbuchder Geophysik, Band IV (pp. 527–1005). Berlin: Bornträger.

  • Wells D. L. & Coppersmith K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Geology and Structural Evolution of the Region between the Upper Kelkit Basin and Munzur Mountains
    Ali Yilmaz Hüseyin Yilmaz Aral Okay Tayfun Bilgiç
    View as PDF

    Abstract: The purpose of this study is to analyse the structural evolution of the region where the Eastern Pontidesand the Eastern Taurides are closest to each other. The main tectonic units in the area, from north to south, are theKelkit Paraautochthonous Unit, Çimendağ Nappe, Erzincan Nappe and Munzurdağ Limestone Unit.The pre-Jurassic basement of the tectonic units consists of heterogeneous rock units in different areas. Since the relationships between these units cannot be established in the study area, it is not possible to create a model for thepre-Jurassic period with the evidence from this locality. Therefore, the tectonics, tectono-stratigraphic and structural evolution of the study region were evaluated only for the Jurassic-Quaternary interval. The Jurassic-Early Cretaceous Kelkit Paraautochthonous Unit and Çimendağ Nappe represent the genesis of rifting and then deposition of platform-type carbonates in the Eastern Pontides. The Jurassic-Early Cretaceous Munzurdağ Limestone Unit represents the northern most part of the Eastern Taurides and also has features ofplatform-type carbonates. During this period, a mid-oceanic ridge and ensimatic arc were active together along the North Anatolian Ophiolitic Belt. Therefore, it is possible to suggest a model representing passive continental margins to the north and south, with the mid-oceanic ridge in the north and the ensimatic arc in the south along the intervening oceanic environment in the Jurassic-Early Cretaceous periods.In the Late Cretaceous-Palaeocene, all evidence shows that the extensional regime completely converted toa compressional regime. In this time interval, an ensialic arc-forearc occurred along the Eastern Pontides and an ensimatic arc with subduction complex occurred along the North Anatolian Ophiolitic Belt. In the south, pelagiccarbonates were deposited along the Munzur Mountains. It seems inevitable that the existence of two different northdipping subduction zones should be accepted in this time interval.The Eocene and Oligo-Miocene units overlie older structural units with a polygenic conglomerate and angular unconformity. These units underwent intense deformation and the entire study area first became a shallow marine and then a terrestrial environment. Eocene volcanism indicates a post-collisional phase in the Eastern Pontides.The Pliocene-Quaternary rocks, reflecting continental deposits, unconformably overlie the older units, withan approximately horizontal layered structure. Considering this unconformity and the intense deformation before the Pliocene, it is possible that the North Anatolian Fault (NAF) developed during the Pliocene and had dextralmovement with at least 25 km offset. In this context, the annual slip value for the fault may be 4.7 cm/year. 

  • Neotethys

  • Offset (Slip) of the NAF

  • Pontides

  • structural evolution

  • Taurides

  • Akdeniz, N. (1984). Demirözü (Bayburt) PermoKarboniferi ve bölgesel yapı içindeki yeri (Derleme no 7694). Maden Tetkik ve Arama, Ankara, 35 s (yayımlanmamış).

  • Altıntaş, I. E., Topuz, G., Çelik, Ö.F., Roland, Y., Göçmengil, G. & Özkan, M. (2012). An example for early Jurassic SSZ type ophiolite from Turkey. Refahiye (Erzincan) ophiolite. 65th Geological Congress of Turkey, Abstracts Book (p. 348-349), UCTEA the Chamber of Geological Engineers, Ankara.

  • Barka, A. A. & Hancock, P. L. (1984). Neotectonic deformation patterns in the convex-northwards arc of the North Anatolian fault zone. Geological Society, London, Special Publications, 17, 763- 774.

  • Barka, A. A. (1992). The North Anatolian Fault. Anneles Tectonicea, 6, 164-195.

  • Baş, H. (1979). Petrologische und Geochemische Untersuchungin an Subrezenten Vulkaniten der Nordanatolischen Storungszone (Abschnitt: Erzincan-Niksar), Türkei [Doktora tezi]. Hamburg, Üniversitesi, 116 s.

  • Bedi, Y. & Yusufoğlu, H. (2022). 1: 100.000 ölçekli Türkiye Jeoloji Haritaları Serisi, (Turkish geological map series) Malatya-L39 Paftası, No: 282 (in Turkish). Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara, 97 p.

  • Bektaş, O. (1981). Kuzey Anadolu Fay Zonu‘nun Erzincan Tanyeri Bucağı yöresindeki jeolojik özellikleri ve yerel ofiyolit sorunları [Doktora tezi]. Karadeniz Teknik Üniversitesi, Yer Bilimleri Fakültesi Trabzon, 193 s.

  • Bergougnan, H. (1975). Presence de trois unitees charriees a la bordure sud des Pontides dans le Haut-Kelkit. Ages et mises en place. C.R. Acad. Sc. 280, ser. D, 2199-2201

  • Bergougnan, H. (1976). Structure de la Chaine pontiquc dans le Haut-Kelkit (Nord-East de FAnatolie). Bull. Soc. geol. France, (7), t XVIII, n3, 675-686.

  • Beyazpirinç, M., Akçay, A. E., Yılmaz, A. & Sönmez, M. K. (2019). A Late Cretaceous ensimatic arc developed during closure of the northern branch of Neo-Tethys (Central- Northern Turkey). Geoscience Frontiers, 10, 1015-1028. https://doi. org/10.1016/j.gsf.2018.05.013

  • Bozkurt, E. (2001). Neotectonics of Turkey- a synthesis. Geodinamica Acta, 14(1-3), 3-30. https://doi. org/10.1016/S0985-3111(01)01066-X

  • Buket, E. (1982). Erzincan-Refahiye ultramafik ve mafik kayalarının petrokimyasal karakterleri ve diğer oluşumlarla deneştirilmesi. Yerbilimleri, 9, 43-56.

  • Buket, E. ve Ataman, G. (1982). Erzincan-Refahiye ultramafit ve mafik kayaçlarmın petrografik ve petrolojik özellikleri. Yerbilimleri, 9, 5-18.

  • Erdoğan, B., Akay, E. & Uğur, M.S. (1996). Geology of the Yozgat region and evolution of the collisional Çankırı basin. International Geology Review, 38, 788-806.

  • Eyüboğlu, Y., Dilek, Y., Bozkurt, E., Bektaş, O., Rojay, B. & Şen, C. (2010). Structure and geochemistry of an Alaskan-type ultramaficmafic complex in the eastern Pontides, NETurkey. Gondwana Research, 18(1), 230-252. https://doi. org/10.1016/j.gr.2010.01.008

  • Göçmengil G, Altıntaş İE, Topuz G, Çelik Ö.F. & Özkan M. (2013). Diverse tectonic settings of formation of the metaigneous rocks in the Jurassic metamorphic accretionary complexes (Refahiye, NE Turkey) and their geodynamic implications. Geodinamica Acta, 26, 294-310. https://doi.org/1 0.1080/09853111.2013.858946

  • Gökten, E. & Floyd, P.A. (2007). Stratigraphy and geochemistry of pillow basalts within the ophiolitic mélange of the Izmir-Ankara-Erzincan suture zone: implications for the geotectonic character of the northern branch of Neotethys. International Journal of Earth Sciences (GR Geologische Rundschau), 96, 725-741. https://doi. org/10.1007/s00531-006-0132-4

  • Ketin, İ. (1948). Über die tektonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeben des letzten Dezenniums. Geologische Rundschau, 36, 77-83. https://doi.org/10.1007/ BF01791916

  • Koçyiğit A. (1989). Suşehri basin: an active faultwedge basin on the North Anatolian Fault Zone, Turkey. Tectonophysics, 167(1) 13–29. https://doi. org/10.1016/0040-1951(89)90291-6

  • Koçyiğit, A. (1990). Üç Kent Kuşağı’nın Erzincan batısındaki (KD Türkiye) yapısal ilişkileri: Karakaya, İç Toros ve Erzincan Kenetleri. In 8th Petrol Congress of Turkey, Proceedings (p. 152- 160), Ankara.

  • Koçyiğit, A. (1996). Superimposed Basins and their relations on the recent strike-slip fault zone. A case study of the Refahiye superimposed Basin adjacent to the North Anatolian Transform Fault, Northeastem Turkey. International Geology Review, 38, 701–713.

  • Mc Kenzie D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, Soc. 30, 109– 85. https://doi.org/10.1111/j.1365-246X.1972. tb02351.x

  • Moix, P., Beccaletto, L., Kozur, H. W., Hochard, C., Rosselet, F. & Stampfli, G. M. (2008). A new classification of the Turkish terranes and sutures and its implications for the paleotectonic history of the region. Tectonophysics, 451, 7-39. https:// doi.org/10.1016/j.tecto.2007.11.044

  • Okay, A. (1983). The geology of the Agvanis Metamorphic Rocks and neighbouring formations. Bulletin of the Mineral Research and Exploration (MTA Dergisi), 99-100, 51-71.

  • Okay, A. İ. (1989). Tectonic units and sutures in the Pontides, northern Turkey. In A.M.C. Şengör (Ed.), Tectonic Evolution of the Tethyan Region (p. 109-115), Kluwer, Dordrecht.

  • Okay, A. I. (1996). Granulite facies gneisses from the Pulur region, eastern Pontides. Turkish Journal of Earth Science, 5, 55-61.

  • Okay, A. I. (2008). Geology of Turkey: A synopsis. Anschnitt, 21, 19-42.

  • Okay, A. I. & Şahintürk, Ö. (1997). Geology of the eastern Pontides. In A. G. Robinson (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region. AAPG Memoir, 68, 291- 311.

  • Okay, A. I. & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5-8), 1051-1076. https://doi.org/10.1080/0020 6814.2015.1010609

  • Okay, A. I. & Topuz, G. (2017). Variscan orogeny in the Black Sea region. International Journal of Earth Sciences, 106, 569-592. https://doi.org/10.1007/ s00531-016-1395-z

  • Özcan, A., Erkan, A., Keskin, E., Oral, A., Keskin, A., Özer, S., Sümengen, M. ve Tekeli, O. (1980). Kuzey Anadolu Fayı-Kırşehir Masifi arasının temel jeolojisi (Rapor no: 6722). Maden Tetkik ve Arama Enstitüsü, (Unpublished), 139 s. Ankara.

  • Özgül, N. (1981). Munzur dağlarının jeolojisi (Derleme Rapor no: 6995). Maden Tetkik ve Arama, (Unpublished) Ankara, 136 s.

  • Özgül, N. & Turşucu, A. (1984). Stratigraphy of the Mesozoic carbonate sequence of the Munzur mountains (eastern Turkey). In Tekeli, O. & Göncüoğlu, M. C. (Eds.), Geology of the Taurus Belt. Maden Tetkik ve Arama Enstitüsü, Ankara, 173-181.

  • Parlak, O., Çolakoğlu, A., Dönmez, C., Sayek, H., Yıldırım, N., Turkel, A. & Odabaşı, I. (2013). Geochemistry and tectonic significance of ophiolites along the Izmir-Ankara-Erzincan suture zone in northeastern Anatolia. Geological Society London Special Publications 372(1), 75-105. https://doi.org/10.1144/SP372.7

  • Pelin, S. (1977). Alucra (Giresun) güneydoğu yöresinin petrol olanakları bakımından jeolojik incelemesi: Karadeniz Teknik Universitesi, yayın no 87, Trabzon, 1035.

  • Rice, S.P., Robertson, A.H.F. & Ustaömer, T. (2006). Late Cretaceous-Early Cenozoic tectonic evolution of the Eurasian active margin in the Central and Eastern Pontides, northern Turkey. In Robertson A. H. F. & Mountrakis D. (Eds) Tectonic Development of the Eastern Mediterranian Region. Geol Society London, Special Publications, 260, 413-445. https://doi. org/10.1144/GSL.SP.2006.260.01.17

  • Rice, S. P., Robertson, A.H.F., Ustaömer, T., Inan, N. & Taslı, K. (2009). Late Cretaceous-Early Eocene tectonic development of the Tethyan suture zone in the Erzincan area, eastern Pontides, Turkey. Geological Magazine, 146(4), 567-590. https:// doi.org/10.1017/S0016756809006360

  • Robertson, A., Parlak, O., Ustaömer, T., Taslı, K., Inan, N., Dumitrica, P. & Karaoğlan, F. (2013). Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: new evidence from the Eastern Pontides, Turkey. Geodinamica Acta, 26(3-4), 230-293. https://doi.org/10.1080/09853111.2013.877240

  • Robertson, A. H. F., Parlak, O., Ustaömer, T., Taşlı, K. & Dumitrica, P. (2021). Late Palaeozoic-Neogene sedimentary and tectonic development of the Tauride continent and adjacent Tethyan ocean basins in eastern Turkey: New data and integrated interpretation. Journal of Asian Earth Sciences, 220, Article 104859. https://doi.org/10.1016/j. jseaes.2021.104859

  • Rolland, Y., Hässig, M., Bosch, D., Bruguier, O., Melis, R., Galoyan, G., Topuz, G., Sahakyan, L., Avagyan, A. & Sosson, M. (2020). The East Anatolia-Lesser Caucasus ophiolite: An exceptional case of largescale obduction, synthesis of data and numerical modelling, Geoscience Frontiers, 2020, 11(1), 83- 108. https://doi.org/10.1016/j.gsf.2018.12.009

  • Sarıfakioğlu, E., Özen, H & Winchester, J. A. (2009). Petrogenesis of the Refahiye ophiolite and its tectonic significance for Neotethyan ophiolites along the İzmir-Ankara-Erzican Suture Zone. Turkish Journal of Earth Science, 18, 187-207.

  • Seymen, I. (1975). Kelkit Vadisi kesiminde Kuzey Anadolu Fay Zonu’nun tektonik özelliği (Tectonic characteristics of the North Anatolian Fault Zone in Kelkit Valley segment). İstanbul Teknik Üniversites, Maden Fakültesi Yayını, 198 pp.

  • Şengör, A. M. C., Özeren, M. S., Keskin M., Sakınç, M, Özbakır, A.D. & Kayan, İ. (2008). Eastern Turkish high plateau as a small Turkictype orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews, 90(1-2) 1-48. https://doi.org/10.1016/j. earscirev.2008.05.002

  • Şengör, A. M. C., Altıner, D., Zapçı, C., Sunal, G., Lom, N., Aylan, E. & Öner, T. (2023). On the nature of the Cimmerian Continent. Earth-Science Reviews, 247, Article 104520. https://doi.org/10.1016/j. earscirev.2023.104520

  • Tatar, Y. (1978). Kuzey Anadolu Fay Zonunun Erzincan – Refahiye arasındaki bölümü üzerinde tektonik incelemeler. Yerbilimleri, 4, 201-236.

  • Tatar, O., Temiz, H., Tutkun, S.Z., Park, R.G. & Stimpson, I. G. (1993). Formation, and Sedimentation of the 13 March 1992 Erzincan earthquake, Eastern Turkey. Geological Journal, 28, 327–333.

  • Toksöz, M. N., Shakal, A. F. & Michael, A. J. (1979). Space-Time Migration of Earthquakes Along the North Anatolian Fault Zone and Seismic Gaps. Pure and Applied Geophysics. 117, 1258-1270. https://doi.org/10.1007/BF00876218

  • Topuz, G., Okay, A. I., Altherr R., Schwartz, W. H., Siebel, W., Zark, T., Satır, M. & Şen, C. (2011). Post-collisional adakitelike magmatism in the Agvanis Massif and implications for the evolution of the Eocene magmatism in the eastern Pontides (NE Turkey). Lithos, 125(1-2), 131-150. https:// doi.org/10.1016/j.lithos.2011.02.003

  • Topuz, G., Göçmengil, G., Rolland, Y., Çelik, Ö.F., Zack, T. & Schmitt, A. K. (2013). Jurassic accretionary complex and ophiolite from Northeast Turkey: no evidence for the Cimmerian continental ribbon. Geology, 45, 255–258. https://doi.org/10.1130/ G33577.1

  • Tüysüz, O., Dellaloğlu, A. A. & Terzioğlu, N. (1995). A magmatic belt within the Neo-Tethyan suture zone and its role in the tectonic evolution of northern Turkey.Tectonophysics 243, 173-191.

  • Van Hinsbergen, D. J. J., Maffione, M., Plunder, A., Nuretdin Kaymakcı, N. … & Visser, R. l. M. (2016). Tectonic evolution and paleogeography of the Kirşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, American Geophysical Union (AGU), 35(4), 983-1014. https://doi.org/10.1002/2015tc004018

  • Yılmaz, A. (1981a). Tokat ile Sivas arasındaki bölgede ofiyolitli karışığın içyapısı ve yerleşme yaşı. Türkiye Jeoloji Kurumu Bülteni, 24(1), 31-38. https://www.jmo.org.tr/resimler/ekler/ a8d616d51ce9709_ek.pdf

  • Yılmaz, A. (1981b). Tokat ile Sivas arasındaki bölgede bazı volkanitlerin petro-kimyasal özellikleri. Türkiye Jeoloji Kurumu Bülteni, 24(2), 51-58 (131-138). https://www.jmo.org.tr/resimler/ ekler/267584f95af0a26_ek.pdf

  • Yılmaz, A. (1983). Tokat (Dumanlıdağı) ile Sivas (Çeltekdağı) dolaylarının temel jeoloji özellikleri ve ofiyolitli karışığın konumu. Maden Tetkik ve Arama Dergisi, 99-100, 1-18.

  • Yılmaz, A. (1985). Basic geological characteristics and structural evolution of the region between the Kelkit Creek and Munzur Mountains. Bulletin of the Geological Society of Turkey, 28(2), 79-92. https://www.jmo.org.tr/resimler/ ekler/9490244a7cabc1f_ek.pdf

  • Yılmaz, A., Okay, A.I. ve Bilgiç, T. (1985). Yukarı Kelkit Çayı yöresi ve güneyinin temel jeoloji özellikleri (Rapor no.: 7777). MTA Genel Müdürlüğü, Ankara, 207 s.

  • Yılmaz, A., Bedi, Y., Uysal Ş., Yusufoğlu H. & Aydın Ş. N. (1993). Geological structure of the area between Uzunyayla and Berit dagh along Eastern Taurides. Bulletin of Turkish Petroleum Geologists Association, (in Turkish with English Abstract), 5(1), 69- 87.

  • Yılmaz, A. & Yılmaz, H. (2004). Geology and Structural Evolution of the Tokat Masif (Eastern Pontides, Turkey). Turkish Journal of Earth Sciences, 13(1), 231-246.

  • Yılmaz, A. & Yılmaz, H. (2006). Characteristic features and structural evolution of a post-collisional basin: the Sivas basin, Central Anatolia, Turkey. Journal of Asian Earth Sciences, 27(2), 164-176. https:// doi.org/10.1016/j.jseaes.2005.02.006

  • Yılmaz, A. & Yılmaz, H. (2010). Offset of the North Anatolian Fault between Suşehri and Gölova (Agvanis) segment. Cumhuriyet Earth Sciences Journal, 27(2), 89-96.

  • Yılmaz, A. & Yılmaz, H. (2013). Ophiolites and ophiolitic melanges of turkey, a review. Geological Bulletin of Turkey, 56(2), 61-114. https://dergipark. org.tr/en/pub/tjb/issue/28126/304083

  • Yılmaz, Y. (1974). Geology of the Gümüşhane granite (petrography). Rev. Fac. Sci. d’Univ. İstanbul, B 39, 157-172.

  • Yılmaz, Y., Serdar, H. S., Yiğitbaş, E., Genç, C., Gürer, Ö. F., Elmas, A., Yıldırım, M., Bozcu, M. & Gürpınar, O. (1997a). The geology and tectonic evolution of the Tokat Masif, southcentral Pontides, Turkey. International Geology Review, 39(4), 365- 382. https://doi.org/10.1080/00206819709465278

  • Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. & Şengör, A. M. C. (1997b). Geology and tectonic evolution of the Pontides. In A.G. Robinson (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region. AAPG Memoir, 68, 183- 226.

  • Yılmaz, Y. & Yiğitbaş, E. (2024) Tectonic development of the Ankara-Erzincan suture and the Eastern Pontide mountains, Northeast Anatolia, Turkey. International Geology Review, 66(6), 1216-1239. https://doi.org/10.1080/00206814.2023.2231521










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)
    Yakup Çelik Ezher Tagliasacchi
    View as PDF

    Abstract: Gürlevik tufa, located in the southeast of the Erzincan (East Anatolia) pull-apart basin, represents atypical cascade/waterfall deposit developed in a fluvial environment. Calcareous tufa formed at three different levels. However, the facies properties and depositional system of the Gürlevik tufa formation remain unknown. This study aims to investigate the evolution of the tufa deposits and to clarify their facies changes in this tectonically active basin. For this purpose, seven measured sedimentary logs were obtained from field studies, and the lithofacies were described and interpreted based on their morphological properties, microscopic and biological contents. According tofacies analysis, six lithofacies were identified and two depositional systems (perched springline/cascade and barragedammed) were determined. The monumental cascade/waterfall tufa accumulation is a consequence active tectonicand climatic factors in the region. Gürlevik tufa deposits are located in a protected natural site. This preliminary study draws attention to the geological importance of these sedimentary rocks, which record climate changes with high precision, as well as their geological heritage potential, that should be preserved and transferred to future generations.

  • Depositional system

  • East Anatolia

  • Erzincan

  • Gürlevik fluvial tufa

  • lithofacies

  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F. & Piper. J. D. A. (2016). Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin. Journal of Asian Earth Sciences, 116, 97–114. https://doi. org/10.1016/j.jseaes.2015.11.005

  • Aktimur, H. T., Sarıarslan, M., Keçer, M., Turşucu, A., Örçen, S., Yurdakul, M. E., Mutlu, G., Aktimur, S. ve Yıldırım, T. (1995). Erzincan dolayının jeolojisi (Report no: 9792 (unpublished)). MTA, Ankara.

  • Arenas, C., Gutiérrez, F., Osácar, C. & Sancho, C. (2000). Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain. Sedimentology, 47, 883- 909.

  • Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G. & Sancho-Marcén, C. (2010). Fluvial and associated carbonate deposits. In Alonso-Zarza, A. M., Tanner, L. H. (Eds.), Carbonates in Continental Settings. Facies, Environments and Processes, Developments in Sedimentology (pp. 133-175), vol. 61. Elsevier, Amsterdam. https:// doi.org/10.1016/S0070-4571(09)06103-2

  • Aydın, O. L., Bektaş, O., Büyüksaraç, A. & Yılmaz, H. (2019). 3D Modelling and Tectonic Interpretation of the Erzincan Basin (Turkey) using Potential Field Data. Earth Sciences Research Journal, 23(1), 57-66. https://doi.org/10.15446/esrj. v23n1.71090

  • Barka A. & Gülen L. (1989). Complex evolution of the Erzincan basin (Western Turkey). Journal of Structural Geology, 11(3), 275-283.

  • Bozkurt, E. (2001). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3–30, https:// doi.org/10.1016/S0985-3111(01)01066-X

  • Capezzuoli, E., Gandin, A. & Pedley, M. (2014). Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology, 61(1), 1–21. https://doi. org/10.1111/sed.12075

  • Çiftçi, Y. & Güngör, Y. (2016). Proposals for the Standard Presentation of Elements of Natural and Cultural Heritage within the Scope of Geopark Projects. MTA Dergisi, 153, 223-238.

  • Çiftçi, Y. & Güngör, Y. (2021). Jeolojik Miras Envanter Çalışmaları: Yeni Yaklaşımlar. S. Er (Ed.), Jeolojik Miras: Kavramlar, Mevzuat ve Uygulama Örnekleri (ss. 62-104). Pınar Yayınevi-Jeoloji Mühendisleri Odası, İstanbul.

  • Dipova, N. & Doyuran, V. (2006). Characterization of the Antalya (Turkey) tufa deposits. Carbonates and Evaporites, 21, 144–160. https://doi.org/10.1007/ BF03175664

  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Editor), Classification of Carbonate Rocks (pp.: 108-121). Mem. Am. Assoc. Petrol. Geol., 1.

  • Emre, O., Duman, T.Y., Kondo, H. Olgun, S., Özalp, S., Elmacı, H. (2012). 1:1250.000 Scale Active Fault Map Series of Turkey, Erzincan (NJ 37- 3) Quadrangle. Serial Number: 44. General Directorate of Mineral Research and Exploration (MTA), Ankara-Turkey.

  • Folk, R. L. (1959). Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin, 43, 1-38.

  • Folk, R. L. (1962). Spectral subdivision of limestone types. In Ham,W.E. (Ed.), Classification of carbonate rocks (pp. 62–84). American Association of Petroleum Geologist Memoirs 1, Tulsa.

  • Ford, T.D. & Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. EarthScience Reviews, 41(3-4), 117-175. https://doi. org/10.1016/S0012-8252(96)00030-X

  • Gedik, A. (2008). Kemah-Erzincan Çayırlı yöresi Tersiyer Birimlerinin Jeolojisi ve Petrol Kaynak Kaya Özellikleri. MTA Dergisi, 137, 1-26 (in Turkish).

  • Glover, C. & Robertson, A. H. (2003). Origin of tufa (cool-water carbonate) and related terraces in the Antalya areas, SW Turkey. Geological Journal, 38, 1-30.

  • Golubić, S., Violante, C., Plenković-Moraj, A. & Grgasović, T. (2008). Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia Croatica, 61(2-3), 363-378.

  • Goudie, A. S. (2020). Waterfalls: Forms, Distribution, Processes and Rates of Recession. Quaestiones Geographicae, 39(1), 59–77. https://doi. org/10.2478/quageo-2020-0005

  • Gradziñski, M. (2010). Factors controlling growth of modern tufa: results of a field experiment. Geological Society Special Publications, 336, 143–191. https://doi.org/10.1144/SP336.8

  • Gradziñski, M., Hercman, H., Jaoekiewicz, M. & Szczurek, S. (2013). Holocene tufa in the Slovak Karst: facies, sedimentary environments and depositional history. Geological Quaterly, 57(4), 769-788. https://doi.org/10.7306/gq.1131

  • Güngör, Y. (2021). Jeoloji ve Sürdürülebilir Kalkınma. MTA Doğal Kaynaklar Ekonomi Bülteni, 31, 53- 59.

  • Güngör, Y. ve Angı, O. S. (2021). Kültürel Jeoloji ve Jeoturizm içerisinde jeolojik mirasın yeri I. S. Er (Ed.), Jeolojik Miras: Kavramlar, Mevzuat ve Uygulama Örnekleri (ss. 105-112). Pınar Yayınevi-Jeoloji Mühendisleri Odası, İstanbul.

  • Horvatinčić, N., Čalić, R. & Geyh, M. A. (2000). Interglacial growth of tufa in Croatia. Quaternary Research, 53, 185-195.

  • Kaypak, B. & Eyidoğan, H. (2005). One-dimensional crustal structure of the Erzincan basin, Eastern Turkey and relocations of the 1992 Erzincan earthquake (Ms=6.8) aftershock sequence. Physics of the Earth and Planetary Interiors, 151(1–2), 1-20.

  • Kazancı, N. (2010). Dünyada ve Türkiye’de JeositJeopark-Jeomiras Olgusuna Yaklaşımlar. Kızılcahamam Çamlıdere Jeopark ve Jeoturizm Projesi Raporu, 76, Ankara.

  • Koçyiğit, A. (1990). Üç Kenet Kuşağının Erzincan Batısındaki (KD Türkiye) Yapısal ilişkileri: Karakaya, İç Toros ve Erzincan Kenetleri. Türkiye 8. Petrol Kongresi Bildiriler Kitabı, 152-160.

  • Koşun, E., Sarıgül, A. ve Varol, B. (2005). Antalya Tufalarının litofasiyes özellikleri. MTA Dergisi, 130, 57-70.

  • Okay, A. I. & Tüysüz, O. (1999). Tethyan Sutures of Northern Turkey. In Durand B., Jolivet G., Horvoth F., Serrane M (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen, Geological Society, London, Special Publications., 156, 475-515. https://doi. org/10.1144/GSL.SP.1999.156.01.22

  • Ordóñez, S., González Martín, J.A., García del Cura, M.A. & Pedley, H.M. (2005). Temperate and semi-arid tufas in Pleistocene to Recent fluvial barrage system in the Mediterranean area: the Ruidera Lakes Natural Park (Central Spain). Geomorphology, 69, 332-350.

  • Özkul, M., Gökgöz, A. & Horvatinčić, N. (2010). Depositional properties and geochemistry of Holocene perched springline tufa deposits and associated spring waters: a case study from the Denizli province, Western Turkey. In Pedley, H.M. (Ed.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls: the Geological Society, London. Special Publications, 336, 245- 262. https://doi.org/10.1144/SP336.13

  • Pedley, H. M. (1990). Classification and Environmental Models of Cool Freshwater Tufas. Sedimentary Geology, 68, 143-154.

  • Pedley, M., González Martín, J.A., Ordóñez, S. & García del Cura, M.A. (2003). Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology, 50, 23-44.

  • Pedley, H. M. (2009). Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology Special Volume 56, 221-246.

  • Pentecost, A. (1981). The tufa deposits of the Malham district, North Yorkshire. Field Studies 5, 365– 387.

  • Pentecost, A. & Whitton, B. A. (2000). Limestones. In B.A. Whitton & M. Potts (Eds.), The Ecology of Cyanobacteria (pp.: 257–279). Kluwer, Amsterdam.

  • ProGeo Group (1998). A first attempt at a geosites framework for Europe - an IUGS initiative to support recognition of World Heritage and European geodiversity. Geologica Balcanica, 28, p.: 532.

  • Shiraishi, F., Reimer, A., Bissett, A., Beer, D. de & Arp, G. (2008). Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly super saturated set ting (Westerhöfer Bach, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 262, 91–106.

  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2020). Multidisciplinary approach for palaeoclimatic signals of the non-marine carbonates: The case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International, 544, 41-56. https://doi. org/10.1016/j.quaint.2019.12.016

  • Tatar, O., Akpınar, Z., Gürsoy, H., Piper, J. D. A., Koçbulut, F., Mesci, B. L., Polat, A. & Roberts, A. P. (2013). Palaeomagnetic evidence for the Neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. Journal of Geodynamics, 65, 244– 258. https://doi. org/10.1016/j.jog.2012.03.009

  • Toker, E. (2017). Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: Facies and depositional systems. Quaternary International, 437, (Part A), 37-50. https://doi.org/10.1016/j. quaint.2016.06.034

  • Tüysüz, O. (1990). Tectonic evolution of a part of the Tethyside orogenic collage: the Kargı Massif, northern Turkey. Tectonics, 9(1), 141-160. https:// doi.org/10.1029/TC009i001p00141

  • Tüysüz, O. (1992). Erzincan Çevresinin Jeolojisi, (Yerbilimci Gözüyle Erzincan Depremi, DünüBugünü-Yarını ve Türkiye Deprem Sorunu, (Derleyen; Ahmet Ercan). İ.T.Ü. Maden Fak. Jeofizik Bölümü ve Jeoloji Müh. Böl. Ortak Oturum Bildirileri, İ.T.Ü. İstanbul.

  • Uysal, A. (2024). Erzincan Ovası ve Çevresinin Morfotektonik Özellikleri ve Deprem Analizi. [Yayımlanmamış Doktora Tezi]. Elazığ, Fırat Üniversitesi, Sosyal Bilimler Enstitüsü.

  • Uysal, A., Sunkar, M. (2024). Girlevik Şelalesi ve Traverten Taraçasının Oluşumu (Erzincan). Kıranşan, K. (Ed.), Fiziki coğrafya alanında uluslararası araştırmalar-II (s: 117-145). Eğitim Yayınevi.

  • Uzun, A., Bahadır, M., Karaer, F., Gürgöze, S. & Vural, B. (2023). Gürleyik Creek Tufa Forms, Eskişehir/ Türkiye. The most Recent Studies in science and art (s.: 1-9). Gece Publishing.

  • Vázquez-Urbez, M., Pardo, G., Arenas, C. & Sancho, C. (2011). Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain). Geomorphology, 125, 1-10. https://doi.org/10.1016/j. geomorph.2010.07.022

  • Villes, H.A. & Goudie, A. S. (1990). Tufas, travertine and allied carbonate deposits. Progress in Physical Geography Earth and Environment. 14(1), 19-41. https://doi.org/10.1177/030913339001400102

  • Violante, C., Ferreri, V., D’Argenio, B.& Golubic, S. (1994). Quaternary travertines at Rochetta a Volturno (Isernia, Central Italy). Facies analysis and sedimentary model of an organogenic carbonate system. In PreMeeting Fieldtrip Guidebook, A1, International Association of Sedimentologists, Ischia’94, 15th Regional Meeting (pp.: 3223), Italy.

  • Wimbledon, W. A. P. (1996). National site election, a stop on the road to a European GeositeList. Geologica Balcanica, 26, 15–27.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • The Significance and Morphotectonic Features of the Iğdır Fault within the Eastern Anatolian Compressional Tectonic Block
    Sacit Mutlu
    View as PDF

    Abstract: The Iğdır Fault Zone (IFZ) is located at the easternmost edge of Turkey, approximately 13 km northwest of Mount Ağrı. The fault extends from Küllük village in the northwest to Kavaktepe village in the southeast. Theright-lateral strike-slip Iğdır Fault Zone, which exhibits strike variations between N20°E and N60°E, consists of 19 sub-geometric segments. Fault-controlled drainage networks, offset streams, alluvial and colluvial fans,and truncated valleys are key morphological indicators of the fault`s activity. This study aims to determine the tectonic influence of the Iğdır Fault Zone, which is situated within the Small Caucasus Tectonic Block. To achieve this objective, both historical and instrumental earthquake catalogs were compiled for the IFZ and its vicinity. Additionally, morphometric analyses were conducted on the fault zone, including surface roughness, hypsometricintegral, basin asymmetry factor, mountain front sinuosity, and the ratio of valley floor width to valley height. The identified morphotectonic markers and index results indicate that the IFZ also possesses a normal fault component.The fault zone consists of five parallel sub-branches and exhibits a releasing bend structure, merging with the Mount Ağrı extensional crack in the southeastern section. The historical seismicity and morphometric index results suggest that the study area is morphologically young, with an uplift rate exceeding 0.5 mm per year in the NW and SE sections. When the fault length and index results are evaluated, it is observed that the southeastern segments ofthe Iğdır Fault Zone, particularly those closer to Mount Ağrı, have accumulated relatively higher deformation andexhibit a greater uplift rate.  

  • Active Tectonics

  • Eastern Anatolia

  • Iğdır Fault

  • geomorphology

  • uplift rate

  • Abich, A. & Suess, E. (Eds.), (1882). Geologische Forschungen in den kaukasischen Ländern. In commission bei A. Hölder.

  • Abich, G. (1847). Geological news of a journey to Ararat and particularly the collapse of the valley of Aguri in 1840. Montsberichte under die Verhandlungen der Gesseslschaft fur Erkunde zu Berlin Neue Folge, 4, 28-62.

  • AFAD-DDB. Deprem Verileri. https://deprem.afad. gov.tr/ddakatalogu. Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi, Ankara. Erişim tarihi: 05.01.2025.

  • Alim, M. (1998). Doğu Iğdır Ovasında doğal çevre sorunları [Yayımlanmamış Yüksek Lisans tezi]. Sosyal Bilimler Enstitüsü).

  • AL-Suyutı, (1974). Jalal Ed-Din, Kashf Al-Salsala an Wasf Al-Zalzala. F Cahiers du Centre Universitaire de la Recherche Scientifique, Rabat

  • AL-SUYUTI, J. E. D. (1984). Kashf Al-Salsala an Wasf Al-Zalzala.

  • Ambraseys N. (2009). Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900. Cambridge University Press. 947 pp.

  • Ambraseys, N. N. & Melville, C. P. (1982). A History of Persian Earthquakes. Cambridge Univ. Press, New York.

  • Andreani, L. & Gloaguen, R. (2016). Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains (northern Central America): implications for the North American–Caribbean–Cocos plate boundary. Earth Surface Dynamics, 4(1), 71-102. https://doi. org/10.5194/esurf-4-71-2016

  • Andreani, L., Stanek, K. P., Gloaguen, R., Krentz, O., & Domínguez-González, L. (2014). DEM-based analysis of interactions between tectonics and landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sensing, 6(9), 7971-8001. https://doi.org/10.3390/ rs6097971

  • Ardos, M. (1984). Türkiye Ovalarının Jeomorfolojisi (Vol. 2). İstanbul Üniversitesi Edebiyat Fakültesi.

  • Azor, A., Keller, E. A., Yeats, R. S. (2002). Geomorphic indicators of active fold growth: South MountainOak Ridge anticline, Ventura basin, southern California. Bulletin of the Geological Society of America 114, 745-753.

  • Azzoni, R. S., Fugazza, D., Garzonio, C. A., Nicoll, K., Diolaiuti, G. A., Pelfini, M. & Zerboni, A. (2019). Geomorphological effects of the 1840 Ahora Gorge catastrophe on Mount Ararat (Eastern Turkey). Geomorphology, 332, 10-21. http:// dx.doi.org/10.1016/j.geomorph.2019.02.001

  • Balkaya, M., Ozden, S. & Akyüz, H. S. (2021). Morphometric and morphotectonic characteristics of sürgü and çardak faults (east anatolian fault zone). Journal of Advanced Research in Natural and Applied Sciences, 7(3), 375-392. http://dx.doi. org/10.28979/jarnas.939075

  • Barka, A. & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, 3, 587 610.

  • Berberian, M. (1996). The Historical Record of Earthquakes in Persia. Encyclopaedia Iranica,VIIF. Drugs-Ebn al-Atir, Mazda Publishers, Costa Mesa, CA, 635-640.

  • Bistacchi, A., Griffith, W. A., Smith, S. A., Di Toro, G., Jones, R. & Nielsen, S. (2011). Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis. Pure and Applied Geophysics, 168, 2345-2363.

  • Bull, W. B. (1977). Tectonic geomorphology of the Mojave Desert, California, U.S (Report no: Report 14-0-001-G-394). Geological Survey Contract.

  • Bull, W. B. (2007). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Wiley Blackwell, USA.

  • Bull, W. B. & McFadden, L. D. (2020). Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in arid regions (pp. 115-138). Routledge.

  • Bull, W. B. & McFadden, L. D. (1977) Tectonic Geomorphology North and South of the Garlock Fault, California. In Doehring, D. O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium (pp.: 115-138). State University of New York, Binghamton.

  • Byus, E. I. (1948). Seismic conditions of Transcaucasus. Academy of Sciences of USSR.

  • Copley, A. & Jackson, J. (2006). Active tectonics of the Turkish-Iranian Plateau. Tectonics, 25, 1-19. https://doi.org/10.1029/2005TC001906

  • Cox, R. T. (1994). Analysis of Drainage basin symmetry as a rapid technique to identify areas of possible quaternary tilt block tectonics: An Example from the Mississippi Embayment. Geological Society American Bulletin, 106, 571-581.

  • Day, M. J. (1979). Surface roughness as a discriminator of tropical karst styles. Zeitschrift für Geomorphologie 32 (Supplement),1–8.

  • DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2):425-478.

  • Diercks, M. L., Grützner, C., Welte, J. & Ustaszewski, K. (2023). Challenges of geomorphologic analysis of active tectonics in a slowly deforming karst landscape (W Slovenia and NE Italy). Geomorphology, 440, Article 108894. https://doi. org/10.1016/j.geomorph.2023.108894

  • Djamour, Y., Vernant, P., Nankali, H.R. & Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: Results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307, 27-34. https://doi.org/10.1016/j. epsl.2011.04.029

  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. & Keller, E. A.(2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96, 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S. (2012). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi Ağrı (NJ 38-1) Paftası. MTA Yayınları. Ankara.

  • EMSC. Avrupa-Akdeniz Sismoloji Merkezi. https:// www.emsc-csem.org/#2. Erişim tarihi: 05.01.2025.

  • Ergen, A. & Sümengen, M. (2018). 1:100.000 ölçekli Ağrı İ50 Paftası. MTA Yayınları. Ankara.

  • Ergin, K., Güçlü, U. & Uz, Z. (1967). Türkiye ve civarının Deprem Kataloğu (Milattan Sonra 11 yılından 1964 sonuna kadar). İTÜ Maden Fakültesi Ofset Matbaası. Yayın No.24. İstanbul

  • Font, M., Amorese, D. & Lagarde, J. L. (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology, 119, 172-180. https://doi.org/10.1016/j. geomorph.2010.03.017

  • Giaconia, F., Booth-Rea, G., Martínez-Martínez, J.M., Azañón, J.M. &Pérez-Peña, J.V. (2012). Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constrictional domain of conjugate strike slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics 580, 27-42, https://doi. org/10.1016/j.tecto.2012.08.028

  • GRASS Development Team (2009). Geographic Resources Analysis Support System (GRASS GIS) Software, version 6.3.0. http://www.grass. osgeo.org

  • Grohmann, C. H. (2004a). Morphometric analysis in Geographic Information Systems: applications of free software GRASS and R. Computers & Geosciences, 30(9-10) 1055–1067. https://doi. org/10.1016/j.cageo.2004.08.002

  • Grohmann, C. H. (2004b). Tecnicas de geoprocessamento aplicadas a analise morfometrica [M.Sc. Thesis]. Instituto de Geociencias, Universidade de Sao Paulo, Sao Paulo.

  • Grohmann, C.H. & Riccomini, C. (2009). Comparison of roving-window and search-window techniques for characterising landscape morphometry. Computers & Geosciences, 35(10), 2164-2169. https://doi.org/10.1016/j.cageo.2008.12.014

  • Grohmann, C. H., Riccomini, C. & Chamani, M. A. C. (2011). Regional scale analysis of landform configuration with base-level (isobase) maps. Hydrology and Earth System Sciences, 15(5), 1493-1504. https://doi.org/10.5194/hess-15-1493- 2011

  • Guidoboni, E., Comastri, A. & Traina, G. (1994). Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. Rome. Istituto Nazionale Di Geofisica.

  • Guidoboni, E., R. Haroutiunian, & A. Karakhanian (2003). The Garni (Armenia) large earthquake on 14 June 1679: A new analysis. Journal of Seismology, 7(3), 301–328. https://doi. org/10.1023/A:1024561622879

  • Guidoboni, E. & Traina, G. (1995). A new catalogue of earthquakes in the historicalArmenian area from antiquity to the 12th century. Annali di Geofisica, 38(1):85-147.

  • Gürbüz, A. & Gürer, Ö. F. (2008). Tectonic geomorphology of the North Anatolian fault zone in the lake Sapanca Basin (eastern Marmara Region, Turkey). Geosciences Journal, 12(3), 215-225.

  • Gürbüz, A. & Şaroğlu, F. (2019). Right-lateral strikeslip faulting and related basin formations in the Turkish-Iranian plateau. Developments in Structural Geology and Tectonics, 3,101-130. https://doi.org/10.1016/B978-0-12-815048- 1.00007-X

  • Hare, P. W. & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.

  • Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6):687-705.

  • Hobson, R. D. (1972). Surface roughness in topography: quantitative approach. In Chorley, R. J. (Ed.), Spatial Analysis in Geomorphology, (p.: 225–245). Methuer, London.

  • Ibn Al-Athır, (1982). Ezz Ad-Din, Al-Kamil fi AlTarikh (Dar Sader). Beirut

  • Jackson, J. & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.

  • Keller, E. A. (1986). Investigation of active tectonics: Use of surfi cial Earth processes. In R. E. Wallace (Ed.), Active tectonics (pp. 136–147), Studies in Geophysics. Washington, DC, National Academy Press.

  • Keller, E. A. & Pinter, N. (2002). Active Tectonics. Prentice Hall, New Jersey

  • Keller, E. A. Seaver, D. B., Laduzinsky, D. L., Johnson, D. L., Ku, T. L. (2000). Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, Southern San Joaquin Valley, California. Bulletin of the Geological Society of America, 112, 86-97. http://dx.doi. org/10.1130/0016-7606(2000)112%3C0086:TGO AFO%3E2.3.CO;2

  • Keskin, M. (2007). Eastern Anatolia: A hotspot in a collision zone without a mantle plume. In Foulger, G. R. & Jurdy, D. M. (Eds.), Plates, Plumes and Planetary Processes. https://doi. org/10.1130/2007.2430(32)

  • Ketin, İ. (1983). Türkiye jeolojisine genel bir bakış. İstanbul Teknik Üniversitesi.

  • Khalifa, A., Cakir, Z., Owen, L. & Kaya, Ş. (2018). Morphotectonic analysis of the east Anatolian fault, Turkey. Turkish Journal of Earth Sciences, 27(2), 110-126. http://dx.doi.org/10.3906/yer1707-16

  • Kim Y-S., Peacock D. & Sanderson D. J. (2004) Fault damage zones. Journal of Structural Geology, 26(3), 503–517.

  • Kim, Y. S., Peacock, D. C. P. & Sanderson, D. J. (2003). Strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793 812.

  • Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284(3-4), 317-336.

  • Kondorskaya, N. V. & Shebalin, N. V. (1982). New Catalogue of the Strong Earthquakes of the USSR from Ancient Times through 1977. World Data Center A for Solid Earth Geophysics, Report SE31. 2nd edition, Boulder, Colorado, 608.

  • Loftus, W. K. (1855). On the geology of portions of the Turko-Persian frontier, and of the districts adjoining. Quarterly Journal of the Geological Society,11(1-2), 247-344.

  • Mayer, L. (1986). Tectonic geomorphology of escarpments and mountain fronts. In Active Tectonics, Studies in Geophysics (pp.: 125-135). National Academy Press.

  • McKenzie, D.P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591-601.

  • McKenzie, D. P. (1970). Plate tectonics of the Mediterranean region. Nature, 226(5242), 239- 243.

  • McKenzie, D. P (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.

  • Morino, M., Kaneko, F., Avanesyan, M. & Karakhanyan, A. (2012). Characteristics of the Garni Fault Confirmed by Trench Investigation at North Garni and Yelpin, Republic of Armenia. The Journal of the Geological Society of Japan, 118(12), 11-12. http://dx.doi.org/10.5575/geosoc.118.12.XI_XII

  • Mutlu, S. (2022). Balık gölü fay zonu’nun paleosismolojik özellikleri ve segmentasyonu [Doktora Tezi]. Van Yüzüncü Yıl Üniversitesi. Ulusal Tez Merkezi Açık Erişim Sistemi, https:// tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key= qVqOZFj2DwNmvdf1oGFYiCZlJc3gY3yMqjQx IBc9KdSk_xw9sZoiUv5by4-yWGlr

  • Mutlu, S., Kul, A. Ö. & Sağlam Selçuk, A. (2023). Tectonic Geomorphology of the Maku Fault. Ases International Van Scientific Research Conference (ss.43-44). Van, Türkiye.

  • Mutlu, S., Sağlam Selçuk, A., Kul, A. Ö., Çakar, S., Zabcı, C., Kıray, H. N., ... ve Selçuk, L. (2024). Maku ve Doğubayazıt Fayının (Ağrı Dağı’nın Güneyi) Morfometrik İndis Yöntemleri ile Deformasyon Paylaşımının Ortaya Konulması. Uluslararası Katılımlı 76. Türkiye Jeoloji Kurultayı (ss. 448). Ankara, Türkiye. https://www. jmo.org.tr/resimler/ekler/fed21205db99c2d_ ek.pdf

  • Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology 8, 263-277. https://doi. org/10.1016/0169-555X(93)90023-U

  • Özkaymak, Ç. & Sözbilir, H. (2012). Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173– 174, 128–140. https://doi.org/10.1016/j. geomorph.2012.06.003

  • Özsayın, E. (2016). Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253. https://doi.org/10.1080/09853111 .2015.1128180

  • Öztürk, Y. (2023). Iğdır Ovası Çevresinin Sismik Kaynak Zonları ve Bazı Depremlerin Mekansal Sonuçları, İçinde Aydın, T., Bayat, G., Alma, M.H. (Ed.ler), Doğal ve Beşerî Bilimler Açısından Iğdır 2 (s.: 1-28), Detay Yayıncılık.

  • Öztürk, Y. ve Zorer, H. (2024). Tektonizma ve İklim Denetimli Süreçlerin Volkanik Yapıların Morfolojisine Etkisi: Aras Dağları Volkanik Dağ Kuşağı’nda Kraterlerin Jeomorfik Özellikleri (Doğu Anadolu). Doğu Coğrafya Dergisi, 29(52), 118-136.

  • Parejas, E. & Pamir, H. N. (1939). 19/4/1938 Orta Anadolu Yer Depremi. Istanbul University, Faculty of Science Publication IV.

  • Pérez-Peña, J. V., Azañón, J. M. & Azor, A. (2009a). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35, 1214-1223, https://doi.org/10.1016/j. cageo.2008.06.006

  • Pérez-Peña, J. V., Azañón, J.M., Booth-Rea, G., Azor, A. & Delgado, J. (2009b). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Journal of Geophysical Research: Earth Surface, 114, Article F02018. https://doi.org/10.1029/2008JF001092

  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119, 74-87. https://doi. org/10.1029/2008JF001092

  • Philip, H., Rogozhin, E., Cisternas, A., Bousguet, J. C., Borisov, A. & Karakhanian, A. (1992). The Armenian earthquake of 1988 December 7: faulting and folding, neotecton ics and paleoseismicity. Geophysical Journal International, 110, 141– 158. https://doi.org/10.1111/j.1365-246X.1992. tb00718.x

  • Pike, R. J. & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic areaaltitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084.

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R. & Karam, G. (2006). GPS constraints on continental deformation in the Africa - arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Solid Earth, 111, (B5), 1-26. https://doi. org/10.1029/2005JB004051

  • Rizza, M., Vernant, J., Ritz, F., Peyret, M., Nankali, H., Nazari, H., Djamour,Y., Salamati, R.,Tavakoli, F., Chery, J., Mahan, S. & Masson, F. (2013). Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International, 199(3), 1083–1094. https://doi. org/10.1093/gji/ggt041

  • Robertson, A. H. F., Grasso, M. (1995). Overview of the Late Tertiary–Recent tectonic and palaeoenvironmental development of the Mediterranean region. Terra Nova, 7(2):114-127.

  • Rockwell, T. K., Keller, E. A., Johnson, D. L. (1985). Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Morisawa, M. (Ed.), Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium (pp.: 183-207). Allen and Unwin Publishers, Boston.

  • Sağlam Selçuk, A. & Düzgün, M. (2017). Tectonic geomorphology of Başkale Fault zone. Bulletin of the Mineral Research and Exploration, 155, 33- 46. https://doi.org/10.19111/bulletinofmre.315757

  • Sağlam Selçuk, A. & Kul, A. Ö. (2021). Long-term slip rate estimation for Ercis¸ Fault in East Anatolian Compressive Tectonic Block from geologic and geomorphologic field evidence. Geological Journal, 56(10), 5290-5310. https:// doi.org/10.1002/gj.4237

  • Saglam-Selçuk, A., Erturaç, M. K. & Nomade, S. (2016). Geology of the Caldiran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behavior. Tectonophysics, 680, 155–173. https://doi.org/10.1016/j. tecto.2016.05.019

  • Sançar, T., Zabcı, C. & Akyüz, H. S. (2011). Morphometric analysis of secondary faults around the Karlıova Triple Junction (EGU2011-4991). Vienna: EGU. In Geophysical Research Abstracts.

  • Şaroğlu, F. (1985). Doğu Anadolu’nun Neotektonik Dönemde Jeolojik ve Yapısal Evrimi [Yayımlanmamış Doktora Tezi]. İstanbul Üniversitesi Fen Bilimleri Fakültesi, İstanbul.

  • Şaroǧlu, F., Emre, Ö. ve Boray, A. (1987). Türkiye’nin diri fayları ve depremsellikleri (Rapor no: 5216). Maden Teknik Arama Enstitüsü Raporu.

  • Şaroǧlu, F. ve Yılmaz, Y. (1986). Doğu Anadolu’da neotektonik dönemdeki jeolojik evrim ve havza modelleri. Maden Tektik ve Arama Dergisi, 107, 73-94.

  • Sarp, G. & Düzgün, Ş. (2012). Spatial analysis of morphometric indices: the case of Bolu pull-apart basin, western section of North Anatolian Fault System, Turkey. Geodinamica acta, 25(1-2), 86- 95. https://doi.org/10.1080/09853111.2013.8413 82

  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America Bulletin, 67(5), 597-646.

  • Şengör, A. M. C. (1979). Türkiye›nin Neotektoniǧinin Esasları. Department of Geological Sciences, State University of New York.

  • Şengör, A. M. C. (1980). Türkiye’nin neotektoniğinin esaslar. Türkiye Jeoloji Kurumu, Ankara, 40 sayfa.

  • Şengör, A. M. C. & Kidd, W. S. F. (1979). Postcollisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55(3-4), 361-376.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 3-4.

  • Şengör, A. M. C. ve Yılmaz, Y. (1983). Türkiye’de Tetis’in evrimi: Levha tektoniği açısından bir yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi, 1: 75.

  • Silva, P. G., Goy, J. L., Zazo, C. & Bardají, T. (2003). Faulth generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203-225, https://doi.org/10.1016/S0169-555X(02)00215-5

  • Step’anian, V. (1964). Earthquakes in the Armenian Upland and Adjacent Areas. House Hayastan: Yerevan, Armenia, 247.

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America 63, 1117-1142

  • Tapan, M., Özvan, A. ve Şengül, M. A. (2005). 2 Temmuz 2004 Doğubayazıt Depremi Yer– Yapı İlişkisi ve Yaşanan Kayıplar. Deprem Sempozyumu, (s.: 1074-1080). 23-25 Mart 2005, Kocaeli.

  • Tuncay, E. & Sümengen, M. (2018). 1:100.000 ölçekli Doğubayazıt İ51 Paftası. Maden Teknik Arama Yayınları. Ankara.

  • Tunçdilek, N. (1985). Türkiye’de relief şekilleri ve arazi kullanımı (Vol. 3). İstanbul Üniversitesi Fen Fakültesi.

  • Wallace, R. E. (1978). Geometry and rates of change of fault-generated range fronts, north-central Nevada. Journal of Research of the U.S. Geological Survey, 6(5), 637-650.

  • Weidenbaum, E. G. (1884). Bolshoi Ararat i popitki voskhozhdenia na ego bershinu (Great Ararat and attempts to reach its summit). Zap. Imp. Russ Geogr. O-Va., 13, 103.

  • Yalçınlar, İ. (1967). Türkiye’de bazı şehirlerin kuruluş ve gelişmesinde jeomorfolojik temeller. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 16, 53- 66.

  • Yıldırım, C. (2014). Relative tectonic activity assessment of theTuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183–192. https://doi.org/10.1016/j.tecto.2014.05.023

  • Zebari, M., Grützner, C., Navabpour, P. & Ustaszewski, K. (2019). Relative timing of uplift along the Zagros Mountain Front Flexure: Constrained by geomorphic indices and landscape evolution modeling. Solid Earth, 10(3), 663-682. https://doi. org/10.5194/se-10-663-2019










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Geomorphic Characteristics and Morphotectonic Evolution of Karst Depressions on Mount Engizek (Kahramanmaraş, Eastern Taurus Mountains)
    Mutlu Seven Yahya Öztürk Serkan Gürgöze İsmail Ege Saadettin Tonbul
    View as PDF

    Abstract: Karst plateaus are generally characterized by a dense distribution of solution dolines, and the morphometric properties of these dolines can be utilized to determine the morphotectonic characteristics of karst plateaus. This study investigated the interrelation between the spatial distribution and morphometric features of karstic depressions onMount Engizek and the broader morphotectonic evolution of the region. Using topographic maps, Digital ElevationModel (DEM) data, and satellite imagery, a total of 872 karstic depressions (dolines and uvalas) were identified within the mountainous terrain. These depressions were digitized to numerical data by delineating polygons, and their associations with morphotectonic processes were analyzed. In this context, rose diagrams were generated to determine the correspondence between the long-axis orientations of the karstic depressions and structural elements. Morphometric analyses revealed that the average length of the karstic depressions on Mount Engizek is 62 m,while their average width is 41 m, and their approximate surface area is 2,884 m². The average elevation of the depressions was calculated as 2,106 m, with an average slope of 12°. Additionally, the mean depth of the depressionswas determined to be 8.3 m, and it was found that the area contains an average of five karstic depressions per km².The orientation of the mountain follows a NE-SW trend, consistent with NW-SE compression. The morphotectonic evolution of the massif, which shares the same structural trends as the thrust and fold systems within the region,exhibits a structural framework that governs karst processes, as observed throughout the Taurus Mountains. The karstic depressions distributed parallel to the long axis of the summit plateau largely developed under the control oftectono-structural factors. The observed relationship between discontinuity surfaces – such as longitudinal fracture soriented perpendicular to the compression axis and transverse fractures aligned with it – and the development of karstic depressions further substantiates this interpretation. 

  • Eastern Taurus Mountains

  • Mount Engizek

  • karst depression

  • tectonics

  • morphotectonics










  • Akgün, E. & İnceöz, M. (2021). Tectonic evolution of the central part of the East Anatolian Fault Zone, Eastern Turkey. Turkish Journal of Earth Sciences, 30(7). https://doi.org/10.3906/yer-2104-15

  • Aktürk, A. (1985). Çatak-Narlı Yöresinin Stratigrafisi ve Tektoniği [Yayımlanmamış Doktora Tezi]. Fırat Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü, Elâzığ.

  • Altınlı, İ. E. (1966). Doğu ve Güneydoğu Anadolu’nun jeolojisi (birinci kısım). Maden Tetkik ve Arama Dergisi, 67, 1-24.

  • Arpat, E. ve Şaroğlu, F. (1972). Doğu Anadolu Fayı ile ilgili bazı gözlemler ve düşünceler. Bulletin of the Mineral Research and Exploration, 78, 44-50.

  • Atalay, İ. (1973). Toros Dağlarında karstlaşma ve toprak teşekkülü üzerine bazı araştırmalar. Jeomorfoloji Dergisi, 5, 135-151.

  • Atalay, İ. (1987). Türkiye Jeomorfolojisine Giriş, 2. Basım. Ege Üniversitesi Edebiyat Fakultesi Yayınları No: 9.

  • Atalay, İ. (2003). Effects of the tectonic movements on the karstification in Anatolia, Turkey. Acta Carsologica, 32(2), 196-203. https://doi. org/10.3986/ac.v32i2.348

  • Atalay, İ. (2017). Türkiye Jeomorfolojisi (1. bs.). Meta Basım Matbaacılık Hizmetleri.

  • Ataol, M. ve Şimşek, M. (2022). Çankırı Jips Platosu üzerindeki çözünme dolinlerinin morfometrik özellikleri. Jeomorfolojik Araştırmalar Dergisi, 8, 48-60. https://doi.org/10.46453/jader.1070171

  • Aydın, S. ve Tuncer, K. (2021). Bozdağ’da (Denizli) dolinlerin morfometrik özellikleri. Türk Coğrafya Dergisi, 78, 33-48. https://doi.org/10.17211/ tcd.1013232

  • Bakalowicz, M. (2015). Karst and karst groundwater resources in the Mediterranean. Environmental Earth Sciences, 74, 5–14. https://doi.org/10.1007/ s12665-015-4239-4

  • Basso, A., Bruno, E., Parise, M. & Pepe, M. (2013). Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environmental Earth Science, 70, 2545–2559. https://doi.org/10.1007/s12665-013-2297-z

  • Bayraktar, C. (2012). Akdağ Kütlesi’nde (Batı Toroslar) Karstlaşma-Buzul İlişkisinin Jeomorfolojik Analizi [Yayınlanmamış Doktora Tezi]. İstanbul Üniversitesi, İstanbul.

  • Biricik, A. S. (2010). Nurhak Dağları’nda glasyal ve peri glasyal rölyef. Uluslararası Jeomorfoloji Sempozyumu-2, 11-12 Ekim, Afyonkarahisar.

  • Bonacci, O. (1987). Karst hydrology with special references to the Dinaric karst. Springer Series in Physical Environment (p. 194). https://doi. org/10.1007/978-3-642-83165-2

  • Bondesan, A., Meneghel, M. & Sauro, U. (1992). Morphometric analysis of dolines. International Journal of Speleology, 21(1), 1–55. https://doi. org/10.5038/1827-806X.21.1.1

  • Bögli, A. (1980). Karst hydrology and physical speleology. Springer. https://doi.org/10.1007/978- 3-642-67669-7

  • Cvijic, J. (1893). Das Karstphanomen. Versuch einer morphologichen Monographie. Geographische Abhandlungen. 5(3), 218–329

  • Çetinkaya, G. (2022). Doğu Toroslar’daki poligonal karst alanlarının morfometrik özelliklerinin incelenmesi [Yayımlanmamış yüksek lisans tezi]. Hatay Mustafa Kemal Üniversitesi, Sosyal Bilimler Enstitüsü.

  • Çetinkaya, G., Şimşek, M. ve Öztürk, M. Z. (2023). Doğu Toroslar’daki çözünme dolinlerinin morfometrik özellikleri. Jeomorfolojik Araştırmalar Dergisi/ Journal of Geomorphological Researches, 10, 20- 33. https://doi.org/10.46453/jader.1201290

  • Çılğın, Z. (2012). Dedegöl Dağı (Batı Toroslar) Buzul Jeomorfolojisi Etüdü [Yayımlanmamış Doktora Tezi]. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

  • Çiçek, İ. (2001). Mut ve yakın çevresinin jeomorfolojisi. Fırat Üniversitesi Sosyal Bilimler Dergisi 11(2), 1-20.

  • Day, M. (1976). The morphology and hydrology of some Jamaican karst depressions. Earth Surface Processes and Landforms, 1(2), 111–129. https:// doi.org/10.1002/esp.3290010203

  • Day, M. (1983). Doline morphology and development in Barbados. Annals of the Association of American Geographers, 73(2), 206–219. https:// doi.org/10.1111/j.1467-8306.1983.tb01408.x

  • De Waele, J. & Gutiérrez, F. (2022). Karst Hydrogeology, Geomorphology and Caves. Wiley-Blackwell.

  • Doğan, U. (2002). Çankırı Doğusunda Jips Karstlaşmasıyla Oluşan Sübsidans Dolinleri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 22(1), 67-82.

  • Doğan, U. (2004). Dolin sınıflamasında yeni yaklaşımlar. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 24(1), 249-269.

  • Doğan, U. & Özel, S. (2005). Gypsum karst and its evolution east of Hafik (Sivas, Turkey). Geomorphology, 71(3–4), 373–388. https://doi. org/10.1016/J.GEOMORPH.2005.04.009

  • Doğu, A. F., Çiçek, İ. ve Gürgen, G. (1994). Orta Toroslarda (Seydişehir-Gülnar) karstlaşma tipleri. A.Ü. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 3, 129-139.

  • Duran, C. ve Taştan, B. (2024). Küre Dağları Kütlesindeki Dolinlerin Coğrafi Dağılımı / The Geographical Distribution of Dolines on Küre Mountains Massif. Jeomorfolojik Araştırmalar Dergisi/Journal of Geomorphological Researches, 12, 1-13. https://doi.org/10.46453/jader.1363704

  • Ege, İ. ve Tonbul, S. (2005). Soğanlı Dağında Karstlaşma-Buzullaşma İlişkisi. Türkiye Kuvaterner Sempozyumu, TURQUA V.2- 5 Haziran 2005. İTÜ Avrasya Yer Bilimleri Enstitüsü.

  • Ege, İ. (2015). Gezit Polyesi (Kozan, Adana). The Journal of Academic Social Science, 17(17), 177- 199. https://doi.org/10.16992/ASOS.816

  • Ege, İ. (2016). Konglomeralar üzerinde karstlaşma: Göller Yaylası ve yakın çevresi (Kozan/Adana). The Journal of Academic Social Science Studies, 51, 237-263. https://doi.org/10.9761/JASSS3668

  • Ege, İ., Özkan, E. & Polat, S. (2024). Determination of the relationship between tectonic and karstification using morphometric indices in Bozburun Peninsula, Marmaris, Türkiye. Bulletin of the Mineral Research and Exploration, 174, 11-35. https://doi.org/10.19111/bulletinofmre.1329619

  • Ekmekçi, M. (2003). Review of Turkish karst with emphasis on tectonic and paleogeographic controls. Acta Carsologica, 32(2), 205-218. https://doi.org/10.3986/ac.v32i2.349

  • Ekmekçi, M. (2005). Karst in Turkish Thrace: Compatibility Between Geological History and Karst Type. Turkish Journal of Earth Sciences, 14, 73-90.

  • Elhatip, H. (1997). The influence of karst features on environmental studies in Turkey. Environmental Geology, 31(1-2), 27-33. https://doi.org/10.1007/ s002540050160

  • Erinç, S. (2001). Jeomorfoloji II (5. bs., Ahmet Ertek ve Cem Güneysu, günc.). Der Yayınları.

  • Erol, O. (1992). Klimajeomorfoloji, 1. Genel Koşullar. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü.

  • Esen, F. (2014). Elbistan Havzası’nın Fiziki Coğrafyası [Yayımlanmamış Doktora Tezi]. Fırat Üniversitesi Sosyal Bilimler Enstitüsü.

  • Faivre, S. & Reiffsteck, P. (2002). From doline distribution to tectonics movements example of the Velebit Mountain Range, Croatia. Acta Carsologica, 31, 139-154.

  • Faivre, S. & Pahernik, M. (2007). Structural influences on the spatial distribution of dolines, Island of Brac, Croatia. Zeitschrift für Geomorphologie, 51, 487-503. https://doi.org/10.1127/0372- 8854/2007/0051-0487.

  • Ferrarase, F. & Sauro, U. (2005). The Montello Hill: The classical karst of the conglomerate rocks. Acta Carsologica, 34(2), 439-448. https://doi. org/10.3986/ac.v34i2.269

  • Fick, S. E. & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/ joc.5086

  • Florea, L. (2005). Using state-wide GIS data to identify the coincidence between sinkholes and geologic structure. Journal of Cave and Karst Studies, 67, 120–124.

  • Ford, D. & Williams, P. (2007). Karst Hydrogeology and Geomorphology. John Wiley & Sons. https:// doi.org/10.1002/9781118684986

  • Gams, I. (2000). Doline morphogenetic processes from global and local viewpoints. Acta Carsologica, 29, 123–138.

  • Gökkaya, E. & Gutiérrez, F. (2022). Poljes in the Sivas gypsum karst, Turkey. Geomorphology, 417, Article 108451. https://doi.org/10.1016/j. geomorph.2022.108451

  • Grimes, K. G. (2012). Karst and paleokarst features involving sandstones of the Judbarra/Gregory National Park, Northern Territory, Australia. Helictite, 41, 67-73.

  • Güldalı, N. (1970). Karstmorphologische Studien im Gebiet des Poljesystems von Kestel (Westlicher Taurus, Türkei). Tübinger Geographische Studien, 40.

  • Huggett, R. J. (2015). Jeomorfolojinin Temelleri (Çev: U. Doğan (Ed.)). Nobel Akademi Yayıncılık.

  • İnandık, H. (1962). Karst Morfolojisi. Baha Matbaası.

  • İş, İ. (2019). Nurhak Dağları’nın buzul ve karst jeomorfolojisi [Yayımlanmamış yüksek lisans tezi [Hatay Mustafa Kemal Üniversitesi, Sosyal Bilimler Enstitüsü.

  • İzbırak, R. (1983). Türkiye Jeomorfolojisi (Fasikül: 1).

  • Jennings, J. N. (1975). Doline morphometry as a morphogenetic tool: New Zealand examples. New Zealand Geographer, 31, 6–28. https://doi. org/10.1111/j.1745-7939.1975.tb00793.x

  • Karaman, M. E. ve Kibici, Y. (2008). Temel Jeoloji Prensipleri (Genişletilmiş 2. bs.). Belen Yayıncılık ve Matbaacılık.

  • Keser, N. (2004). Sarıbelen (Sidek) Polyesi ve Katran Dağı’nın karst jeomorfolojisi. Marmara Coğrafya Dergisi, 10, 19-52.

  • Keser, N. (2007). Akyazı (Lengüme) Depresyonu ve Akdağ güneyinin (Batı Toroslar) jeomorfolojisi. Türk Coğrafya Dergisi 48, 111-132.

  • Keskin, İ. & Yılmaz, İ. (2016). Morphometric and geological features of karstic depressions in gypsum (Sivas, Turkey). Environmental Earth Sciences, 75. https://doi.org/10.1007/s12665-016- 5845-5

  • Ketin, İ. (1973). Umumi Jeoloji 1. Kısım: Arz kabuğunun iç olayları. İTÜ Maden Fakültesi Ofset Baskı Atölyesi.

  • Kurt, H. (2000). Batı Toros Polyeleri (jeomorfolojik etüt) [Yayımlanmamış Doktora tezi]. Marmara Üniversitesi, Sosyal Bilimler Enstitüsü, Coğrafya Eğitimi Ana Bilim Dalı.

  • Maden Tetkik ve Arama Genel Müdürlüğü (MTA). 1:25.000 ölçekli Gaziantep jeoloji paftaları.

  • Nazik, L. ve Tuncer, K. (2010). Türkiye karst morfolojisinin bölgesel özellikleri. Türk Speleoloji Dergisi, 1, 7-19.

  • Nazik, L. ve Poyraz, M. (2017). Türkiye karst jeomorfolojisi genelini karakterize eden bir bölge: Orta Anadolu Platoları karst kuşağı. Türk Coğrafya Dergisi, 68, 43-56. https://doi. org/10.17211/tcd.300414

  • Okay, A. I., Zattin, M., Özcan, E. & Sunal, G. (2020). Uplift of Anatolia. Turkish Journal of Earth Sciences, 29, 696-713. https://doi.org/10.3906/ yer-2003-10

  • Öztürk, M., Şimşek, M. ve Utlu, M. (2015). Tahtalı Dağları (Orta Toroslar) karst platosu üzerinde dolin ve uvala gelişiminin CBS tabanlı analizi. Türk Coğrafya Dergisi, 65, 59-68. https://doi. org/10.17211/tcd.22648

  • Öztürk, M. Z., Şimşek, M., Utlu, M. ve Şener, M. F. (2016). Bolkar Dağlarının Batı Platosunun Flüvyo-Karstik Evrimi. TÜCAUM Uluslararası Coğrafya Sempozyumu, 106-115

  • Öztürk, M. Z., Şimşek, M., Utlu, M. & Şener, M. F. (2017a). Karstic depressions on Bolkar Mountain plateau, Central Taurus (Turkey): distribution characteristics and tectonic effect on orientation. Turkish Journal of Earth Sciences, 26, 302-313. https://doi.org/10.3906/yer-1702-3

  • Öztürk, M. Z., Çetinkaya, G. ve Aydın, S. (2017b). Köppen- Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35, 17-27. https://doi.org/10.26650/JGEOG295515

  • Öztürk, M. Z. (2018a). Karstik kapalı depresyonların (dolinlerin) morfometrik analizleri. Coğrafya Dergisi. Advance online publication. https://doi. org/10.26650/JGEOG371149

  • Öztürk, M. Z. (2018b). Orta Toroslar’da Dolinlerin Dağılışı ve Morfometrik Özellikleri. Kriter Yayınevi.

  • Öztürk, M. Z., Şener, M. F., Şener, M. & Şimşek, M. (2018a). Structural controls on distribution of dolines on Mount Anamas (Taurus Mountains, Turkey). Geomorphology, 317, 107–116. https:// doi.org/10.1016/j.geomorph.2018.05.023

  • Öztürk, M. Z., Şimşek, M., Şener, M. F. & Utlu, M. (2018b). GIS based analysis of doline density on Taurus Mountains, Turkey. Environmental Earth Sciences, 77(536), 536. https://doi.org/10.1007/ s12665-018-7717-7

  • Öztürk, M. Z. (2020). Fluvio-karstic evolution of the Taşeli Plateau (Central Taurus, Turkey). Turkish Journal of Earth Sciences, 29(5), Article 3. https:// doi.org/10.3906/yer-1908-1

  • Palmquist, R.C. (1977). Distribution and density of dolines in areas of manteled karst. In Dilamarter, R. R. & Csallany, S. C. (Eds.), Hydrologic Problems in Karst Regions. Bowling Green Kentucky: Western Kentucky University Press.

  • Pekcan, N. (2019). Karst Jeomorfolojisi. Filiz Kitabevi.

  • Perinçek, D. ve Özkaya, İ. (1981). Arabistan levhası kuzey kenarı tektonik evrimi. Yerbilimleri, 7(8), 91-102.

  • Poyraz, M., Öztürk, M. Z. & Soykan, A. (2021). Sivas jips karstında dolin yoğunluğunun CBS tabanlı analizi. Jeomorfolojik Araştırmalar Dergisi, 6, 67- 80. https://doi.org/10.46453/jader.863090

  • Sauro, U. (2003). Dolines and sinkholes: Aspects of evolution and problems of classification. Acta Carsologica, 32(2), 41–52. https://doi. org/10.3986/ac.v32i2.335

  • Schildgen, T. F., Cosentino, D., Bookhagen, B., Niedermann, S., Yıldırım, C., Echtler, H. P. & Strecker, M. R. (2012). Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth and Planetary Science Letters, 317-318, 85–95. https://doi.org/10.1016/j. epsl.2011.12.003

  • Schildgen, T. F., Yıldırım, C., Cosentino, D. & Strecker, M. R. (2014). Linking slab break-off, Hellenic Trench retreat, and uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128, 147–168. https://doi.org/10.1016/j. earscirev.2013.11.006

  • Seven, M. (2017). Engizek Dağı ve Çevresinin (Kahramanmaraş) Jeomorfolojisi. (Yayımlanmamış Yüksek Lisans Tezi). Fırat Üniversitesi Sosyal Bilimler Enstitüsü.

  • Seven, M., Ege, İ. ve Tonbul, S. (2017). Engizek Dağı’nda buzullaşma ve buzul şekilleri. Uluslararası Jeomorfoloji Sempozyumu, 12-14 Ekim, Elâzığ

  • Siler, M. ve Şengün, M. T. (2011). Ergani (Diyarbakır) Çevresinde Karstlaşma ve Karstik Şekiller. Uluslararası Katılımlı Coğrafya Kongresi Bildiriler Kitabı (478-487), İstanbul.

  • Şaroğlu, F. ve Güner, Y. (1981). Doğu Anadolu›nun Jeomorfolojik Gelişimine Etki Eden Ögeler: Jeomorfoloji, Tektonik, Volkanizma İlişkileri. Türkiye Jeoloji Kurumu Bülteni, 24, 39- 50. https://www.jmo.org.tr/resimler/ekler/ d863b367aa379f7_ek.pdf

  • Şaroğlu, F. ve Yılmaz, Y. (1984). Doğu Anadolu’nun Neotektoniği ile İlgili Magmatizması, Ketin Sempozyumu Bildiriler Kitabı, 149-162.

  • Şaroğlu, F. (1986). Doğu Anadolu›da neotektonik dönemdeki jeolojik evrim ve havza modelleri. Maden Tetkik ve Arama Dergisi, 107, 70-93.

  • Şener, M. F. & Öztürk, M. Z. (2019). Relict drainage effects on distribution and morphometry of karst depressions: A case study from Central Taurus (Turkey). Journal of Cave and Karst Studies, 81(1), 23–35. https://doi.org/10.4311/2018ES0111

  • Şener, M. F., Şimşek, M., Utlu, M., Öztürk, M. Z. & Sözbilir, H. (2023). Morphotectonic development of surface karst in Western Taurus (Türkiye). Carbonates and Evaporites, 38(4), 78. https://doi. org/10.1007/s13146-023-00900-x

  • Şener, M. F. (2024). Bozdağ (Karaburun Yarımadası) kütlesi üzerinde dolinlerin morfotektonik gelişimi. Türkiye Jeoloji Bülteni, 67(2), 153-168. https:// doi.org/10.25288/tjb.1389043

  • Şimşek, M., Utlu, M., Poyraz, M. ve Öztürk, M. Z. (2019a). Geyik Dağı kütlesinin yüzey karstı jeomorfolojisi ve kütle üzerindeki karst-buzul jeomorfolojisi ilişkisi. Ege Coğrafya Dergisi, 29(2), 97–110.

  • Şimşek, M., Öztürk, M. Z. ve Turoğlu, H. (2019b). Geyik Dağı üzerindeki dolin ve uvalaların morfotektonik önemi. Türk Coğrafya Dergisi, 72, 13–20. https://doi.org/10.17211/tcd.501724

  • Şimşek, M., Doğan, U. ve Öztürk, M. Z. (2020). Polyelerin sınıflandırması ve Toroslardan örnekler. Jeomorfolojik Araştırmalar Dergisi, 2020(5), 1-14. https://doi.org/10.46453/jader.733500

  • Telbisz, T., Dragušica, D. & Nagy, B. (2009). Doline morphometric analysis and karst morphology of Biokovo Mt (Croatia) based on field observations and digital terrain analysis. Hrvatski Geografski Glasnik, 71, 5–22.

  • Ternek, Z. (1953). Van Gölü Güneydoğu Bölgesinin Jeolojisi. Türkiye Jeoloji Kurumu Bülteni (Türkiye Jeoloji Bülteni), 4(2), 1-32. https://dergipark.org. tr/tr/download/article-file/917471

  • Tonbul, S. (2012). Erkenek polyesi (Güneydoğu Toroslar, Malatya). III. Uluslararası Jeomorfoloji Sempozyumu (11-13 Ekim) Bildiriler Kitabı. Hatay.

  • Tutkun, S. Z. (1999). Yapısal jeoloji uygulama ders notları, ortografik projeksiyon ve stereografik projeksiyon. Kocaeli Üniversitesi Yayınları.

  • Türkünal, S. (1980). Doğu ve Güneydoğu Anadolu’nun Jeolojisi. Ankara: TMMOB Jeoloji Mühendisleri Yayını.

  • URL-1: https://yerbilimleri.mta.gov.tr/

  • URL-2: https://www.jeolojitr.com/2011/12/catlaklar. html?m=1

  • Utlu, M. & Öztürk, M. Z. (2023). Comparison of morphometric characteristics of dolines delineated from TOPO-Maps and UAV-DEMs. Environmental Earth Sciences, 82, 165. https:// doi.org/10.1007/s12665-023-10862-x

  • Yalçın, C. & Kop, A. (2022). Kaleköy-Hombur (Çağlayancerit-Kahramanmaraş) civarının tektono-stratigrafik özellikleri. Geosound, 55(1), 37-60.

  • Yıldırım, M. (1989). Kahramanmaraş kuzeyindeki (Engizek-Nurhak Dağları) tektonik birliklerin jeolojik, petrolojik incelenmesi [Doktora tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü]. (TPAO Arama Grubu, Rapor No. 2970).

  • Yılmaz, Y. (1984). Türkiye’nin jeolojik tarihinde magmatik etkinlik ve tektonik evrimle ilişkisi. Ketin Sempozyumu, 63-81.

  • Yılmaz, Y. (1987). Maraş kuzeyinin jeolojisi 3 (Andıran, Berit, Engizek, Nurhak, Binboğa Dağları). İstanbul Üniversitesi Yayınları.

  • Yılmaz, Y., Gürpınar, O., Kozlu, H., Gül, M. A., Yiğitbaş, E., Yıldırım, M., Genç, C. ve Keskin, M. (1987). Maraş Kuzeyinin Jeolojisi (Andırın, Berit, Engizek-Nurhak-Binboğa Dağları), Yapı ve Jeolojik Evrimi. İ. Ü. Mühendislik Fak., İstanbul.

  • Yiğitbaş, E. (1989). Engizek Dağı (Kahramanmaraş) dolayındaki tektonik birliklerin petrolojik incelenmesi [Yayınlanmamış Doktora tezi] İstanbul Üniversitesi Fen Bilimleri Enstitüsü.

  • Young, R.W. (1986). Tower karst in sandstone: Bungle Bungle Massif Northwestern Australia. Zeitschrift Für Geomorphologie, 30(2), 202-189. https://doi. org/10.1127/zfg/30/1986/189

  • Zorer, H. ve Öztürk, Y. (2020). Yüksek Dağ Karstına Ait Polijenik Karstik Bir Depresyon: Güneydoğu Toroslarda Melkuşan Polyesi (Çatak/Van). Öztürk, S. (Ed:), Sosyal ve Beşerî Bilimlerde Teori ve Araştırmalar 2 (Cilt 2). Gece Kitaplığı.

  • Zorer, H., Öztürk, Y. ve Tonbul, S. (2022). BitlisZagros Bindirme Kuşağı Polyelerinin Morfotektonik Gelişimleri ve Bölgesel Tektoniği Anlamada Önemleri. Uluslararası Jeomorfoloji Sempozyumu, 6-8 Ekim, Kula-Salihli.

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • ISSUE FULL FILE
    View as PDF