Abstract: Magma-water interaction is defined as one of the most important parameters determining the explosivity of volcanic eruptions. However, accurately quantifying the water content in volcanic products formed during syneruptive / post-eruptive processes remains a significant challenge. This study investigated the thermal expansion and decomposition behavior of obsidian sampled from the Nevşehir Acıgöl Maar, which was subjected to heat treatment without exhibiting perlitic texture development, in order to elucidate the underlying mechanisms and characteristics of the process. The physical and chemical changes that the banded obsidian experienced during its expansion were analyzed using various analytical methods. In this context, FT-IR analysis was used to observe modifications in water components. The mass loss in the sample was quantified using the TG-DTA method, while the textural changes occurring during the obsidian expansion experiment were determined through three-dimensional tomographic imaging technique. The results show that thermal decomposition of volcanic glass involves the releaseof volatiles and both primary and secondary water species across a range of temperatures. This study demonstrates experimentally that hydrous rhyolitic obsidian can generate vesicles that expand at varying rates, particularly inregions where water and volatiles are loosely bound within the glass structure.
Computed tomography
expansion
hydration
FT-IR
obsidian
TG-DTA
Angelopoulos, P. M., Manic, N., Jankovic, B. &Taxiarchou, M. (2022). Thermal decomposition ofvolcanic glass (rhyolite): Kinetic deconvolutionof dehydration and dehydroxylation process.Thermochimica Acta, 707, Article 179082.https://doi.org/10.1016/j.tca.2021.179082
Angelopoulos, P. M., Manić, N., Tsakiridis, P.,Taxiarchou, M. & Janković, B. (2020). Dehydrationof rhyolite: activation energy, water speciationand morphological investigation. Journal ofThermal Analysis and Calorimetry, 142, 395407.https://doi.org/10.1007/s10973-020-10105-2
Çubukçu, H. E. Aydar, E., Akın, L. & Şen, E. (2024).Temporal constraints on magmatic evolutionof Acıgöl Bimodal Volcanic Field (Nevşehir,Türkiye). Geochemistry, 84(4), Article 126129.https://doi.org/10.1016/j.chemer.2024.126129
Davis, B. K. & McPhie, J. (1996). Spherulites, quenchfractures and relict perlite in a Late Devonianrhyolite dyke, Queensland, Australia. Journal ofVolcanology and Geothermal Research, 71, 111.https://doi.org/10.1016/0377-0273(95)00063-1
Denton, J. S., Tuffen, H., Gilbert, J. S. & Odling,N. (2009). The hydration and alterationof perlite and rhyolite. Journal of theGeological Society, 166(5), 895904.https://doi.org/10.1144/0016-76492008-007
Denton, J. S., Tuffen, H. & Gilbert, J. S. (2012). Variationsin hydration within perlitised rhyolitic lavasevidence from Torfajökull, Iceland. Journal ofVolcanology and Geothermal Research, 223, 6473.https://doi.org/10.1016/j.jvolgeores.2012.02.005
Eichelberger, J. (1995). Silicic volcanism: ascent ofviscous magmas from crustal reservoirs. AnnualReview of Earth and Planetary Sciences, 23, 4164.
Ellerbrock, R., Stein, M. & Schaller, J. (2022).Comparing amorphous silica, short-rangeordered silicates and silicic acid species byFTIR. Scientific Reports, 12, Article 11708.https://doi.org/10.1038/s41598-022-15882-4
Friedman, I., Smith, R. L. & Long, W. D. (1966).Hydration of natural glass and formation ofperlite. Geological Society of America Bulletin, 77(3), 323328. https://doi.org/10.1130/0016-7606(1966)77[323:HONGAF]2.0.CO;2
Friedman, I., Long, W. & Smith, R. L. (1963). Viscosityand water content of rhyolite glass. Journalof Geophysical Research, 68(24), 65236535.https://doi.org/10.1029/JZ068i024p06523
Friedman, I. & Long, W. (1984). Volcanic glasses,their origins and alteration processes. Journalof Non-Crystalline Solids, 67(13), 127133.https://doi.org/10.1016/0022-3093(84)90144-3
Gardner, J. E. (2007). Heterogeneous bubblenucleation in highly viscous silicate melts duringinstantaneous decompression from high pressure.Chemical Geology, 236(12), 112.https://doi.org/10.1016/j.chemgeo.2006.08.006
Gardner, J.E., Hilton, M. & Carroll, M.R. (2000).Bubble growth in highly viscous silicatemelts during continuous decompressionfrom high pressure. Geochimica etCosmochimica Acta, 64(8), 14731483.https://doi.org/10.1016/S0016-7037(99)00436-6
Giachetti, T. & Gonnermann, H.M. (2013).Water in volcanic pyroclast: Rehydration orincomplete degassing? Earth and PlanetaryScience Letters, 369370, 317332.https://doi.org/10.1016/j.epsl.2013.03.041
Giachetti, T., Gonnermann, H. M., Gardner, J. E.,Shea, T. & Gouldstone, A. (2015). Discriminatingsecondary from magmatic water in rhyoliticmatrix-glass of volcanic pyroclasts usingthermogravimetric analysis. Geochimicaet Cosmochimica Acta, 148, 457476.https://doi.org/10.1016/j.gca.2014.10.017
Giachetti, T., Hudak, M. R., Shea, T., Bindeman, I.N. & Hoxsie, E. C. (2020). D/H ratios and H2Ocontents record degassing and rehydration historyof rhyolitic magma and pyroclasts. Earth andPlanetary Science Letters, 530, Article 115909.https://doi.org/10.1016/j.epsl.2019.115909
Gonnermann, H. M. & Manga, M. (2007). The fluidmechanics inside a volcano. Annual Reviews ofFluid Mechanics, 39(1), 321356. https://doi.org/10.1146/annurev.fluid.39.050905.110207
Hudak, M. R., Bindeman, I. N., Loewen, M. W. &Giachetti, T. (2021). Syn-eruptive hydrationof volcanic ash records pyroclast-waterinteraction in explosive eruptions. GeophysicalResearch Letters, 48, Article e2021GL094141.https://doi.org/10.1029/2021GL094141
Hudak, M. R., Bindeman, I. N., Watkins, J. M. &Lowenstern, J. B. (2022). Hydrogen isotopebehavior during rhyolite glass hydrationunder hydrothermal conditions. Geochimicaet Cosmochimica Acta, 337, 3348.https://doi.org/10.1016/j.gca.2022.09.032
Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann,R., Grathoff, G. H., Warr, L. N., Halisch, M.,Müller, C., Schwarz-Schampera, U. & Ufer, K.(2014). Porosity and distribution of water in perlitefrom the island of Milos, Greece. SpringerPlus, 3,598. https://doi.org/10.1186/2193-1801-3-598
Lacy, E. (1959). Hydrated Glasses. Nature, 183, 178179. https://doi.org/10.1038/183178b0
Lenhardt, K.R., Breitzke, H., Buntkowsky, G., Reimhult,E., Willinger, M. & Rennert, T. (2021). Synthesisof short-range ordered aluminosilicates at ambientconditions. Scientific Reports, 11, Article 4207.https://doi.org/10.1038/s41598-021-83643-w
Lexa, J., Varga, P., Uhlik, P., Koděra, P., Biroň,A. & Rajnoha, M. (2021). Perlite deposits ofthe Central Slovakia Volcanic Field (WesternCarpathians): Geology and properties.Geologica Carpathica, 72, 253281.https://doi.org/10.31577/GeolCarp.72.3.5
Lofgren, G. (1971). Experimentally ProducedDevitrification Textures in Natural RhyoliticGlass. Geological Society of America Bulletin, 82,111124.
McIntosh, I. M., Llewellin, E. W., Humphreys, M.C. S., Nichols, A. R. L., Burgisser, A., Schipper, C. I. & Larsen, J. F. (2014). Distribution ofdissolved water in magmatic glass recordsgrowth and resorption of bubbles. Earthand Planetary Science Letters, 401, 111.https://doi.org/10.1016/j.epsl.2014.05.037
Meier, V., Breitkreuz, C., Groß, D. & Ohser, J.(2023). Re‑evaluation of perlitic texturesand fracture behavior in silica‑rich volcanicrocks. Bulletin of Volcanology, 85, 50.https://doi.org/10.1007/s00445-023-01659-8
Pandya, N., Muenow, D. W. & Sharma, S. K. (1992).The effect of bulk composition on the speciation ofwater in submarine volcanic glasses. Geochimicaet Cosmochimica Acta, 56(5), 18751883.https://doi.org/10.1016/0016-7037(92)90317-C
Ross, C. S. & Smith, R. L. (1955). Water andother volatiles in volcanic glasses. AmericanMineralogist, 40(1112), 10711089.
Schmitt, A. K., Daniík, M., Evans, N. J., Siebel, W.,Kiemele, E., Aydin, F. & Harvey, J. C. (2011).Acigöl rhyolite field, Central Anatolia (part1): high-resolution dating of eruption episodesand zircon growth rates. Contributions toMineralogy and Petrology, 162, 12151231.https://doi.org/10.1007/s00410-011-0648-x
Seligman, A.N., Bindeman, I.N., Watkins, J.M. &Ross, A.M. (2016). Water in volcanic glass:From volcanic degassing to secondary hydration.Geochimica et Cosmochimica Acta, 191, 216238. https://doi.org/10.1016/j.gca.2016.07.010
Silver, L. A., Ihinger, P. D. & Stolper, E. (1990). Theinfluence of bulk composition on the speciationof water in silicate glasses. Contributions toMineralogy and Petrology, 104, 142162.https://doi.org/10.1007/BF00306439
Sparks, R. S. J. (2003). Dynamics of magma degassing.Geological Society, London, Special Publications,213, 522.
Stolper, E. (1982). The speciation of water in silicatemelts. Geochimica et Cosmochimica Acta, 46(12),26092620.
Zhang, Y. (1999). H2O in rhyolitic glasses and melts:measurement, speciation, solubility, and diffusion.Reviews of Geophysics, 37, 493516.
Zhang, Y. & Behrens, H. (2000). H2Odiffusion in rhyolitic melts and glasses.Chemical Geology, 169(12), 243262.https://doi.org/10.1016/S0009-2541(99)00231-4
Abstract: The southern margin of the Alaşehir Graben is bounded by the Alaşehir Detachment Fault (ADF),comprising ductile-brittle cataclastic rocks within the same extensional regime. This fault surface is exposed over~150 km from Turgutlu to Alaşehir and dips to the north at a low-angle (10°-30°). There are two main interpretations about the termination of tectonic activity on the ADF. The first is that recent movement of the fault ended in the late Miocene, based on the fact that it is cut by Plio-Quaternary high-angle normal faults. The second view suggests that tectonic activity continued until the Plio-Quaternary, based on the exhumation ages obtained from cataclastic rocks.We present measured stratigraphic logs of the Neogene sequence in the hanging wall of the ADF in the Salihli and Alaşehir areas to contribute to this discussion. The depositional evolution of the Alaşehir Graben can be described in three assemblages, including Miocene (Gerentaş, Kaypaktepe and Acıdere Formations), Late Miocene-Late Pliocene(Göbekli, Yenipazar and Erendalı Formations) and Plio-Quaternary sedimentary rocks (Asartepe Formation). The Miocene and Plio-Quaternary assemblages are represented by similar depocenters, including lacustrine, fluvial andalluvial-fan environments in the Alaşehir Graben. They are separated by the Late Miocene to Late Pliocene, which represents the depocenter of the flood plain. The flood plain deposits are a monotonous sequence that repeats itself andis not tectonically mobile after the first 140 meters from the stratigraphic bottom based on sub-rounded to rounded clasts from the cataclastic rocks belonging to the ADF. They represent a time of tectonic quiescence during the Late Miocene-Late Pliocene, indicating that tectonic activity on the ADF terminated in the Late Miocene. However, tectonic activity may have rejuvenated in the Plio-Quaternary as indicated by E-W oriented normal faults cutting through the Alaşehir Graben.
Alaşehir Detachment Fault
Alaşehir Graben
floodplain deposits
Neogene sequence
sphericity of clasts
Ağırbaş, H. (2006). Alkan köyü (Alaşehir) ve yakın
çevresinde Gediz grabeni nin stratigrafisi ve
yapısal özellikleri [B.Sc. thesis]. İstanbul, İstanbul
University, (in Turkish), 115 pp.
Ağırbaş H. & Şen, F. (2012). Neogene-Quaternary
stratigraphy and tectonics of Alaşehir graben,
Western Anatolia. International Earth Science
Colloquium on the Aegean Region, Proceedings
(pp:38), 1-5 October 2012, İzmir, Turkey.
Akbayram, K., Şengör, A.M.C. & Özcan, E. (2016). The
evolution of the Intra-Pontide suture: implications
of the discovery of late Cretaceousearly Tertiary
melanges. Geological Society of America Special
Papers, 525, SPE525-18.
Altunkaynak, Ş., Ünal, A., Sunal, G., Kamacı,
Ö. & Dunkl, I. (2021). Miocene uplift and
exhumation history of northwestern Anatolia
(Turkey): Implications from apatite (U-Th)/
He thermochronology of syn-extensional
plutons. Journal of Asian Earth Sciences,
213, Article104770. https://doi.org/10.1016/j.
jseaes.2021.104770
Arpat, E. & Bingöl, E. (1969). The rift system of
western Turkey: Thoughts on its development.
Bulletin of the Mineral Research and Exploration
Institute, 75, 1-9.
Baes, M., Govers, R. & Wortel, R. (2011). Subduction
initiation along the inherited weakness zone
at the edge of a slab: Insights from numerical
models. Geophysical Journal International,
184(3), 9911008. https://doi.org/10.1111/j.1365-
246X.2010.04896.x
Bentley, S. J., Blum, M. D., Maloney, J., Pond, L.
& Paulsell, R. (2016). The Mississippi River
source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene
to Anthropocene. Earth-Science Reviews,
153, 139174. https://doi.org/10.1016/j.
earscirev.2015.11.001
Biryol, C. B., Beck, S. L., Zandt, G. & Özacar, A. A.
(2011). Segmented African lithosphere beneath the
Anatolian region inferred from teleseismic P-wave
tomography. Geophysical Journal International,
184, 10371057. https://doi.org/10.1111/j.1365-
246X.2010.04910.x
Bozkurt, E. (2000). Timing of extension on the Büyük
Menderes Graben, western Turkey, and its tectonic
implications. In E. Bozkurt, E., Winchester, J.A.,
Piper, J.D.A (Eds.), Tectonics and Magmatism
in Turkey and the Surrounding Area, Geological
Society, London, Special Publications 173, 385-
403.
Bozkurt, E. (2001). Neotectonics of Turkey-a
synthesis. Geodinamica Acta 14, 3-30. https://doi.
org/10.1016/S0985-3111(01)01066-X
Bozkurt, E. (2003). Origin of NE-trending basins in
western Turkey. Geodinamica Acta, 14, 6181.
Bozkurt, E. & Park, R. G. (1994). Southern Menderes
Massif: an incipient metamorphic core complex
in western Anatolia, Turkey. Journal of the
Geological Society, London, 151, 213216.
Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of
the Gediz Graben: field evidence for an episodic,
two extension in western Turkey. Geological
Magazine 141, 6379. https://doi.org/10.1017/
S0016756803008379
Bozkurt, E. & Rojay, B. (2005). Episodic, two-stage
Neogene extension and short-term intervening
compression in Western Turkey: field evidence
from the Kiraz Basin and Bozdağ Horst.
Geodinamica Acta 18, 299316.
Bølviken, B., Bogen, J., Jartun, M., Langedal, M.,
Ottesen, R. T. & Volden, T. (2004). Overbank
sediments: a natural bed blending sampling
medium for largescale geochemical mapping.
Chemometrics and Intelligent Laboratory Systems
74 (2004), 183 199.
Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I.,
Glotzbach, C., Struffert, A., Akal, C. & Ratz, M.
(2013). Quantifying rates of detachment faulting
and erosion in the central Menderes massif (western Turkey) by thermochronology and
cosmogenic 10Be. Journal of Geological Society
London, 170, 669-683. https://doi.org/10.1144/
jgs2012-132
Candan, O., Dora, O., Oberhänsli, R., Çetinkaplan,
M., Partzch, J., Warkus, F. & Dürr, S. (2001).
Pan-African high-pressure metamorphism in the
Precambrian basement of the Menderes Massif,
western Anatolia, Turkey. International Journal
of Earth Sciences, 89, 793811. https://doi.
org/10.1007/s005310000097
Catlos, E. J. & Çemen, İ. (2005). Monazite ages
and rapid exhumation of the Menderes Massif,
western Turkey. International Journal of Earth
Sciences, 94, 204 217. https://doi.org/10.1007/
s00531-005-0470-7
Catlos, E. J., Baker, C., Sorensen, S. S., Çemen, İ. &
Hançer, M. (2010). Geochemistry, geochronology
and cathodoluminescence imagery of the Salihli
and Turgutlu granites (Central Menderes Massif,
western Turkey): Implications for Aegean
tectonics. Tectonophysics, 488(1-4), 110-130.
https://doi.org/10.1016/j.tecto.2009.06.001
Cavazza, W., Okay, A. I. & Zattin, M. (2009). Rapid
early middle Miocene exhumation of the Kazdağ
Massif (western Anatolia): International Journal
of Earth Sciences, 98, 19351947. https://doi.
org/10.1007/s00531-008-0353-9
Cohen, H. A., Dart, C. J., Akyüz, H. S. & Barka, A.
(1995). Syn-rift sedimentation and structural
development of the Gediz and Büyük Menderes
Graben, western Turkey. Journal of the Geological
Society, 152, 629638. https://doi.org/10.1144/
gsjgs.152.4.0629
Cox, R. T., van Arsdale, R. B., Harris, J. B., Forman,
S. L., Beard, W. & Galluzzi, J., (2000).
Quaternary faulting in the southern Mississippi
embayment and implications for tectonics and
seismicity in an intraplate setting. GSA Bulletin
112, 17241735. https://doi.org/10.1130/0016-
7606(2000)112%3C1724:QFITSM%3E2.0.CO;2
Çemen, İ., Göncüoğlu, M. C. & Dirik, K. (1999).
Structural evolution of the Tuzgölü basin in
Central Anatolia, Turkey. Journal of Geology,
107, 693706, https://doi.org/10.1086/314379.
Çemen, İ., Tekeli, O., Seyitoğlu, G. & Işık, V. (2005).
Are turtleback fault surfaces common tectono morphologic features of highly extended terranes?.
Earth Science Reviews, 73, 139148, https://doi.
org/10.1016/j.earscirev.2005.07.001
Çemen, İ., Catlos, E. J., Göğüş, O. & Özerdem, C.
(2006). Postcollisional extensional tectonics and
exhumation of the Menderes massif in the Western
Anatolia extended terrane. In Dilek, Y. & Pavlides,
S. (Eds.) Postcollisional tectonics and magmatism
in the Mediterranean region and Asia. Geological
Society of America Special Paper, 409, 353379.
https://doi.org/10.1130/2006.2409(18)
Çiftçi, N. B. & Bozkurt, E. (2008). Folding of the
Gediz Graben fill, SW Turkey: extensional and/or
contractional origin?. Geodinamica Acta, 21, 145-
167. https://doi.org/10.3166/ga.21.145-167
Çiftçi, N. B. & Bozkurt, E. (2009). Evolution of the
Miocene sedimentary fill of the Gediz Graben,
SW Turkey. Sedimentary Geology, 216(3-4), 49-
79. https://doi.org/10.1016/j.sedgeo.2009.01.004
Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution
of the Gediz Graben, SW Turkey temporal and
spatial variation of the graben basin. Basin
Research, 22, 846-873. https://doi.org/10.1111/
j.1365-2117.2009.00438.x
Dewey, J. F. & Şengör, A. M. C. (1979). Aegean
and surrounding regions: complex multiplate
and continuous tectonics in a convergent zone.
Geological Society of America Bulletin, 90, 84
92.
Dora, O.Ö., Candan, O., Kaya, O., Koralay, E. & Dürr,
S. (2001). Revision of "Leptite-gneisses" in the
Menderes Massif: a supracrustal metasedimentary
origin. International Journal of Earth Sciences, 89,
836-851. https://doi.org/10.1007/s005310000102
Dunbar, C. O. & Rodgers, J. (1957). Principles of
Stratigraphy. John Wiley and Sons (Chapman and
Hall), London, 1957.
Ediger, V., Batı, Z. & Yazman, M. (1996). Palynology
of possible hydrocarbon source rocks of the
Alaşehir- Turgutlu area in the Gediz graben
(western Anatolia). Turkish Association of
Petroleum Geologists Bulletin, 8, 94-112.
Edwards, M. A. & Grasemann, B. (2009). Mediterranean
snapshots of accelerated slab retreat: subduction
instability in stalled continental collision. In van
Hinsbergen D. J. J., Edwards M. A. & Govers,R. (Eds.), Collision and collapse at the AfricaArabia-Eurasia subduction zone. The Geological
Society, London, Special Publication, 311, 155
192
Elitez, İ., Yaltırak, C. & Sunal, G. (2018). A new
chronostratigraphy (40Ar-39Ar and U-Pb dating)
for the middle section of the Burdur-Fethiye
Shear Zone, SW Turkey (eastern Mediterranean).
Turkish Journal of Earth Sciences, 27(5), Article
4. https://doi.org/10.3906/yer-1803-14
Elmas, A., Koralay, E., Duru, O. & Schmidt, A. (2016).
Geochronology, geochemistry, and tectonic setting
of the Oligocene magmatic rocks (Marmaros
Magmatic Assemblage) in Gökçeada Island,
northwest Turkey. Journal International Geology
Review, 59(4), 420-447. https://doi.org/10.1080/0
0206814.2016.1227941
Emre, T. (1996). Geology and tectonics of Gediz
Graben. Turkish Journal of Earth Sciences, 5,
171185.
Emre, T. & Sözbilir, H. (2007). Tectonic evolution
of the Kiraz Basin, Küçük Menderes Graben:
evidence for compression/uplift-related basin
formation overprinted by extensional tectonics in
West Anatolia. Turkish Journal of Earth Sciences
16, 441470.
Erdoğan, B. & Güngör, T. (2004). The problem of
the core-cover boundary of the Menderes massif
and an emplacement mechanism for regionally
extensive gneissic granites, western Anatolia
(Turkey). Turkish Journal of Earth Sciences
13(1), 15-36. https://journals.tubitak.gov.tr/earth/
vol13/iss1/2
Ersoy, Y. E., Helvacı, C. & Palmer, M. R. (2012).
Petrogenesis of the Neogene volcanic units in
the NESW-trending basins in western Anatolia,
Turkey. Contributions to Mineralogy and
Petrology, 163, 379401. https://doi.org/10.1007/
s00410-011-0679-3
Espurt, N., Hippolyte, J. C., Kaymakçı, N. & Sangu,
E. (2014). Lithospheric structural control on
inversion of the southern margin of the Black
Sea Basin, Central Pontides, Turkey. Lithosphere,
6(1), 26-34. https://doi.org/10.1130/L316.1
Eyidoğan, H. & Jackson, J. (1985). A seismological
study of normal faulting in the Demirci, Alaşehir
and Gediz earthquakes of 196970 in western Turkey: Implication for the nature and geometry of
deformation in the continental crust. Geophysical
Journal of the Royal Astronomical Society, 81,
569607.
Faccenna, C., Jolivet, L., Piromallo, C. & Morelli, A.
(2003). Subduction and the depth of convection of
the Mediterranean mantle. Journal of Geophysical
Research. 108(B2), 2099. http://dx.doi.
org/10.1029/2001JB001690 .
Faccenna, C., Bellier, O., Martinod, J., Piromallo, C.
& Regard, V. (2006). Slab detachment beneath
eastern Anatolia: a possible cause for the formation
of the North Anatolian Fault. Earth and Planetary
Science Letters, 242(1-2), 8597. https://doi.
org/10.1016/j.epsl.2005.11.046
Faccenna, C., Becker, T.W., Jolivet, L. & Keskin, M.
(2013). Mantle convection in the middle East:
reconciling Afar upwelling, Arabia indentation
and Aegean trench rollback. Earth and Planetary
Science Letters, 375, 254269. https://doi.
org/10.1016/j.epsl.2013.05.043
Farrell, K. M. (1987). Sedimentology and facies
architecture of overbank deposits of Mississippi
River, False River region, Louisiana. In Ethridge
F. G, Flores R. M. & Harvey M. D. (Eds.), Recent
developments in fluvial sedimentology, Soc Econ
Paleontol Mineral Spec Publ, 39, 111-120. https://
doi.org/10.2110/pec.87.39.0111
Fisk, H. N. (1947). Fine-grained alluvial deposits
and their effects on Mississippi River activity.
Waterways Experiment Station (U.S.), and United
States, Mississippi River Commission, Vicksburg,
Mississippi, 82 p.
Flores, R. M. (1981). Coal deposition in fluvial
paleoenvironments of the Paleocene Tongue River
Member of the Fort Union Formation, Powder
River area, Powder River Basin, Wyoming and
Montana. In F.G. Ethridge & R.M. Flores (Eds.),
Recent and Ancient Nonmarine Depositional
Environments--Models for Exploration. Soc.
Econ. Paleontol. Mineral. Spec. Publ., 31, 169-
190.
Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B. &
Özacar, A. A. (2009). Detecting the limit of slab
break-off in central Turkey: new high resolution
Pn tomography results. Geophysical Journal
International, 179(3), 15661577. https://doi.
org/10.1111/j.1365-246X.2009.04389.x
Gerard, V. M. (2003). Encyclopedia of sediments and
sedimentary rocks. Cornwall, Kluwer Academic
Publishers.
Gessner, K. (2000). Eocene Nappe Tectonics and
Late-Alpine Extension in the Central Anatolide
Belt, Western Turkey-Structure, Kinematics and
Deformation History [Ph.D thesis]. Johannes
Gutenberg University Earth Sciences Department,
Mainz, Germany.
Gessner, K., Ring, U., Johnson, C., Hetzel, R.,
Passchier, C. W. & Güngör, T. (2001). An active
bivergent rolling hinge detachment system:
Central Menderes metamorphic core complex in
western Turkey. Geology 29, 611-614. https://doi.
org/10.1130/0091-7613(2001)029<0611:AABRH
D>2.0.CO;2
Gessner, K., Gallardo, L.A., Markwitz, V., Ring,
U. & Thomson, S.T. (2013). What caused the
denudation of the Menderes massif: review of
crustal evolution, lithosphere structure, and
dynamic topography in southwest Turkey.
Gondwana Research, 24(1), 243274. http://
dx.doi.org/10.1016/j.gr.2013.1001.1005
Glodny, J. & Hetzel, R. (2007). Precise UPb ages of
syn-extensional Miocene intrusions in the central
Menderes Massif, western Turkey. Geological
Magazine 144, 235-246. https://doi.org/10.1017/
S0016756806003025
Govers, R. & Wortel, M. J. R. (2005). Lithosphere
tearing at STEP faults: Response to edges
of subduction zones. Earth and Planetary
Science Letters, 236(12), 505523. https://doi.
org/10.1016/j.epsl.2005.03.022
Gürer, A., Gürer, Ö.F., Pinçe, A. & Ilkisik, O.M. (2001).
Conductivity structure along the Gediz graben,
west Anatolia, Turkey: Tectonic implications:
International Geology Review, 43, 1129-1144.
https://doi.org/10.1080/00206810109465065
Heineke, C., Hetzel, R., Nilius, N.P., Zwingmann,
H., Todd, A., Mulch, A., Wölfler, A., Glotzbach,
C., Akal, C., Dunkl, I. & Raven, M. (2019).
Detachment faulting in a bivergent core complex
constrained by fault gouge dating and lowtemperature thermochronology. Journal of
Structural Geology, 127, Article 103865. https://
doi.org/10.1016/j.jsg.2019.103865
Helvacı, C., Ersoy, E.Y., Sözbilir, H., Erkül, F., Sümer,
Ö. & Uzel, B. (2009). Geochemistry and 40Ar/39Ar
geochronology of Miocene volcanic rocks
from the Karaburun Peninsula: implications for
amphibole-bearing lithospheric mantle source,
western Anatolia. Journal of Volcanology and
Geothermal Research, 185(3), 181202. https://
doi.org/10.1016/j.jvolgeores.2009.05.016
Hetzel, R., Passchier, C. W., Ring, U. & Dora, Ö. O.
(1995). Bivergent extension in orogenic belts: the
Menderes massif (southwestern Turkey). Geology
23, 455458.
Hetzel, R., Zwigmann, H., Mulch, A., Gessner, K.,
Akal, C., Hampel, A., Güngör, T., Petschick, R.,
Mikes, T. & Wedin, F (2013). Spatiotemporal
evolution of brittle normal faulting and fluid
infiltration in detachment fault systems: a case
study from Menderes massif, western Turkey.
Tectonics, 32(3) 364-376. https://doi.org/10.1002/
tect.20031
Hippolyte, J.C., Müller, C., Kaymakçı, N. &Sangu,
E. (2010). Dating of the Black Sea Basin: new
nannoplankton ages from its inverted margin in
the Central Pontides (Turkey). In Stephenson,
R.A., Kaymakçı, N., Sosson, M., Starostenko, V.,
Bergerat, F. (Eds.), Sedimentary Basin Tectonics
from the Black Sea and Caucasus to the Arabian
Platform. London, UK: Geological Society
London Special Publications, 113-136.
Işık, V., Seyitoğlu, G. & Çemen, İ. (2003). Ductilebrittle transition along the Alaşehir detachment
fault and its structural relationship with the Simav
detachment fault, Menderes Massif, western
Turkey. Tectonophysics 374, 1-18. https://doi.
org/10.1016/S0040-1951(03)00275-0
İztan, H. & Yazman, M. (1990). Geology and
hydrocarbon potential of the Alaşehir (Manisa)
area, western Turkey. In Savaşçın, M. Y. & Eronat,
A. H. (Eds.), Proceedings Internatioanl Earth
Sciences Congress Aegean Region 1990, Izmir,
pp. 327 333.
Jackson, J. A. & McKenzie, D. P. (1988). The
relationship between plate motions and seismic
tensors, and the rate of active deformation in the
Mediterranean and Middle East. Geophysical
Journal International, 93, 45-73. https://doi.
org/10.1111/j.1365-246X.1988.tb01387.x
Jolivet, L. & Patriat, M. (1999). Ductile extension and
the formation of the Aegean Sea. In Durand, B.,
Jolivet, L., Seranne, M. (Eds.), The Mediterranean
Basins: Tertiary Extension Within the Alpine
Orogen. Geological Society, London, Special
Publications, 156, 356427.
Jolivet, L. & Faccenna, C. (2000). Mediterranean
extension and the AfricaEurasia collision.
Tectonics, 19, 10951106. https://doi.
org/10.1029/2000TC900018 .
Jolivet, L. & Brun, J. P. (2010). Cenozoic Geodynamic
Evolution of the Aegean. International Journal
of Earth Sciences, 99(1), 109138. https://doi.
org/10.1007/s00531-008-0366-4
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le
Pourhiet, L., Lacombe, O., Lecomte, E., Burov,
E., Denele, Y., Brun, J.P., Philippon, M., Paul, A.,
Salaun, G., Karabulut, H., Piromallo, C., Monie, P.,
Gueydan, F., Okay, A.I., Oberhansli, R., Pourteau,
A., Augier, R., Gadenne, L. & Driussi, O. (2013).
Aegean tectonics: strain localization, slab tearing
and trench retreat. Tectonophysics, 597598,
133. https://doi.org/10.1016/j.tecto.2012.06.011
Kissel, C. & Laj, C. (1988). Tertiary geodynamical
evolution of the Aegean arc: a palaeomagnetic
reconstruction. Tectonophysics, 146, 183201.
Koçyiğit, A. &Yusufoğlu, H., Bozkurt, E. (1999).
Evidence from the Gediz Graben for episodic
two-stage extension in western Turkey. Journal of
the Geological Society 156, 605-616. https://doi.
org/10.1144/gsjgs.156.3.0605
Konak, N. (2002). Geological map of Turkey in
1/500,000 scale. İzmir Area Map (Şenel, M. (Ed.).
General Directorate of Mineral Research and
Exploration, Publication of Mineral Research and
Exploration Directorate of Turkey
Kounov, A., Wüthrich, E., Seward, D., Burg, J. P. &
Stockli, D. (2015). Low-temperature constraints
on the Cenozoic thermal evolution of the Southern
Rhodope Core Complex (Northern Greece).
International Journal Earth Sciences, 104, Article
1337e1352. https://doi.org/10.1007/s00531-015-
1158-2
Kraus, M. J. (1999). Paleosols in clastic sedimentary
rocks: their geologic applications. Earth Science
Reviews, 47, 41-70.
Lamont, T. N., Smye, A. J., Roberts, N. M. W.,
Searle, M. P., Waters, D. J. & White, R. W.
(2023). Constraints on the thermal evolution of
metamorphic core complexes from the timing of
high-pressure metamorphism on Naxos, Greece.
Geological Society of America Bulletin, 135(11
12), 27672796. https://doi.org/10.1130/B36332.1
Le Pichon, X. & Angelier, J. (1979). The Hellenic
arc and trench system: a key to the neotectonic
evolution of the eastern Mediterranean area.
Tectonophysics, 60, 142.
Le Pichon, X. & Angelier, J. (1981). The Aegean Sea.
Philosophical Transactions of Royal Society,
London, Seri A 300, 357372.
Lips, A. L. W., Cassard, D., Sözbilir, H., Yılmaz, Y. &
Wijbrans, J. R. (2001). Multistage exhumation of
the Menderes Massif, western Anatolia (Turkey).
International Journal of Earth Sciences, 89, 781-
792.
Mack, G. H., Leeder, M. R. & Salyards, S. L. (2002).
Temporal and spatial variability of alluvial-fan and
axial-fluvial sedimentation in the Plio-Pleistocene
Palomas half graben, southern Rio Grande rift,
New Mexico, USA. In Renault, R. W. & Ashley,
G. M. (Eds.), Sedimentation in Continental Rifts.
SEPM Special Publications, 73, 165177.
McKenzie, D. (1978). Active tectonics of the AlpineHimalayan belt: the Aegean Sea and surrounding
regions. Geophysical Journal of Astronomical
Society, 55, 217254.
Menant, A., Sternai, P., Jolivet, L., Guillou-Frottier,
L. & Gerya, T. (2016). 3D numerical modeling
of mantle flow, crustal dynamics and magma
genesis associated with slab roll-back and tearing:
The eastern Mediterranean case. Earth and
Planetary Science Letters, 442, 93-107. https://
doi.org/10.1016/j.epsl.2016.03.002
Mercier, J. L. (1981). Extensional-compressional
tectonics associated with the Aegean arc:
comparison with the Andean Cordillera of south
Perunorth Bolivia. Philosophical Transactions of
Royal Society, London, Seri A 300, 337355.
Meulenkamp, J. E., Wortel, W. J. R., Van Wamel, W. A.,
Spakman, W. & Hoogerduyn-Strating, E. (1988).
On the Hellenic subduction zone and geodynamic
evolution of Crete in the late Middle Miocene.
Tectonophysics, 146, 203215.
Meulenkamp, J. E., Van Der Zwaan, G. J. & Van Wamel,
W. A. (1994). On Late Miocene to recent vertical
motions in the Cretan segment of the Hellenic arc.
Tectonophysics, 234, 5372.
Nijholt, N., & Govers, R. (2015). The role of passive
margins on the evolution of SubductionTransform Edge Propagators (STEPs). Journal of
Geophysical Research: Solid Earth, 120, 7203
7230. https://doi.org/10.1002/2015JB012202
Oertel, G. (1965). The mechanism of faulting in clay
experiments. Tectonophysics 2, 343-393.
Oberhänsli, R., Candan, O., Dora, O. Ö. & Dürr, S.
(1997). Eclogites within the Menderes Massif/
western Turkey. Lithos 41, 135-150. https://doi.
org/10.1016/S0024-4937(97)82009-9
Okay, A. I. & Tüysüz, O. (1999). Tethyan sutures of
northern Turkey. In Durand, B., Jolivet, L., Horvath,
F., Séranne, M. (Eds.), The Mediterranean Basins:
Tertiary Extension Within the Alpine Orogen:
Special Publications. Geological Society, London,
pp. 475515.
Okay, A. İ & Satır, M. (2000). Coeval plutonism and
metamorphism in a latest Oligocene metamorphic
core complex in northwest Turkey. Geological
Magazine, 137, 495516.
Okay, A. I, Satır, M., Zattin, M., Cavazza, W. & Topuz,
G. (2008). An Oligocene ductile strike-slip shear
zone: the Uludağ Massif, northwestern TurkeyImplications for the westward translation of
Anatolia. Bulletin of the Geological Society of
America, 120, 893-911.
Önalan, M. (1997). Çökelmenin Fiziksel ilkeleri
Fasiyes Analizleri ve Karasal Çökelme Ortamları,
İkinci baskı. İstanbul Üniversitesi Basımevi ve
Film Merkezi, , İstanbul/Türkiye
Öner, Z. & Dilek, Y. (2011). Supradetachment basin
evolution during continental extension: The
Aegean province of western Anatolia, Turkey. GSA
Bulletin 123, 2115-2141. https://doi.org/10.1130/
B30468.1
Öner, Z. & Dilek, Y. (2013). Fault kinematics in
Supradetachment basin formation, Menderes
core complex of western Turkey. Tectonophysics
608, 13941412. https://doi.org/10.1016/j.
tecto.2013.06.003
Özsayın, E. & Dirik, K. (2007). Quaternary activity of
the Cihanbeyli and Yeniceoba fault zones: İnönüEskişehir fault system, Central Anatolia. Turkish
Journal of Earth Sciences, 16, 471-492.
Paton, S. (1992). The relationship between extension
and volcanism in western Turkey, the Aegean Sea
and central Greece [PhD Thesis]. Cambridge
University, Cambridge, UK.
Philippon, M., Brun, J.P. & Gueydan, F. (2012).
Deciphering subduction from exhumation in the
segmented Cycladic Blueschist Unit (Central
Aegean, Greece). Tectonophysics, 524525, 116
134. https://doi.org/10.1016/j.tecto.2011.12.025
Platevoet, B., Scaillet, S., Guillou, H., Blamart, D.,
Nomade, S., Massault, M., Poisson, A., Elitok,
O., Özgür, N., Yağmurlu, F. & Yılmaz, K. (2008).
Pleistocene eruptive chronology of the Gölcük
volcano, Isparta Angle, Turkey. Quaternaire 19,
147156.
Purvis, M. & Robertson, A. (2005). Sedimentation of
the Neogene-Recent Alaşehir (Gediz) continental
graben system used to test alternative tectonic
models for western (Aegean) Turkey. Sedimentary
Geology, 173, 373408. https://doi.org/10.1016/j.
sedgeo.2003.08.005
Renaut, R.W. & Ashley, G.M. (2002). Sedimentation in
Continental Rifts. SEPM (Society for Sedimentary
Geology) Special Publication, 73, Tulsa,
Oklahoma, U.S.A.
Ring, U., Laws, S. & Bernet, M. (1999). Structural
analysis of a complex nappe sequence and late
orogenic basins from the Aegean Island of
Samos, Greece. Journal of Structural Geology,
21, 1575-1601. https://doi.org/10.1016/S0191-
8141(99)00108-X
Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003).
Tectonic denudation of a Late CretaceousTertiary
collisional belt: regionally symmetric cooling
patterns and their relation to extensional faults in
the Anatolide belt of western Turkey. Geological
Magazine, 140, 421-441. https://doi.org/10.1017/
S0016756803007878
Rojay, B., Toprak, V., Demirci, C. & Süzen, L. (2005).
PlioQuaternary evolution of the Küçük Menderes
Graben (Southwestern Anatolia, Turkey).
Geodinamica Acta, 18, 317331.
Sarıca, N. (2000). The Plio-Pleistocene age of
Büyük Menderes and Gediz grabens and
their tectonic significance on N-S extensional
tectonics in West Anatolia: mammalian evidence
from the continental deposits. Geological
Journal, 35, 1-24. https://doi.org/10.1002/
(SICI)1099-1034(200001/03)35:1<1::AIDGJ834>3.0.CO;2-A
Seyitoğlu, G. (1999). Discussion on evidence from the
Gediz Graben for episodic two-stage extension in
western Turkey. Journal of the Geological Society
London, 156, 1240-1242. https://doi.org/10.1144/
gsjgs.156.6.1240
Seyitoğlu, G. & Scott, B. C. (1996). Age of
the Alaşehir graben (west Turkey) and its
tectonic implications. Geological Journal,
31(1), 111. https://doi.org/10.1002/
(SICI)1099-1034(199603)31:1%3C1::AIDGJ688%3E3.0.CO;2-S
Seyitoğlu, G., Çemen, İ. & Tekeli, O. (2000).
Extensional folding in the Alaşehir (Gediz) graben,
western Turkey. Journal of the Geological Society
London, 157, 1097-1100. https://doi.org/10.1144/
jgs.157.6.1097
Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık,
V. (2002). The role of flexural rotation/rolling
hinge model in the tectonic evolution of the
Alaşehir Graben, western Turkey. Geology
Magazine 139, 15-26. https://doi.org/10.1017/
S0016756801005969
Seyitoğlu, G., Işık, V. & Çemen, İ. (2004). Complete
Tertiary exhumation history of the Menderes
Massif, western Turkey: an alternative working
hypothesis. Terra Nova 16, 358363.
Seyitoğlu, G., Işık, V. & Esat, K. (2014). A 3D model
for the formation of Turtleback surfaces: The
Horzum Turtleback of Western Turkey as a case
study. Turkish Journal of Earth Sciences, 23, 479-
494. https://doi.org/10.3906/yer-1401-23
Seyitoğlu, G. & Işık, V. (2015). Late Cenozoic
extensional tectonics in western Anatolia:
Exhumation of the Menderes core complex and
formation of related basins. Bulletin of the Mineral
Research and Exploration, 151, 49-109 https://
doi.org/10.19111/bmre.49951
Smith, N.D. & Perez-Arlucea, M. (1994). Fine-grained
splay deposition in the avulsion belt of the
lower Saskatchewan River, Canada. Journal of
Sedimentary Research, B64, 159-168.
Soder, C., Altherr, R. & Romer, R. L. (2016). Mantle
metasomatism at the edge of a retreating subduction
zone: Late Miocene lamprophyres from the island
of Kos, Greece. Journal of Petrology 57(9), 1705
1728. https://doi.org/10.1093/petrology/egw054
Şen, F. (2004). Karadut ve çevresinde Gediz grabeni
nin stratigrafisi ve yapısı [B.Sc. thesis]. İstanbul,
İstanbul University, (in Turkish), 110 pp.
Şen, F. (2016). Late Miocene termination of tectonic
activity on the detachment in the Alaşehir Rift,
Western Anatolia: Depositional records of the
Göbekli Formation and high-angle cross-cutting
faults. EGU General Assembly, 18, 3541
Şen, F. (2020). Middle Eocene high-K acidic
volcanism in the Princes Islands (İstanbul) and
its geodynamic implications. Turkish Journal
of Earth Sciences, 29(SI-1), Article 9, 208-219.
https://doi.org/10.3906/yer-1905-19
Şen, Ş. & Seyitoğlu, G. (2009). Magnetostratigraphy
of earlymiddle Miocene deposits from eastwest
trending Alaşehir and Büyük Menderes grabens
in western Turkey, and its tectonic implications.
Geological Society of London Special Publication,
311, 321342. https://doi.org/10.1144/SP311.13
Şen, F. & Ağırbaş, H. (2012). Fold geometry in
Karadut fault, Alaşehir graben, Western Anatolia.
International Earth Science Colloquium on the
Aegean Region, Proceedings, İzmir, Turkey, pp:
31.
Şen, F., Karaağaç, S. & Erbil, Ü. (2024). Evidence for
High-Angle Origin of the Alaşehir Detachment
Fault and Layer-Parallel Shortening During
Miocene Time in Alaşehir Graben, Western
Anatolia. Türkiye Jeoloji Bülteni, 67(1), 17-50.
https://doi.org/10.25288/tjb.1318465
Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M.,
Eyidoğan, H., Görür, N., Le Pichon, X. & Rangin,
C. (2005). The North Anatolian Fault: a new look.
Annual Review of Earth and Planetary Sciences
33, 37112. http://dx.doi.org/10.1146/annurev.
earth.32.101802.120415
Şengör, A. M. C. & Bozkurt, E. (2012). Layerparallel shortening and related structures in zones
undergoing active regional horizontal extension. International Journal of Earth Sciences, 102, 101-
119. https://doi.org/10.1007/s00531-012-0777-0
Thomson, S.N. & Ring, U. (2006). Thermochronologic
evaluation of postcollision extension in
the Anatolide orogen, western Turkey.
Tectonics, 25(3), Article TC3005. https://doi.
org/10.1029/2005TC001833
Uzel, B., Langereis, C. G., Kaymakçı, N., Sözbilir,
H., Özkaymak, Ç. & Özkaptan, M. (2015).
Paleomagnetic evidence for an inverse rotation
history of Western Anatolia during the exhumation
of Menderes core complex. Earth and Planetary
Science Letters, 414, 108-125. https://doi.
org/10.1016/j.epsl.2015.01.008
van Hinsbergen, D. J. J., Langereis, C. G. &
Meulenkamp, J. E. (2005). Revision of the timing,
magnitude and distribution of Neogene rotations
in the western Aegean region. Tectonophysics
396, 134.
van Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E.
& Koopman, M. (2010). Exhumation with a twist:
Paleomagnetic constraints on the evolution of the
Menderes metamorphic core complex, western
Turkey: Tectonics, 29, Article TC3009. https://doi.
org/10.1029/2009TC002596
Wawrzenitz, N. & Krohe, A. (1998). Exhumation
and doming of the Thasos metamorphic core
complex (S Rhodope, Greece): structural and
geochronological constraints. Tectonophysics 285,
301332.
Willis, B. J. & Behrensmeyer, A. K. (1994). Architecture
of Miocene overbank deposits in northern
Pakistan. Journal of Sedimentary Research, B64,
60-67.
Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P.,
Hetzel, R., Hampel, A., Akal, C., Dunkl, I. &
Christl, M. (2017). Late Cenozoic cooling history
of the central Menderes Massif: Timing of the
Büyük Menderes detachment and the relative
contribution of normal faulting and erosion to
rock exhDumation. Tectonophysics 717, 585598.
https://doi.org/10.1016/J.TECTO.2017.07.004
Wright, D.T. (1999). The role of sulphate-reducing
bacteria and cyanobacteria in dolomite formation
in distal ephemeral lakes of the Coorong region,
South Australia. Sedimentary Geology, 126(1
4), 147157. https://doi.org/10.1016/S0037-
0738(99)00037-8
Yang, X. B., Wang, H. Y., Li, Z. Y., Guan, C. & Wang,
X. (2021). Tectonic-sedimentary evolution of a
continental rift basin: A case study of the Early
Cretaceous Changling and Lishu fault depressions,
southern Songliao Basin, China. Marine and
Petroleum Geology, 128, Article 105068. https://
doi.org/10.1016/j.marpetgeo.2021.105068
Yılmaz, Y., Genç, Ş.C., Gürer, Ö.F., Bozcu, M., Yılmaz,
K., Karacık, Z., Altunkaynak, Ş. & Elmas, A.
(2000). When did western Anatolian grabens
begin to develop?. Geological Society of London
Special Publication, 173, 353-384. https://doi.
org/10.1144/GSL.SP.2000.173.01.17
Yılmaz, Y. (2017). Major Problems of Western
Anatolian Geology. Çemen, İ. & Yılmaz, Y.
(Eds.), Active Global Seismology: Neotectonics
and Earthquake Potential of the Eastern
Mediterranean Region, Book Series, Geophysical
Monograph Book Series, 225, 141-187. https://
doi.org/10.1002/9781118944998.ch6
Yuretich, R.F. & Ervin, C.R. (2002). Clay minerals
as palaeoenvironmental indicators in two large
lakes of the African Rift Valleys: Lake Malawi
and Lake Turkana. In Renaut, R. W. & Ashley,
G.M. (Eds.), Sedimentation in Continental Rifts:
SEPM (Society for Sedimentary Geology) Special
Publication 73, 221232, https://doi.org/10.2110/
pec.02.73.0221
Abstract: In Lake Salda (Southwestern, Türkiye), modern microbialites containing hydrated Mg carbonates continueto form on the shoreline of the lake and at 15 m water depth in structures ranging from a few cm in size to about10 m in height with 3-4 m width. For the first time, these organo-sedimentary structures were classified and their morphotypes, sedimentological and textural characteristics along with their spatial distribution in the lake were identified. In this context, 5 different zones were identified in the lake. In the lake, stromatolitic thrombolites are themost dominant microbialite type, while stromatolites and thrombolites are restricted to certain parts of the lake. Stromatolitic thrombolites have a wide variety of morphologies, usually dome-shaped and cauliflower-like, while they are rarely tabular. On a meso-scale (cm), stromatolitic thrombolites exhibit finger-shaped (2-5 cm) laminatedmini-columns, and dendritic, and bulbous growth structures. Thrombolites with cauliflower morphology coalesce to form a large reef-like structure at depth (10-20 m). Thrombolites with stromatolitic laminae and dendritic internalstructure are limited to certain zones in the lake (Zone 2, 3). The macro-scale external morphology of the microbialitesis shaped primarily by the influence of the prevailing environmental conditions. Seasonal fluctuations in lake waterlevel, regional differences in sedimentation rates, prevailing winds and currents are the main factors controlling the depositional environment. The internal growth structure of microbialites depends on the microbial community structure and the conditions of the depositional environment. Mineralogical study of the microbial layer revealed adifferent hydrated Mg carbonate mineral, dypingite (Mg5(CO3)4. OH2.5H2O), for the first time. This mineral, closely related to extracellular polymeric matter (EPS), is the precursor of hydromagnesite. Petrographic investigations ofthe microbialites revealed the presence of abundant vertical and near-vertical filament (mineralised`)-like structures associated with carbonates, exhibiting a clotted texture containing peloids of various sizes in addition to a thin lamination. Nodular aragonites are generally associated with microbial layers, while fibres developed in void sand aragonite fans and isopach fringes formed by their aggregation indicate secondary and abiotic carbonate precipitation in the lake. Due to their structural, mineralogical and compositional diversity, Lake Salda microbialites are a potential modern analogue that may reveal the origin and formation processes of both Mg-carbonates inthe geological record and hydrated Mg-carbonates detected in a possible palaeolake in Jezero crater, one of the Martian craters. In this study, new data on Lake Salda microbialites is evaluated in terms of their origin, formation mechanism and potential for biosignatures.
Biosignature
Dypingite
hydrated magnesium carbonates
SW Türkiye
Mars
Lake Salda
Allwood, A. C, Walter, M. R., Kamber, B. S., Marshall,
C. P. & Burch, I. W. (2006) Stromatolite reef from
the Early Archaean era of Australia. Nature, 441,
714718. https://doi.org/10.1038/nature04764
Aloisi, G. (2008). The calcium carbonate saturation
state in cyanobacterial mats throughout Earths
history. Geochimica et Cosmochimica Acta,
72(24), 60376060. https://doi.org/10.1016/j.
gca.2008.10.007
Andersen, D.T., Sumner, D.Y., Hawes, I., WebsterBrown, J. & McKay, C.P. (2011). Discovery of
large conical stromatolites in Lake Untersee,
Antarctica. Geobiology, 9, 280293. https://doi.
org/10.1111/j.1472-4669.2011.00279.x
Arp, G., Reimer, A. & Reitner, J. (2001). Photosynthesis
induced biofilm calcification and calcium
concentrations in Phanerozoic oceans. Science,
292, 17011704.
Arp, G., Reimer, A. & Reitner, J. (2003). Microbialite
formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of
Sedimentary Research 73, 105127. https://doi.
org/10.1306/071002730105
Awramik, S. M. & Buchheim, H. P. (2009). A giant, Late
Archean lake system: The Meentheena Member
(Tumbiana Formation, Fortescue Group), Western
Australia. Precambrian Research, 174, 215240.
https://doi.org/10.1016/j.precamres.2009.07.005
Awramik, S. M. & Margulhis, L. (1974) Definition
of stromatolite, In E. Walter (Ed.), Stromatolite
Newsletter, 2(5).
Balcı, N. (2022) Mars Yolculuğunda Yeni Keşifler ve
Biyoiz Bulmacası. Herkese Bilim ve Teknoloji
Dergisi, 324.
Balcı, N. ve Demirel, C. (2018). Salda Gölünün
jeomikrobiyolojisi ve güncel stromatolit
oluşumunda mikrobiyal etkiler. Hacettepe
Üniversitesi, Yerbilimleri Uygulama ve Araştırma
Merkezi Yerbilimleri Bülteni, 39(1), 19-40. 2018.
Balcı, N. & Güneş, Y. (2025). Tracking
organomineralization from modern microbial
layers of Lake Salda (hazırlık aşamasında).
Balcı, N., Güneş, Y., Kaiser J., Ön, S. A., Eris, K.,
Garczynski, B. & Horgan, B. H. (2020). Biotic
and abiotic imprints on Mg-Rich stromatolites:
Lessons from Lake Salda, SW Turkey.
Geomicrobiology Journal, 37, 401425. htt
ps://10.1080/01490451.2019.1710784
Baldes, M. J. Gong, J., Trejo, D., Balcı, N., Güneş,
Y., Tamura, N. & Bosak, T. (2025, inceleme de).
Microbial polymers influence the mineralogy
and organic preservation potential of hydrated
magnesium carbonate minerals (İnceleme de).
Braithwaite, C. J. R. & Zedef, V. (1994). Living
hydromagnesite stromatolites from Turkey.
Sedimentary Geology, 92, 15.
Braithwaite, C. J. R. & Zedef, V. (1996). Hydromagnesite
stromatolites and sediments in an alkaline lake,
Salda Gölü, Turkey. Journal of Sedimentary
Research, 66, 911002. https://doi.org/10.1306/
D426845F-2B26-11D7-8648000102C1865D
Brasier, A. T., Rogerson, M. R., Mercedes-Martin,
R., Vonhof, H. B. & Reijmer, J. J. G. (2015). A
test of the biogenicity criteria established for
microfossils and stromatolites on Quaternary Tufa
and Speleothem materials formed in the "Twilight
Zone" at Caerwys, UK. Astrobiology, 15, 883
900. https://doi.org/10.1089/ast.2015.1293
Brasier, A., Wacey, D., Rogerson, M., Guagliardo, P.,
Saunders, M., Kellner, S., Mercedes-Martin, R.,
Prior, T., Taylor, C., Matthews, A. & Reijmer, J.
(2018). A microbial role in the construction of
Mono Lake carbonate chimneys?. Geobiology, 16,
540555. https://doi.org/10.1111/gbi.12292
Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia,
E. P. (2003). Bacterially induced mineralization
of calcium carbonate in terrestrial environments:
the role of exopolysaccharides and amino acids.
Journal of Sedimentary Research, 73, 485 490.
https://doi.org/10.1306/111302730485
Burne, R. V., Moore, L. S., Christy, A.G., Troitzsch,
U., King, P.L., Carnerup, A. M. & Hamilton, P.J.
(2014). Stevensite in the modern thrombolites of
Lake Clifton, Western Australia: a missing link in
microbialite mineralization?. Geology, 42, 575
578. https://doi.org/10.1130/G35484.1
Chagas, A. P., Webb, G. E., Burne, R. V. & Southam,
G. (2016). Modern lacustrine microbialites:
Towards a synthesis of aqueous and carbonate
geochemistry and mineralogy. Earth-Science.
Reviews, 162, 338363. https://doi.org/10.1016/j.
earscirev.2016.09.012
Corsetti, F. A. & Storrie-Lombardi, M.C. (2003).
Lossless compression of stromatolite images: a
biogenicity index?. Astrobiology, 3, 649655.
https://doi.org/10.1089/153110703322735980
De Boever, E., Foubert, A., Lopez, B., Swennen, R.,
Jaworowski, C., Özkul, M. & Virgone, A. (2017a).
Comparative study of the Pleistocene Cakmak
quarry (Denizli Basin, Turkey) and modern
Mammoth Hot Springs deposits (Yellowstone
National Park, USA). Quaternary. International,
437, 129146. https://doi.org/10.1016/j.
quaint.2016.09.011
De Boever, E., Brasier, A.T., Foubert, A. ve Kele,
S. (2017b). What do we really know about
early diagenesis of non-marine carbonates?.
Sedimentary Geology, 361, 2551. https://doi.
org/10.1016/j.sedgeo.2017.09.011
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W.,
Norman, R. S. & Visscher, P. T. (2009). Processes
of carbonate precipitation in modern microbial
mats. Earth-Science Reviews, 96, 141162.
https://doi.org/10.1016/j.earscirev.2008.10.005
Ferris, F. G., Thompson, J. B. & Beveridge, T. J. (1997).
Modern freshwater microbialites from Kelly Lake,
British Columbia, Canada. Palaios, 12, 213219.
https://doi.org/10.2307/3515423
Frantz, C. M. (2015) They might be giants: colossal
lacustrine stromatolites. Geology, 43 (8), 751
752. https://doi.org/10.1130/focus082015.1
Garczynski, B. J., Horgan, B., Kah, L. C., Balcı, N.
& Güneş, Y. (2019). Searching for potential
biosignatures in Jezero Crater with Mars 2020.
A spectral investigation of terrestrial lacustrine
carbonate analogs. Lunar Planetary Contributions,
2089.
Garczynski, B. J., Horgan, B., Kah, L.C., Balcı, N.,
Güneş, Y., Williford, K. H. & Cloutis, E. A. (2020)
Investigating the origin of carbonate deposits in
Jezero Crater: Mineralogy of a fluviolacustrine
analog at Lake Salda, Turkey. Lunar Planetary
Contributions, 2326, 2128.
Gérard, E., Ménez, B., Couradeau, E., Moreira, D.,
Benzerara, K., Tavera, R. & López-García, P.
(2013). Specific carbonatemicrobe interactions
in the modern microbialites of Lake Alchichica
(Mexico). The ISME Journal, 7, 19972009.
https://doi.org/10.1038/ismej.2013.81
Ginsburg, R.N. (1991). Controversies about
stromatolites: vices and virtues. In D. W. Müller, J.
A. McKenzie, & H. Weissert (Eds.), Controversies
in Modern Geology, London, UK, Harcourt Brace
Jovanovich (Academic Press), 2536.
González-López, J., Rodelas, B., Pozo, C., SalmerónLópez, V., Martínez-Toledo, M. V. & Salmerón, V. (2005). Liberation of amino acids by heterotrophic
nitrogen fixing bacteria. Amino Acids, 28(4), 363-
7.
Gomez, F. J., Kah, L. C., Bartley, J. K. & Astini, R. A.
(2014). Microbialites in a high- altitude Andean
lake: Multiple controls on carbonate precipitation
and lamina accretion. Palaios, 29, 233249.
Grotzinger, J. P. & Knoll, A. H. (1999) Stromatolites in
Precambrian carbonates: evolutionary mileposts
or environmental dipsticks?. Annual Review of
Earth Planetary Sciences, 27, 313358. https://
doi.org/10.1146/annurev.earth.27.1.313
Grotzinger, J. P. & Rothman, D. H. (1996). An abiotic
model for stromatolite morphogenesis. Nature,
383, 423425. https://doi.org/10.1038/383423a0
Güneş, Y. & Balcı, N. (2021). The Catalytic Effect of the
Heterotrophic Bacterium Virgibacillusmarismortui
on Basaltic Rock Dissolution Under Excess
Nutrient Conditions, Geomicrobiology Journal,
38, 4, 315-328. https://doi.org/10.1080/01490451
.2020.1852453
Güneş, Y., Baldes, M. J., Gong, J., Bosak, T. & Balcı, N.
(2022) Morphospace, composition and texture of
Lake Salda microbialites. EGU General Assembly
2022, Vienna, Austria, 2327 May 2022, EGU22-
395.
Güneş, Y., Sekerci, F., Avcı, B., Ettema, T. & Balcı, N.
(2024). Morphological and Microbial Diversity
of Hydromagnesite Microbialites in Lake Salda:
A Mars Analog Alkaline Lake. Geobiology, 22,
Article e12619. https://doi.org/10.1111/gbi.12619
Horgan, B., Anderson, R., Dromart, G., Amador, E. &
Rice, M. (2020) The mineral diversity of Jezero
crater: Evidence for possible lacustrine carbonates.
Icarus, 339, Article113526.
Kazanci, N., Girgin, S. & Dügel, M. (2004). On
the limnology of Salda Lake, a large and deep
soda lake in southwestern Turkey: future
management proposals, aquatic conservation.
Aquatic Conservation: Marine and Freshwater
Ecosystems, 14(2), 151162. https://doi.
org/10.1002/aqc.609
Kempe, S. & Kaźmierczak, J. (1993). Satonda Crater
Lake, Indonesia: Hydrogeochemistry and
bicarbonates. Facies, 28, 131.
Meister, P. (2013) Two opposing effects of sulfate
reduction on calcite and dolomite precipitation in
marine, hypersaline and alkaline environments.
Geology, 41, 499502. https://doi.org/10.1130/
G34639C.1
Meister, P. (2014) Two opposing effects of sulfate
reduction on carbonate precipitation in normal
marine, hypersaline, and alkaline environments:
REPLY. Geology, 42, 315. https://doi.org/10.1130/
G35240Y.1
Petryshyn V. A., Junkins E. N., Stamps B. W., Bailey
J. V., Stevenson, B. S., Spear J. R. & Corsetti F.
A. (2021). Builders, tenants, and squatters: The
origins of genetic material in modern stromatolites.
Geobiology, 19, 261 277. https://doi.org/10.1111/
gbi.12429
Reid, R. P., Macintyre, I. G., Browne, K. M., Steneck,
R. S. & Miller, T. (1995) Modern marine
stromatolites in the Exuma Cays, Bahamas:
uncommonly common. Facies, 33, 118. https://
doi.org/10.1007/BF02537442
Riding, R. (2006) Cyanobacterial calcification,
carbon dioxide concentrating mechanisms, and
Proterozoic-Cambrian changes in atmospheric
composition. Geobiology, 4, 299316. https://doi.
org/10.1111/j.1472-4669.2006.00087.x
Riding, R. (2000). Microbial carbonates: the geological
record of calcified bacterial-algal mats and
biofilms. Sedimentology, 27, 179214. https://doi.
org/10.1046/j.1365-3091.2000.00003.x
Rivadeneyra, M. A., Paraga, J., Delgado, G., RamosCoemenzana, A. & Delgado, G. (2004).
Biomineralization of carbonates by Halobacillus
trueperi in solid and liquid media with different
salinities. FEMS Microbiol Ecology, 48, 3946.
https://doi.org/10.1016/j.femsec.2003.12.008
Rivadeneyra, M-A., Delgado, G., Soriano, M.,
Ramos-Cormenzana, A. & Delgado, R. (1999).
Biomineralization of carbonates by Marinococcus
albus and Marinococcus halophilus isolated from Salar de Atacame (Chili). Current Microbiology,
39, 5357. https://doi.org/10.1007/PL00006827
Russell, M. J., Ingham, J.K., Zedef, V., Maktav, D.,
Sunar, F., Hall, A. J. & Fallick, A.E. (1999).
Search for signs of ancient life on Mars:
Expectations from hydromagnesite microbialites,
Salda Lake, Turkey. Journal of the Geological
Society, 156, 869888. https://doi.org/10.1144/
gsjgs.156.5.0869
Sánchez-Román, M., Romanek, C.S., FernándezRemolar, D. C., Sánchez-Navas, A., McKenzie,
J. A., Pibernat, R. A. & Vásconcelos, C. (2011).
Aerobic biomineralization of Mg-rich carbonates:
Implications for natural environments. Chemical
Geology, 281, 143150. https://doi.org/10.1016/j.
chemgeo.2010.11.020
Sanz-Montero, M. E., Cabestrero, O. & SánchezRomán, M. (2019). Microbial Mg-rich Carbonates
in an Extreme Alkaline Lake (Las Eras, Central
Spain) Frontiers in Microbiology, 10, 148. https://
doi.org/10.3389/fmicb.2019.00148
Şenel, M., Akyürek, B., Can, N., Aksay, A., Pehlivan,
N., Bulut, V. ve Aydal, N. (1997). 1:100.000
ölçekli Türkiye Jeoloji Haritası, Denizli M23 (J9).
Maden Tetkik ve Arama Genel Müdürlüğü Yayını,
Ankara.
Schmid, H. (1987). Turkeys Salda Lake: A genetic
model for Australias newly discovered magnesite
deposits. Industrial Minerals, 239, 1931.
Schopf, J. W. (2006). Fossil evidence of Archaean
life. Philosophical Transactions of the Royal
Society B 361, 869885. https://doi.org/10.1098/
rstb.2006.1834
Shirokova, L.S., Mavromatis, V., Bundeleva, I.A.,
Pokrovsky, O. S., Bénézeth, P., Gérard, E., Pearce,
C. R. & Oelkers, E. H. (2013). Using Mg Isotopes
to Trace Cyanobacterially Mediated Magnesium
Carbonate Precipitation in Alkaline Lakes. Aquatic
Geochemistry 19, 124. https://doi.org/10.1007/
s10498-012-9174-3
Van Kranendonk, M. J., Philipot, P., Lepot, K.,
Bodorkos, S. & Pirajno, F. (2008) Geological
setting of Earths oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western
Australia. Precambrian Research, 167, 93124.
https://doi.org/10.1016/j.precamres.2008.07.003
Varol, S., Davraz, A., Şener, Ş., Şener, E., Aksever, F.,
Kırkan, B. & Tokgözlü, A. (2021). Assessment of
groundwater quality and usability of Salda Lake
Basin (Burdur/Turkey) and health risk related
to arsenic pollution. Journal of Environmental
Health Science. Engineering, 19, 681706. https://
doi.org/10.1007/s40201-021-00638-5
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. &
Brasier, M. D. (2011). Microfossils of sulphurmetabolizing cells in ~3.4 billion-year-old rocks
of Western Australia. Nature Geosciences, 4, 698
70. https://doi.org/10.1038/ngeo1238
İsmet Elma
Mirza Agha Safarov
Volkan Karabacak
Çağlar Özkaymak
Ökmen Sümer
View as PDF
Abstract: This paper presents the implications regarding earthquake behaviour through detailed fault mapping of the western segment of the Eskişehir Fault in light of paleoseismological observations and analytical age data. The stream beds are offset right-laterally by a few meters to a few hundred meters along the western extension of thefault, indicating that the current movement of the Eskişehir Fault is of right-lateral strike-slip character. Findings obtained from paleoseismological trenches in Erikli (Bilecik) and Kandilli (Eskişehir) villages reveal that recurrent surface ruptures occurred during the Holocene Period on the western segment of the Eskişehir Fault. Consideringthe possibility that the 1956 (M=6.5) Eskişehir earthquake may have originated from the central segments of the fault and transferred stress to adjacent segments, it is assessed that there is a high probability of a future earthquake (M ≈ 6.59) on the western segment, which could potentially produce surface faulting following a seismic quiescence period of approximately 1500 years in this segment.
Eskişehir fault
paleoseismology
seismic hazard
Altunel, E. ve Barka, A. (1998). Eskişehir Fay
Zonunun İnönü ve Sultandere arasında
neotektonik aktivitesi. Türkiye Jeoloji Bülteni,
41(2), 41-52. https://www.jmo.org.tr/resimler/
ekler/1e7637e7b6a9f27_ek.pdf
Altunel, E., Karabacak, V., Yalçıner, C. Ç., Altınok,
S., Tunçel, E. ve Kurban, Y. C. (2015). Eskişehir
Fayının Paleosismolojisi. UDAP G-13-17 proje
sonuç raporu, 126 s.
Ambraseys, N. N. (2009). Earthquakes in
the Mediterranean and Middle East: a
multidisciplinary study of seismicity up to 1900.
Cambridge University Press.
Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis.
Geodinamica Acta, 14(13), 330. https://doi.org/
10.1080/09853111.2001.11432432
Canıtez, N. & Üçer, B. (1967). Computer determinations
for the fault-plane solutions in and near Anatolia.
Tectonophysics, 4, 235-244.
Dirik, E. & Erol, O. (2003). Tectonomorphologic
evolution of Tuzgölü and surrounding area, central
AnatoliaTurkey. Turkish Association of Petroleum
Goelogists Special Publication, 5, 27-46.
Duman, T. Y., Emre, Ö., Özalp, S., Çan, T., Olgun,
Ş., Elmacı, H. ve Şaroğlu, F. (2017). Türkiye ve
Yakın Çevresindeki Diri Faylar ve Özellikleri.
Türkiye Sismotektonik Haritası Açıklama Kitabı,
(Ed. T.Y. Duman). Maden Tetkik ve Arama Genel
Müdürlüğü Özel Yayınlar Serisi-34, AnkaraTürkiye.
Elma, İ., Özçelik, B., Karabacak, V., Özkaymak, Ç.
ve Sümer, Ö. (2024). Eskişehir Fayının İnönüOklubalı Segmentine Ait İlk Paleosismolojik
Bulgular. Türk Deprem Araştırma Dergisi, 6(2),
349-368. https://doi.org/10.46464/tdad.1465558
Elma, İ., Safarov, M. A., Karabacak, V., Özkaymak,
Ç. ve Sümer, Ö. (2025). Eskişehir fayının Uzun
Dönem Kayma Hızı ve Paleosismolojisi. 77.
Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı,
14-18 Nisan 2025, MTA, Ankara.
Emre, Ö., Duman, T.Y. ve Özalp, S. (2011). 1:250.000
Ölçekli Türkiye Diri Fay Haritası Serisi, Eskişehir
(NJ 36-1) Paftası, Seri No: 15.Maden Tetkik ve
Arama Genel Müdürlüğü, Ankara-Türkiye.
Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun,
Ş. ve Şaroğlu F. (2013). 1/250.000 ölçekli Türkiye
Diri Fay Haritası. Maden Tetkik ve Arama Genel
Müdürlüğü Özel Yayınlar Serisi, Ankara, Türkiye.
Emre, Ö., Duman, T.Y., Özalp, S., Şaroğlu, F., Olgun, Ş.,
Elmacı, H. & Çan, T. (2018). Active Fault Database
of Turkey. Bulletin of Earthquake Engineering,
16, 32293275 https://doi.org/10.1007/s10518-
016-0041-2.
Ergin, K. Güçlü, U. ve Uz, Z. (1967). Türkiye ve
Civarının Deprem Kataloğu Milattan Sonra 11-
1964. İTÜ Maden Fakültesi Arz Fiziği Enstitüsü
Yayınları, No:24, İstanbul, Türkiye
Gözler, M. Z., Cevher, F. ve Küçükayman, A. (1985).
Eskişehir civarının jeolojisi ve sıcak su kaynakları.
Türkiye Jeoloji Kurumu Bülteni, 103-104, 39-54.
https://dergi.mta.gov.tr/dosyalar/images/mtadergi/
makaleler/tr/20150701102227_509_22794d06.
pdf
Heidbach, O., Custodio, S., Kingdon, A., Mariucci,
M.T., Montone, P., Müller, B., Pierdominici, S.,
Rajabi, M., Reinecker, J., Reiter, K., Tingay, M.,
Williams, J. & Ziegler, M. (2016). Stress Map
of the Mediterranean and Central Europe 2016.
GFZ Data Services, https://doi.org/10.5880/
WSM.Europe2016
Karabacak, V., Özkaymak, Ç. ve Sümer, Ö. (2024).
Eskişehir Fayı ve Dodurga Fayının Paleosismolojik
Özelliklerinin Belirlenmesi, 1. Gelişme Raporu
(123G010 nolu Proje). TÜBİTAK.
Koçyiğit, A. (2005). The Denizli graben-horst system
and the eastern limit of western Anatolian
continental extension: basin fill, structure,
deformational mode, throw amount and episodic
evolutionary history, SW Turkey. Geodinamica
Acta, 18(3-4), 167-208. https://doi.org/10.3166/
ga.18.167-208.
Kürçer, A., Pekkan, E., Tün, M. & Kahraman, S. (2014).
The first paleoseismic and new neotectonic data
from Eskişehir fault, major Anatolian neotectonic
structure, Central Anatolia, Turkey. Geophysical
Research Abstracts, 16, EGU2014-11937.
McKenzie, D. (1972). Active Tectonics of Mediterranean
Region. Geophysical Journal International,
30(2), 109-185. https://doi.org/10.1111/j.1365-
246X.1972.tb02351.x
Ocakoğlu, F., (2007). A re-evaluation of the Eskişehir
Fault Zone as a recent extensional structure in NW
Turkey. Journal of Asian Earth Science, 31, 91-
103.
Ocakoğlu, F. & Açıkalın, S. (2010). Field evidences
of secondary surface ruptures occurred during
the 20 February 1956 Eskişehir earthquake in the
NW Anatolia. Journal of Earth System Science,
119(6), 841-851. https://doi.org/10.1007/s12040-
010-0057-y
Ocakoğlu, F., Açıkalın, S., Gökçeoğlu, C., Karabacak,
V. & Cherkinsky, A. (2009). A multistory gigantic
subaerial debris flow in an active fault scarp in
NW Anatolia, Turkey: anatomy, mechanism and
timing. The Holocene, 19(6), 955-965. https://doi.
org/10.1177/0959683609336566
Ocakoğlu F., Açıkalın S., Gökçeoğlu, C., Nefeslioğlu,
H. A. & Sönmez, H. (2007). Back-analysis of the
source of the 1956 Eskisehir Earthquake using
attenuation equation and damage data. Bulletin
of Engineering Geology and the Environment,
66, 353-360. https://doi.org/10.1007/s10064-006-
0066-x
Ocakoğlu, F., Altunel, E. ve Yalçıner, C. Ç. (2005).
Eskişehir bölgesinin neotektonik dönemdeki
tektono-stratigrafik ve sedimantolojik gelişimi,
Eskişehir, Türkiye, Proje Final Raporu.
Osmangazi Üniversitesi Bilimsel Araştırma
Projeleri Komisyonu (in Turkish).
Öcal, N. (1959). 20 Şubat 1956 Eskişehir Zelzelesinin
Makro ve Mikrosismik Etüdü. İstanbul, Turkey.
İTÜ Sismoloji Enstitüsü (in Turkish).
Özsayın, E. & Dirik, K., (2007). Quaternary Activity of
the Cihanbeyli and Yeniceoba Fault Zones: İnönüEskişehir Fault System, Central Anatolia. Turkish
Journal of Earth Sciences, 16(4), 471-492.
Pınar, N. ve Lahn, E. (1952). Türkiye Depremleri İzahlı
Kataloğu. Bayındırlık Bakanlığı, Yapı ve İmar
İşleri Reisliği, 36, No:6, Ankara, Türkiye.
Ramsey, B. C. (2009). Bayesian analysis of radiocarbon
dates. Radiocarbon, 51(1), 337-360.
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A.,
Blackwell, P.G., Ramsey, B.C., Butzin, M., Cheng,
H., Edwards, R.L., Friedrich, M., Grootes, P.M.,
Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg,
A.G., Hughen, K.A., Kromer, B., Manning, S.W.,
Muscheller, R., Palmer, J.G., Pearson, C., van der
Plicht, J., Reimer, R.W., Richards, D.A., Scott,
E.M., Southon, J.R., Turney, C.S.M., Wacker, L.,
Adolphi, F., Büntgen, U., Capano, M., Fahrni,
S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler,
P., Kudsk, S., Miyake, F., Olsen, J., Reining,
F., Sakamoto, M., Sookdeo, A. & Talamo, S.
(2020). The IntCal20 Northern Hemisphere
Radiocarbon Age Calibration Curve (055 cal
kBP). Radiocarbon, 62(4),725-757. https://doi.
org/10.1017/RDC.2020.41.
Selçuk, A. S. & Gökten, E. (2012). Neotectonic
characteristics of the İnönü-Eskişehir Fault
System in the Kaymaz (Eskişehir) Region:
influence on the development of the MahmudiyeÇifteler-Emirdağ Basin. Turkish Journal of Earth
Sciences, 21(4), 521-545.
Seyitoğlu, G., Esat, K., Temel, A. & Telsiz, S. (2010).
Determination of main strand of a strike-slip fault
by using subsidiary structures: Eskişehir Fault
Zone as a case study. In Tectonic Crossroads:
Evolving Orogens of Eurasia-Africa-Arabia,
Abstracts with Programs (8-1). Ankara, Turkey:
METU, p. 38.
Seyitoğlu, G., Ecevitoğlu, G.B., Kaypak, B., Güney, Y.,
Tün, M., Esat, K., Avdan, U., Temel, A., Çabuk, A.,
Telsiz, S. & Uyar Aldaş, G. G. (2015). Determining
the main strand of the Eskişehir strike-slip fault
zone using subsidiary structures and seismicity:
a hypothesis tested by seismic reflection studies.
Turkish Journal of Earth Sciences, 24(1), 1-20.
https://doi.org/10.3906/yer-1406-5
Soysal, H., Sipahioğlu, S., Kolçak, D. ve Altınok, Y.
(1981). Türkiye ve Çevresinin Tarihsel Deprem
Kataloğu (MÖ 2100 - MS 1900), (Proje No:
TBGA-341). TÜBİTAK.
Şaroğlu, F., Emre, Ö. ve Boray, A., (1987). Türkiyenin
Diri Fayları ve Depremsellikleri (Rapor no: 8174).
MTA derleme rapor. Ankara
Şaroğlu, F., Emre, Ö., Doğan, A. ve Yıldırım, C.
Ç. (2005). Eskişehir Fay Zonu ve Deprem
Potansiyeli. Eskişehir Fay Zonu ve İlişkili
Sistemlerin Depremselliği Çalıştayı, Osmangazİ Üniversitesi, 28-30 Nisan 2005, Eskişehir, Bildiri
Özleri Kitapçığı.
Şengör, A. M. C., Görür, N. & Şaroglu, F. (1985).
Strike-Slip Faulting and Related Basin Formation
in Zones of Tectonic Escape: Turkey as a case
Study: Strike-Slip Deformation, Basin Formation,
and Sedimentation. In Biddle, K. T., ChristieBlick, N. (Eds.), Strike-Slip Deformation, Basin
Formation, and Sedimentation, Society of
Economic Paleontologists and Mineralogists, 37,
227-264. https://doi.org/10.2110/pec.85.37.0211
Şengör, A. M. C., Tüysüz, O., İmren, C., Sakinç, M.,
Eyidoğan H., Görür, N., Le Pichon, X. & Rangin,
C. (2005). The North Anatolian fault: A new look.
Annual Review of Earth and Planetary Sciences,
33, 37-112. https://doi.org/10.1146/annurev.
earth.32.101802.120415
Tün, M., Avdan, U., Kaplan, O., Güney, Y., Çabuk,
A., Kaypak, B., Uyar Aldaş, G., Ecevitoğlu, B.,
Esat, K. & Seyitoğlu, G. (2010). A new look to the
Eskişehir Fault. Seismic Interpretation Session 2,
No: 43. 19th International Geophysical Congress
& Exhibition, Ankara, Turkey.
Yaltırak, C. (2002). Tectonic evolution of the Marmara
Sea and its surroundings, Marine Geology, 190,
493-529.
Yaltırak, C., Alpar, B. & Yüce, H. (1998). Tectonic
elements controlling the evolution of the Gulf
of Saros (northeastern Aegean Sea, Turkey).
Tectonophysics, 300, 227-248.
Yaltırak, C., Mehmet, S., Tapırdamaz, C., Ocakoğlu,
F., Demiroğlu, M., Özsayın, E. ve Açıkalın, S.
(2010), Batı Anadolu ve Egede Miyosen tektonik
bulmacasının kayıp parçası Trakya Eskişehir
Fay Zonu TEFZ. 63. Türkiye Jeoloji Kurultayı,
Ankara, Turkey.
Wesnousky, S. G., (2008). Displacement and
geometrical characteristics of earthquake surface
ruptures: Issues and implications for seismichazard analysis and the process of eathquake
rüptüre. Bulletin of the Seismological Society of
America, 98(4), 1609-1632.
Wells, D. L. & Coppersmith, K. J. (1994). New
empirical relationships among magnitude, rupture
length, rupture width, rupture area, and surface
displacement, Bulletin of the Seismological
Society of America, 84(4), 974-1002.
İsmail Erdem Kizilgöz
Çiğdem Şahin Demir
Ali Uçurum
Nazmi Otlu
Ahmet Efe
Ryan Mathur
View as PDF
Abstract: Gölcük (Koyulhisar-Sivas) Cu (Ag) mineralisation is hosted by Eocene basalt and andesite and pyroclastics with volcanic-volcano-sedimentary rocks. Ore minerals are bornite, chalcopyrite, covellite, chalcocite, malachite, magnetite and hematite. Alteration in the host rocks includes sericitization, argillisation, carbonation,iddingsitization and epidotization. Gangue minerals are limited to quartz and calcite. According to the analysis results for the drill core samples, 2.97% Cu and 37 g/t Ag grade was determined at an average depth of 9.7 m from the surface. Sulphur isotope values (δ34S ) range from -20.0 to +2.8 in surface samples and from -6.3 to +0.6 incore samples. Copper isotope values (δ65Cu ) range from -0.86 to +1.38 in surface samples and -1.41 to +2.69 incore samples. For Gölcük Cu (Ag) mineralization, ore mineral paragenesis, alteration mineralogy, deposit type, andisotope geochemistry values suggest that it may be a Manto-type deposit.
Gölcük Cu (±Ag)
Manto-type Mineralisation
S-Cu Isotopes
Abolipour, M., Rastad, E. & Rashidnejad Omran,
N. (2015). Manto-type copper mineralization
in pyrobitumen-bearing porphyritic andesite,
Koshkoiye district of Rafsanjan, DehajSardoiye subzone. Scientific Quarterly Journal
of Geosciences, 24 (95), 123144. https://doi.
org/10.22071/gsj.2015.42418
Adams, A. E., MacKenzie, S. & Guilford, C.
(1984) Atlas Of Sedimentary Rocks Under The
Microscope. John Wiley & Sons, New York, 104.
Atakay, E. (2009) Çorum güney batısındaki volkanik
kayaçların jeolojik ve petrolojik özellikleri ve
Alacahöyük kazısında arkeolojik çalışmalar,
[Yayımlanmamış doktora tezi]. Ankara
Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 194
s.
Augustithis, S. (1995). Atlas Of The Textural Patterns
Of Ore Minerals and Metallogenic Processes.
Walter de Gruyter & Co, Berlin, 659 p.
Barker, A. J., (2014). A Key for Identification of Rockforming Minerals in Thin-Section. CRC Press,
Boca Baton, 70.
Benavides, J., Kyser, T. K., Clark, A. H., Oates, C.,
Zamora, R., Tarnovschi, R. & Castillo, B., (2007).
The Mantoverde iron oxide-copper-gold district,
III Región, Chile: The role of regionally-derived,
non-magmatic fluid contributions to chalcopyrite
mineralization. Economic Geology, 102, 415440.
Boric, R., Holmgren, C., Wilson, N. S. F. & Zentilli, M.
(2002) The geology of the El Soldado manto type
Cu (Ag) deposit, central Chile. In Porter, T. M.
(ed.) Hydrothermal iron oxide copper-gold and
related deposits: A global perspective (p. 1-22).
Vol. 2. PGC Publications, Adelaide.
Boveiri, M., Rstad, E., Kojima, S. & Rashidnejad,
N. (2013). Volcanic redbed-type copper
mineralization in the Lower Cretaceous volcanosedimentary sequence of the Keshtmahaki
deposit, southern Sanandaj-Sirjan Zone, Iran.
Neues Jahrbuch für Mineralogie Abhandlungen,
190(2), 107 121. https://doi.org/10.1127/0077-
7757/2013/0236
Boztuğ, D. (2008). Petrogenesis of the Kösedağ Pluton,
Suşehri-NE Sivas, East-Central Pontides, Turkey.
Turkish Journal of Earth Sciences, 17, 241-262.
Boztuğ D. & Jonckheere, R. C. (2007). Apatite fissiontrack data from central-Anatolian granitoids
(Turkey): constraints on Neo-Tethyan closure.
Tectonics, 26, Article TC3011. https://doi.
org/10.1029/2006TC001988
Braxton, D. & Mathur, R. (2011) Exploration
applications of copper isotopes in the supergene
environment: a case study of the Bayugo Porphyry
Copper-Gold Deposit, Southern Philippines.
Economic Geology, 106(8), 14471463. https://
doi.org/10.2113/econgeo.106.8.1447
Braxton, D. & Mathur R. (2014) Copper isotopic
vectors to supergene enrichment: leaches cap
iostopic footprint of the Quellaveco porphyry
copper deposit, southern Peru. In SEG conference
proceedings: SEG 2014: Building exploration
capability for the 21st century
Cabral, A. R. & Beaudoin, G. (2007) Volcanic red-bed
copper mineralization related to submarine basalt
alteration Mont Alexandre Quebec Appalachians
Canada. Mineral Deposita, 42, 901912.
Cai, Y. T., Ni, P., Wang, G. G., Pan, J. Y., Zhu, X. T.,
Chen, H. & Ding, J. Y. (2016), Fluid inclusion and
H-OSPb isotopic evidence for the Dongxiang
Manto-type copper deposit, South China. Journal
of Geochemical Exploration, 171, 7182. https://
doi.org/10.1016/j.gexplo.2016.01.019
Camus, F., (1980). Posible modelo genético para los
yacimientos de cobre del distrito minero punta del
cobre. Revista Geológica de Chile, 11, 51-76.
Carrillo-Rosúa, F. J., Molares-Ruano, S., Morata, D.,
Boyce, A. J., Fallick, A. E., Belmar, M., Munizaga,
F. & Fenoll Hach-Alí, P. (2006). Sulfur isotope
studies in Chilean Manto-type Cu-(Ag) deposits
in the coastal range of central Chile (´area de La
Serena y Melipilla) v. 2. 199202.
Carrillo-Rosúa, J., Boyce, A., Morales-Ruano, S.,
Morata, D., Roberts, S., Munizaga, F. & MorenoRodríguez, V. (2014). Extremely negative and
inhomogeneous sulfur isotope signatures in
Cretaceous Chilean manto-type Cu-(Ag) deposits,
Coastal Range of central Chile. Ore Geology
Reviews, 56, 324. https://doi.org/10.1016/j.
oregeorev.2013.06.013
Carter, W. D. (1961). Yacimientos de Cobre Tipo
Manto, su distribución en franjas mineralizadas.
Provincia de Aconcagua. Boletín Nº 10, Instituto
de Investigaciones Geológicas, Chile, 30. Chem.
Geol. 197, 161176.
Craig, J. R. & Vaughan, D. J. (1994). Ore Microscopy
& Ore Petrography. John Wiley & Sons. Inc.,
Canada, 434 p.
Deer, W. A., Howie, R. A. & Zussman, J. (1992). An
Introduction to The Rock Forming Minerals 2nd
Edition. Logman Scientific & Technical, 696 p.
Delvigne, J. E. (1998). Atlas of Micromorphology of
Mineral Alteration and Weathering: The Canadian
Mineralogist, SP# 3, Mineralogical Association of
Canada, Canada, 495 p.
Erdoğan, B., Akay, E. & Uğur, M.S. (1996). Geology of
the Yozgat Region and Evolution of the Collisional
Çankırı Basin. International Geology Review, 38,
788-806.
Eyuboglu, Y., Santhos, M., Dudas, F. O., Akaryalı, E.,
Chung, S. L., Akdağ, K. & Bektaş, O. (2013). The
nature of transition from adakitic ton on-adakitic
magmatism in slab window setting: A synthesis
from the eastern Pontides, NE Turkey. Geoscience
Frontiers, 4(4), 353-375. https://doi.org/10.1016/j.
gsf.2012.10.001
Fontboté, L. (1990). Stratabound Ore Deposits in the
Andes: A Review and a Classification According
to their Geotectonic Setting. In Fonbote, L.,
Amstutz, G.C., Cardozo, M., Cedillo, E. & Frutos,
J. (eds.), Stratabound ore deposits in the Andes,
SP#8 Society for Geology Applied to Mineral
Deposits, 79-110.
Geneli, F. (2011). Petrology of Eocene Volcanism
in Central Anatolia: Implications for the Early
Tertiary Evolution of the Central Anatolian
Crystalline Complex [Ph.D. Dissertation]. METU
Graduate School of Natural and Apllied Sciences,
252 p.
Giesemann, A., Jager, H. A., Norman, A. L., Jrouse, H.
L. & Brand W. A. (1994). Online sulphur-isotope
determination using an elemental analzer coupled
to a mass spectrometer. Analytical Chemistry,
66(18), 2816-2819. https://doi.org/10.1021/
ac00090a005
Göncüoğlu, M. C. & Türeli, T. K. (1994). Alpine
collisional-type granitoids from western Central
Anatolian Crystalline Complex. Journal of
Kocaeli University, 1, 39-46.
Göncüoğlu, M. C., Erler, A., Toprak, V., Olgun, E.,
Yalınız, K., Kuşcu, İ., Köksal, S. & Dirik, K.,
(1993). Orta Anadolu Masifinin Orta Bölümünün
Jeolojisi, Bölüm III, Orta Kızılırmak Tersiyer
Baseninin Jeolojik Evrimi (Proje Rapor No:
3313). TPAO, 104 s.
Göncüoğlu, M. C., Dirik, K., Erler, A. & Yalınız, K.
(1994). Orta Anadolu Masifinin Doğu Bölümünün
Jeolojisi Bölüm IV, Orta Anadolu Masifinin Sivas
Baseni ile İlişkisi (Proje Rapor no: 3535). TPAO,
135 s.
Hoefs, J. (2021). Stable Isotope Geochemistry, 9th
Edition: Springer, 528 p.
Ixer, R. A. (1990). Atlas Of Opaque and Ore Minerals
In Their Associations. Van Nostrand Reinhold.,
New York, 208 p.
Jambor, J. L. & Vaughan, D. J. (1990). Mineralogical
Association of Canada: Advanced Microscopic
Studies of Ore Minerals, Short Course Handbook,
Ottowa, Vol.17, 426 p.
Kalkancı, Ş. (1974). Etude geologique et p.trochimique
du sud de la region de Suşlehri: Geochronologie
du massif syenitique de Kösedağ (NE de SivasTurquie) (These de doctorat de 3eme cycle).
LUniversite de Grenoble, 84 p.
Kızılgöz, E. İ. (2019). Gölcük (Koyulhisar-Sivas)
Cu (Ag) Cevherleşmesinin Ana-Eser Element,
Duraylı İzotop (S, Cu) Jeokimyasi ve Sıvı Kapanim
İncelemeleri [Yayımlanmamış yüksek lisans tezi].
S.C.Ü. Fen Bilimleri Enstitüsü, 73 p.
King, B. H. (2013). N143-101 Technical report on the
Golcuk licence, Sivas province, Turkey. Pasinex
Research Limited, Toronto, 101 p.
Kirkham, R. V. (1996). Volcanic redbed copper. In
Eckstrand, O. R., Sinclair, W. D. & Thorpe, R.
I. (eds.). Geology of Canadian mineral deposit
types. Geol. Surv. Canada (Geology of Canada),
8, 241252.
Klohn, E., Holmgren, C. & Ruge, H. (1990). El Soldado,
a stratabound copper deposit associated with
alkaline volcanism in the central Chilean coastal
range. In Fontboté, L., Amstutz, G. C., Cardozo,
M., Cedillo, E. & Frutos, J. (eds), Stratabound
Ore Deposits in Andes._ Special Publication No.
8 of the Society for Geology Applied to Mineral
Deposits, vol 8, (pp: 435-448.). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-
88282-1-33
Kojima, S., Trista-Aguilera, D. & Hayashi, K.İ. (2009).
Genetic Aspects of the Manto-type Copper
Deposits Based on Geochemical Studies of North
Chilean Deposit. Resource Geology, 59(1), 87-98.
Kuşçu, İ. & Erler, A. (1998). Mineralization events in
a collision related setting: The Central Anatolian
Crystalline Complex, Turkey. International
Geological Review, 40, 552565.
Kuşçu, İ., Gençalioğlu-Kuşçu, G., Tosdal, R. M.,
Ullrich, T. & Friedman, R. (2010), Magmatism
in the Southeastern Anatolian orogenic belt:
Transition from arc to post-collisional setting in an
evolving orogen. Geological Society of London,
Special Publication, 340, 437460.
Lefebvre, C., Barnhoorn, A., van Hinsbergen, D. J.
J., Kaymakci, N. & Vissers, R. L. M. (2011).
Late Cretaceous extensional denudation along
a marble detachment fault zone in the Kırşehir
massif near Kaman, Central Turkey. Journal of
Structural Geology, 33(8), 1220-1236. https://doi.
org/10.1016/j.jsg.2011.06.002
Lefebvre, C., Meijers, M. J. M., Kaymakci, N.,
Peynircioğlu, A., Langereis, C.G. & van
Hinsbergen, D. J. J. (2013). Reconstructing the
geometry of central Anatolia during the late
Cretaceous: large-scale Cenozoic rotations and
deformation between the Pontides and Taurides.
Earth Planet. Sci. Lett. 366, 8398. https://doi.
org/10.1016/j.epsl.2013.01.003
Lufkin, J. L. (2012). Ore Mineralogy & Microscopy.
Golden Publisher, CO, USA, 192 p.
MacKenzie, W. S., Donaldson, C. H. & Guilford,
C. (1982). Atlas Of Igneous Rocks And Their
Textures. John Wiley & Sons, New York, 148.
Maghfouri, S., Hosseinzadeh, M.R., Moayyed, M.,
Movahednia, M. & Choulet, F. (2017). Geology,
mineralization and sulfur isotopes geochemistry
of the Mari Cu (Ag) Manto-type deposit, northern
Zanjan, Iran. Ore Geology Reviews, 81, 1022.
https://doi.org/10.1016/j.oregeorev.2016.10.025
Maksaev, V. & Zentilli, M. (2002). Chiliean Stratabound Cu (Ag) Deposits: An Overview: In Porter,
T. M. (ed.), Hydrothermal iron oxide copper-gold
and related deposits: A global perspective, Vol. 2,
(p: 185205). PGC Publications, Adelaide.
Marshall, D., Anglin C.D (Lyn). & Mumin, H. (2004).
Ore Mineral Atlas. GAC, Canada, 112.
Mathur, R. & Zhao, Y. (2023). Copper Isotopes Used
in Mineral Exploration. In D. Huston and J.
Gutzmer (Eds.), Isotopes In Economic Geology,
Metallogenesis and Exploration, Mineral
Resource Reviews, 433-450.
Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson,
M., Phillips, A., Munizaga, F., Maksaev, V.,
Vervoort, J. & Hart, G. (2009). Exploration
Potential of Cu Isotope Fractionation in Porphyry
Copper Deposits. Journal of Geochemical
Exploration, 102(1), 1-6. https://doi.org/10.1016/j.
gexplo.2008.09.004
Mathur R., Falck, H., Belogub E., Milton J., Wilson M.,
Rose A. & Powell, W. (2018). Origins of chalcocite defined by copper isotope values. Geofluids, Article
854829. https://doi.org/10.1155/2018/5854829
Megaw, P. K. M., Ruiz, J. & Titley, S. R. (1988). Hightemperature, carbonate-hosted AgPbZn (Cu)
deposits of northern Mexico. Economic Geology,
83(8), 18561885. https://doi.org/10.2113/
gsecongeo.83.8.1856
Melgarejo, J. C. & Martin, R. B. (2011). Atlas Of NonSilicate Minerals In Thin Section. The Canadian
Mineralogist SP 7, Canada, 522 p.
Moix, P., Beccaletto, L., Kozur, H. W., Hochard, C.,
Rosselet, F. & Stampfli, G. M. (2008). A new
classification of the Turkish terranes and sutures
and its implication for the paleotectonic history of
the region. Tectonophysics, 451, 739.
Movahednia, M., Maghfouri, S., Fazli, N., Rastad, E.,
& Ghaderi, M., (2022). Metallogeny of Mantotype stratabound Cu-(Ag) mineralization in Iran:
Relationship with NeoTethyan evolution and
implications for future exploration. Ore Geology
Reviews, 149, Article 105064. https://doi.
org/10.1016/j.oregeorev.2022.105064
Munizaga, F. & Zentilli, M. (1994) Sulphur isotope
characterization of stratabound copper deposits
in Chile Comucicaciones, Universidad de Chile,
Santiago, 45, 127134.
Oliveros, V., Feraud, G., Aguirre, L., Ramirez, L.,
Fornary, M. & Palacios, C. (2008). Detailed
40Ar/39Ar dating of geologic events associated
with the Mantos Blancos copper deposit, northern
Chile. Mineralium Deposita, 43, 281293.
Paar, W.H., de Brodtkorb, M. K., Putz, H.& Martin,
R. F. (2016) Atlas Of Ore Minerals: Focus On
Epithemal Deposits Of Argentina. The Canadian
Mineralogist, SP#11, Mineralogical Association
of Canada, Canada, 402.
Palacios, C. (1986). Subvolcanic Copper deposits in the
Coastal Range of Northern Chile. Zentralblatt für
Geologie und Paläontologie, Teil I, 1985, H.9/10,
Stuttgart, 1605-1615.
Picot, P. & Johan, Z. (1982). Atlas Of Ore Minerals.
Elsevier, Amsterdam, 458.
Pollard, P. J. (2006), An intrusion -related origin for
Cu-Au mineralization in iron oxide-copper-gold
(IOCG) provinces. Mineralium Deposita, 41, 179-
187. https://doi.org/10.1007/s00126-006-0054-x
Pracejus, B. (2015). The Ore Minerals Under The
Microscope An Optical Guide, 2ndEdition. Atlases
In Geoscience 3, Elsevier, 1098 p.
Ramdohr, P. (1980). The Ore Minerals and Their
Intergrowths, International Series of Monographs
on Earth Sciences. V. 35: volume 1+2, Pergamon
Press., Germany, 1207 p.
Ruiz, C. & Peebles, F. (1988). Geología, distribución
y génesis de los yacimientos metalíferos chilenos.
Editorial Universitaria, Santiago, Chile, 305.
Ruiz, C., Aguirre, L., Corvalan, J., Klohn, C., Klohn,
E. & Levi, B. (1965). Geología y yacimientos
metalíferos de Chile. Instituto de Investigaciones
Geológicas , Santiago , 305 p.
Salehi, L. & Rasa, I. (2016). Sulfur Isotopic
Characteristics of the Chalcocite in Madan Bozorg
Cu Deposits, Abbas Abad, NE Iran. 34th National
and the 2nd International Geosciences Congress,
Tehran, Iran.
Sato, T. (1984). Manto ype copper deposits in Chile:
a review. Bulletin of the Geological Survey of
Japan, 35, 565-582.
Shen, P., Pan, H., Li, Z., Sun, J., Shen, Y., Li, C.,
Feng, H. & Cao, C, (2020). A Manto-type Cu
deposit in the Central Asian Orogenic Belt: The
Hongguleleng example (Xinjiang, China). Ore
Geology Reviews, 124, Article 103656. https://doi.
org/10.1016/j.oregeorev.2020.103656
Sillitoe, R. H. (1992). Gold and copper Metallogeny
of the central Andes: Past, present and future
exploration objectives. Economic Geology, 87(8),
2205-2216.
Smyth, C. P. (2013). Golcuk Property Exploration
Status Report as of 17 August, 2013. Pasinex
Resources Limited, 41 s.
Smyth, C. P. (2014). Golcuk Property Exploration
Status Report as of 31 December, 2013. Pasinex
Resources Limited, 52 s.
Sun, J., Shen, P., Pan, H., Li, C., Ma, G. & Li, W. (2021),
Geochemistry and genesis of the Hongguleleng
Manto-type Cu deposit, West Junggar, Xinjiang,
China. Journal of Asian Earth Sciences: X,
5, Article 100057. https://doi.org/10.1016/j.
jaesx.2021.100057
Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan
evolution of Turkey: a plate tectonic approach.
Tectonophysics, 75, 181241.
Taylor, R. (2009). Ore Textures: Recognition And
Interpretation. Springer, Berlin, 288 p.
Terlemez, İ. ve Yılmaz, A. (1980). Ünye-OrduReşadiye-Koyulhisar arasının stratigrafisi:
Türkiye Jeoloji Kurumu Bülteni, 23(2), 179-
191. https://www.jmo.org.tr/resimler/ekler/
eacf7a18a32812d_ek.pdf .
Thompson, A. J. B. & Thompson, J. F. H. (1996) Atlas
of Alteration: A Field And Petrographic Guide To
Hydrothermal Alteration Minerals. GAC, Canada,
119.
Trist´a-Aguilera, D., Barra, F., Ruiz, J., Morata, D.,
Talavera-Mendoza, O., Kojima, S., Ferraris, F.
(2006). ReOs isotope systematics for the LinceEstefanía deposit: Constraints on the timing and
source of copper mineralization in a stratabound
copper deposit, Coastal Cordillera of northern
Chile. Mineralium Deposita, 41, 99105. https://
doi.org/10.1007/s00126-006-0048-8
Uçurum, A. (2000). Listwaenites in Turkey:
Perspectives on Formation and Precious Metal
Concentration with Reference to Occurences in
East-Central Anatolia. Ofioliti, 25(1), 15-29.
Uçurum, A. & Larson, L.T. (1999). Geology, BasePrecious Metal Concentration and Genesis of the
Silica-Carbonate Alteration (Listwaenites) from
Late Cretaceous Ophiolitic Melanges at Central
East Turkey. Chemie Der Erde-Geochemistry, 59,
77-104.
Ucurum, A., Şahin Demir C., Efe, A., Hofstra, A. H.,
Arehart, G. B., Pernicka, E., Molnar, F., Bakker, R.
J. (2017). Sr, S, O, and H Isotopic Compositions
of Celestine Deposits from the Tertiary Sivas
Basin, Turkey. SEG-2017, September 17-20,
2017, Beijing, China, Abstract.
Uysal, Ş., Bedi, Y., Kurt, İ. ve Kılınç, F. (1995).
Koyulhisar (Sivas) dolayının jeolojisi
(Yayınlanmamış Rapor No: 9838). MTA, 120 s.
Vila, T. Lindsay, N. & Zamora, R. (1996). Geology of
the Manto Verde copper deposit, northern Chile:
A specularite-rich hydrothermal tectonic breccia
related to the Atacama Fault Zone. In Camus, F.,
Sillitoe, R. M. & Petersen, R. (Eds.), Andean copper
Deposits: New Discoveries, Mineralization,
Styles and Metallogeny. Special Publications of
the Society of Economic Geologists. https://doi.
org/10.5382/SP.05.11
Westra, G., (1988). La importancia del metamorfismo
de carga en la formación de yacimientos de cobre
de tipo manto: preprint, Keynote Address, V Cong.
Geol. Chileno, Santiago, 18.
Wilson, N. S. F. & Zentilli, M. (1999). The role of
organic matter in the genesis of the El Soldado
volcanic-hosted manto-type Cu deposit, Chile.
Economic Geology, 94(7), 11151136. https://doi.
org/10.2113/gsecongeo.94.7.1115
Wilson, N. S. F., Zentilli, M. & Spiro, B. (2003a). A
sulfur, carbon, oxygen, and strontium isotope
study of the volcanic-hosted El Soldado mantotype copper district, Chile: The essential role
of bacteria and petroleum. Economic Geology,
98(1), 163174. https://doi.org/10.2113/
gsecongeo.98.1.163
Wilson, N. S. F., Zentilli, M., Reynolds, P. H. & Boric,
R. (2003b). Age of mineralization by basinal
fluids at the El Soldado manto-type Cu deposit,
Chile: 40Ar/39Ar Geochronology of K-feldspar.
Chemical Geology, 197(1-4), 161-176. https://doi.
org/10.1016/S0009-2541(02)00350-9
Wilton, D. H. C. & Sinclair, A. J. (1988). Ore geology
and genesis of a stratabound disseminated copper
deposit at Sustut, British Columbia. Economic
Geology, 83, 3045. https://doi.org/10.2113/
gsecongeo.83.1.30
Yılmaz, A. (1985). Yukarı Kelkit Çayı ile Munzur
Dağları arasının temel jeoloji özellikleri ve
yapısal evrimi. Türkiye Jeoloji Kurumu Bülteni,
28(2), 79-82. https://www.jmo.org.tr/resimler/
ekler/9490244a7cabc1f_ek.pdf
Yiğit, Ö. (2006). Gold in Turkey-a missing link in
Tethyan metallogeny. Ore Geology Reviews,
28(2), 147179. https://doi.org/10.1016/j.
oregeorev.2005.04.003
Yiğit, Ö. (2009). Mineral Deposits of Turkey in
Relation to Tethyan Metallogeny: Implications
for Future Mineral Exploration. Economic
Geology, 104(1), 1951. https://doi.org/10.2113/
gsecongeo.104.1.19
Zhao, L., Han, J., Lu, W., Liang, P. & Jourdan, F. (2020).
The Middle Permian Hongshanliang Manto-type
copper deposit in the East Tianshan: Constraints
from geology, geochronology, fluid inclusions
and HOS isotopes. Ore Geology Reviews,
124, Article 103601. https://doi.org/10.1016/j.
oregeorev.2020.103601
Muhammed Zeynel Öztürk
Mesut Şimşek
Mustafa Utlu
View as PDF
Abstract: Since the high-altitude regions of Türkiye`s mountainous areas were subjected to glaciation during the Quaternary glacial periods, glacial landforms are prominently developed and well-preserved in these landscapes.These landforms provide valuable insights in the paleoglacial conditions and environmental dynamics of pastglaciation events in mountainous terrains. This study investigates the morphometric characteristics of cirques and glacio-karstic dolines on Mount Geyik, one of the key karstic plateaus within the Central Taurus Mountains. Basedon the morphometric analyses, the spatial distribution of the paleo-Equilibrium Line Altitude (pELA) during the Quaternary glaciations was systematically reconstructed and interpreted. Mapping efforts identified 142 cirques and31 glacio-karstic dolines within the study area. Using the floor altitudes of these landforms, the average pELA forthe region was estimated at approximately 2185 m. However, this value does not represent a uniform level; rather,it varies as a function of several factors, including massif orientation, elevation, proximity to the sea, and total precipitation. Specifically, the pELA increases to ~2400 m in the north-facing sectors of the high karstic plateau, while it decreases to 2000 m / lower in the western and southwestern sections. These findings reveal a vertical difference of up to 630 m between the pELA levels of mountainous regions along the Black Sea and Mediterranean Sea coasts. Regarding cirque morphometry, the cirques of the Eastern Black Sea Mountains exhibit surface are as approximately twice as large as those of Mount Geyik, and display depths exceeding Mount Geyik`s cirques by anaverage of 75 m. Overall, the results underscore the significant influence of topographic and climatic variables on pELA variability and cirque morphometry across Türkiye`s coastal mountain ranges.
Glacial cirque
glacio-karstic doline
pELA
Mount Geyik
Quaternary glaciation
Altınay, O., Sarıkaya, M. A. & Çiner, A. (2020).
Late-glacial to Holocene glaciers in the Turkish
mountains. Mediterranean Geoscience Reviews,
2, 119133. https://doi.org/10.1007/s42990-020-
00024-7
Arpat, E. ve Özgül., N. (1972). Orta Toroslarda Geyik
Dağı yöresinde kaya buzulları. Maden Tetkik
Arama Dergisi, 78, 30-35.
Barr, I. D. & Spagnolo, M. (2015). Glacial cirques
as palaeoenvironmental indicators: Their
potential and limitations. Earth-Science
Reviews, 151, 4878. https://doi.org/10.1016/J.
EARSCIREV.2015.10.004
Bayer Altın, T. (2003). Aladağlar üzerinde (Ecemiş
Çayı Aklanı) buzul ve karst jeomorfolojisi
[Doktora Tezi]. İstanbul Üniversitesi Sosyal
Bilimler Enstitüsü. İstanbul.
Benn, D. I. & Lehmkuhl, F. (2000). Mass balance
and equilibrium-line altitudes of glaciers in
high-mountain environments. Quaternary
International, 65, 15-29. https://doi.org/10.1016/
S1040-6182(99)00034-8
Benn, D. & Evans, D. J. (2014). Glaciers and glaciation.
Routledge.
Bennet, M. & Glasser, N. (2009). Glacial Geology, Ice
Sheets and Landforms. UK, Wiley-Blackwell.
Braithwaite, R. J. & Raper, S. C. B. (2009).
Estimating equilibrium-line altitude (ELA)
from glacier inventory data. Annals of
Glaciology, 50(53), 127-132. https://doi.
org/10.3189/172756410790595930
Çılğın, Z. (2020). 3D Surface Modeling of Late
Pleistocene Glaciers in the Munzur Mountains
(Eastern Turkey) and its paleoclimatic
implications. Turkish Journal of Earth Sciences
29: 714-732. https://doi.org/10.3906/yer-1905-18
Çılğın, Z. & Bayrakdar, C. (2018). Morphometric
characteristics of the glacial cirques on Mount
Dedegöl. Journal of Geography 36: 27-48. https://
doi.org/10.26650/JGEOG411356
Çılğın, Z. & Bayrakdar, C. (2020). Morphometric
characteristcs of the glacial cirques in the Teke
Peninsula, Southwestern Anatolia. Turkish
Geographical Review, 74, 107-121. https://doi.
org/10.17211/tcd.729978
Çılğın, Z., Evans, I.S., Keserci, F., Canpolat,
E. & Bayrakdar, C. (2024). Morphometric
characteristics of glacial cirques and former
glaciers in the Geyik Mountains, Western Taurus,
Türkiye. Geomorphology 467, 1-21. https://doi.
org/10.1016/j.geomorph.2024.109474
Çiner, A, Deynoux, M. & Çörekçioğlu, E. (1999).
Hummocky moraines in the Namaras and Susam
valleys, Central Taurids, SW Turkey. Quaternary
Science Reviews, 18, 4-5, 659-669.
Çiner, A. (2003a). Türkiyenin güncel buzulları ve
geç Kuvaterner buzul çökelleri. Türkiye Jeoloji
Bülteni, 46(1), 55-78. https://dergipark.org.tr/tr/
pub/tjb/issue/28630/590866
Çiner, A. (2003b). Geyikdağda (Orta Toroslar) Geç
Kuavaterner buzullaşmasına ait morenlerin
sedimanter fasiyes analizi ve ortamsal yorumu.
Türkiye Jeoloji Bülteni, 46(1), 35-54. https://
dergipark.org.tr/tr/pub/tjb/issue/28630/590852
Çiner, A. (2004). Turkish glaciers and glacial deposits.
In Ehlers, J. & Gibbard, P.L. (Eds.), Developments
in Quaternary Sciences, Elsevier, Volume 2, Part
1, 419-429
Çiner, A., Sarıkaya, M. A. & Yıldırım, C. (2015). Late
Pleistocene piedmont glaciations in the Eastern
Mediterranean; insights from cosmogenic 36Cl
dating of hummocky moraines in southern Turkey.
Quaternary Science Reviews, 116, 4456. https://
doi.org/10.1016/j.quascirev.2015.03.017
Çiner, A., Sarıkaya, M. A. & Yıldırım, C. (2017).
Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface
exposure dating: moraines vs. rock glaciers.
Quaternary Geochronology, 42, 7688. https://
doi.org/10.1016/j.quageo.2017.07.003
Derbyshire, E. & Peterson, J. A. (1977). Nivation
cirque. Australian Geographer, 13(6), 416-419.
http://dx.doi.org/10.1080/00049187708702721
Evans, I. S. (1977). World-wide variations in the
direction and concentration of cirque and glacier
aspects. Geografiska Annaler: Series A, Physical
Geography, 59(3-4), 151-175.
Evans, I. S., Çılğın, Z., Bayrakdar, C. & Canpolat, E.
(2021). The form, distribution and palaeoclimatic
implications of cirques in southwest Turkey
(Western Taurus). Geomorphology, 391,
Article 107885. https://doi.org/10.1016/J.
GEOMORPH.2021.107885
Evans, I. S. (2006). Geomorphometry. In Goudie, A. S.
(Ed.), Encyclopedia of Geomorphology Volume-1,
435-439.
Evans, I. S. & Cox, N. J. (2015). Size and shape of
glacial cirques: comparative data in specific
geomorphometry. In Jasiewicz J., Zwoliński Zb.,
Mitasova H., Hengl T. (Eds.), Geomorphometry
for Geosciences. Adam Mickiewicz University in
Poznań.
Evans, I. S. & Cox, N. J. (1995). The form of glacial
cirques in the English Lake District, Cumbria.
Zeitschrift für Geomorphologie, 39(2), 175-202.
https://doi.org/10.1127/zfg/39/1995/175
González-Gutiérrez, R. B., Santos-González, J.,
Gómez-Villar, A., Alonso-Herrero, E., Garcíade Celis, A., Cano, M. & Redondo-Vega, J. M.
(2017). Glaciokarst landforms in the Siera de los
Grajos, Babia and Luna natural park (Cantabrian
Mountains, NW Spain). Acta Carsologica, 46(2-
3). https://doi.org/10.3986/ac.v46i2-3.5001
Hashemi, A., Sarıkaya, M. A., Görüm, T., Wilcken, K.
M., Çiner, A., Žebre, M., Stepinik, U. & Yıldırım,
C. (2022). The Namaras rock avalanche: Evidence
of mid-to-late Holocene paraglacial activity
in the Central Taurus Mountains, SW Turkey.
Geomorphology, 408, Article 108261. https://doi.
org/10.1016/j.geomorph.2022.108261
Hughes, P. D. & Woodward, J. C. (2017). Quaternary
Glaciation in the Mediterranean Mountains.
Geological Society, London, Special Publications,
433, 1-23. http://doi.org/10.1144/SP433.14
Hughes, P. D., Gibbard, P. L. & Woodward, J. C.
(2007). Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology,
88(3), 242253. https://doi.org/10.1016/j.
geomorph.2006.11.008
Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino,
C. O., Fraiser, M. L., Koch, Z. J., ... & Dineen,
A. A. (2012). Glacial paradoxes during the late
Paleozoic ice age: Evaluating the equilibrium
line altitude as a control on glaciation. Gondwana
Research, 22(1), 1-19. https://doi.org/10.1016/j.
gr.2011.11.005
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T.,
Kreft, H., Soria-Auza, R. W., Zimmermann, N. E.,
Linder, H. P. Kessler, M. (2021). Climatologies
at high resolution for the earths land surface
areas. EnviDat https://www.doi.org/10.16904/
envidat.228
Keserci, F., Güngör, G., Bozdoğan, M., Canpolat, E.,
Çılğın, Z. ve Bayrakdar, C. (2023). Geyik Dağı
güncel buzulları ve morfometrik özellikleri.
Türk Coğrafya Dergisi, 84, 199-217. https://doi.
org/10.17211/tcd.1395806
Křížek, M. & Mida, P. (2013). The influence of
aspect and altitude on the size, shape and spatial
distribution of glacial cirques in the High Tatras
(Slovakia, Poland). Geomorphology, 198, 57-68.
https://doi.org/10.1016/j.geomorph.2013.05.012
Meierding, T. C. (1982). Late Pleistocene glacial
equilibrium-line altitudes in the Colorado Front
Range: a comparison of methods. Quaternary
research, 18(3), 289-310.
Messerli, B. (1967). Die Eiszeitliche und die
Gegenwärtige Vergletscherung in Mittelmeerraum.
Geographica Helvetica, 22, 105-228.
Mîndrescu, M., Evans, I. S. & Cox, N. J. (2010).
Climatic implications of cirque distribution in the
Romanian Carpathians: palaeowind directions
during glacial periods. Journal of Quaternary
Science, 25(6), 875-888. https://doi.org/10.1002/
jqs.1363
Monod, O. (1977). Recherches geologiques dans le
Taurus occidental au sud de Beyşehir (Turquie).
These Universite Paris Sud, Orsay, 442 pp.
Nazik, L., Poyraz, M. & Karabıyıkoğlu, M. (2019).
Karstic Landscapes and Landforms in Turkey. In
Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (Eds.),
Landscapes and Landforms of Turkey. Springer
International Publishing, Switzerland.
Oien, R. P, Rea, B. R, Spagnolo, M., Barr, I. D. &
Bingham, R. G. (2022). Testing the areaaltitude
balance ratio (AABR) and accumulationarea
ratio (AAR) methods of calculating glacier
equilibrium-line altitudes. Journal of Glaciology,
68(268). 357-368. https://doi.org/10.1017/
jog.2021.100
Öztürk M. Z., Şimşek M., Şener M. F. & Utlu M.
(2018). GIS based analysis of doline density on
Taurus Mountains, Turkey. Environmental Earth
Sciences, 77, Article 536. https://doi.org/10.1007/
s12665-018-7717-7
Öztürk, M. Z., Şimşek, M. ve Utlu, M. (2021).
Anadolunun sirk gölleri. Türk Coğrafya Dergisi
(78), 49-60. https://doi.org/10.17211/tcd.998089
Öztürk, M. Z. & Taşoğlu, E. (2024). Alpine periglacial
zones in Anatolia: spatial distribution and main
characteristics. Mediterranean Geoscience
Reviews, https://doi.org/10.1007/s42990-024-
00115-9
Porter, S. C. (2000). Snowline depression in the
tropics during the Last Glaciation. Quaternary
science reviews, 20(10), 1067-1091. https://doi.
org/10.1016/S0277-3791(00)00178-5
Reber, R., Akçar, N., Tikhomirov, D., Yesilyurt, S.,
Vockenhuber, C., Yavuz , V., Ivy-Ochs, S. &
Schlüchter, C. (2022). LGM Glaciations in the
Northeastern Anatolian Mountains: New Insights.
Geosciences, 12, 257. https://doi.org/10.3390/
geosciences12070257
Sarıkaya, M. A. & Çiner, A. (2017). The late quaternary
glaciation in the Eastern Mediterranean. In Huges,
P., Woodward, J. (Eds.), Quaternary Glaciation in
the Mediterranean Mountains, Geological Society
of London Special Publication, 433, 289-305.
http://doi.org/10.1144/SP433.4
Sarıkaya, M. A. ve Çiner, A. (2015). Türkiye Geç
Pleyistosen buzullaşması ve paleoiklimi. MTA
Dergisi, 151, 111-132.
Sarıkaya, M. A., Çiner, A. & Yıldırım, C. (2017).
Cosmogenic 36Cl glacial chronologies of the
Late Quaternary glaciers on Mount Geyikdağ
in the Eastern Mediterranean. Quaternary
Geochronology, 39, 189-204. https://doi.
org/10.1016/j.quageo.2017.03.003
Sarıkaya, M. A., Çiner, A. & Zreda, M. (2011).
Quaternary glaciations of Turkey. In Ehlers, J.,
Gibbard, P.L., Hughes, P. D. (Eds.), Quaternary
Glaciations e Extent and Chronology; a Closer
Look (p.: 393-403). Elsevier, Amsterdam,.
Sariş, F., Hannah, D. M. & Eastwood, W. J. (2010).
Spatial variability of precipitation regimes over
Turkey. Hydrological Sciences Jounal, 55(2), 234
249. https://doi.org/10.1080/02626660903546142
Seven, M., Öztürk, Y., Gürgöze, S., Ege, İ. ve Tonbul, S.
(2025). Engizek Dağında karstik depresyonların
jeomorfik özellikleri ve morfotektonik gelişimleri
(Kahramanmaraş, Doğu Toroslar). Türkiye Jeoloji
Bülteni, 68(2), 259-286. https://doi.org/10.25288/
tjb.1647807
Smart, P. L. (1987). Origin and development of glaciokarst closed depressions in the Picos de Europa,
Spain. Zeitschrift für Geomorphologie, 30(4),
423-443.
Soteres, R. L., Cabrera, D. A., Martini, M. A., Sagredo,
E. A., Pedraza, J., Carrasco, R. M., ... & Araos,
J. M. (2025). Paleoglacial and paleoclimate
inferences from cirque morphometry and spatial
distribution across northern Patagonia (40°
45° S). Palaeogeography, Palaeoclimatology,
Palaeoecology, Article 112939. https://doi.
org/10.1016/j.palaeo.2025.112939
Şenel, M., Dalkılıç, H., Gedik, İ., Serdaroğlu, M.,
Metin, S., Esentürk, K., Bölükbaşı, S. ve Özgül,
N. (1998). Orta Toroslarda Güzelsu Koridoru ve
kuzeyinin jeolojisi. MTA Dergisi, 120, 171-197.
Şener, M. F. & Öztürk, M. Z. (2019). Relict drainage
effects on distribution and morphometry of karst
depressions: A case study from Central Taurus
(Turkey). Journal of Cave and Karst Studies, 81,
33-43. https://dx.doi.org/10.4311/2018ES0111
Şimşek, M., Öztürk, M. Z., Yeşilyurt, S. & Utlu,
M. (2023). Morphometric characteristics and
paleogeographic implication of glacial cirques
in Eastern Black Sea Mountains (Türkiye).
Geomorphology 441, Article 108889. https://doi.
org/10.1016/j.geomorph.2023.108889
Şimşek, M., Utlu, M., Poyraz, M. ve Öztürk, M. Z.
(2019a). Geyik Dağı kütlesinin yüzey karstı
jeomorfolojisi ve kütle üzerindeki karst-buzul
jeomorfolojisi ilişkisi. Ege Coğrafya Dergisi,
29(2), 97110.
Şimşek, M., Öztürk, M. Z. ve Turoğlu, H. (2019b).
Geyik Dağı üzerindeki dolin ve uvalaların
morfotektonik önemi. Türk Coğrafya Dergisi, 72,
13-20. https://doi.org/10.17211/tcd.501724
Taşoğlu, E., Öztürk, M. Z. & Yazıcı, Ö. (2024). High
Resolution Köppen-Geiger Climate Zones of
Türkiye. International Journal of Climatology,
44(14), 5248-5265. https://doi.org/10.1002/
joc.8635
Telbisz, T., Krasznai, M., Gachev, E., Gikov, A.
& Ruszkiczay-Rüdiger, Z. (2025). Cirque
morphometry of Rila and Pirin Mountains
(Bulgaria). Geomorphology, 483, Article 109819.
https://doi.org/10.1016/j.geomorph.2025.109819
Veress, M. & Lóczy, D. (2019). General Description
of Glaciokarsts. In Glaciokarsts (pp.: 23-69).
Springer Geography. Springer, Cham. https://doi.
org/10.1007/978-3-319-97292-3_2
Veress, M. (2017). Solution DOLINE development
on GLACIOKARST in alpine and Dinaric areas.
Earth-Science Reviews, 173, 31-48. https://doi.
org/10.1016/j.earscirev.2017.08.006
Veress, M. (2023). Landscape Evolution in Glacier
Valleys of Glaciokarsts. Geosciences, 13, 308.
https://doi.org/10.3390/geosciences13100308
Žebre, M. & Stepinik, U. (2015). Glaciokarst landforms
and processes of the southern Dinaric Alps. Earth
Surface Processes and Landforms, 40(11), 1493
1505. https://doi.org/10.1002/esp.3731
Žebre, M. & Stepinik, U. (2016). Glaciokarst
geomorphology of the Northern Dinaric Alps:
Snežnik (Slovenia) and Gorski Kotar (Croatia).
Journal of Maps, 12(5), 873881. http://dx.doi.or
g/10.1080/17445647.2015.1095133
Žebre, M., Sarıkaya, M.A., Stepinik, U., Yıldırım,
C. & Çiner, A. (2019). First 36Cl cosmogenic
moraine geochronology of the Dinaric Mountain
karst: Velež and Crvanj Mountains of Bosnia
and Herzegovina. Quaternary Science Reviews,
208, 54-75. http://dx.doi.org/10.1016/j.
quascirev.2019.02.002
Abstract: What distinguishes minerals grouped as gemstones (jewellery stones) from other metallic and industria lminerals and building stones is that they do not require bulky reserves and production amounts. Even if they havelow reserves, if they are extracted with good quality, they are sought after for use in the jewellery industry, and when compared to other groups, these materials have very high economic value. Although gemstone science(gemmology) and the gemstone processing industry are not very developed in Türkiye and the potential of gemstones in our country has not yet been fully determined, gemstones represent high economic potential for our countrywhen mining is performed consciously and the products marketed well. Therefore, it is in our national interest thatnational mining, analysis and trade of gems in their raw and processed forms should be coordinated and disciplined.Differing and ignorant practices by the Ministry of Energy and Natural Resources and the Ministry of Treasuryand Finance regarding gemstones are contrary to our national interests and are in disorder. Managing gemstonesunder a single regulation has become a necessity due to logic and science. There is a definite need for new laws justabout mining, analysis, exchange and trading of gemstones. The content of this law should be specially preparedin accordance with equivalent laws from other countries in the world. A "Turkish Gemstone (Jewellery Stones(Gemmology) Application and Research Centre" should be established within the General Directorate of Miningand Petroleum Affairs (MAPEG) / General Directorate of Mineral Research and Exploration Institute (MTA).This centre should be able to organise mining, processing and marketing of gemstones and R&D activities, mostof which are still not active in our country. Today, the centres of gemstone trade in the world are places such asThailand (Bangkok), China (Hong Kong), and India (Jaipur, Bombay). The definition of precious stones in Article2/K of the Turkish Foreign Exchange legislation (Turkish Currency Protection Legislation No. 32) must be revisedand missing regulations must be updated. A similar revision should be made to standards TS-6173 and TS-6174regarding gemstones, which are currently enforced by the Turkish Standards Institute (TSE). When examined interms of the consumer, one of the main stakeholders in the jewellery industry in Türkiye and within the framework ofthe "Law on Consumer Protection No. 6502" in our general legal system, the current regulations and approachescannot respond with the penal effectiveness required for possible problems encountered in terms of gemstones. Basedon this determination, the law and the relevant regulations and related legislation need to be rearranged in order toprevent consumer grievance in relation to gemstones.
Gemmology
gems (jewellery stones)
gem laws
gem mining
gem trading
Altingöz, M., Smith, N. M., Şebnem, D., Syvrud, P.F.
& Ali, S. H. (2019). Color and local heritage in
gemstone branding: A comparative study of blue
zoisite (tanzanite) and color-change diaspore
(zultanite/csarite). The Extractive Industries and
Society, 6(4), 1030-1039.
Arem, J. E. (1987). Color Encyclopaedia of Gemstones.
2nd Ed., Van Nostrand Reinhold Co., New York,
A.B.D., 248s.
Ay, A. M., Hatipoğlu, M., Günel, H., Kılınçarslan,
S. ve Velioğlu, T. (2013). Doğanşehir (Malatya)
yakut oluşumlarının yayılımının tespiti ve
oluşum kökenine ait yaklaşımlar [Determination
of ruby formation and approaches to the origin
in Doğanşehir (Malatya)]. Özmen, B. (Ed.), 66.
Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı
(s.: 222-223), 1-5 Nisan 2013, Ankara. Jeoloji
Mühendisleri Odası Yayınları. https://www.jmo.
org.tr/resimler/ekler/08dd28f402b112b_ek.pdf
Back, M. & Mandarino, J. (2008). Fleischers Glossary
of Mineral Species. 10th Ed., The Mineral Record
Inc., Tucson, A.B.D., 187 s.
Blackburn, W. H. (1924). Encyclopedia of Mineral
Names. Mineralogical Association of Canada,
Ottowa, Kanada, 378 s.
Bonewitz, R. L. (2005). Rock and Gem. DK Adult.
Smithsonian Institute, Washington, A.B.D., 287 s.
Esenli, F., Kumbasar, I., Eren, R. H. & Uz, B. (2001).
Characteristics of opals from Simav, Turkey.
Neues Jahrbuch Fur Mineralogie Mh., 3, 97-113.
Gübelin, E. (1969). Pierres Précieuses. Editions Silva,
Zurich, İsviçre, 614 s.
Hatipoğlu, M. (2007). Türkiyede süstaşı-mücevher taşı
potansiyeli, rezervleri, madenciliği ve ekonomisi
[Gemstone potential, reserves, mining, and
economics in Turkey]. 6. Uluslararası Endüstriyel
Hammaddeler Sempozyumu (s.: 201-212). 1-3
Şubat, İzmir.
Hatipoğlu, M. (2011a). Unique gemstones of Turkey.
International Gemological Symposium-2011
Advancing the Science and Business of Gems (p.:
45). 29-31 May 2011, Carslbad, California, USA.
Hatipoğlu, M. (2011b). Renkli Kıymetli Taşlar [Colored
Precious Stones]. Zeus Kitabevi Yayınları, İzmir,
334s.
Hatipoğlu, M. (2015). Türkiyede mücevheratın
standardizasyonu için metalurjik ve gemolojik
kontrolün (sertifikasyonun) önemi [Importance
of metallurgical and gemological control
(certification) for jewelry standardization in
Türkiye] (Çağrılı konuşmacı-özel sunum). Değerli
ve Yarı Değerli Taşlar Çalıştayı (s.: 6-17). 09-10
Aralık 2015, İstanbul.
Hatipoğlu, M. (2017). Arkeo-gemolojinin başlangıcı
ve süreçsel gelişimi [Initial and processing
development of archaeo-gemmology].
Geçmişten Günümüze Gemoloji Sempozyumu
GÖNKUYSAN-2017 (3-8). 10-13 Mayıs, Gönen
Meslek Yüksekokulu Konferans Salonu, GönenIsparta.
Hatipoğlu, M. (2020). Süstaşları Mineralojisi
[Mineralogy of The Gemstones]. Talebe Yayın
Dağıtım, Kırtasiye, Ar-Ge San. ve Tic.Ltd.Şti.
Niğde, 3. Baskı, 195s.
Hatipoğlu, M. (2023). Türkiyede süstaşlarının
(mücevher taşlarının) borsası ve ticaretinin
durumu [The status of the exchange and trade of
gemstones (jewelry stones) in Turkiye]. Bozkurt, E., Dumanlılar, Ö., Akyıldız, M., Yılmaz, K. K.,
Coşkun Tunaboylu, B., Cihan, Z. Ö., Yağbasan,
Ö ve Açıkel, Ş. (Ed.ler), Uluslararası Katılımlı
75. Türkiye Jeoloji Kurultayı (10-14/ Nisan/2023)
Bildiri özleri Kitabı [Abstract Book of 75th
Geological Congress of Türkiye with International
Participation (April 10-14, 2023], (s.: 61). MTA,
Ankara, Türkiye. https://www.jmo.org.tr/resimler/
ekler/24f25904af8a59f_ek.pdf
Hatipoğlu, M. ve Gökçen, N. (1999). Batı Anadolunun
yarı kıymetli süstaşlarının başlıca mineralojik,
jeolojik ve ekonomik nitelikleri [Main
mineralogical, geological, and economics of
semi-precious stones in western Anatolia]. 1. Batı
Anadolu Hammadde Kaynakları Sempozyumu (s.:
438-450). 8-14 Mart, İzmir
Hatipoğlu, M. ve Kırıkoğlu, S. (2005). Türkiyede
elmas ve kıymetli taşlar borsasının kurulmasının
önemi ve gerekliliği [Importance and necessity the
construction of the diamond and precious stone
bourse in Turkey]. International Gems and Novel
Metals Symposium (s.: 56-88). 29-30 Nisan 2005,
İstanbul, 56-88.
Hatipoğlu, M. & Babalık, H. (2008). Gem minerals
and materials in the Anatolian land (Turkey). 35th
Rochester Mineralogical Symposium (p.: 25). 10-
13 April, Rochester-New York, U.S.A.
Hatipoğlu, M. & Çoban, E. (2021). Gem-quality
blue sapphires (Al2
O3
-corundum variety) from
the Milas-Yatağan region, Muğla, Türkiye.
Academia Letters, Article 4085, 1-5. https://doi.
org/10.20935/AL4085
Hatipoğlu, M., Babalık, H. & Chamberlain, S. C.
(2010a). Gemstone deposits in Turkey. Rocks
& Minerals, 85(2), 124-132. https://doi.
org/10.1080/10511970903455868
Hatipoğlu, M., Türk, N., Chamberlain, S. C. &
Akgün, A. M., (2010b). Gem-quality transparent
diaspore (zultanite) in bauxite deposits of the
İlbir Mountains, Menderes Massif, SW Türkiye.
Mineralium Deposita, 45(2), 201-205. https://doi.
org/10.1007/s00126-009-0262-2
Hatipoğlu, M., Helvacı, C., Kibar, R., Çetin, A.,
Karabulut, Y. & Can, N., (2010c). Amethyst
and morion quartz gemstone raw materials from
Türkiye: Colour saturation and enhancement by
gamma, neutron and beta irradiation. Radiation Effects and Defects in Solids, 165(11), 876888.
https://doi.org/10.1080/10420150.2010.489611
Hatipoğlu, M., Kırıkoğlu, M.S., Buzlu, H.B., Kibici, Y.
ve Helvacı, C. (2011). Türkiyedeki süstaşlarının
endüstriyel hammaddeler içerisindeki önemi
[Importance of gemstones within the industrial
minerals in Türkiye]. 64. Türkiye Jeoloji
Kurultayı, Bildiri Özleri Kitabı (s.: 203-204). 25-
29 Nisan 2011, Ankara. https://www.jmo.org.tr/
resimler/ekler/385b1ca1d272c38_ek.pdf
Hatipoğlu, M., Chamberlain, S., Kibici, Y. (2013b).
Characterization of the Sündikendağı deposit
of moganite-rich, blue chalcedony nodules,
Mayıslar-Sarıcakaya (Eskişehir), Türkiye. Ore
Geology Reviews, 54, 127-137.
Hatipoğlu, M., Çoban, E., Çil, V., Babalık, H. ve
Güney, H. (2022). Türkiyenin süstaşı-mücevher
taşı kalitesindeki korundum (Al2
O3
) mineral (mavi
safir) yatağı; Oluşumları ve gemolojiksel özellikleri
[Gem quality corundum (Al2
O3
) mineral (blue
sapphire) deposit from Türkiye; Their formation
and gemological characteristics]. International
Black Sea Modern Scientific Research Congress
Full Text Book (s.:46-56). September 29,-October
02, 2022. Rize-Türkiye.
Hatipoğlu, M., Gürbüz, M., Gürsoy, B. & Çil, V. (2023).
Adli gemoloji açısından tüketicinin korunması
hakkında bir örnek; Mücevher sektöründe
yaygınca kullanılan beril (Be3
Al2
Si6
O18)
mineralinin yeşil renkli iki türünün (yeşil beril
ve zümrüt) arasındaki farklar ve tüketicilerin
bilinçlendirilmesi [An example of consumer
protection in forensic-gemology; The differences
between two green types of beryl (Be3
Al2
Si6
O18)
mineral widely used in the jewelry industry
(green beryl and emerald) and raising consumer
awareness]. International Eurosia Congress
on Scientific Researches and Recent Trends 10
abstract Book (p.: 26-28). February 16-17, BakuAzerbaijan, 26-28.
Hatipoğlu, M., Yanık, G. ve Çoban, E. (2024).
Dünyanın en değerli süstaşlarından biri olan
painit mineralinin, jeolojik ve mineralojik olarak
bulunabilirliğinin irdelenmesi; Türkiyede
painit var mıdır? [Examining the geological and
mineralogical availability of the mineral painite,
one of the most valuable gemstones in the world;
is there painite in Türkiye?]. Türkiye Jeoloji Bülteni, 67(2), 253-266. https://doi.org/10.25288/
tjb.1399633
Helvacı, C., Hatipoğlu, M., Passeri, D., Konak, N. &
Kınacı, E.H., (2025). The Origin of Oltu Stone
(Turbostratic Carbon) from the Olur-Tortum Area:
A Natural Composite Carbonaceous Material
(Erzurum, Türkiye). Türkiye Jeoloji Bülteni, 68(4),
85-108. https://doi.org/10.25288/tjb.1491493
Kaydu Akbudak, İ., Gürbüz, M., Başıbüyük, Z.,
Hatipoğlu, M., Öztüfekçi Önal, A. & İşler,
F. (2021). Mineralogical and gemological
characteristics of metaophiolite hosted corundum
(Malatya-Türkiye). Sakarya University Journal of
Science, 25(2), 1-9.
Keller, P. C. (1990). Gemstones and Their Origins. Van
Nostrand-Reinhold. New York, A.B.D., 674s.
Krauskopf, K. B. (1982). Introduction to
Geochemistry.,2nd Ed. McGraw-Hill Book Co.,
Sydney, Avustralya, 617s.
Manutchehr-Danai, M. (2005). Dictionary of Gems and
Gemology, 2nd extended and revised. Ed.. Springer,
New York, A.B.D., 203s.
Mitchell, R.S. (1979). Mineral Names What do They
Mean. N.A.G. Press Ltd., New York, A.B.D., 267
s.
Newman, R. (2003). Gemstone Buying Guide: How to Evaluate, Identify, Select&Care for Colored Gems, 2nd Ed. International Jewelry Publications. New York, A.B.D., 567s.
Rapp, G. (2009). Archaeomineralogy. 2nd Ed.,
(Herrmann, B., Wagner, G. A. (Eds.)), SpringerVerlag Berlin Heidelberg, Berlin, Germany, 465 s.
Read, P. G. (2005). Gemmology, 3rd Ed.. Elsevier,
London, GB, 253s.
Roberts, W. L., Campbell, T. J. & Rapp, G. R. (1989).
Encyclopedia of Minerals, 2nd Ed.. Van Nostrand
Reinhold Co. New York, A.B.D., 892s.
Rose, A. W., Hawkes, H. E. &Webb, J. S. (1979).
Geochemistry in Mineral Exploration, 2nd Ed..
Academic Press, Sydney, Avustralya, 657s.
Savaşçın, M. Y., Hatipoğlu, M. ve Akdağ, İ. (1988a).
TS-6173 Kıymetli ve Yarı Kıymetli SüstaşlarıSınıflandırma [Precious and Semi Precious
Gemstones-Classification]. Türk Standartları
Enstitüsü (TSE), Ankara, TS6173.
Savaşçın, M. Y., Hatipoğlu, M. ve Akdağ, İ. (1988b).
TS-6174 Kıymetli ve Yarı Kıymetli SüstaşlarıTerimler [Precious and Semi Precious GemstonesTerms]. Türk Standartları Enstitüsü (TSE),
Ankara, TS6174.
Sayılı, S. Türeli, K., Lüle, Ç., Kadiroglu, T. ve Atakay,
E. (1999). Yozgat-Sarıkaya Kargılık Koyu pembe
turmalin oluşumlarının jeolojisi, mineralojisi
ve gemolojik özellikleri hakkında ön bulgular.
1. Batı Anadolu Rough Hammadde Kaynakları
Sempozyumu, (s.: 448-453), İzmir.
Schumann, W. (2000). Gemstone of the World, Revised
& Expanded Ed.. Sterling Publishing Co., N.A.G.
Press Ltd., New York, A.B.D., 254 s.
Sinkankas, J. (1986). Mineralogy. Van Nostrand
Reinhold Co. New York, A.B.D., 457 s.
Şengör, A. M. C. & Yazıcı, M. (2020). The aetiology of
neotectonic evolution of Turkey. Mediterranean
Geoscience Reviews, 2(3), 327-339. https://doi.
org/10.1007/s42990-020-00039-0
Webster, R. (1979). Gemmologist Compendium, 6th
Ed.. Van Nostrand Reinhold Co. London. İngiltere,
167 s.
Webster, R., Read, P.G. & Webster, R. (1994). Gems:
Their Sources, Descriptions and Identification. 5th
Ed., Butterworth-Heinemann, London, İngiltere,
546 s.
Wise, R.W. (2003). Secrets of the Gem Trade: The
Connoiseseurs Guide to Precious Gemstones.
Brunswick House Press, London, İngiltere, 178s.
Wright, W. (1996). Check-list for rare gemstones
Kammererite. Canadian Gemmologist, 17, 1417.