Seray Çinar Yildiz
Süha Özden
Salih Zeki Tutkun
Özkan Ateş
Seda Altuncu Poyraz
Sevinç Kapan Ürün
Öznur Karaca
View as PDF
Abstract: The Ganos Fault, has a big earthquake (Ms:7.3 in 1912), as a right-lateral strike-slip fault, a segmentof the northern strand of the North Anatolian Fault is elongated a N70°E trend in west of the MarmaraSea between Gaziköy (Tekirdağ) and Saros Gulf. This study reveals at late Cenozoic stress states by thefault kinematic analysis, inversion of the earthqukes focal mechanism and remote sensing studies alongthe Ganos Fault. Result of the kinematics analysis was carried out a main tectonic regime.. First mainlystrike-slip faulting developed under NW-SE trending compressional direction showing by a (σ1) 130°±16°and a (σ3) 53°±13° trends and Rm ration calculated as 0.49. Secondly and consistent with first faulting,a NE-SW trending concurrent extensional direvtion produce a local normal faulting presented by a (σ3)28°±18° trend in horizontal plane. Furthermore, between 2003 and 2010 years, bigger than M=3.3, 12earthquakes on Ganos Fault and its vicinity, determined the focal mechanisms and inversion analysisresults indicate that a strike-slip faulting is active along the fault. In the inversion of the earthquakes, astrike-slip faulting presented a (σ1) N 276°±7° and (σ3) N 6°±6° trends and Rm ration calculated as 0.44.This result is consistent with the results of fault kinematic analysis and offer as a transtensional characteralong the fault. According to rose diagram that was generated by remote sensing lineament analysis.Determined 223 lianements have mainly parallel to the Ganos Fault. The stress states from remote sensingstudies are consistent both fault kinematic analysis and inversion of the earthquakes faocal mechanismresults. Ganos Fault is an active strike-slip fault by the transtensional character since Late Pliocene.
1912 Mürefte earthquake
focal mechanism
Ganos fault
inversion
kinematics
remote sensing
Aksoy, M.E., Meghraoui, M., Vallée, M., ve Çakır, Z., 2010. Rupture characteristics of the A.D. 1912 Mürefte (Ganos) earthquake segment of the North Anatolian fault (western Turkey), Geological Society of America, Geology, 38,11, 991994.
Altınok, Y., Alpar, B., ve Yaltırak, C., 2003. Şarköy-Mürefte 1912 Earthquakes Tusunami, extension of the associated faulting in the Marmara Sea, Turkey, Journal of Seismology, 7, 329-346.
Altuncu Poyraz, S., Yilmazer, M., Kalafat, D., ve Pinar, A., 2007, ZSacWin Algoritmasını kullanarak 2004 Gökova deprem etkinliğinin incelenmesi, 15.Yıl Mühendislik-Mimarlık Sempozyumu, 14-16 Kasım 2007 Isparta, 62-68.
Altunel, E., Meghraoui, M., Akyüz, H.S. ve Dikbaş, A., 2004. Characteristics of the 1912 co-seismic rupture along the North Anatolian Fault Zone (Turkey): implications for the expected Marmara earthquake, Terra Nova, 16, 198-204.
Ambraseys, N.N., 2002. The seismic activity of the Marmara Sea Region over the last 2000 years, Bull. Seism. Soc. Am., 92, 1-18.
Ambraseys, N.N. ve Finkel, C.F., 1987, The Saros Marmara Eathquake of 9 August 1912: Earthquake, Eng. and Structral Dynamikes, 15, 189-211.
Ambraseys, N. ve Finkel, C., 1991. Long-term seismicity of Istanbul and of the Marmara Sea region, Terra 3, 527-539.
Angelier J. ve Mechler P., 1977. Sur Methode Graphique de Recherche des Contraintes Principales Egalement Utilisable en Tectonique et en Sismologie: La Methode Diédre Droit. Bulletin de la Société Geologique de France, 19: 1309-1318.
Armijo, R., Meyer, B., Hubert, A., ve Barka, A., 1999. Westward propagation of the North Anatolian fault into the northern Agean: Timing and Kinematics, Geology, 27, 3, 267-270.
Arthaud, F., 1969. Méthode De Déterminatioft Graphique Dês Directions de Raccourcissement, Dallongement et intermédiaire Dune Population de Failles. Bull. Soe. Géol. France, 11:729-737.
Barka, A.A., 1992. The North Anatolian Fault Zone, Ann. Tectonicae, 6, 164-195.
Bellier, O., Över, S., Poisson, A.,ve Andrieux, J., 1997. Recent temporal change in stress state and modern stress field along the North Anatolian Fault Zone (Turkey). Geophys. J. Int., 131 : 61-86.
Bensekhria, A., 2012. Tectonic Deformations based on Lineaments Analysis of Mechtat Ain El Beida (Bou Arif Mountain) North East of Algeria. Asian Journal of Applied Sciences, 5: 117-124.
Bott, M. H. P., 1959. The Mechanism of Oblique Slip Faulting. Geol. Mag. 96: 109117.
Carey, E. ve Brunier, B., 1974. Analyse theorique et numerique dune modele mecanique elementaire applique â letude dune population des failles, C. R. Hebd. Acad. Sci, Lett.270 : 891-894.
Carey, E., 1976. Analyse numérique dun mod` ele mécanique élémantaire appliqué à létude dune population de failles: Calcul dun tenseur moyen des contraintes à partir des stries de glissement: Unpublished PhD thesis, Tectonique Générale, Univ. Paris-Sud, Orsay, 138p.
Carey E., 1979. Recherche des Directions Principales de Contraintes Associées au Jeu Dune Population de Failles, Revue Geological Dynamic and Géography Physic. 21: 57-66.
Carey-Gailhardis E. ve Mercier J.L., 1987. A numerical method for determining the state of stres using focal mecanism of earthquake populations, Earth Planet. Sci Lett. 82 : 165- 179.
Dehandschutter, B., 2001, Study of the recent structural evolution of continental basins in Altai-Sayan (Central Asia), Phd. Thesis, 211p.
Dreger, D. S., 2002. Manual of the Time-Domain Moment Tensor Inverse Code (TDMT-INVC), Release 1.1, Berkeley Seismological Laboratory, Berkeley, p. 18.
Ergin, K., Güçlü, U. ve Uz, Z., 1967. Türkiye ve civarında deprem katalogu, İTÜ Maden Fakültesi, Arz Fiziği Enstitüsü Yay. 24, 169 s.
Erol, K., 2003. Yeniköy Karışığının (GB Trakya) Metamorfik Evrimi, Türkiye Jeoloji Bülteni Cilt 46, Sayı 2, 53-61.
Etchecopar, A., Vasseur, G., ve Daigneries, M., 1981. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis: J. Struct. Geol., v.3 : 51-65.
Gökçen, L.S., 1967. Keşan bölgesinde Eosen-Oligosen sedimantasyonu, Güneybatı Türkiye Trakyası, Maden Tetkik ve Arama Enstitüsü Dergisi, 69, 1-10.
Görür, N. and Okay, A.I., 1996. Fore-arc origin of the Thrace basin, northwest Turkey, Geologische Rundschau, 85, 662-668.
Gutzwiller, O., 1923. Beitrage zur Geologie der Umgebung von Merfete (Mürefte) am Marmara Meer, Basel Üniv., 25 s.
Herece, E. ve Akay, E., 2003. Kuzey Anadolu Fayı Atlası. M.T.A. Yayını, Ankara.
Hobbs, W.,H., 1904. Lineaments of The Atlantic Border Region. Geological Society American Bulletin, 15, 483-506 p.
Hung, L.Q., Dinh, N.Q., Batelaan, O., Tam, V.T. ve Lagrou, D., 2002, Remote sensing and GIS based analysis of cave development in the Suoimuoi Catchment (Son La-NW Vietnam), Journal of Cave and Karst Studies, 64 (1), 23-33.
Holmes, A.W., 1961. A stratigraphic review of Thrace. Turkish Petroleum Corporation unpubl techn rep 368, pp 1-56.
Janssen, C., Bohnhoff, M., Vapnik, Y., Görgün, E., Bulut, F., Plessen, B., Pohl, D., Aktar, M., Okay, A.I., ve Dresen, G., 2009. Tectonic evolution of the Ganos segment of the North Anatolian Fault (NW Turkey).
Kalafat, D., 1989. Son yıllarda olmuş bazı depremlerin odak mekanizması açısından irdelenmesi, Deprem Araştırma Bül., 66, 6-20.
Kalafat, D.,Gürbüz, C., ve Üçer, S.B., 1987. Batı Türkiyede Kabuk ve Üst Manto Yapısının Araştırılması, Deprem Araştırma Bülteni, (59), 43-64
Kasar, S., Burkan, K.A., Siyako, M., ve Demir, O., 1983. TekirdağŞarköy-Keşan-Enez bölgesinin jeolojisi ve Hidrokarbon olanakları, TPAO rap., 1171 (Yayımlanmamış).
Kaya, S., Müftüoğlu, O., ve Tüysüz, O., 2004. Tracing the geometry of an active fault using remote sensing and digital elevation model: Ganos segment, North Anatolian Fault Zone, Turkey, Int. J. Remote Sensing, Vol. 25, No. 19, 38433855.
Kopp, K.O., Pavoni, N. ve Schindler, C., 1969. Geologie Thrakiens IV: Das Ergene-Becken, Beih zum Geol. Jahrb., Heft 76, 136 s., Hannover.
Madani, A.A., 2001, Selection of the optimum Landsat Thematic Mapper bands for automatic lineaments extraction, Wadi Natash area, South Eastern Desert, Egypt, 22nd Asian Conference on Remote Sensing, Centre for Remote Imaging, Sensing and Processing (CRISP), National University of Singapore; Singapore Institute of Surveyors; Asian Association on Remote Sensing.
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gürkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N., Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, B3, 5695-5719.
McKenzie, D., 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal of the Royal Astronomical Society, 55, 217-254.
Meghraoui, M., Aksoy, M.E., Akyüz, H.S., Fery, M.A., Dikbaş, A., ve Altunel, E., 2012. Paleosismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of Earthquake ruptures west of the sea of Marmara, Geochemistry Geophysixs Geosystems, doi:10.1029/2011GC003960.
Novak, I.D., ve Soulakellis, N., 2000, Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece, Geomorphology, 34, 101- 109.
Okay, A., Tuysuz, O., ve Kaya, S., 2004. From transpression to transtension: change in morphology and structure around a bend on the North Anatolian Fault in the Marmara region, Tectonophysics, 391, 259-282.
Ölgen, M. K., 2004. Determining Lineaments and Geomorphic Features Using Landsat 5-TM Data on the Lower Bakırçay Plain, Western Turkey. Ege Coğrafya Dergisi, 13 (2004), 47-57, İzmir.
Över, S., Bellier O., Poisson A., ve Andrieux J., 1999. Late Cenozoik stress state changes along the central North Anatolian Fault Zone (Turkey). Annales Tectonicae, Vol. XI, no. 1-2, 75-101.
Över, S., 1999. Kuzey Anadolu fay zonunun orta ve batı kesiminde bölgesel gerilme durumlarının incelenmesi. T.J. Bülteni, 42, 1, 85-96.
Över, S., Kavak, K.Ş., Bellier, O., ve Özden, S., 2004, Is the Amik Basin (SE-Turkey) a Triple Junction Area? Analyses of SPOT XS Imagery and Seismicity, International Journal of Remote Sensing, Volume: 25, Number: 19, 3857-3872.
Özden, S., Över, S., ve Ünlügenç, U.C., 2002. Quaternary stress regime change along the eastern North Anatolian Fault Zone, Turkey. International Geology Review Vol. 44, No. 11, pp. 1037-1052.
Özden, S., Bekler, T., Tutkun, S. Z., Kürçer, A., Ateş, Ö., Bekler, F., Kalafat, D., Gündoğdu, E., Bircan, F., Çınar, S., Çağlayan, Ö., Gürgen, M., İşler, H., ve Yalçınöz, A., 2008a, Biga Yarımadası ve Marmara Denizi Güneyinin Sismotektoniği ATAG-12, Bildiri Özleri Kitapçığı, Sayfa 48-49, Akçakoca, Türkiye.
Özden, S., Över, S., Kavak, K. Ş., ve İnal Dündar, Ş. S., 2008b. Late Cenozoic stress states around Bolu Basin along the North Anatolian Fault, NW Turkey. Journal of Geodynamics, 46, 1-2, 48-62.
Pegoraro, O., 1972. Application de la Microtectonique a une Etude de Neotectonique sur le Golfe Maliaque (Gece centrale): These de 3 cycle, Montpellier.
Price, N.J., 1966. Fault and joint development in brittle and semibrittle rock, New York, Pergamon Press, 176 p.
Rockwell, T., Barka, A., Dawson, T., Akyüz, S., ve Thorup, K., 2001. Paleoseismology of the Gaziköy-Saros segment of the North Anatolian Fault, northwestern Turkey: comparison of the historical and paleoseismic records, implications of regional seismic hazard, and models of earthquake recurrence, J. Seismol. 5, 433-448.
Sadi, M., (Doktor Yüzbaşı) 1912. Marmara havzasının 26-27 Temmuz 1328 (1912) hareket-i arzının esbabı. Tarih ve Düşünce dergisi, İstanbul. S: 42-53.
Saltık, O., 1974. Şarköy-Mürefte sahaları jeolojisi ve petrol olanakları, TPAO Arama Grubu Arşivi, Teknik Rapor, 879, 24 s. (Yayımlanmamış).
Saner, S., 1985. Saros Körfezi dolayının çökelme istifleri ve tektonik yerleşimi, Kuzeydoğu Ege Denizi, Türkiye, Türkiye Jeoloji Kurumu Bülteni, 28, 1-10.
Şaroğlu, F., Emre, Ö., ve Kuşcu, I., 1992. Türkiye Diri Fay Haritası. M.T.A., Ankara.
Şengör, A.M.C., 1979. The North Anatolian Transform Fault. its age offset and tectonic significance, J. Geol. Soc. Lond, 136, 269-282.
Şengör, A.M.C. ve Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach, Tectonophysics, 75, 181-241.
Şengör, A.M.C., Görür, N. ve Şaroğlu, F., 1985. Strike-slip faulting and related basin formation ın zones of tectonic escape: Turkey as a case study, Soc. Ecol. Paleontol. Mineral. Spec. Publ., 37, 227-264.
Şengör A.M.C., Tüysüz, O., İmren, C, Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., ve Rangin, C., 2004. The North Anatolian Fault: A New Look, Annual Review of Earth and Planetary Sciences, 33, 37-112.
Şentürk, K. ve Karaköse, C., 1987. Çanakkale Boğazı ve dolayının jeolojisi. MTA Rap. no: 9333, (yayımlanmamış).
Şentürk, K. ve Okay, A.İ., 1984. Saros Körfezi doğusunda yüksek basınç metamorfizması, MTA Dergisi, 97/98, 152-155.
Siyako, M., Bürkan, K.A. ve Okay, A.I., 1989. Biga ve Gelibolu yarımadalarının Tersiyer jeolojisi ve hidrokarbon olanakları (with English abstract), Bull. Turk. Assoc. Pet. Geol. 1, 183-199.
Siyako, M., 2006, Trakya Bölgesi Litostratigrafi birimleri, Stratigrafi Komitesi Litostratigrafi Birimleri Serisi 2, Ankara, 70 s.
Sümengen, M., Terlemez, İ., Şentürk, K., Karaköse, C., Erkan, E., Ünay, E., Gürbüz, M., Atalay, Z., ve Şentürk, K., 1987. Gelibolu Yarımadası ve Güneybatı Trakya Tersiyer Havzasının Stratigrafisi, Sedimantolojisi ve Tektoniği, MTA Rap: 8128. (Yayınlanmamış).
Sümengen, M. ve Terlemez, İ., 1991. Güneybatı Trakya yöresi Eosen çökellerinin stratigrafisi, Maden Tetkik Arama Dergisi, 113, 17-30.
Tapırdamaz, C. ve Yaltırak, C., 1997. Trakyada Senozoyik volkaniklerinin paleomanyetik özellikleri ve bölgenin tektonik evrimi, MTA Dergisi, 119, 27-42.
Taymaz, T., Jackson, J.A., ve McKenzie, D., 1991. Active tectonics of the north and central Aegean Sea, Geophysical Journal International, 106, 433-490.
Temiz H., 1994. Fay Topluluklarının Analiz Yöntemleri. Doktora Semineri II. Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, 27 s., Sivas.
Turgut, S., ve Eseller, G., 2000. Sequence stratigraphy, tectonics and depositional history in eastern Thrace Basin, NW Turkey, Mar. Petrol. Geol., 17, 61-100.
Turgut, S., Siyako, M., ve Dilki, A., 1983. Trakya havzasının jeolojisi ve hidrokarbon olanakları, Türkiye Jeoloji Kongresi Bülteni, 4, 35-46.
Turgut, S., Türkaslan, M., ve Perinçek, D., 1991. Evolution of the Thrace sedimentary basin and its hydrocarbon prospectivity. In: Spencer, A.M. (Ed.), Generation, Accumulation, and Production of Europes Hydrocarbons. Spec. Publ. Euro. Ass. Petrol. Geoscient. 1, 415-437.
Turkse Shell, N.V., 1972. I nolu Marmara petrol bölgesinde AR/ NTS/832, 833, 835, 836, 997, 998 hak sıra nolu arama ruhsatlarına ait terk raporu. TPAO Arama Grubu Arşivi, yayınlanmamış teknik rapor, 769.
Tüysüz, O., Barka, A., ve Yiğitbaş, E. 1998. Geology of the Saros Graben: its implications on the evolution of the North Anatolian Fault in the Ganos-Saros region, NW Turkey. Tectonophysics 293, 105-126.
Wallace R. E., 1958. Geometry of Shearing Stres and Relation to Faulting. J. Geol. 59: 118.
Yaltırak, C., Alpar, B., ve Yüce, H., 1998. Tectonic elements controlling the evolution of the Gulf of Saros (northeastern Aegean Sea, Turkey), Tectonophysics, 300, 227248.
Yaltırak, C., Sakınç, M., ve Oktay, F.Y., 2000. Westward propagation of North Anatolian fault into northern Aegean: Timing amd kinematics, Comment, Geology, 28, 2, 187-188.
Yaltırak, C., ve Alpar, B., 2002. Kinematics and evolution of the northern branch of the North Anatolian Fault (Ganos Fault) between the Sea of Marmara and the Gulf of Saros, Mar. Geol., 190, 352-366.
Çınar Yıldız, S , Özden, S , Tutkun, S , Ateş, Ö , Altuncu Poyraz, S , Kapan Yeşilyurt, S , Karaca, Ö . (2013). Ganos Fayı Boyunca Geç Senozoyik Yaşlı Gerilme Durumları, KB Türkiye . Türkiye Jeoloji Bülteni , 56 (1) , 1-22 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28136/299041
Abstract: Travertine is sedimentary rock which formed under chemical and/or biochemical processes fromgeothermal waters and consists very long time periods and very special geological processes. Well-knowntravertine areas are now under protection but majority of travertine areas is remote from any control andoperating and used as quarry. Travertine and travertine areas has an great important in terms of theiractive tectonics data, geological characteristics, earth science education and scientific researches. Theimportance of travertine outcrops is not limited with earth science. Travertines have also archaeological,anthropological and touristical values. Importance of the travertines should be carefully evaluated before they are operated as an quarries in orderto determine the presence or absence of its original features. According to the results of this evaluation theoriginal features travertine areas should be protected and avoided from damages.
Active tectonics
antropology
archeology
Sivas
Travertine
Altunel, E. ve Hancock, P.L., 1993, Morphological features and tectonic setting of Quaternary travertines at Pamukkale, western Turkey. Geol.J., 28, 335-346.
Altunel, E., 1996, Pamukkale Travertenlerinin Morfolojik Özellikleri, Yaşları ve Neotektonik Önemleri, Maden Tetkik ve Arama Dergisi No.118,Ankara.
Bates, R.L., and Jackson, J.A., 1980, Glossary of Geology (Second Edition). American Geological Institute Falls Church, Virginia.
Bencini, A., Duchi, V. and Martini, M., 1977, Geochemistry of thermal springs of Tuscany (Italy), Chem. Geol., 19, 229- 252.
Bertan, S., 2009, Turizmin Çevre Üzerinde Yarattığı Etkiler: Pamukkale Örneği, Anatolia: Turizm Araştırmaları Dergisi, Cilt 20, Sayı 2, 204-214
Buccino, S.G., Dargenio, V., Ferri, V., 1978, L travertini della Bassa Velle del Tanagro (Campania) studio geomorphologico, sedimentologico e geochimico (with English abstract):Boll. Coc. İt., 97, 617-646.
Chafetz, H.S., Folk, R.L., 1984, Travertines: depositional morphology and the bacterially constructed constituents. J. Sedim. Petrol., 54, 289-316.
Çakır, Z., 1999, Along-Strike Discontinuiy of Active Normal Faults and Its Influence on Quaternary Travertine Deposition; Examples From Western Turkey. Tr. J. of Earth Sciences,Vol:8, P:67-80.
Doğaner, S., 1996, Anadolunun Coğrafi Mirası: Pamukkale, Türk Coğrafya Dergisi, Sayı: 31, s. 7-38
Guo, L., & Riding R., 1998, Hot-springs travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology, 45, 163-180.
Herlinger, D.L.,1981, Petrology of the Fall Creek Travertines, Bonneville County, Idaho. Unpublished M.Sc. Thesis. Univ. Houston, Texas, 172 page.
Irion, G. & Muller, G., 1968, Mineralogy, Petrology and Chemical Composition of Some Calcareous Tufa from the Schwabische Alb. Germany. In: Recent Developments in Carbonate Sedimentology in Central Europe (ed. Muller, G. & Friedman, G.M.). Spring-Verlag Berlin, Heideberg. pp 157-171.
Julia, R., 1983, Travertines. Carbonate Depositional Environments., 708 p., p.64-72, The American Associtation of Petroleum Geologist Tulsa, Oklohoma, USA.
Kappelman J., Alçiçek M.C., Kazanci N., Schultz M., Özkul M., Şen Ş., 2008, First Homo erectus from Turkey and implications for migrations into temperate Eurasia. American Journal of Physical Anthropology 135, 110-116
Karabacak, V., 2002, Ihlara vadisi civarındaki traverten oluşumları ve tektonik önemleri. Osmangazi Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 82 sayfa, yayımlanmamış.
Koçyiğit, A., 2003, Karakoçan Fay Zonu: Atımı, Yaşı, Etkin stres Sistemi ve Depremselliği, ATAG-7. Toplantısı Bildiri Özleri Kitabı, Yüzüncüyıl Üniv. Sayfa, 9.
Mesci, B. L., 2004, Sıcak Çermik ve Yakın Yöresindeki (Sivas) Travertenlerin Gelişimi ve Aktif Tektonikle İlişkisi. Doktora Tezi, Cumhuriyet Üniv. Fen Bil. Enst., 245 sayfa (Yayınlanmamış).
B. Levent Mesci, Halil Gürsoy & Orhan Tatar, 2008, The evolution of travertine masses in the Sivas area (central Turkey) and their relationships to active tectonics. Turkish Journal of Earth Sciences. Vol. 17, Issue. 2, pp. 219-240
Bekir Levent Mesci, Orhan Tatar, John D. A. Piper, Halil Gürsoy, Erhan Altunel & Stephen Crowley, 2013., The efficacy of travertine as a palaeoenvironmental indicator: palaeomagnetic study of neotectonic examples from Denizli, Turkey. Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 22, Issue 2, 2013, pp. 191 203.
Pedley, H.M., 1990, Classification and environmental models of cool freshwater tufas. Sedim. Geol., 68, 143-154.
Russell, I. C., 1882, Sketch of the geological history of Lake Lahontan, a Quaternary lake of Northwestern Nevada, U. S. Geol. Surv. Third Annual Report.
Scholl, D. W., 1960, Pleistocene algal pinnacles at Searles Lake, California, Jour.Sed. Petr., 30, 3, 414-431.
Soligo, M., Tuccimei, P., Barberi, R., Delitala, M. C., Miccadei, E., and Taddeucci, A., 2002, U/Th dating of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and geological implications, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 184, Issues 1-2, Pages 147-161.
Şimşek, Ş., 2003, Türkiyede Jeotermal Enerji Potansiyeli. Mavi Gezegen, TMMOB Jeoloji Müh. Odası Yayını, Sayı: 7, sayfa: 48-53.
Mesci, B . (2013). Özgün Niteliklere Sahip Travertenler ve Önemleri: Sivas Yöresi Travertenlerinden Örnekler . Türkiye Jeoloji Bülteni , 56 (1) , 23-38 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28136/298970
Berk Çakmakoğlu
Fikret Göktaş
Mahmut Demirhan
Cahit Helvaci
View as PDF
Abstract: The presence of economical clay formations in the terrestrial Neogene deposits of the KaraburunPeninsula is well known. Clay formations occur in the Early Miocene Salman formation. The formationwhich indicates the beginning of the Neogene terrestrial sedimentation in the Karaburun Peninsula, deposited in a fan delta environment. It starts with disorganised boulderstone at base and grades in conglomerate through upward. The sublacustrine part of the fan-delta sequence represented by siltstoneand conglomerate alternation overlies the subaerial fan-delta sequence including coarse-graineddeposits. The sublacustrine fan-delta deposits are made up of channel-fill, debris-flow and overbanklithofacies. Lacustrine backshore sequence represented by massive siltstone levels with lignite levelsand calcareous interlayers deposited over the sublacustrine fan-delta deposits. The Salman formationis covered by the Early Miocene Yaylaköy volcanites comprising the product of calc-alkaline volcanism.The Yaylaköy volcanites contain andesite-basaltic andesite lava flows reflecting two different stages ofsettling and pyroclastic deposits including fine ash-lapille tuff alternation which seperate these flows. Thecommercially clay formations developed on overbank lithofacies of the fan-delta deposits. It is expectedthat the main factor of controlling the illite-kaolinite rich clay formations are related to geochemical andmineralogical characteristics of the source rocks.
Clay
early miocene
illite
kaolinite
karaburun
fan delta
Akal, C., Koralay, O.E., Candan, O., Oberhanslı, R., ve Chen, F., 2011. Geodynamic Significance of the Early Triassic Karaburun Granitoid (Western Turkey) for the Opening History of Neo-Tethys. Turkish Journal of Earth Sciences, 20, 255-271.
Aras, A., Göktaş, F., Demirhan, M., Demirhan, H., ve İçöz, S., 1999. Karaburun Kilinin Stratigrafisi, Mineralojisi ve Pişme Özellikleri. BAKSEM99 1. Batı Anadolu Hammadde Kaynakları Sempozyumu, İzmir, 238-247.
Borsi, S., Ferrara, G., Innocenti, F., ve Mazzuoli, R., 1972. Geochronolog and petrology of Recent volcanics in the eastern Aegean. Bull. Volcanologique, 36, (3), 473-496.
Çakmakoğlu, A., ve Bilgin, R., 2006. Karaburun Yarımadasının Neojen Öncesi Stratigrafisi. Maden Tetkik ve Arama Dergisi, 132, 33-62.
Ercan, T., Türkecan, A., ve Satır, M., 2000. Karaburun Yarımadasının Neojen Volkanizması. Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi Bildiriler Kitabı I, MTA Yayını, 1-18.
Erdoğan, B., Altıner, D., Güngör, T., ve Özer, S., 1990. Karaburun Yarımadasının Jeolojisi. Maden Tetkik ve Arama Dergisi, 111, 1-24.
Erkül, S.T., Sözbilir, H., Erkül, F., Helvacı, C., Ersoy, Y., ve Sümer, Ö., 2008. Geochemistry of I-type granitoids in the Karaburun Peninsula, West Turkey: Evidence for Triassic continental arc magmatism following closure of the Paleotethys. Island Arc, 17, 394-418.
Helvacı, C., Ersoy, E.Y., Sözbilir, H., Erkül, F., Sümer, Ö., ve Uzel, B., 2009. Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and Geothermal Research, 185, 181-202.
Kalafatçıoğlu, A., 1961. Karaburun Yarımadasının Jeolojisi. Maden Tetkik ve Arama Dergisi, 56, 53-62.
Robertson, A.H.F., ve Pickett, E.A., 2000. Paleozoic-Early Tertiary Tethyan evolution of melanges, rift and passive magrin units in the Karaburun Peninsula (western Turkey) and Chios Island (Greece). In: Bozkurt, E., Winchester, J.A., ve Piper, J.D.A. (eds), Tectonics and Magmatism in Turkey and the Surrounding Area Geological Society, London, Special Publications, 173, 43-82.
Çakmakoğlu, B , Göktaş, F , Demirhan, M , Helvacı, C . (2013). Karaburun Yarımadasının Kuzey Kesimindeki Killerin Stratigrafisi, Sedimantolojisi ve Ekonomik Kullanım Olanaklarının Araştırılması . Türkiye Jeoloji Bülteni , 56 (1) , 39-58 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28136/299042