Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2022 AĞUSTOS Cilt 65 Sayı 3
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
PREFACE - Precious & Semi-Precious Stones
Sabah Yilmaz Şahin
View as PDF

Abstract: Precious and Semi-Precious Stones, / in otherwords "gemstones", occupy a special placeamong other minerals and rocks due to theirrarity in nature, their durability, and some of theirphysical and chemical properties. Gemstoneshave been widely used in different cultureswith different meanings since the beginning ofhumankind . The belief that some stones weremagic in Mesopotamia about 6000 years ago,that amethyst was an antidote in Ancient Greece,that lapis lazuli in Egypt was considered sacred inIndia, and that jadeite was considered sacred inIndia show that various meanings were attributedto gemstones and that they attracted particularinterest from the past to the present.The use of precious and semi-precious stonesin different cultures as a symbol of status, powerand wealth, which is obtained by combining thestones with the art of jewellery and mountingthem on metal, is common not only in Anatolia butalso all over the world. Some precious and semiprecious stones are also used as ornaments andare an indicator of the owners’ aesthetic-artisticunderstanding. In addition, precious and semiprecious stones have the potential to contribute tothe economic resources of the region where theyare mined.

  • Precious Stones

  • Semi-Precious Stones


  • MTA (2000). Türkiye’nin Kıymetli ve Yarı Kıymetli Taşlarının Araştırılması Projesi. MTA Genel Müdürlüğü Maden Analizleri ve Teknolojisi Dairesi Başkanlığı, Ankara.

  • Selim, H. (2015). Türkiye’nin Değerli ve Yarı Değerli Mücevher Taşları. İstanbul Ticaret Odası Yayınları, Yayın no: 2014-4.

  • Yılmaz Şahin, S. (2019). Türkiye’nin Değerli ve Yarı Değerli Taşları. Yurt Madenciliğini Geliştirme Vakfı Sektörmaden Dergisi, 72, Temmuz-AğustosEylül, 26-32.

  • Yılmaz Şahin, S. (2022). Değerli ve Yarı Değerli Taşlar Sayısı / Önsöz . Türkiye Jeoloji Bülteni , 65 (3) , 1-10 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/69204/1168998

  • Some Mineralogical and Gemological Properties of Silicified Wood Species in Western Anatolia
    Burcu Üner Sabah Yilmaz Şahin Ünal Akkemik
    View as PDF

    Abstract: The silicified wood samples that we identified in Western Anatolia are located in: the Late MiocenePliocene Çokköy Formation in Tavşanlı (Kütahya) and its surroundings, in Osmancalı (Manisa) and its vicinity inthe Early (?)-Middle Miocene Foça Tuff, and in Banaz (Uşak) around the Middle-Late Miocene Yeniköy Formationin the terrestrial sediments. The formation of wood petrified by silicification is associated with clastic sedimentsformed simultaneously with the Neogene period volcanic activity in the region. In the mineralogical-petrographicexamination of three oriented thin sections, including transverse, radial and tangential, chalcedony polymorphs ofsilica and lesseramounts of quartz and opal were detected in the silicified wood samples. Mineralogical interpretation was also supported by X-Ray Diffractometry (XRD) analysis. As a result of paleobotanical identification made withthin sections in the a botanical microscope; Taxodioxylon Hartig 1848 (Swamp cypress), Pinuxylon Gothan 1906(Pine), Pterocaroxylon Müll.-Stoll et Mädel 1960 (Walnut), Quercoxylon (Kräusel 1939) Gros 1988 (evergreen oak),and Glyptostroboxylon Conwentz 1884 (Swamp cypress) fossil wood species were determined. According to thesefindings, a warmer and more humid climate prevailed than today, and there were cypress forests on the edges ofswamps and streams, with pine and evergreen oak forests on the slopes. Within the scope of gemological examinationof the silicified wood samples, those which are rich in color/pattern were selected, polished by giving them cabochonforms, then mounted in silver. A small amount of facet cutting was carried out from unpatterned and monochromaticsamples. The silicified wood samples, which have high value in terms of hardness, exhibit an unstable character dueto the weak zones they contain, and they do not show the desired performance in terms of pattern/color.

  • Gemological properties

  • mineralogical composition

  • paleobotany

  • silicified wood

  • Western Anatolia


  • Acarca Bayam, N. N., Akkemik, Ü., Poole, I. & Akarsu, F. (2018). Further contributions to the early Miocene forest vegetation of the Galatian Volcanic Province, Turkey. Palaeobotanica Electronica, 21(3), 1–42.

  • Akgün, F., Akay, E. & Erdoğan, B. (2002). Terrestrial to shallow marine deposition in Central Anatolia: a palynological approach. Turkish Journal of Earth Sciences, 11, 1–27.

  • Akgün, F., Kayseri, M. S. & Akkiraz, M. S. (2007). Paleoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2), 56–90.

  • Akkemik, Ü., Türkoğlu, N., Poole, I., Çiçek, I., Köse, N. & Gürgen, G. (2009). Woods of a Miocene petrified forest near Ankara, Turkey. Turkish Journal of Earth Sciences, 33, 89-97.

  • Akkemik, Ü. & Sakınç, M. (2013). Sequoioxylon petrified woods from the Middle to Late Oligocene of Thrace (Turkey). IAWA Journal, 34(2), 177- 182.

  • Akkemik, Ü., Arslan, M., Poole, I., Tosun, S., Köse, N., Karlıoğlu Kılıç, N. & Aydın, A. (2016). Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Review Palaeobotany Palynology, 235, 31-50.

  • Akkemik, Ü., Acarca, N. N. & Hatipoğlu, M. (2017). The first Glyptostroboxylon from the Miocene of Turkey. IAWA Journal, 38(4), 561-570.

  • Akkemik, Ü., Akkılıç, H. & Güngör, Y. (2019). Fossil wood from the Neogene of the Kilyos coastal area in Istanbul, Turkey. Palaeontographica Abteilung B, 299(1-6), 133-185.

  • Akkiraz, M. S., Akgün, F., Utescher, T., Bruch, A. A. & Mosbrugger, V. (2011). Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 276–290.

  • Aras, A., Sakınç, M. & Yaltırak, C. (2004). Petrified angiosperm woods in the Thrace Formation (Pliocene-E. Quaternary?) in eastern Thrace, NW Turkey. International Symposium On Wood Sciences. Organised by IAWA-IAWS, France, 4.

  • Aslan, İ. ve Altay, T. (2021). Banaz Havzasındaki (Uşak, B-Türkiye) Neojen Yaşlı Sedimanter Birimlerin Mineralojik ve Jeokimyasal Özellikleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21, 449-461.

  • Aydoğan, M. S. (2006). Baklan Graniti (Murat Dağı, Banaz/Uşak) Civarındaki Baz Metal Cevherleşmesinin Mineral Parajenezi, Metal Zonlanması ve Kökenlerinin İzotop Jeokimyası ile Saptanması [Yayımlanmamış Yüksek Lisans Tezi]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı, Isparta.

  • Aysal, N. (1994). Banaz-Hatipler-Bahadır Köyleri (Uşak) civarının jeolojisi [Yayımlanmamış Lisans Tezi]. İstanbul Üniversitesi Mühendislik Fakültesi.

  • Baş, H. (1983). Domaniç-Tavşanlı-Gediz-Kütahya yörelerinin tersiyer jeolojisi ve volkanitlerinin petrolojisi (Rapor no: 7293). Maden Tetkik ve Arama Enstitüsü.

  • Biltekin, D. (2017). Palaeo vegetational and palaeo climatic changes during the early Miocene in central Taurus, Turkey. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 38, 101–114.

  • Bingöl, E. (1977). Muratdağı jeolojisi ve ana kayaç birimlerinin petrolojisi. Türkiye Jeoloji Kurumu Bülteni, 20(2) 13-66. https://www.jmo.org.tr/ resimler/ekler/e2265684fe2d0d6_ek.pdf

  • Brinkmann, R.(1966). Geotektonische Gliederung von Westanatolien. Neues Jahrbuch für Geologie und Paläontologie, 10, 603-618.

  • Çelik, Y. (2000). Domaniç (Kütahya) Neojen Havzasının stratigrafisi ve depoloma ortamları, Batı Anadolu. 53. Türkiye Jeoloji Kurultayı, (s.177-178), Ankara. http://tjk.jmo.org.tr/bildiri_ ozleri.php?kod=13&bildiriKod=468

  • Çevik Üner, B. & Yılmaz Şahin, S. Akkemik, Ü. (2022). Mineralogical and paleobotanical investigations of Oligo-Miocene petrified wood from the southwest of Thrace Basin (NW Turkey). Turkish Journal of Earth Sciences, 31, 49-70.

  • Denk, T., Güner, T.H., Kvaček, Z. & Bouchal, M. J. (2017). The early Miocene flora of Güvem (Central Anatolia, Turkey): a window into early Neogene vegetation and environments in the Eastern Mediterranean. Acta Palaeobotanica, 57, 237–338.

  • Denk, T., Güner, H. T., Bouchal, M. J. (2019). Early Miocene climate and biomes of Turkey: Evidence from leaf fossils, dispersed pollen, and petrified wood. Palaeogeography, Palaeoclimatology, Palaeoecology 530, 236–248.

  • Dietrich, D., Lampke, T. & Röβler, R. (2013). A microstructure study on silicified wood from the Permian Petrified Forest of Chemitz. Palӓontologische Zeitschift, 87, 814-834.

  • Dönmez, M.., Akçay, A. E. ve Türkecan, A. (2014). İzmir – K 18 Paftası, 1:100 000 ölçekli Türkiye Jeoloji Haritaları. Maden Tetkik ve Arama Müdürlüğü Jeoloji Etütleri Dairesi, No:213.

  • Ercan, T., Dinçel, A., Metin, S., Türkecan, A. ve Günay, E. (1978). Uşak yöresindeki neojen havzaların jeolojisi. Türkiye Jeoloji Bülteni, 21(2), 97- 106. https://www.jmo.org.tr/resimler/ekler/ bc7d9c600d61c08_ek.pdf

  • Ersoy, E. & Helvacı, C. (2007). Stratigraphy and geochemical features of the Early Miocene bimodal (ultrapotassic and calc-alkaline) volcanic activity within the NE-trending Selendi Basin, Western Anatolia, Turkey. Turkish Journal of Earth Science, 16, 117–139.

  • Ersoy, E. Y., Dindi, F., Karaoğlu, Ö. ve Helvacı, C. (2012). Soma Havzası ve Çevresindeki Miyosen Volkanizmasının Petrografik ve Jeokimyasal Özellikleri, Batı Anadolu, Türkiye. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 33(1), 59-80.

  • Günay, E., Akdeniz, N., Saroglu, F. ve Çaglayan, A. (1986). Murat Dağı-Gediz Dolaylarının Jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etüdleri Dairesi, 74 s.

  • Güner, H. T.,Bouchal, J. M., Köse, N., Göktaş, F., Mayda, S. & Denk, T. (2017). Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macrofossils. Palaeontolographica Abteilung B, 296(1–6), 113–171.

  • Hassan, K. M. (2019). Stable Isotope Ratios of Carbonate and Organic Carbon from Silicified Tree Trunks, Petrified Forest, New Cairo, Egypt– Possible Interpretations of Palaeoenvironment. Geochemistry International, 57(5), 564–574.

  • Hatipoğlu, M. & Türk N. (2009). Combined polarizing microscope, XRD, SEM, and specific gravity study of the petrified woods of volcanic origin from the Çamlıdere-Çeltikçi-Güdül fosil forest, in Ankara, Turkey. Journal of African Earth Sciences 53(4-5), 141-157. https://doi.org/10.1016/j. jafrearsci.2009.01.001

  • Helvacı, C. Ersoy, E. Y. & Billor, Z. (2016). Stratigraphy and Ar/Ar geochronology of the Miocene lignitebearing Tunçbilek-Domaniç Basin, western Anatolia. International Journal of Earth Sciences, 106(5), 1797-1814.

  • Karaoğlu, O. & Helvacı, C. (2012). Structural evolution of the Uşak–Güre supra-detachment basin during Miocene extensional denudation in western Turkey. Journal of the Geological Society, 169, 627-642.

  • Karaoğlu, O. & Helvacı, C. (2014). Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos, 192-195, 226-239. https://doi.org/10.1016/j. lithos.2014.02.006

  • Karlıoğlu, N., Akkemik, Ü. & Caner, H. (2009). Detectionof some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry, 33, 577-584.

  • Kaya, O. (1978). Ege kıyı kuşağı (Dikili-ZeytindağıMenemen-Yenifoça) Neojen stratigrafisi. Ege Üniversitesi Fen Fakültesi Monografiler Serisi No:17.

  • Kayacık, H., Aytuğ, B., Yaltırık, F., Şanlı, İ., Efe, A., Akkemik, Ü. & Inan, M. (1995). Sequoiadendron giganteum (Lindl) Buchh. trees living near Istanbul in Late Tertiary. Review of Faculty of Forestry, University of Istanbul, 45, 15-22.

  • Kayseri, M. S. & Akgün, F. (2008). Palynostratigraphic, palaeovegetational and palaeoclimatic investigations on the Miocene deposits in Central Anatolia (Çorum Regionand Sivas Basin). Turkish Journal of Earth Sciences, 17, 361–403.

  • Konak, N. (2002). 1/500.000 ölçekli Türkiye Jeoloji Haritaları, İzmir Paftası, (Şenel, M., (Ed.)). Maden Tetkik ve Arama Müdürlüğü Jeoloji Etütleri Dairesi, No:7.

  • Küçükayman A., Genç, Ş., Gök, L., Kar, H. ve Ateş, M. (1987). Bozüyük-Tavşanlı-Kütahya arasının jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Derleme No: 8356 (yayımlanmamış).

  • Lukens, W. E., Eze, P. 6 Schubert, B. A. (2019). The effect of diagenesis on carbon isotope values of fossil wood. The Geological Society of America, 47(10), 987–991.

  • Matysová, P. (2016). Study of fosil wood by modern analytical methods: case studies [Phd Thesis] Charles University in Prague, Faculty of Science Institute of Geology and Palaeontology, Prague.

  • Mustoe, G. (2017). Wood Petrifaction: A New View of Permineralization and Replacement. Geosciences, 7(4), 119.

  • Mustoe, G. & Viney, M. (2017). Mineralogy of Paleocene Petrified Wood from Cherokee Ranch Fossil Forest, Central Colorado, USA. Geosciences, 7(2), 1-22.

  • Mustoe, G., Viney, M. & Mills J. (2019). Mineralogy of Eocene Fossil Wood from the “Blue Forest” Locality, Southwestern Wyoming, United States. Geosciences, 9(1), 35.

  • Özgüven-Ertan, K. (1971). Sur un bois fossile de Taxodiaceaedans la flore Neogene d’Istanbul (Turquied’Europe): Sequoioxylon egemeni n.sp. Revue Faculté des Sciences de l’Universite d’Istanbul, 36(B), 89–114.

  • Öztürk, A. ve Karadağ, M. M. (2009). Yukarıkaracahisar (Banaz-Uşak) Bölgesinin Stratigrafisi vePetrografik Özellikleri. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 24(4), 1-22.

  • Pe-Piper, G., Imperial, A., Piper, D. J. W., Zouros, N. C. & Anastasakis, G. (2019). Mineral data (SEM, electron microprobe, Ramanspectroscopy) from epithermal hydrothermal alteration of the Miocene Sigri Petrified Forestand host pyroclastic rocks, Western Lesbos, Greece. Data in Brief 24, Article 103987. https://doi.org/10.1016/j. dib.2019.103987

  • Sakınç, M., Aras, A., Yaltırak, C., Batı, Z. ve Çağatay, N. (2007). Trakya Karasal Tersiyerinde Silisleşmiş Ağaçlar, Paleoflora, Paleoklimatoloji, Paleocoğrafya (Proje no: 103Y137). TÜBİTAK.

  • Sarıfakıoğlu, E. (2011). Kütahya – İ 23 Paftası, 1:100 000 ölçekli Türkiye Jeoloji Haritaları. Maden Tetkik ve Arama Müdürlüğü Jeoloji Etütleri Dairesi, No:157.

  • Seyitoğlu, G. (1997). Late Cenozoic tectonosedimentary development of the Selendi and Uşak– Gure basins: a contribution to the discussion on the development of east–west and north trending basins in western Turkey. Geological Magazine, 134, 163–175.

  • Üner, B. (2022). Trakya ve Batı Anadolu Bölgeleri Silisleşmiş Ağaçlarının Jeolojik, Jeokimyasal ve Gemolojik Özelliklerinin Karşılaştırılması [Yayımlanmamış Doktora Tezi]. İstanbul Üniversitesi-Cerrahpaşa Lisansüstü Eğitim Enstitüsü.

  • Velitzelos, E. & Zouros, N. (1997). The Petrified Forest of Lesvos – Protected Natural Monument. Proc. Internat. Sympos. On Engineering Geology and the Environment, Athens, 3037–3043.

  • Velitzelos, D., Bouchal, J. M. & Denk, T. (2014). Review of the Cenozoic floras and vegetation of Greece. Review Palaeobotany and Palynology 204(2), 56–117.

  • Viney, M., Hickey, R. D. & Mustoe, G. E. (2019). A Silicified Carboniferous Lycopsid Forest in the Colorado Rocky Mountains, USA. Geosciences, 9(510), 1-18. https://doi.org/10.3390/ geosciences9120510

  • Voudouris, P., Velitzelos, D., Velitzelos, E. ,& Thewald, U. (2007). Petrified wood occurrences in western Thrace and Limnos Island: mineralogy, geochemistry and depositional environment. Bulletin of the Geological Society of Greece, 40(1), 238-250.

  • Zouros, N., Velitzelos, E., Valiakos, I. & Labaki, O. (2007). The Plaka Petrified Forest Park inWestern Lesvos - Greece. Proceedings of the 11th International Congress, Bulletin of the Geological Society of Greece, 40, 1880–1891.

  • Üner, B. , Yılmaz Şahin, S. & Akkemik, Ü. (2022). Batı Anadolu’da Silisleşmiş Ağaç Türlerinin Bazı Mineralojik ve Gemolojik Özellikleri . Türkiye Jeoloji Bülteni , 65 (3) , 217-232 . DOI: 10.25288/tjb.1088732

  • Evaluation of Geochemical Properties of Agates in Almus (Tokat)
    Fetullah Arik Erhan Turhal Yeşim Özen
    View as PDF

    Abstract: Agates in the study area, located around the town of Almus in Tokat province, are found in the form ofnodules along an approximately E-W trending fault within the volcanogenic sandstones of the Almus formation.The Upper Cretaceous aged Artova ophiolite complex, represented by metabasic ,and ultrabasic rocks on top of thePaleozoic aged Tokat metamorphics forming the basis of the study area, stands at the tectonic boundary, ,and theHaydaroğlu formation, which includes the Middle Eocene aged volcanogenic units, cuts ,and covers these older units.Sedimentary rocks such as sandstone, conglomerate ,and marine limestone containing volcanic materials belongingto older units, as well as the Lower Miocene aged Almus formation, which contains the agates, also unconformablyoverlie all units.Almus region agates contain on average 93.4%SiO2, 3.59%Fe2O3, 0.03%MgO, 0.72%CaO, 793 ppm Cr2O3,11.98 ppm Ni, 13.4 ppm Cu, 4.69 ppm Pb, ,and 35.4 ppm Zn. They are associated with the ophiolite complex, whileCu, Pb ,and Zn are associated with the early stages of volcanism. The high Fe2O3 content in agates is associatedwith hematite and goethite which were transported in agates before SiO2 emplacement. The CaO in the agate isthe product of the last phase of the solution forming the agate, and MgO is associated with the presence of dolomite. Field observations and geochemical evaluations of agates show that agates are epigenetically emplaced as aresult of the circulation of SiO2, which is the main component due to hydrothermal activities that occurred after therock formation of the Haydaroğlu formation, within the volcanogenic sandstones.

  • Geochemistry

  • Agate

  • Gemstone

  • Almus

  • Tokat


  • Arık, F. (2018). Almus (Tokat) Yöresindeki Jasper Oluşumlarının Jeolojik ve Gemolojik Özellikleri. International Congress on Engineering and Architecture (ENAR-2018) Alanya / Turkey, Proceedings, 1(1), 1892-1901.

  • Arık, F. (2019). Kuruseki, Serince, Görümlü (AlmusTokat) Yöresinin Jeolojik Özellikleri ve Süstaşı Potansiyeli (Proje no: 18201114). Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü Projesi, 74 s.

  • Arık, F. ve Özen, Y. (2020). Tokat Yöresi Jasper Oluşumlarının Mineralojik-Petrografik, Jeokimyasal Özellikleri ve Süstaşı Olarak Kullanılabilirliği. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 451-460 https://doi.org/10.28948/ngumuh.558199

  • Arık, F. ve Turhal, E. (2021). Kuruseki, Serince, Görümlü (Almus-Tokat) Yöresindeki Akiklerin Jeolojik ve Jeokimyasal Özellikleri. O. Parlak, K. Sayıt, B. L. Mesci, H. Akıllı, M. Akyıldız (Ed. ler), Uluslararası Katılımlı 73. Türkiye Jeoloji Kurultayı (Çevrimiçi) Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s. 242-246.). https://www.jmo. org.tr/resimler/ekler/02d915fa0bf0f11_ek.pdf

  • Başıbüyük, Z., Kaydu Akbudak, İ. ve Gürbüz, M. (2016). Artova Krizoprasının Mineralojik, Jeokimyasal ve Gemolojik İncelemesi (Proje no: MMF.A3.16.010, 9). Tokat-Türkiye, T.C. Ahi Evran Üniversitesi Araştırma Proje Önerisi.

  • Bozkurt, E., Holdsworth, B. & Kocyigit, A. (1997=. Implications of Jurassic chert identified in the Tokat Complex, northern Turkey. Geological Magazine 134(1): 91-97.

  • Delikan, A., Arık, F. & Özen, Y. (2019). Geological and Gemological Properties of The Gümüşyurt Chrysoprase (Artova-Tokat). International Turkic World Congress on Science and Engineering (UTUFEM 2019) (p. 1096-1102), 17-18 June 2019, Niğde – Turkey, Proceedings, ISBN:978- 975-8062-32-4, 1096-1102.

  • Göçmengil, G., Karacık, Z., Genç, Ş. C. & Billor, Z. (2017). 40Ar-39Ar geochronology and petrogenesis of postcollisional trachytic volcanism along the İzmir-Ankara-Erzincan suture zone (NE, Turkey). Turkish Journal of Earth Sciences, 27(1), 1-31. https://doi.org/10.3906/yer-1708-4

  • Göçmengil, G., Karacık, Z. & Genç, Ş. C. (2018). Volcano Stratigraphic Investigation of the PostCollisional Middle Eocene Magmatism Around İzmir-Ankara-Erzincan Suture Zone (NE, Turkey). Türkiye Jeoloji Bülteni (Geological Bulletin of Turkey) 61(2), 131-162. https://doi.org/10.25288/ tjb.414013

  • Gültekin, A. H., Örgün, Y. ve Yavuz, F. (1998). Tumanpınarı (Balıkesir-Dursunbey) Fe-Mn cevherleşmesinin jeolojik, mineralojik ve jeokimyasal özellikleri. Türkiye Jeoloji Bülteni, 41(2), 13-30. http://tjb.jmo.org.tr/detail-article. php?articlekod=821

  • Gürbüz, M., Kaydu, Akbudak, İ. K. ve Ulus, Ü. (2016). Tokat Agatlarının Mineralojik Petrografik Jeokimyasal İncelenmesi, Türkiye. Uluslararası Katılımlı 7. Jeokimya Sempozyumu, Ankara Üniv, Antalya, Bildiri Özleri, 124-125.

  • Güreli Yolcubal, H., Akyazı, M., Sezen, T. F., Toprak, Ö., Canbolat, M. Y., Koçak, F. ve Özkan, A. (2014). Turhal-Pazar- Zile (Tokat) Üst Mesozoyik Stratigrafisi. Türkiye Jeoloji Bülteni, 57(1), 73- 112. https://doi.org/10.25288/tjb.298762

  • Hatipoğlu, M., Kibici, Y., Buzlu, H.B., Helvacı, C. ve Kırıkoğlu, M.S. (2011). Türkiye’de Bulunan Mavi Kalsedonlar. 64. Türkiye Jeoloji Kurultayı, 25-29 Nisan, Ankara, 202-203.

  • Kaydu Akbudak, İ., Gürbüz, M., Başıbüyük, Z. ve Ulus, Ü. (2016). Aydıncık (Yozgat) Kalsedonlarının Mineralojik, Jeokimyasal ve Gemolojik İncelemesi (Proje No: PYO- MÜH.4001.15.002). T.C. Ahi Evran Üniversitesi.

  • Kaydu Akbudak, İ., Başıbüyük, Z. ve Gürbüz, M. (2018). Yozgat Aydıncık kalsedonametist oluşumlarının mineralojisi-petrografisi ve ekonomikliliğinin incelenmesi. DÜMF Mühendislik Dergisi, 9(1), 313-324.

  • Kaydu Akbudak, İ., Başıbüyük, Z. & Gürbüz, M. (2021). Silicified woods consist with malachite, azurite, and hematite in the Middle Eocene Çekerek Formation, Tokat—Turkey. Lithology and Mineral Resources, 56(6), 548–558. https:// doi.org/10.1134/S002449022106002X

  • Moxon, T. & Reed S. J. B. (2006), Agate and chalcedony from igneous and sedimentary hosts aged from 13 to 3480 Ma: a cathodoluminescence study. Mineralogical Magazine, 70 (5): 485–498. https://doi.org/10.1180/0026461067050347

  • Özcan, A. ve Aksay, A. (1996). Tokat-Turhal-AlmusÇamlıbel Dolayının Jeolojisi (Rapor No: 9972). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Ruşen, A. ve Arık, F. (2018). Gümenek (Komana) ve Döllük Köyleri (Tokat) Civarındaki Kalsedonların Petrografik ve Gemolojik İncelenmesi. Değerli ve Yarı Değerli Taşlar Çalıştayı-2, 19-20 Aralık 2018 (s. 58-60), Bildiriler. JMO, İstanbul Ticaret Üniversitesi.

  • Ruşen, A. (2019). Gümenek ve Döllük Köyleri (Tokat) Civarindaki Kalsedonların Petrografik ve Gemolojik İncelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı.

  • Ruşen, A. & Arık, F. (2019). Geological and Gemological Properties of the Döllük and Gümenek (Tokat) Chalcedonies. International Turkic World Congress on Science and Engineering (UTUFEM 2019) (p. 1087-1095), 17-18 June 2019, Niğde – Turkey, Proceedings, ISBN:978-975-8062-32-4.

  • Sarıiz, K. Ve Nuhoğlu, İ. (1992). Endüstriyel Hammadde Yatakları ve Madenciliği. Anadolu Üniversitesi. Yayın No:636, Eskişehir.

  • Schumann, W. (1998). Gemstones of the world. New York, Sterling Publishing Co., Inc., 272 p.

  • Sümengen, M. (2013). 1:100.000 ölçekli Türkiye Jeoloji Haritaları, No.188, Tokat- H37 paftası. Maden Tetkik Arama Genel Müdürlüğü, Jeolojik Etüdler Daire Başkanlığı, Ankara, Türkiye.

  • Terlemez, İ. ve Yılmaz, A. (1980). Ünye-OrduKoyulhisar-Reşadiye arasında kalan bölgenin stratigrafisi. Türkiye Jeoloji Bülteni. 23(2), 179- 191. https://www.jmo.org.tr/resimler/ekler/ eacf7a18a32812d_ek.pdf

  • Tufan, E. A. (2014). Ni-Lateritlerin Oluşumu ve Özellikleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16 (2), 68-78. https://dergipark. org.tr/tr/pub/baunfbed/issue/23850/254082

  • Turhal, E. (2019). Kuruseki, Serince, Görümlü (AlmusTokat) Yöresinin Jeolojik Özellikleri ve Süstaşı Potansiyeli [Yayımlanmamış Yüksek Lisans Tezi]. Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı.

  • Turhal, E. ve Arık, F. (2018). Kuruseki, Serince, Görümlü (Almus-Tokat) Yöresindeki Akiklerin Petrografik ve Gemolojik Özellikleri. Değerli ve Yarı Değerli Taşlar Çalıştayı-2, 19-20 Aralık 2018 (s. 61-64), Bildiriler. JMO, İstanbul Ticaret Üniversitesi.

  • Turhal, E. & Arık, F. (2019). Geological and Gemological Investigation of the Agates Around the Kuruseki, Serince, Görümlü (Almus-Tokat) Region. International Turkic World Congress on Science and Engineering (UTUFEM 2019) (p. 1078-1086), 17-18 June 2019, Niğde – Turkey, Proceedings, ISBN:978-975-8062-32-4.

  • Türeli, K., Teşrekli, R., Çelebioğlu, N., Bektur, Z., Besbelli, A., Erdem, E., Sayılı, S. Lüle, Ç., Atakay, E., Kadirioğlu, T., Özcan, H. ve Esat, K. (2000). Türkiye’nin Kıymetli ve Yarı Kıymetli Taşlarının Araştırılması Projesi. Maden Tetkik ve Arama Genel Müdürlüğü, s.62.

  • Vıcıl, M. ve Alp, İ. (2002). Gümüşhane Yöresinde Bulunan Altın Yataklarındaki Altın Tanelerinin Özelliklerinin Karşılaştırılması. Gümüşhane ve Yöresi Kalkındırma Sempozyumu, Gümüşhane, Bildiriler Kitabı 1, 413-422.

  • Walger, E., Matthess, G., Seckendorff, V. V, Liebau, F. (2009). The formation of agate structures: models for silica transport, agate layer accretion, and for flow patterns and flow regimes in infiltration channels. Neues Jahrbuch Fur Mineralogieabhandlungen, 186, 113-152.

  • Yılmaz, Y., Serdar, H.S., Genç, C., Yiğitbaş, E., Gürer, Ö.F., Elmas A., Yıldırım, M., Bozcu M. & Gürpınar, O. (1997). The Geology and Evolution of The Tokat Massif, South-Central Pontides, Turkey. International Geological Review, 39, 365- 382.

  • Arık, F. , Turhal, E. & Özen, Y. (2022). Almus (Tokat) Yöresindeki Akiklerin Jeokimyasal Özelliklerinin Değerlendirilmesi . Türkiye Jeoloji Bülteni , 65 (3) , 233-254 . DOI: 10.25288/tjb.1067344

  • Geochemical Properties of the Döllük and Gümenek (Tokat-Türkiye) Chalcedonies
    View as PDF

    Abstract: The study area is located within the borders of Tokat province, which is one of the richest provinces inTurkey in terms of gemstone diversity. The region contains various high quality gemstone formations, such as jasper,opal, chalcedony, agate, and chrysoprase, which have both geological and commercial value.Metamorphic, magmatic, and sedimentary units from the Paleozoic to the present day crop out in the studyarea. While Paleozoic-Mesozoic Tokat metamorphics and Artova ophiolite mélange form the basement, the Almusformation, which is represented by Lower Miocene aged volcano-sedimentary rocks from the central parts of thearea to the east, covers these units unconformably. Quaternary slope debris and alluviums in the Yeşilırmak basinare the youngest units in the region. The chalcedony formations are observed along an E-W trending almost vertically dipping fault zone passingthrough the north of Döllük and Korucak villages within the metamorphic units of the Tokat Massif. The chalcedoniesare in the cracks, fractures and cavities of the recrystallized limestones that exhibit a fractured and brecciatedstructure along a line of approximately 25 m in the direction perpendicular to this fault zone.In our mineralogical, petrographic, and gemological studies, quartz, tridymite, cristobalite, calcite and dolomiteswere determined, together with chalcedony. Chalcedonies have an average of 96.3% SiO2, 1.96% Fe2O3, 0.56%MgO, 1.02% CaO, 780 ppm Cr2O3, 6.3 ppm Cu, 20 ppm Hg, 4.2 ppm Pb, 18 ppm Ni and 77 ppm Zn. Chalcedonyformations are the last product of a hydrothermal system related to volcanic activities after the formation of the wallrocks. The movement of chalcedony-generating solutions within the fault zone and their inclusion of carbonate wallrock and secondary calcite formations during chalcedony formation ensured that the CaO and MgO content of thechalcedony was relatively high.

  • Chalcedony

  • gemstone

  • geochemistry

  • geology

  • Tokat


  • Akbudak, İ. K., Gürbüz, M., Başıbüyük, Z. ve Ulus, Ü. (2016). Aydıncık (Yozgat) Kalsedonlarının Mineralojik, Jeokimyasal ve Gemolojik İncelemesi (Proje No: PYO- MÜH.4001.15.002). T.C. Ahi Evran Üniversitesi.

  • Arık, F. ve Özen, Y. (2020). Tokat Yöresi Jasper Oluşumlarının Mineralojik-Petrografik, Jeokimyasal Özellikleri ve Süstaşı Olarak Kullanılabilirliği. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 451-460 https://doi.org/10.28948/ngumuh.558199

  • Arık, F. ve Ruşen, A. (2021). Döllük ve Gümenek (Tokat) Kalsedonlarının Jeolojik ve Jeokimyasal Özellikleri. O. Parlak, K. Sayıt, B. L. Mesci, H. Akıllı, M. Akyıldız (Ed.ler), Uluslararası Katılımlı 73. Türkiye Jeoloji Kurultayı (Çevrimiçi) Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s. 247-251). https://www.jmo.org.tr/resimler/ ekler/02d915fa0bf0f11_ek.pdf

  • Arık, F. ve Turhal, E. (2021). Kuruseki, Serince, Görümlü (Almus-Tokat) Yöresindeki Akiklerin Jeolojik ve Jeokimyasal Özellikleri. O. Parlak, K. Sayıt, B. L. Mesci, H. Akıllı, M. Akyıldız (Ed. ler), Uluslararası Katılımlı 73. Türkiye Jeoloji Kurultayı (Çevrimiçi) Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s. 242-246.). https://www.jmo. org.tr/resimler/ekler/02d915fa0bf0f11_ek.pdf

  • Arık, F. (2019a). Gümenek ve Döllük Köyleri (Tokat) Civarındaki Kalsedonların Petrografik ve Gemolojik İncelenmesi (Proje no: 18201115) Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü Projesi, 90 s.

  • Arık, F. (2019b). Kuruseki, Serince, Görümlü (AlmusTokat) Yöresinin Jeolojik Özellikleri ve Süstaşı Potansiyeli (Proje no: 18201114). Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü Projesi, 74 s.

  • Başıbüyük, Z., Kaydu Akbudak, İ. ve Gürbüz, M. (2016). Artova Krizoprasının Mineralojik, Jeokimyasal ve Gemolojik İncelemesi, TokatTürkiye. T.C. Ahi Evran Üniversitesi Araştırma Proje Önerisi, 9 s.

  • Braitsch, O. (1957). Über die natürlichen Faserund Aggregationstypen beim SiO2 , ihre Verwachsungsformen, Richtungsstatistik und Doppelbrechung. Heidelberger Beiträge zur Mineralogie und Petrographie, 5, 331-372.

  • Cady, S. L., Wenk, H. R. & Sintubin, M. (1998). Microfibrous quartz varieties: characterization by quantitative X-ray texture analysis and transmission electron microscopy. Contributions to Mineralogy and Petrology, 130, 320-335.

  • Correns, C. W. & Nagelschmidt, G. (1933). Über Faserbau und optische Eigenschaften von Chalzedon. Zeitschrift für Kristallographie, 85, 199-213.

  • Delikan, A., Arık, F. & Özen, Y. (2019). Geological and Gemological Properties of The Gümüşyurt Chrysoprase (Artova-Tokat). International Turkic World Congress on Science and Engineering (UTUFEM 2019) (p. 1096-1102), 17-18 June 2019, Niğde – Turkey, Proceedings, ISBN:978- 975-8062-32-4, 1096-1102.

  • Fidan, E. (2016). Tarih Öncesi Dönemlerde Anadolu’da Kullanılmış Olan Maden Yatakları. Madencilik Türkiye Bilimsel, 9, 49-59.

  • Flörke, O. W., Graetsch, H., Martin, B., Röller, K. & Wirth, R. (1991). Nomenclature of micro- and noncrystalline silica minerals based on structure and microstructure. Neues Jahrbuch für Mineralogie – Abhandlungen, 163, 19-42.

  • Frondel, C. (1978). Characters of quartz fibers. American Mineralogist, 63, 17-27.

  • Frondel, C. (1982). Structural hydroxyl in chalcedony (type B quartz). American Mineralogist, 67, 1248- 1257

  • Graetsch, H. (1994). Structural characteristics of opaline and microcrystalline silica minerals. In P. J. Heaney, C. T. Prewitt & G. V. Gibbs (Eds.) Reviews in Mineralogy, Volume 29, Silica - Physical behavior, geochemistry and materials applications . https://doi.org/10.1515/9781501509698-011

  • Gürbüz, M., Akbudak, İ. K. ve Ulus, Ü. (2016). Tokat Agatlarının Mineralojik Petrografik Jeokimyasal İncelenmesi, Türkiye. Uluslararası Katılımlı 7. Jeokimya Sempozyumu, Ankara Üniv, Antalya, Bildiri Özleri, 124-125.

  • Hatipoğlu, M., Ören, U. & Kibici, Y. (2011). MicroRaman spectroscopy of gem-quality chrysoprase from the Biga–Çanakkale region of Turkey. Journal of African Earth Sciences, 61(4), 273-285.

  • Heaney, P. J. & Post, J. E. (1992). The Widespread Distribution of a Novel Silica Polymorph in Microcrystalline Quartz Varieties. Science, 255,(5043), 441-443.

  • Kaptan, E. (1982). New findings on the mining history of Turkey around Tokat region. Bulletin of the Mineral Research and Exploration (MTA Dergisi), 93(94), 65-78. https://dergi.mta. gov.tr/dosyalar/images/mtadergi/makaleler/ eng/20150812153352_572_227a8885.pdf

  • Kaydu Akbudak, İ., Başıbüyük, Z. & Gürbüz, M. (2021). Silicified woods consist with malachite, azurite, and hematite in the Middle Eocene Çekerek Formation, Tokat—Turkey. Lithology and Mineral Resources, 56(6), 548–558. https:// doi.org/10.1134/S002449022106002X

  • Kılıç, C. Ö. & Kadıoğlu, Y. K. (2016). Causes of Different Vivid Colors in Chalcedonies: KutahyaTurkey. EGU General Assembly 2016, 17-22 April, 2016 in Vienna Austria, id. EPSC2016- 10296

  • Michel-Lévy, A. & Munier-Chalmas, C. P. E. (1892), Mémoire sur diverses formes affectées par le réseau élémentaire du quartz. Bulletin de la Société Française de Minéralogie, 15, 159-190. mindat.org. https://www.mindat.org/min-960.html

  • Moxon, T. (2004), Moganite and water content as a function of age in agate: an XRD and thermogravimetric study. European Journal of Mineralogy, 16, 269-278.

  • Ruşen, A. & Arık, F. (2019). Geological and Gemological Properties of the Döllük and Gümenek (Tokat) Chalcedonies. International Turkic World Congress on Science and Engineering (UTUFEM 2019) (p. 1087-1095), 17-18 June 2019, Niğde – Turkey, Proceedings, ISBN:978-975-8062-32-4.

  • Ruşen, A. ve Arık, F. (2018). Gümenek (Komana) ve Döllük Köyleri (Tokat) Civarındaki Kalsedonların Petrografik ve Gemolojik İncelenmesi. Değerli ve Yarı Değerli Taşlar Çalıştayı-2, 19-20 Aralık 2018 (s. 58-60), Bildiriler. JMO, İstanbul Ticaret Üniversitesi.

  • Ruşen, A. (2019). Gümenek ve Döllük Köyleri (Tokat) Civarindaki Kalsedonların Petrografik ve Gemolojik İncelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı.

  • Sözeri, K., Günel, H., Duran, E. ve Çevik, N. (2021). Tokat-Artova Bölgesinde Bulunan Kalsedon Oluşumlarının Mineralojik-Petrografik ve Gemolojik Özellikleri, O. Parlak, K. Sayıt, B. L. Mesci, H. Akıllı, M. Akyıldız (Ed.ler), Uluslararası Katılımlı 73. Türkiye Jeoloji Kurultayı (Çevrimiçi) Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s. 259-260). https://www.jmo. org.tr/resimler/ekler/02d915fa0bf0f11_ek.pdf

  • Sümengen, M. (2013). 1:100.000 ölçekli Türkiye Jeoloji Haritaları, No.188, Tokat- H37 paftası. Maden Tetkik Arama Genel Müdürlüğü, Jeolojik Etüdler Daire Başkanlığı, Ankara, Türkiye.

  • Turhal, E. ve Arık, F. (2018). Kuruseki, Serince, Görümlü (Almus-Tokat) Yöresindeki Akiklerin Petrografik ve Gemolojik Özellikleri. Değerli ve Yarı Değerli Taşlar Çalıştayı-2, 19-20 Aralık 2018 (s. 61-64), Bildiriler. JMO, İstanbul Ticaret Üniversitesi.

  • Turhal, E. & Arık, F. (2019). Geological and Gemological Investigation of the Agates Around the Kuruseki, Serince, Görümlü (Almus-Tokat) Region. International Turkic World Congress on Science and Engineering (UTUFEM 2019) (p. 1078-1086), 17-18 June 2019, Niğde – Turkey, Proceedings, ISBN:978-975-8062-32-4.

  • Turhal, E. (2019). Kuruseki, Serince, Görümlü (AlmusTokat) Yöresinin Jeolojik Özellikleri ve Süstaşı Potansiyeli [Yayımlanmamış Yüksek Lisans Tezi]. Konya Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı.

  • Türeli, K., Teşrekli, R., Çelebioğlu, N., Bektur, Z., Besbelli, A., Erdem, E., Sayılı, S. Lüle, Ç., Atakay, E., Kadirioğlu, T., Özcan, H. ve Esat, K. (2000). Türkiye’nin Kıymetli ve Yarı Kıymetli Taşlarının Araştırılması Projesi. Maden Tetkik ve Arama Genel Müdürlüğü, s.62.

  • Xu, H., Buseck, P. R. & Luo, G. (1998). HRTEM investigation of microstructure in length-slow chalcedony. American Mineralogist, 83, 542-545.

  • Yılmaz, Y., Serdar, H.S., Genç, C., Yiğitbaş, E., Gürer, Ö.F., Elmas A., Yıldırım, M., Bozcu M. & Gürpınar, O. (1997). The Geology and Evolution of The Tokat Massif, South-Central Pontides, Turkey. International Geological Review, 39, 365- 382.

  • Zwierlein-Diehl, E. (2012), Antike Gemmen und ihr Nachleben. Walter de Gruyter, 582 pp.

  • Arık, F. & Ruşen, A. (2022). Döllük ve Gümenek (Tokat-Türkiye) Kalsedonlarının Jeokimyasal Özellikleri . Türkiye Jeoloji Bülteni , 65 (3) , 255-272 . DOI: 10.25288/tjb.1078030

  • Mineralogical-Petrographical and Gemological Properties of Chalcedony Occurences in Artova Region (Tokat-Turkey)
    Koray Sözeri Handan Günel Erhan Duran
    View as PDF

    Abstract: The study area is located around Gümüşyurt and Bayırlı villages in the county of Artova in Tokatprovince, Turkey. Permian-aged amphibolite rocks formed the foundation of the region. In the upper part of thisunit, Silurian-aged, grey-beige colored and recrystallized limestone is found. There are mainly metamorphic unitsof Permian metaclastics, metamorphic rocks and partially-silicified limestone blocks at the base. The metamorphicunits of metabasic origin consist of rocks such as chlorideschist, glaucophaneschist, micaschist and amphibolite.The partially-silicified limestone blocks of white, cream, beige, and blackish grey colors are hard and brittle. Theophiolithic rocks from Late Jurassic to Early Cretaceous show a wide distribution in the south part of the study area.Eocene limestone/conglomerate units and Pliocene conglomerates are unconformably overlaid on all previous units.Chalcedony samples, mostly green in color, occur within a small part of the Eocene limestone. Various green tonesof the chalcedony samples can be seen in different parts of the study area. Although some translucent, dark brown togrey color tones of the chalcedony samples are lower gem-quality material, the majority of the samples are of gemquality, good enough to be fashioned as cabochons and beads. Based on field observations, Raman spectroscopy,GemmoFTIR (Fouirer Transform Infrared Spectrophotometer for Gemology), geochemical analyses and standard  gemological tests, the samples were identified as chalcedony in general with different tones of green, specifically"Chromium Chalcedony".

  • Chromium Chalcedony

  • GemmoFTIR

  • gemstone

  • geochemistry

  • mineralogy


  • Arık, F. ve Özen, Y. (2020). Tokat Yöresi Jasper Oluşumlarının Mineralojik-Petrografik, Jeokimyasal Özellikleri ve Süstaşı Olarak Kullanılabilirliği. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 451-460 https://doi.org/10.28948/ngumuh.558199

  • Başıbüyük Z., Kaydu A.İ. & Gürbüz M. (2020). Mineralogical, geochemical and gemological investigation of Artova Ch-chalcedonies, Tokat – Turkey. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 36(1), 77-92. https://doi.org/10.24425/gsm.2020.132551

  • Hatipoğlu, M., Ören, U. & Kibici, Y. (2011). Microraman spectroscopy of gem-quality chrysoprase from the Biga-Çanakkale Region of Turkey. Journal of African Earth Sciences 61(4), 273–285.

  • Kingma, K. J. & Hemley, R. (1994). Raman spectroscopy study of microcrystalline silica. American Mineralogist, 79, 269-273.

  • Lule-Whipp (2006). Chromium Chalcedony from Turkey and Its Possible Archeological Connections. Gems & Gemology, 42, 115.

  • Özcan, A. 1974. 1/25.000 Ölçekli Sayısal Jeoloji Haritaları, Tokat H36-d2 Paftası.

  • Özcan, A., Erkan, A., Keskin, A., Keskin, E., Oral, A., Özer, S., Sümengen, M. F. & Tekeli, O. (1980). Kuzey Anadolu Fayı ile Kırşehir Masifi arasının temel jeolojisi (Rapor No: 6722). Maden Tetkik ve Arama Enstitüsü.

  • Özcan, A. & Aksay, A. (1996). Tokat-Turhal-AlmusÇamlıbel Dolayının Jeolojisi (Rapor No. 9972). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Smith C. C. (1967). A preliminary account of Rhodesia’s new gemstone chrome chalcedony. Chamber of Mines Journal, 12, 31–34.

  • Sümengen, (2013). 1/100.000 Ölçekli Türkiye Jeoloji Haritaları, Tokat H36 Paftası No:187.

  • Temiz, H., Özden, S. & Guezou, J. C. (2010). İzmirAnkara-Erzincan Kenet Kuşağı’nın ArtovaÇamlıbel (Tokat) kesiminin Geç Neojen’ deki tektonik deformasyon biçimi ve kinematiği. Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi, 27(2), 71-88.

  • Yılmaz, A. (1981). Tokat ile Sivas arasındaki bölgede ofiyolitli karışığın iç yapısı ve yerleşme yaşı: Türkiye Jeoloji Kurumu Bülteni, 24 (1), 31-38, https://jmo.org.tr/resimler/ekler/ a8d616d51ce9709_ek.pdf

  • Sözeri, K. , Günel, H. & Duran, E. (2022). Tokat-Artova Bölgesinde Bulunan Kalsedon Oluşumlarının Mineralojik-Petrografik ve Gemolojik Özellikleri . Türkiye Jeoloji Bülteni , 65 (3) , 273-286 . DOI: 10.25288/tjb.1126375

  • Mineralogical-Petrographical and Gemological Investigation of Chalcedonies in Nebiköy, Tokat
    Elif Özbay İlkay Kaydu Akbudak Zeynel Başibüyük Gökhan Ekincioğlu
    View as PDF

    Abstract: The chalcedony formations observed in the village of Nebiköy and its surroundings in Tokat province arefound in Permian-Triassic metamorphic rocks as veins with a thickness a few mm to 10 cm. Chalcedony, which hascolor of light blue-blue tones, is generally banded and sometimes has a kidney-like structure.In thin sections made from chalcedony, fibrous acicular quartz minerals and microcrystalline quartz mineralswere determined in a banded structure. Iron oxide fillings were encountered in the secondary dolomite formationsand micro-fractured cracks that cut these minerals in places. Quartz and dolomite associations were detected inXRD analyzes of the chalcedony samples.The main oxides in the chalcedony sample taken from the study area were determined as 94.08% SiO2, 1.45%CaO, 1.06% MgO, 0.37% Al2O3 and 0.31% Fe2O3; In the host rock (metasandstone) sample, it was determined as 37.5% SiO2, 16% CaO, 8% MgO, 6% Al2O3 and 4% Fe2O3. In the chalcedony sample, enrichments were alsoobserved in trace elements of 140.4 ppm As, 36.97 ppm Co, 5.4 ppm Ni and 1.45 ppm Cu; while in the host rock,enrichments were observed in trace elements of 53.3 ppm V, 28.9 ppm Ni, 7.5 ppm Co, 4.8 ppm As, 4.6 ppm Cu, 2.4ppm Mo, 2 ppm Ga and 1.5 ppm Bi.Cabochon cutting studies were carried out from the chalcedony samples taken from the study area to be usedin jewelry. Considering the light-dark blue color tone, durability, massive structure and workability observed in anarea of approximately 1 km2, it was determined that the chalcedony in the region can be used as gemstones.

  • Chalcedony

  • Gemology

  • Gemstone

  • Mineralogy

  • Tokat


  • Akyazı, M. ve Tunç, M. (1992). Zile (Tokat) Yöresinin Stratigrafisi. Türkiye Jeoloji Bülteni, 35(2), 35-46. https://www.jmo.org.tr/resimler/ ekler/5b1e92c585fd4c2_ek.pdf

  • Arık, F. ve Özen, Y. (2020). Tokat Yöresi Jasper Oluşumlarının Mineralojik-Petrografik, Jeokimyasal Özellikleri ve Süstaşı Olarak Kullanılabilirliği. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 451-460 https://doi.org/10.28948/ngumuh.558199

  • Başıbüyük, Z. (2018). Mineralogical, geochemical, and gemological characteristics of silicic gemstone in Aydıncık (Yozgat-Turkey). Arabian Journal of Geosciences, 11(12), 1-11.

  • Çevik, N., Ayan, Z., Coşkun, E. ve Sayılı, İ. S. (2011). Belkavak Köyü (Yerköy-Yozgat) Civarındaki Kuvars ve Ametist Oluşumlarında Mikrotermometrik Özellikler. Türkiye Jeoloji Bülteni, 54(3), 123-139. https://dergipark.org.tr/tr/ pub/tjb/issue/28158/299229

  • Flörke, O. W., Graetsch, H., Röller, K., Martin, B. & Wirth, R. (1991). Nomenclature of micro and noncrystalline silica minerals. Neues Jahrbuch für Mineralogie, Abhandlungen, 163, 19-42.

  • Flörke, O. W., Graetsch, H. & Miehe, G. (1983). Crystalstructure and Microstructure of Chalcedony. Fortschritte der Mineralogie, 61(1), 62-63.

  • Frondel, C. (1978). Characters of quartz fibers. American Mineralogist, 63, 17-27.

  • Frondel, C. (1982). Structural hydroxyl in chalcedony (type B quartz). American Mineralogist, 67, 1248- 1257.

  • Gilg, H. A., Morteani, G., Kostitsyn, Y., Preinfalk, C., Gatter, I. & Strieder, A. J. (2003). Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brasil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Mineralium Deposita, 38, 1009-1025.

  • Gislason, S. R., Heaney, P. J., Veblen, D. R. & Livi, K. J. T. (1993). The difference between the solubility of quartz and chalcedony: the cause?. Chemical Geology, 107, 363-366

  • Graetsch, H. (1994). Structural characteristics of opaline and microcrystalline silica minerals. Reviews in Mineralogy and Geochemistry, 29(1), 209-232.

  • Hatipoğlu, M. (2003). Güğü Köyü Ametist Kristallerinin Değerlendirilmesi (Dursunbey, Balıkesir, KB Türkiye) ve Yöresel Ekonomiye Katkısı. Afyon, Türkiye IV Mermer Sempozyumu (MERSEM’2003) Bildiriler Kitabı.

  • Hatipoğlu, M., Babalık, H. & Chamberlain, S. C. (2010). Gemstone Deposits in Turkey. Rocks & Minerals, 85(2), 124-133

  • İşler, F. (1995). Özel Mineraloji. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi, Yayın no: 28, 89s, Adana.

  • Kaydu Akbudak, İ., Başıbüyük, Z. ve Gürbüz, M. (2018). Yozgat Aydıncık kalsedon-ametist oluşumlarının mineralojisi-petrografisi ve ekonomikliliğinin incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 9(1), 313-324.

  • MTA, (2002). Maden Tetkik ve Arama Genel Müdürlüğü 1/500.000 ölçekli jeoloji haritaları (M. Şenel (Ed.), Düzenleyenler: H. Y. Hakyemez, İ. Papak).

  • Prokofiev, V. Y., Kamenetsky, V. S., Selektor, S. L., Rodemann, T., Kovalenker, V. A. & Vatsadze, S. Z. (2017). First direct evidence for natural occurrence of colloidal silica in chalcedonyhosted vacuoles and implications for ore-forming processes. Geology, 45(1), 71-74.

  • Selim, H. (2015). Türkiye’nin Değerli ve Yarı Değerli Mücevher Taşları. İstanbul Ticaret Odası Yayınları, Yayın no: 2014-4.

  • Türeli, K. ve Sayılı, S. (2000). Türkiye`nin Kıymetli ve Yarı kıymetli Taşlarının Araştırılması. Maden Tetkik ve Arama Genel Müdürlüğü Projesi, Ankara.

  • Yolcubal, H. G., Akyazı, M., Sezen, T. F., Toprak, Ö., Canbolat, M. Y., Koçak, F., ve Özkan, A. (2014). Turhal-Pazar-Zile (Tokat) Yöresinin Üst Mesozoyik Stratigrafisi. Türkiye Jeoloji Bülteni, 57(1), 73-112. https://doi.org/10.25288/ tjb.298762

  • Zengin, M. (2006). Osmancık (Çorum) Kuzeydoğusunda Yer Alan Volkaniklerin Epitermal Cevherleşme Potansiyeli ve Mavi Kalsedon Oluşumu [Yayımlanmamış, Yüksek Lisans Tezi]. İstanbul Üniversitesi Fen Bilimleri Enstitüsü.

  • Ozbay Candan, E. , Kaydu Akbudak, İ. , Başıbüyük, Z. & Ekincioğlu, G. (2022). Tokat Nebiköy Kalsedonlarının Mineralojik-Petrografik ve Gemolojik İncelemesi . Türkiye Jeoloji Bülteni , 65 (3) , 287-296 . DOI: 10.25288/tjb.1121899

  • Geology and Mineralogy of Yenisofça Opal Occurrencesş Eskişehir-NW Turkey
    Ayten Çalik
    View as PDF

    Abstract: This study presents the geology and mineralogy of the opal nodules which occur in the Pliocene carbonatedconglomerates, NW of the Yenisofça village (Eskişehir, NW Turkey). The host-rock of opals consist of well-roundedpebbles, mainly opal, ultramafics (mainly serpentinites), and micritic limestones. The mainly white, transparent andgrey colored opal nodules range from 2 to 30 cm in diameter The X-ray diffraction (XRD) analyses revealed opalCT, quartz, dolomite and sepiolite as the main mineral components of opals. Scanning electron microscope (SEM)images show that sphere and fibrous textures are found in opal nodules. The comparison of fibrous textures observedin the opal nodules with those observed in sepiolite nodules based on SEM images showed that there is a similaritybetween them. The major element composition of the opal by SEM and whole rock geochemical analyses reveal thatthe concentration of the MgO is higher than the other oxides in the opals. Field studies, geochemical analyses, andmineralogical data suggest that the Yenisofça opals could have formed by sepiolite replacement by low temperaturesilica-rich hydrothermal solutions that circulated along the fractures systems. This result is similar and coherentwith the properties and formation of opal and cryptocrystalline quartz occurrences outcropping in the Eskişehir andKütahya regions.

  • Eskişehir

  • Opal

  • sepiolite

  • Yenisofça


  • Altunkaynak, S. & Özdilek, Y. (2006). Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. Geological Society of America, Special Paper, 409, 321 – 351.

  • Arzoğulları, U. (2007). Dereyalak Köyü (Eskişehir) Çevresindeki Agat ve Opal oluşumlarının Jeolojisi ve Ekonomik Önemi [Yayımlanmamış Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü.

  • Atakay, E. (2002). Dumluca, Dümrek (Karacakaya), Karkın ve Karaçam (Adatepe) (Sivrihisar - Eskişehir) civarındaki silisleşmiş ultramafik kayaçların maden jeolojik incelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Ankara Üniversitesi, Fen Bilimleri Enstitüsü.

  • Çalık, A. ve Arzoğulları, U. (2008). Dereyalak köyü (Eskişehir) çevresindeki agat ve opal oluşumlarının jeolojisi ve ekonomik önemi. Geosound, 53, 219- 232.

  • Çalık, A. & Arzoğulları, U. (2014). Occurrence of dendritic agate from Dereyalak village (Eskişehir)- NW of Turkey and its relationship to sepiolite nodules in the region. Journal of African Earth Sciences, 97, 99-108.

  • Çalık, A. (2017). Geology and Mineralogy of Belkavak Opal Occurrences - Kütahya, NW Turkey. In L. Karadenizli & S. Bonaz Aslan, 70th Geological Congress of Turkey, Abstracts Book, Ankara, Turkey (pp. 120-121). https://www.jmo.org.tr/ resimler/ekler/67967e4b442a097_ek.pdf

  • Çalık, A. (2021). Genesis of the Pliocene conglomerate: Kütahya and Eskişehir—central west Anatolia, Turkey. Arabian Journal of Geosciences 14, Article 46. https://doi.org/10.1007/s12517-020- 06402-7

  • Ece, I. & Çoban, F. (1994). Geology, occurrence and genesis of Eskişehir sepiolites, Turkey. Clays and Clay Minerals, 42(1), 81-92.

  • Ece, I. (1998). Diagenetic Transformation of Magnesite Pebbles and Cobbles to Sepiolite (Meerschaum) in the Miocene Eskişehir Lacustrine Basin, Turkey. Clays and Clay Minerals, 46(4), 436-445.

  • Ece, I. Ö., Matsubaya, O. & Çoban, F. (2005). Genesis of hydrothermal stockwork-type magnesite deposits associated with ophiolite complexes in the Kütahya-Eskişehir region, Turkey. Neues Jahrbuch für Mineralogie, Abhandlungen 181(2), 191-205.

  • Esenli, F., Kumbasar, I., Eren, R. E. & Uz, B. (2001). Characteristics of opals from Simav, Turkey. Neues Jahrbuch für Mineralogie - Monatshefte (3), 97– 113.

  • Gaillou, E., Delaunay, A., Rondeau, B., Bouhnikle-Coz, M., Fritsch, E., Cornen, G. & Monnier, C. (2008). The geochemistry of gem opals as evidence of their origin. Ore Geology Reviews, 34, 113-126.

  • Göncüoğlu, M. C, Turhan, N., Şentürk, K., Özcan, A., Uysal, S. & Yalınız, M. K. (2000). A geotraverse across Northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In: E. Bozkurt, J. A. Winchester, J. D. A., Piper, J. D. A. (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area, 173 (pp. 139-161). Geological Society, London, Special Publication.

  • Gözler, M. Z., Cevher, F., Ergül, E. ve Asutay, H. J. (1996). Orta Sakarya ve Güneyinin Jeolojisi (Rapor no: 997). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Hatipoğlu, M. (2009). Moganite and quartz inclusions in the nano-structured Anatolian fire opals from Turkey. Journal of African Earth Sciences 54(1-2) 1–21. https://doi.org/10.1016/j. jafrearsci.2009.01.004

  • Kahya, A. ve Kuşcu, M. (2014). Source of the mineralizing in ultramafic related magnesite in the Eskişehir area, northwest Turkey, along the İzmir - Ankara Suture: a stable isotope study. Turkish Journal of Earth Sciences, 23, 1-15. https://doi. org/10.3906/yer-1302-12

  • Kulaksız, S., 1981. Sivrihisar Kuzeybatı Yöresinin jeolojisi. Hacettepe Universitesi, Yerbilimleri, 8, 103 – 124.

  • Özcan, A., Göncüoğlu, C. M. ve Turhan, N. (1989). Kütahya – Çifteler – Bayat- İhsaniye Yöresinin Temel Jeolojisi, (Rapor no: 8974). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Sarıiz, K. & Işık, E. (1995). Meerschaum from Eskişehir Province, Turkey. Gems and Gemology, 31(1), p. 42-51.

  • Sarıiz, K. (2000). The geology, Mineralogy and Occurrence of Bedded Sepiolite Deposits in the Akçayır - Yürükakçayır (Eskişehir) Lacustrine Basin, Central Turkey. Exploration and Mining Geology 9(3-4) 265-275. https://doi. org/10.2113/0090265

  • Simoni, M., Caucia, F., Adamo I., & Galinetto, P. (2010). New Occurrence of fire Opal from Bemia, Madagascar, Notes and New Techniques. Gems & Gemology, 46(2), 114-121.

  • Sun, S. S. & McDonough, W. F. (1989). Chemical and Isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: a. D. Saunders, M. J. Norry, (Eds.), Magmatism in the Oceans Basins. Geological Society of London special Publication.

  • Uslu, G. Ş. (2011). Simav (Kütahya) Bölgesindeki Ateş Opali Oluşumlarının Mineralojik -Petrografik Özellikleri ve Gemolojik Kullanım Alanları [Yayımlanmamış Yüksek LisansTezi]. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü.

  • Yeniyol, M. (2012). Geology and mineralogy of a sepiolite-palygorskite occurrence from SW Eskişehir (Turkey). Clay Minerals, 47(1), 93–104. https://doi.org/10.1180/claymin.2012.047.1.93

  • Çalık, A. (2022). Yenisofça Opal Oluşumlarının Jeolojisi ve Mineralojik Özellikleri - Eskişehir, KB Türkiye . Türkiye Jeoloji Bülteni , 65 (3) , 297-308 . DOI: 10.25288/tjb.1038617

  • Investigation of the Geological, Geochemical and Gemological Features of Diaspore Formations on the Southwestern Side of Menderes Massif (Bafa Lake-Milas 9
    Eyyüp Hikmet Kinaci Alican Öztürk
    View as PDF

    Abstract: Interest in gemstones, which have been used as symbols of beauty, wealth and status since prehistoric times,has increased in recent years and taken an important place in many countries. The Menderes Massif is the mostimportant area where bauxite deposits are observed in Turkey. Gemstone quality diaspore crystals are formed only in these deposits. In this study, the mineralogical, geochemical and gemological features of the diaspore formationson the south-western side of the Menderes Massif (Bafa Lake - Milas) were investigated. In field studies carried outin the study area, diaspore crystals were found in the Pınarcık region, located between Bafa Lake and Milas, withinmetabauxite formations together with chloritoid and muscovite, and in some places were encountered in alteredzones close to the metabauxite limestone contact. As a result of petrographic analyses of the wallrock samples,grano-lepidoblastic textured “muscovite-quartzschist”, “quartz-phyllite”, “mica-quartzschist” and lepidoblastictextured “phyllite”, and nematoblastic textured “greenschist-chlorite-epidote fels” rocks were identified. To evaluatethe main oxide, traces and rare earth elements on the 28 collected samples, Al2O3-SiO2-Fe2O3 triangular variationwas used. According to the classification, the bauxite samples were determined to be in the “ferric bauxite” and“bauxite” areas. As a result of SEM imaging and EDS analyses performed on the samples, it was determined thatthe samples mainly contained O, Al and Si. K, Na, Fe, Ca and Mg were also found close to these elements. UsingRaman Spectroscopy, in the light of matching values obtained from the microscope`s own database, it was seenthat the samples taken from Pınarcık (PI) region were diaspore, and brucite (Mg(OH)2)) and ugillite (Ca3(Ti, Al,Zr)9O20) minerals were also detected. In addition, FTIR analysis was performed on 4 samples taken from Pınarcık(PI) region and according to the results of their analysis, it was seen that the samples were compatible with standardwavelength references. It was scientifically proven that the samples collected from the region and subjected to facetprocessing are gemstone quality diaspore crystals with various color variations. This study will make an importantcontribution to understanding the properties of the gemstone quality diaspore mineral, its formation, and findingsimilar formations in the region.

  • Diaspore

  • FTIR

  • gemology

  • gemstone

  • Menderes Massif

  • metabauxite

  • Milas

  • Raman Spectroscopy

  • SEM-EDS


  • Açlan, M., ve Davran, N. (2019). Karlıca Volkanitlerinin (Hamur-Ağrı) Petrografik ve Jeokimyasal Özellikleri. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 40 (1), 72-91.

  • Alan, İ., Keskin, H., Böke, N., Altun, İ., Balcı, V., Elibol, H., Demirbağ, H., Bakırhan, B., Arman, S., Soyakil, M., Hanilçi, N., Çelik, Ö.F. ve Candan, O. (2019). Menderes Masifi’nin tektono-stratigrafik özellikleri projesi kapsamında elde edilen son bulgular. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 28, 41-48.

  • Aleva, G. J. J. (1994). Laterites: Concepts, Geology, Morphology and Chemistry. Wageningen, the Netherlands: ISIRC, ISBN: 90.6672.053.0., 169 p.

  • Bau, M. & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

  • Bárdossy, G. & Aleva, J. Y. Y. (1990). Lateritic Bauxites. Developments in Economic Geology 27. Elsevier, Amsterdam.

  • Boynton, W. V. (19843. Cosmochemistry of the rare earth elements: Meteoric studies. In Rare Earth Element Geochemistry. Developments in Geochemistry, 2, 63–114. https://doi.org/10.1016/ B978-0-444-42148-7.50008-3

  • Bozkurt, E., Park, R.G. & Winchester, J. A. (1993). Evidence against the core/cover interpretation of the southern sector of the Menderes Massif, west Turkey. Terra Nova, 5, 445-451.

  • Candan, O. Çetinkaplan, M. (2001). Menderes masifi’ndeki eklojit / epidot-mavi şist fasiyesi metamorfizması ve Kikladik kompleksle karşılaştırması (Proje No: YDABÇAG-495). Türkiye Bilimsel ve Teknolojik Araştırma Kurumu.

  • Çağatay, N., Erler, A., Güleç, N., Savaşçın, Y. ve Tokel, S. (1993). Jeokimya Temel Kavramlar ve İlkeler, İkinci Baskı. (Ed: N. Çağatay, A. Erler), Türkiye Jeoloji Kurumu, Yerbilimleri Eğitim Dizisi, Ankara, 293 s.

  • Çağlayan, M. A., Öztürk, E. M., Öztürk, Z., Sav, H., & Akat, U. (1980). Menderes masifi güneyine ait bulgular ve yapısal yorum (New data on the southern part of the Menderes massif and a structural interpretation). Jeoloji Mühendisliği Dergisi,10(1), 9-17. https://dergipark.org.tr/tr/ pub/jmd/issue/28159/297184

  • Dora, O. Ö., Kun, N. & Candan, O. (1990). Metamorphic history and geotectonic evolution of the Menderes Massif. In M.Y. Savaşçın & A.H. Eronat (Eds.), Proceedings of the International Earth Sciences Congress on Aegean Regions (Volume II, pp:102- 115)

  • Dora, O. Ö. (2011). Menderes Masifindeki Jeolojik Araştırmaların Tarihsel Gelişimi. Maden Tatkik Arama Dergisi, 142, 1-23. https://dergipark.org.tr/ tr/pub/bulletinofmre/issue/3960/52448

  • Dürr, St. (1975). Über Alter und geotektonische Stellung des Menderes-Kristallins/SW-Anatolien und seine Äequivalente in der mittleren Ägäis [Habilitation Thesis]. University of Marburg/Lahn, 107 pp.

  • Evensen, M. N.; Hamilton, P. J.; O’Nions, R. K. (1978). Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42(8), 1199–1212. https://doi.org/10.1016/0016- 7037(78)90114-X

  • GIA, (2022, 03 Mayıs) Gemological Institute Of America, Round Brillant Cut. https://4cs.gia.edu/ wp-content/uploads/2016/07/155880-960x960- round-brilliant-cut-diamond-illustration.jpg

  • Gill, J.B. 1981. Orogenic Andesite and Plate Tectonics. Springer-Verlag, Berlin, 390. https://doi. org/10.1007/978-3-642-68012-0

  • Grubb, P. L. C. (1973). High-level and low-level bauxitization: a criterion for classification. Miner. Sei. Engin. Johannesburg 5(3), 219-231.

  • Gu, J., Huang, Z., Fan, H. & Jin, Z. (2013). Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng’an–Daozhen area, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130, 44–59.

  • Gutnic, M., Monod, O., Poisson, A., & Dumont, J-F. 1979, Géologie des Taurides Occidentales (Turquie). Mémoires de la Société Géologique de France, No. 137, 112 pp.

  • Gümüş, A. (1998). İç Olaylara Bağlı Maden Yatakları. 1. Baskı, Bilim Ofset, İzmir, 481 s.

  • Hanilçi, N. (2013). Geological and Geochemical Evolution of the Bolkardağı Bauxite Deposits, Karaman-Turkey: Transformation from Shale to Bauxite. Journal of Geochemical Exploration, 133(2013),118-137.

  • Hatch, J. R. & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1-3), 65– 82. https://doi.org/10.1016/0009-2541(92)90031-Y

  • Haskin, L. A.; Haskin, M. A.; Frey, F. A.; Wildeman, T. R. (1968). Relative and Absolute Terrestrial Abundances of the Rare Earths. In L. H. Ahrens, (Ed.); Origin and Distribution of the Elements (pp.:889-912). Pergamon: New York, NY, USA.

  • Hill, I. G., Worden, R. H., Meighan, I. G. (2000). Yttrium: the immobility-mobility transition during basaltic weathering. Geology 28, 923–926.

  • Jones, B. & Manning, D. A. C. (1994), Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4), 111 –129. https:// doi.org/10.1016/0009-2541(94)90085-X

  • Kalkan, M. ve Ozpinar, Y. (2018). Civanadağ Bölgesi (Güğü-Balıkesir) Piroklastik Kayaçlarının Jeolojik, Petrografik ve Jeokimyasal Özellikleri, KB-Türkiye. Aksaray University Journal of Science and Engineering, 2(2), 95-115. https:// doi.org/10.29002/asujse.331754

  • Karadağ, M. M., Temur S., Arık, F. ve Öztürk, A. (2003). Maşatdağı (Alanya-Antalya) diasporitik boksitlerinin dört anabileşen jeokimyası. Geosound (42), 35-51.

  • Keller, W. D. (1964). The origin of high-alumina clay minerals. W. F. Bradley, (Ed.), Nationals Conference on Clays and Clay Minerals, 12 th, Proceedings, (pp.: 129-151), Macmillan Company, New York.

  • Krauskopf, K. B. (1979). Current perspectives in geologic disposal of radioactive wastes. Proceedings of the Symposium on Waste Management, (pp.: 99-107).

  • Konak, N. Akdeniz, N. Ve Öztürk, E. M. (1987). Geology of the south of Menderes Massif. In Guide Book for the Field Excursion along Western Anatolia, for the IGCP Project No. 5: Correlation of Variscan and pre-Variscan events of the AlpineMediterranean mountain belt (pp.:42-53), Maden Tetkik ve Arama Enstitüsü.

  • Lüle, Ç. (1998). Muğla-Milas-Küçükçamlıktepe diaspor oluşumlarının mineralojisi, oluşum koşulları ve gemolojik özellikleri [Yayımlanmamış Yüksek Lisans Tezi]., Ankara Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Ana Bilim Dalı.

  • Meshram, R. & Randive, K. (2011). Geochemical study of laterites of the Jamnagar district, Gujarat, India: Implications on parent rock, mineralogy and tectonics. Journal of Asian Earth Sciences. 42(6), 1271-1287. https://doi.org/10.1016/j. jseaes.2011.07.014

  • Ma, J., Wei, G., Xu, Y., Long, W. and Sun, W. (2007). Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71, 3223–3237. https:// doi.org/10.1016/j.gca.2007.03.035

  • McLennan, S. M. & Taylor, S. R. 1984. Archaean Sedimentary Rocks and Their Relation to the Composition of the Archaean Continental Crust. In Archaean Geochemistry (pp. 47–72). Springer: Berlin/Heidelberg, Germany.

  • Motoki A., Sichel S. E., Vargas, T., Melo, D. P. Kenji F. & Motoki, K. F. (2015). Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Annals of the Brazilian Academy of Sciences 87(4): 1959-1979.

  • Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites Geochimica et Cosmochimica Acta, 38(5), 757-775, https://doi.org/10.1016/0016- 7037(74)90149-5

  • Okay, A. I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In “The Mediterranean Basins: Tertiary extension within the Alpine orogen. In B. Durand, L. Jolivet, F. Horváth & M. Séranne Eds.)), Geological Society, London, Special Publication 156, 475-515.

  • Okay, A. I. (2000). Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau? In E. Bozkurt, J. A. Winchester & J. D. A. Piper (Ed.), Tectonics and Magmatism in Turkey and the Surrounding Area (25-41), Geological Society, London, Special Publication, 173. https:// doi.org/10.1144/GSL.SP.2000.173.01.0

  • Önay, T. Ş. (1949). Über die Smirgelgesteine SüdwestAnatoliens. Schweizerische Mineralogische und Petrographische Mitteilungen, 29, 357-492.

  • Özlü, N. (1983). Trace-element content of `Karst Bauxites` and their parent rocks in the mediterranean belt. Mineralium Deposita, 18(3), 469-476. https://doi.org/10.1007/BF00204491

  • Öztürk, A. & Koçyiğit, A. (1983). Menderes Grubu kayalarının temel-örtü ilişkisine yapısal bir yaklaşım (Selimiye - Muğla) (A structural approach to the basement-cover relation in the Menderes Group (Selimiye-Muğla)). Türkiye Jeoloji Kurumu Bülteni, 26(1), 99-106. https:// jmo.org.tr/resimler/ekler/c144c47ecba6f83_ ek.pdf

  • Öztürk, H. ve Hanilçi, N. (1999). Doğankuzu ve Mortaş Boksit Yatağının Jeolojisi ve Sülfürlü Zonların Özellikleri, Orta Toroslar, Türkiye. Maden Tetkik ve Arama Dergisi, 121, 185-197.

  • Özturk, H., Hein, J. R. & Hanilçi, N. (2002). Genesis of the Doğankuzu and Mortaş bauxite depoists, Taurides, Turkey: Separation of Al, Fe and Mn and implications for passive margin metallogeny. Economic Geology, 97, 1063-1077.

  • Özyurt, M.; Kırmacı, M.Z.; Al-Aasm, I.; Hollis, C.; Taslı, K.; Kandemir, R. REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration. Minerals, 10, 683. https://doi.org/10.3390/ min10080683

  • Pearce, J. A., Harris, N. B. W. & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrololgy, 25, 956-983. https://doi.org/10.1093/ petrology/25.4.956

  • Price, R. G., Grayc, M., Wilson, R. E., Frey, F. A. & Taylor, S. R. (1991). The effects of weathering on rare earth elements Y and Ba abundances in Tertiary basalts from southern Australia. Chemical Geology, 93, 254–265. https://doi. org/10.1016/0009-2541(91)90117-A

  • Ramdohr, P. & Strunz, H. (1978). Klockmanns Lehrbuch der Mineralogie. Ferdinand Enke Verlag, Stuttgart, 876pp. Mineralogical Magazine, 43(329), 686-686.

  • Read, P. G. (2005). Gemmology, (Third Ed.). Elsevier.

  • Rimmele, G., Oberhansli, R., Goffe, B., Jolivet, L., Candan, O. & Çetinkaplan, M. (2003). First evidence of high-pressure metamorphism in the “Cover Series” of the southern Menderes Massif. Tectonic and metamorphic implications for the evolution of SW Turkey. Lithos, 71, 19-46.

  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Longman Scientific and Technical, Wiley, New York.

  • Saatçioğlu, H. A. (2002). Kaybolmak Üzere Olan Değerlerden Diaspor Kristalleri. Madencilik Bülteni, 64, 25-28.

  • Schuiling, R. D. (1962). On petrology, age and structure of the Menderes migmatite complex (SW-Turkey). Bulletin of the Mineral research and Exploration Institute of Turkey, 58, 71-84. https://dergi.mta. gov.tr/dosyalar/images/mtadergi/makaleler/ eng/20151028141 120_954_2275ee3d.pdf

  • Thompson, R. N. (1982). Magmatism of the British tertiary volcanic province. Scotland Geological Journal 18, 49-107.

  • Seyhan, İ. (1972). Bentonit, kil ve tuğla-kiremit toprakları jeolojisi. MTA yayınları, No:13, Ankara, Türkiye.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

  • Şengör, A.M.C., Satır, M., Akkök, R. (1984). Timing of tectonic events in the Menderes massif, western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey: Tectonics, 3, 693-707

  • Şengör, A. M. C. (1986). The dual nature of the AlpineHimalayan system: Progress, problems and prospects. Tectonophysics, 127(3–4), 177-195.

  • Tanaka, T. & Masuda, A. (1973). Rare-earth elements in matrix, inclusions, and chondrules of the Allende meteorite. Icarus, 19(4), 523-530. https:// doi.org/10.1016/0019-1035(73)90079-1

  • Taylor, S. R., McLennan, S. M. (1981). The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461), 381-399. https://doi. org/10.1098/rsta.1981.0119

  • Taylor, S. R., McLennan, S. M. (1995), The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241–265. https://doi. org/10.1029/95RG00262

  • Temur S., Kansun G., Karadağ, M. M., Arık, F. & Öztürk, A. (2003). Maşatdağı (Alanya-Antalya) diasporitik boksitlerinin stratigrafik konumu. Geosound, 109-122.

  • Wakita, H., Ray, P. & Schmit, R.A. Abundances of 14 rare-earth elements and 12 other trace elements in Apollo 12 samples: Five igneous and one breccia rocks and four soils. In Proceedings of the Second Lunar Science Conference, (pp.:1319-1329), Volume 2.

  • Wright, J., Schrader, H. & Holser, W. T. (1987). Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3), 631–644. https:// doi.org/10.1016/0016-7037(87)90075-5

  • Zamanian, H., Ahmadnejad, F. & Zarasvandi, A. (2016). Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Chemie der Erde Geochemistry, 76(1), 13– 37. https://doi.org/10.1016/j.chemer.2015.10.001

  • Kınacı, E. H. & Öztürk, A. (2022). Menderes Masifi’nin Güneybatı Kanadındaki (Bafa Gölü - Milas) Diaspor Oluşumlarının Jeolojik, Jeokimyasal ve Gemolojik Özelliklerinin Araştırılması . Türkiye Jeoloji Bülteni , 65 (3) , 309-330 . DOI: 10.25288/tjb.1084167

  • ISSUE FULL FILE
    View as PDF