Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2023 OCAK Cilt 66 Sayı 1
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Late Miocene Stratigraphy of Karaburun Peninsula, New Mammal Recorts and Regional Correlation, Western Anotolia
Fikret Göktaş Tümel Tanju Kaya Erhan Tarhan Serdar Mayda
View as PDF

Abstract: The Eşendere Group, identified in the Mordoğan sub-basin on the western edge of the Foça Depression, consists of the alluvial Saip, palustrine Boyabağ and lacustrine Çukurcak limestone formations. The Eşendere Group unconformably overlies the lacustrine deposits of the middle Miocene Hisarcık Formation. The Saip Formation consisting of alluvial fan deposits, reflects the beginning of late Miocene sedimentation. The Boyabağ Formation, which was described in this study for the first time, represents a palustrine mud flat succession and is located between the Saip Formation and the lacustrine Çukurcak Limestone. The Çukurcak Limestone is the last unit in the Eşendere Group. Hipparion aff. giganteum and Hippopotamodon major, that were found in the mudstone dominant succession of the Boyabağ Formation, are the first records from the MN10 biozone in the Western Aegean region. Based on these large mammal records, we assume that late Miocene sedimentation in the Foça Depression began ~10 million years ago.

  • Western Anatolia

  • Mammalian Paleontology

  • Mordoğan Basin

  • Agostini, S., Tokçaer, M. & Savaşçın, M. Y. (2010). Volcanic rocks from Foça-Karaburun and Ayvalık-Lesvos Grabens (Western Anatolia) and their petrogenic-geodynamic significance. Turkish Journal of Earth Sciences, 19, 157-184.

  • Akyürek, B. ve Soysal, Y. (1983). Biga Yarımadası Güneyinin (Savaştepe–Kırkağaç–Ayvalık) Temel Jeolojik Özellikleri. Maden Tetkik ve Arama Dergisi, 95/96, 1-13.

  • Alçiçek, M. C., Mayda, S., Ten Veen, J. H., Boulton, S. J., Neubaer, T. A., Alçiçek, H., Tesakov, A., Saraç, G., Hakyemez, H. Y., Göktaş, F., Murray, A. M., Titov, V., Jimenez-Moreno, G., Büyükmeriç, Y., Wesselingh, F., Bouchal, J. M., Demirel, A, Kaya, T., Halaçlar, K., Bilgin, M., Hoek Ostende B. & L.W. van den (2019). Recongling the stratigraphy and depositional history of the Lycian orogene top basins, SW Anatolia. Palaeobiodiversity and Palaeoenvironments, 99(4), 551-570.

  • Alpagut, B., Mayda, S., Kaya, T., Göktaş, F., Halaçlar, K. & Kesici, S. D. (2014). Overview of recent research on Muğla-Özlüce mammalian fossil locality. 67. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, (s.732-733). Jeoloji Mühendisleri Odası Yayınları. http://www.jmo.org.tr/resimler/ ekler/72f251f4e9a785a_ek.pdf

  • Altunkaynak, Ş., Rogers, N. W. & Kelley, S. P. (2010). Causes and effects of geochemical variations in late Cenozoic volcanism of the Foça volcanic centre, NWAnatolia, Turkey. International Geology Review, 52, 579-607.

  • Atalay, Z. (1980). Muğla-Yatağan ve yakın dolayı karasal Neojen’inin stratigrafi araştırması. Türkiye Jeoloji Kurumu Bülteni, 23, 3-99. https://jmo.org. tr/resimler/ekler/cc9499a0d98ef4a_ek.pdf

  • Becker-Platen, J. D. (1970). Lithostratigraphische Untersuchungen im Kanozoikum SüdwestAnatoliens (Kanozoikum und Braunkohlen der Turkei 2). Beihefte Geologichen Jahrbuch 97, 244 p.

  • Bernor, R. L., Scott, R. S., Fortelius, M., Kappelman, J. & Şen, Ş. (2003). Systematics and evolution of the late Miocene Hipparions from Sinap, Turkey. In Fortelius, M., Kappelman, J., Şen, Ş. & Bernor, R. L. (Eds.), The geology and paleontology of the Miocene Sinap formation. Columbia University Press, Turkey, New York

  • Borsi, S., Ferrara, C., Innocenti, F. & Mazzuoli, R. (1972). Geochronology and petrology of recent volcanics of Eastern Aegean Sea. Bulletin of Volcanology, 36, 473-496.

  • Bozkurt, E. (2000). Timing of extension on the Büyük Menderes Graben, western Turkey and its tectonic implications. In E. Bozkurt, J. A. Winchester, J. D. A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area (pp. 385- 403). Geological Society of London. Special Publication, 173.

  • Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two stage extension in western Turkey. Geological Magazine, 141, 63-79.

  • Brinkmann, R., Flügel, E., Jacopshagen, V., Lechnert, H., Rendel, B. & Trick, P. (1972). Trias, Jura und Unterkreide der Halbinsel Karaburun (West Anatolien). Geology and Paleontology, 6, 139- 150

  • Çakmakoğlu, A. ve Bilgin, Z. R. (2006). Karaburun Yarımadası’nın Neojen öncesi stratigrafisi. Maden Tetkik ve Arama Dergisi, 132, 33-62.

  • Çiftçi, N. B. & Bozkurt, E. (2009). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216, 49-79.

  • Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution of the Gediz Graben,SWTurkey: temporal and spatial variation of the graben basin. Basin Research, 22, 846-873

  • Çiftçi, N. B. (2013). In-situ stress field and mechanics of fault reactivation in the Gediz Graben, Western Turkey. Journal of Geodynamics, 65, 136-147.

  • Dönmez, M., Akçay, A. E. ve Türkecan, A. (2014a). 1:100.000 Ölçekli Türkiye Jeoloji Haritaları Serisi, İzmir K-17 Paftası. MTA Yayınları, No: 212.

  • Dönmez, M., Akçay, A. E. ve Türkecan, A. (2014b). 1:100.000 Ölçekli Türkiye Jeoloji Haritaları Serisi, İzmir K-18 Paftası. MTA Yayınları, No: 213.

  • Eisenmann, V., Alberdi, M. T., de Giuli, C. & Staesche, U. (1988). Studying fossil horses. Volume 1. Methodology. E.J. Brill, Leiden, New York & Kopenhagen.

  • Emre, T. (1996). Gediz grabeninin jeolojisi ve tektoniği. Turkish Journal of Earth Sciences, 5, 171-185.

  • Ercan, T., Akat, U., Günay, E. ve Savaşçın, Y. (1986). Söke-Selçuk-Kuşadası dolaylarının jeolojisi ve volkanik kayaçların petrokimyasal özellikleri. Maden Tetkik ve Arama Dergisi, 105/106, 15-38.

  • Erdoğan, B. (1990a). İzmir-Ankara Zonu’nun İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2, 1-20.

  • Erdoğan, B. (1990b). İzmir-Ankara Zonu İle Karaburun Kuşağının tektonik ilişkisi. Maden Tetkik ve Arama Dergisi, 110, 1-16.

  • Erdoğan, B., Altıner, D., Güngör, T. ve Özer, S. (1990). Karaburun Yarımadası’nın jeolojisi. Maden Tetkik ve Arama Dergisi, 111, 1-24.

  • Erkül, F., Helvacı, C. & Sözbilir, H. (2005). Stratigraphy and geochronology of the Early Miocene volcanic units in the Bigadiç Borate Basin, Western Turkey. Turkish Journal of Earth Sciences, 14, 227-253.

  • Eşder, T., Yakabağ, A., Sarıkaya, H. ve Çiçekli, K. (1991). Aliağa (İzmir) yöresinin jeolojisi ve jeotermal enerji olanakları. [Rapor No: 9467]. MTA (yayımlanmamış).

  • Genç, Ş. C. Ve Yılmaz, Y, (2000). Aliağa dolaylarının jeolojisi ve genç tektoniği. Batı Anadolunun Depremselliği Sempozyumu (BADSEM), Bildiri Özleri Kitabı, (s.152-159).

  • Genç, Ş. C., Altunkaynak, Ş., Karacık, Z., Yılmaz, Y. & Yazman, M. (2001). The Çubukludağ Graben, Karaburun peninsula: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14, 45–55.

  • Geraads, D., Kaya, T. & Mayda, S. (2005). Late Miocene large mammals from Yulaflı, Thrace region, Turkey, and their biogeographic implications. Acta Palaeontologica Polonica, 50, 523-544.

  • Göktaş, F. (1998). Söke havzasının Neojen ve Kuvaterner stratigrafisi [Rapor No: 10222]. MTA (yayımlanmamış).

  • Göktaş, F. (2011). Urla (İzmir) çöküntüsündeki Neojen tortullaşması ve volkanizmasının jeolojik etüdü [Rapor No: 11568]. MTA (yayımlanmamış).

  • Göktaş, F. (2014a). Karaburun Yarımadası kuzey kıyı kesiminin Neojen stratigrafisi. Maden Tetkik ve Arama Dergisi, 148, 43-61.

  • Göktaş, F. (2014b). Karaburun (İzmir) çevresinin Neojen stratigrafisi ve palecoğrafik evrimi. Maden Tetkik ve Arama Dergisi, 149, 71-94.

  • Göktaş, F. (2016a). İzmir -Dış- Körfezi’ndeki adaların Neojen stratigrafisi. Maden Tetkik ve Arama Dergisi, 152, 1-24.

  • Göktaş, F. ve Çakmakoğlu, A. (2018a). 1:100.000 ölçekli Türkiye Jeoloji Haritaları Serisi, Urla-K16 Paftası. MTA Yayınları, No: 257.

  • Göktaş, F. ve Çakmakoğlu, A. (2018b). 1:100.000 ölçekli Türkiye Jeoloji Haritaları Serisi, Urla-L16 Paftası. MTA Yayınları, No: 258.

  • Göktaş, F. ve Çakmakoğlu, A. (2018c). 1:100.000 ölçekli Türkiye Jeoloji Haritaları Serisi, Urla-L17 Paftası. MTA Yayınları, No: 259.

  • Göktaş, F. (2019). Çubukludağ havzasındaki Neojen tortullaşması ve volkanizmasının stratigrafisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 62(1), 63-98. https://doi.org/10.25288/tjb.521497

  • Göktaş, F. (2020). Çeşme Yarımadası’nın Neojen stratigrafisi ve bölgesel korelasyonu,Batı Anadolu, Maden Tetkik ve Arama Dergisi, 162, 31-54.

  • Gromova, V. (1952). Le genre Hipparion. Bureau de Recherches géologiques et Minières CEDP 12, 288 s.

  • Gürer, Ö. F, Bozcu, M, Yılmaz, K. & Yılmaz, Y. (2001). Neogene basin development around Söke-Kuşadası (western Anatolia) and its bearing on tectonic development of the Aegean region. Geodinamica Acta 14, 57–69.

  • Helvacı, C., Ersoy, E. Y., Sözbilir, H., Erkül, F., Sümer, Ö. & Uzel, B. (2009). Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and Geothermal Research, 185, 181-202.

  • Ilgar, A., Demirci, E. S. ve Demirci, Ö. (2012). Biga Yarımadası Tersiyer istifinin stratigrafisi ve sedimantolojisi. Yüzer, E. ve Tunay, G. (Editörler). Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi. MTA Özel Yayın Serisi, No: 28, 75-121.

  • Innocenti, F. & Mazzuoli, R. (1972). Petrology of İzmir-Karaburun volcanic area (West Turkey). Bulletin of Volcanology, 36, 83-104.

  • İnci, U. (1984). Neogene oil shale deposits of Demirci and Burhaniye regions. 27th International Geological Congress, Abs. VII, (p.13-16).

  • Inci, U. (1998a). Lignite and carbonate deposition in Middle lignite succession of the Soma formation, Soma coalfield, western Turkey. International Journal of Coal Geology, 37, 287-313.

  • İnci, U. (1998b). Miocene synvolcanic alluvial sedimentation in lignite-bearing Soma Basin, western Turkey. Turkish Journal of Earth Sciences, 7, 63-78.

  • İnci, U. (2002). Depositional evolution of Miocene coal successions in the Soma coalfield, western Turkey. International Journal of Coal Geology, 51, 1-29.

  • Kaya, O. (1979). Orta Doğu Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği. Türkiye Jeoloji Kurumu Bülteni, 22(1), 35-58.

  • Kaya, O. (1981). Miocene reference section for the coastal parts of West Anatolia. Newsletters on Stratigraphy, 10, 164-191.

  • Kaya, O., Ünay, E., Saraç, G., Eichhorn, S., Hassenrück, S., Knappe, A., Pekdeğer, A. & Mayda, S. (2004). Halitpaşa Transpressive Zone: Implications for an Early Pliocene compressional phase in Central Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 13, 1-13.

  • Kaya, T. T. (1989). Alçıtepe (Gelibolu Yarımadası) Yöresi Memeli Faunaları: Perissodactyla Bulguları. Türkiye Jeoloji Bülteni, 32, 79-89. https://www. jmo.org.tr/resimler/ekler/77669af68dbccab_ ek.pdf

  • Kaya, T. T. (1992). Bayraktepe’de (Çanakkale) Rhinocerotidae fosilleri. Maden Tetkik ve Arama Dergisi, 114, 145-154.

  • Kaya, T. T. & Forsten, A. (1999). Late Miocene Ceratotherium and Hipparion (Mammalia, Perissodactyla) from Duzyayla (Hafik, Sivas), Turkey. Geobios, 32, 743-748.

  • Kaya, T. T., Geraads, D. & Tuna, V. A. (2003). Mordoğan, a new Middle Miocene mammalian fauna from Western Turkey. Paläontologische Zeitschrift, 77(2),293-302.

  • Kaya, T. T., Geraads, D. & Tuna, V. A. (2005). New late Miocene mammalian fauna in the Karaburun Peninsula (Western Turkey). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 236(3), 321-349.

  • Kaya, T. T., Mayda, S., Kostopoulos, D. S., Alcicek, M. C., Merceron, G., Tan, A., Karakutuk, S., Giesler, A. K. & Scott, R. S. (2012). Şerefköy-2, a new Late Miocene mammal locality from the Yatağan Formation, Muğla, SW Turkey. Comptes Rendus Palevol., 11, 5-12.

  • Koçyiğit, A., Yusufoğlu, H. & Bozkurt, E. (1999). Evidence from the Gediz graben for episodic twostage extension in western Turkey. Journal of the Geological Society, 156, 605-616.

  • Konidaris, G. & Koufos, G. D. (2013). Late Miocene Proboscidea (Mammalia) from Macedonia and Samos Island, Greece: Preliminary results. Paläontologische Zeitschrift, 87, 121-140.

  • Kostopoulos, D. S., Koufos, G. D., Sylvestrou, I. A., Syrides, G. E., Ioanna, A., George, E. & Tsombachidou, E. (2009). The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection: 2. Lithostratigraphy and Fossiliferous Sites. Beiträge zur Paläontologie, 31, 13-26.

  • Kostopoulos, D. S. & Şen, Ş. (2016). Suidae, Tragulidae, Giraffidae, and Bovidae. Geodiversitas, 38, 273- 298.

  • Kostopoulos, D. S., Sevim Erol, A., Mayda, S., Yavuz, Y. A., & Tarhan, E. (2020). Qurliqnoria (Bovidae, Mammalia) from the Upper Miocene of Çorakyerler (Central Anatolia, Turkey) and its biogeographic implications. Palaeoworld, 29, 629-635.

  • Kostopoulos, D. S., Sevim Erol, A., Yavuz, A. Y. & Mayda, S. (2021). A new late Miocene bovid (Mammalia: Artiodactyla: Bovidae) from Çorakyerler (Turkey). Fossil Record, 24, 9-18.

  • Koufos, G. D. (1987). Study of the Turolian hipparions of the lower Axios Valley (Macedonia, Greece). 1. Locality Ravin des Zouaves-5(RZO). Geobios, 20, 293-312

  • Koufos, G. D. & Kostopoulos, D. S. (1994). The late Miocene mammal localities of Kemiklitepe (Turkey). 3. Equidae. Bulletin du Muséum National d’Historie Naturelle Paris, 4e Ser. Sect C, 16, 41-80.

  • Koufos, G. D. & Vlachou, T. D. (2005). Equidae (Mammalia, Perissodactyla) from the Late Miocene of Akkasdagi, Turkey. Geodiversitas, 27, 633-705.

  • Koufos, G. D., Kostopoulos, D. S. & Vlachou, T. (2009). The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection 16, Biochronology. Beiträge zur Paläontologie, 31, 397-408.

  • Koufos, G. D. & Şen, Ş. (2016). Equidae. In Ş. Şen (Ed.), Late Miocene mammal locality of Küçükçekmece, European Turkey. Geodiversitas, 38(2), 225-243.

  • Koufos, G. D., Vlachou, T. D. (2016). Equidae. In: G. D. Koufos, & D. S. Kostopoulos, (Eds.), Palaeontology of the upper Miocene vertebrate localities of Nikiti (Chalkidiki peninsula, Macedonia, Greece). Geobios, 49, 85-118.

  • Koufos, G. D., Kostopoulos, D. S. & Vlachou, T. D. (2016). Revision of the Nikiti 1 (NKT) fauna with description of new material. Geobios, 49, 11-22.

  • Koufos, G. D., Mayda, S. & Kaya, T. (2018). New carnivoran remains from the Late Miocene of Turkey. PALZ, 92(1), 131-162.

  • Koufos, G. D., Vlachou, T. D. & Gkeme, A. G. (2022). The Fossil Record of Equids (Mammalia: Perissodactyla: Equidae) in Greece. In: E. Vlachos (Ed.), Fossil Vertebrates of Greece Vol. 2 Laurasiatherians, Artiodactyles, Perissodactyles, Carnivorans, and Island Endemics (pp:351-401). Springer Nature Switzerland.

  • Liu, L. P., Kostopoulos, D. S. & Fortelius, M. (2005). Suidae (Mammalia, Artiodactyla) from the late Miocene of Akkaşdaği, Turkey. Geodiversitas, 27(4), 715-733.

  • Mayda, S., Titov, V. V., Tesakov, A. S., Göktaş, F. & Alçiçek, M. C. (2013). Revision of PlioPleistocene mammalian faunas from Çobanisa area (Western Turkey). VIII. All-Russian Conference on Quternary Research, Fundamental Problems of Quaternary, Results and Main Trends of Future Studies, Collection of papers, (pp. 396-397).

  • Mayda, S., Sotnikova, M., Tesakov, A., Tan, A. & Kaya, T. T. (2015). Miocene Pliocene transitional mammalian fauna of Develi Turkey. 61th Annual Session of the Russian Paleontologica Society, 182-183.

  • Meissner, B. (1976). Das Neogene von Ost-Samos Sedimentationsgeschichte und Korrelation. Neues Jahrbuch für Geologie und Paläontologie Abhandlung, 152, 161-176.

  • NOW, 2022. The NOW Community. New and old worlds database of fossil mammals (now). Licensed under CC BY 4.0, 2020. http://www. helsinki.fi/science/now/

  • Özkaymak, Ç., Sözbilir, H. & Uzel, B. (2013). Neogene-Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.

  • Pickford, M. (1988). Revision of the Miocene Suidae of the Indian Subcontinent. Münchener Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Palontologie, 12, 1-91.

  • Pickford, M. (2015). Late Miocene Suidae from Eurasia: the Hippopotamodon and Microstonyx problem revisited. Münchner geowissenschaftliche Abhandlungen. Reihe A, Geologie und Paläontologie, 42, 1-126.

  • Pickford, M. (2016). Hippopotamodon erymanthius (Suidae, Mammalia) from Mahmutgazi, DenizliÇal Basin, Turkey. Fossil Imprint, 72(3-4), 183- 201.

  • Saraç, G. (2003). Türkiye Omurgalı Fosil Yatakları. Maden Tetkik ve Arama Genel Müdürlüğü Derleme Raporu. Jeoloji Kütüphane 637, 218s.

  • Sickenberg, O., Becker-Platen, J. D., Benda, L., Berg, D., Engesser, B., Gaziry,W., Heissig, K., Hünermann, K. A., Sondaar, P. Y., Schmidt-Kittler, N., Staesche, K., Staesche, U., Steffens, P., Tobien, H. (1975). Die Gliederungdes höheren Jungtertiärs und Altquartärs in der Türkei nach Vertebraten und ihre Bedeutung für die internationale NeogenGliederung.Geologisches Jahrbuch B 15, 167pp.

  • Sözbilir, H. (2001). Extensional Tectonics and the Geometry of Related Macroscopic Structures: Field Evidence from the Gediz Detachment, Western Turkey. Turkish Journal of Earth Sciences, 10, 51-67.

  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö. & Akkiraz, S. (2011). Tectonic implications of zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research, 23(4), 423–448. https://doi.org/10.1111/j.1365- 2117.2010.00496.x

  • Sözbilir, H., İnci, U., Erkül, F. & Sümer, Ö. (2013). An active intermitten transform zone accommodating N-S extension in Western Anatolia and its relation to the North Anatolian Fault System International Workshop on the North Anatolian and Dead Sea Fault Systems. Recent Progress in Tectonics and Paleoseismology, and Field Training Course in Paleoseismology, Ankara.

  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke basin: Extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.

  • Sylvestrou, I. & Kostopoulos, D. S. (2006). The late Miocene vertebrate locality of Perivolaki, Thessaly, Greece. 7. Suidae. Palaeontographica, Abt. A. 276, 121-133.

  • Sylvestrou, I. A. & Kostopoulos, D. S. (2009). The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection. 12. Suidae. Beiträge zur Paläontologie, 31, 283-297.

  • Şen Ş. & Sarıca, N. (2011). Middle-Late Miocene Spalacidae (Mammalia) From Western Anatolia, and the Phylogeny of the Family. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University. 32(1), 21-50

  • Tarhan, E. (2021). Geç Miyosen Dönem Anadolu Suidlerinin Paleontolojik Analizi. [Yayımlanmamış Doktora Tezi] Ankara Üniversitesi, Sosyal Bilimler Enstitüsü.

  • Türkecan, A., Ercan, T. ve Sevin, D. (1998). Karaburun Yarımadası’nın Neojen volkanizması. (Rapor No:10185). MTA (Yayımlanmamış).

  • Uzel, B. & Sözbilir, H. (2008). A First Record of a Strike-slip Basin in Western Anatolia and Its Tectonic Implication: The Cumaovası Basin. Turkish Journal of Earth Sciences, 17, 559-591.

  • Uzel, B., Sözbilir, H. & Özkaymak, Ç. (2012). Neotectonic Evolution of an Actively Growing Superimposed Basin in Western Anatolia: The Inner Bay of İzmir, Turkey. Turkish Journal of Earth Sciences, 21, 439-471.

  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N. & Langereis, C. G. (2013). Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics, 65, 94-116.

  • Uzelli, T., Baba, A., Gül Mungan, G., Dirik, R. K. & Sözbilir, H. (2017). Conceptual model of the Gülbahçe geothermal system, Western Anatolia, Turkey: Based on structural and hydrogeochemical data. Geothermics, 68, 67-85.

  • Ünay, E. ve Göktaş, F. (1999). Söke Çevresi (Aydın) Geç-Erken Miyosen ve Kuvaterner yaşlı küçük memelileri: Ön sonuçlar. Türkiye Jeoloji Bülteni, 42, 99-113. https://www.jmo.org.tr/resimler/ ekler/1894d6f048493d2_ek.pdf

  • Van der Made, J. 2003. Fossil Suoidea of the Miocene Sinap Formation, Turkey. In: M. Fortelius, J., Kappelman, S., Sen, & R.L. Bernor (Eds.), Geology and Paleontology of the Miocene Sinap Formation, Turkey (pp. 308-327). University of Columbia Press, New York.

  • Van der Made, J., Güleç, E. & Erkman, A. (2013). Microstonyx (Suidae, Artiodactyla) from the Upper Miocene of Hayranli-Haliminhani, Turkey. Turkish Journal of Zoology, 37, 106-122.

  • Vlachou, T. D. (2013) Palaeontological, biostratigraphical and palaeoecological study of the Greek hipparions [Doktora Tezi]. Aristotle University Thessaloniki. Sciencetific Annals, School of Geology, 154, 580 pp.

  • Vlachou, T. D. & Koufos, G. D. (2009). The Late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: new collection. 11. Equidae. Beitraege zur Palaeontologie, 31, 207- 281.

  • Weidmann, M., Solounias, N., Drake, R. E. & Curtis, J. (1984). Neogene stratigraphy of the Mytilini Basin, Samos Island, Greece. Geobios, 17(4), 477-490.

  • Yılmaz, Y. (2000). Ege bölgesinin aktif tektoniği. Batı Anadolu’nun depremselliği Sempozyumu (BADSEM-2000), Bildiri Özleri Kitabı, (s.3-14).

  • Yılmaz, Y., Genç, Ş. C., Gürer, Ö.F., Bozcu, M., Yılmaz, K., Karacik, Z., Altunkaynak, Ş. & Elmas, A. (2000). When did the western Anatolian grabens begin to develop?. In E. Bozkurt, J. A. Winchester, J. D. A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area (pp. 353-384). Geological Society of London. Special Publication, 173.


  • Göktaş, F. , Kaya, T. T. , Tarhan, E. & Mayda, S. (2023). Karaburun Yarımadası’nın Geç Miyosen Stratigrafisi, Yeni Memeli Bulguları ve Bölgesel Korelasyon, Batı Anadolu / Late Miocene Stratigraphy of Karaburun Peninsula, New Mammal Records and Regional Correlation, Western Anatolia . Türkiye Jeoloji Bülteni , 66 (1) , 1-22 . DOI: 10.25288/tjb.1126743

  • Geology, Alteration and Geochemical Characteristics of Inlice (Konya-Turkey) High Sulphidation Epithermal Gold Deposit
    Mustafa Haydar Terzi Erkan Yilmazer İlkay Kuşçu Sercan Bozan
    View as PDF

    Abstract: Inlice high sulphidation epithermal gold deposit is located in the Erenlerdağ-Alacadağ Volcanic Complex(EAVC), approximately 40 km southwest of Konya city centre. The volcanic and volcano-sedimentary rocks seen inthe study area are andesite, block and ash flow, basaltic andesite lava flow and andesite lava flow, from oldest to youngest. The youngest units unconformably covering the volcanic and volcano-sedimentary rocks are talus andalluvium. Four different alteration zones in the andesites moving from the centre of the alteration toward freshrock are i) silicified zones (consisting of vuggy-sugary and chalcedonic/opaline quartz veins), ii) advanced argillicalteration, iii) intermediate argillic and iv) propylitic alteration. In addition, a potassic alteration zone consisting of magnetite, quartz, biotite and anhydrite was identified in the deep part of the Merkez Zone. The mineralisationis commonly represented by pyrite, and to a lesser extent enargite, chalcopyrite, covellite, chalcocite, sphaleriteand marcasite. Petrographically, the fine-grained gold grains (between 2-6 µm) are only observed in areas where sulphide minerals are oxidised.The degree of geochemical variation in the alteration zones decreases from silicified zones to propylitic alteration,and this variation is largely consistent with the mineralogies observed in these zones. Moreover, enrichment in As,Sb, Bi, Ag and Au, and depletion in Zn and Ni are especially notable from fresh/least altered andesites towards advanced argillic alteration and silicified zones. In addition, studies showed that the high Pb value in chalcedonic/opaline textured quartz veins and low Rb/Sr value in advanced argillic alteration and silicified zones can be used asa geochemical guide, at least for the Inlice region.

  • Alteration

  • geochemistry

  • gold

  • high sulphidation

  • İnlice

  • mineralisation


  • Arık, F. ve Öztürk, A. (2011). Konya’nın yeraltı kaynakları ve potansiyeli. I. Konya Kent Sempozyumu (s. 161-174). TMMOB Konya Kent Konseyi, Konya, Bildiriler.

  • Arribas, A. (1995). Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In J. F. H. Thompson (Ed.) Mineralogical Association of Canada Short Course, 23, 419–454.

  • Arribas, A., Cunningham, C. G., Rytuba, J. J., Rye, R.O., Kelly, W. C., Podwysocki, M. H., McKee, E. H. & Tosdal, R. M. (1995). Geology, Geochronology, Fluid Inclusions and Isotope Geochemistry of the Rodalquilar Gold Alunite Deposit, Spain. Economic Geology, 90, 795-822.

  • Asan, K. & Ertürk, M. A. (2013). First Evidence of Lamprophyric Magmatism from the Konya Region, Turkey: a Genetic Link to High-K Volcanism. Acta Geologica Sinica English Edition, 87, 6, 1617-1629.

  • Ay, B. (2015). Yatağan-Kozlu-Gökyurt-Erenkaya (Konya Batısı) arasındaki bölgede yer alan volkanik kayaçların maden potansiyelinin araştırılması [Yayımlanmamış Yüksek Lisans Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Aydar, A., Bozan, S. ve Kuşcu, İ. (2015). İç Anadolu Volkanik Kuşağındaki Gölcük Bölgesinde (Konya) Epitermal Mineral Oluşumu. K. Sayıt (Ed.), 68. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı (s. 341-342). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo.org.tr/resimler/ ekler/00f7c1630b6e86b_ek.pdf

  • Besang, C., Eckhardt, F. J., Harre, W., Kreuzer, H. & Müller, P. (1977). Radiometrische altersbestimmungen an Neogenen eruptivgesteinen der Turkei. Geologisches Jahrbuch, 25, 3-36.

  • Bozoğlu, M.S. (2003). Konya batı-güneybatısındaki ignimbiritlerin mineralojik, petrografik ve jeokimyasal incelenmesi [Yayımlanmamış Yüksek Lisans Tezi]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.

  • Corral, I., Cardellach, E., Corbella, M., Canals, À., Gómez-Gras, D., Griera, A. & Cosca, M. A. (2016). Cerro Quema (Azuero Peninsula, Panama): Geology, alteration, mineralization, and geochronology of a volcanic dome-hosted highsulfidation Au-Cu deposit. Economic Geology, 111, 2, 287-310.

  • Çelik, M., Temel, A., Tunoğlu, C. ve Orhan, H. (1994). Konya-Akören-Seydişehir-Doğanbey arasında yer alan kil oluşumlarının özelliklerinin incelenmesi ve ekonomik öneminin araştırılması (Proje no: YBAG 0040/DPT). TÜBİTAK.

  • Çömlekçiler, F. (2009). Sızma–Hatip (Konya) Arasında Gelişen Pliyosen-Kuvaterner Yaşlı Alüvyal Yelpazelerin Sedimantolojik Özellikleri [Yayımlanmamış Yüksek Lisans Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Davidson, A., Rose, P. & Lucas, I. (2008). Stratex International Initiating Coverage. 02 Dec 2008.

  • Dinç, S. (2004). Kızılören Dağı ve civarındaki (Konya) karbonatlı kayaçların sedimantolojik ve petrografik özelliklerinin araştırılması [Yayımlanmamış Yüksek Lisans Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Döğme, A. N. (2018). Konya İnlice Epitermal Altın Cevherlerinin Zenginleştirilmesi [Yayımlanmamış Yüksek Lisans Tezi]. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

  • Ercan, T. (1986). Orta Anadolu’daki Senozoyik volkanizması. Maden Tetkik ve Arama Dergisi, 107, 119-141. https://dergi.mta. gov.tr/dosyalar/images/mtadergi/makaleler/ tr/20150624111727_491_2272cb91.pdf

  • Eren, Y. (1993). Eldeş-Gökçeyurt-Derbent-Söğütözü (Konya) arasının jeolojisi [Doktora Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Esan Arşiv (2020). Annual Technical Report. ESAN Eczacıbaşı Industrial Raw Materials Industry and Trade Inc. Istanbul, pp. 1-8.

  • Gaibor, A., Dunkley, P., Wehrle, A., Lesage, G., Boer, D. D. & Froilan, C. (2013). The discovery and understanding of the Far Southeast copper-gold porphyry, Luzon, Philippines. In Proceedings, New Gen Gold conference (pp. 233-247). Pay Dirt Media, Perth.

  • Gençoğlu Korkmaz, G. (2015). Yükselen (Konya) Bölgesi Volkanik Kayaçlarının Petrografisi, Jeokimyası ve Petrolojisi [Yayımlanmamış Yüksek Lisans Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Gençoğlu Korkmaz, G., Asan, K., Kurt, H. & Morgan, G. (2017). 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey). Journal of African Earth Sciences, 129, 427-444.

  • Georgatou, A. A. & Chiaradia, M. (2020). Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks. Solid Earth, 11, 1–21.

  • Georgieva, S., Hikov, A. & Stefanova, E. (2012). Mobility of major and trace elements during hydrothermal alteration of volcanic rocks from the Chelopech high-sulphidation epithermal Cu–Au deposit, Central Srednogorie, Bulgaria. National conference with international participation - Geosciences 2012 (p. 47-48). Bulgarian Geological Society.

  • Georgieva, S. & Hikov, A. (2016). Geochemistry of hydrothermally altered rocks from the Chelopech high-sulphidation Cu-Au deposit, Bulgaria. Comptes rendus de l’Académie bulgare des Sciences, 69, 761–768.

  • Göğer, E. ve Kıral, K. (1973). Kızılören dolayının (Konya’nın Batısı) genel stratigrafisi. MTA Genel Müdürlüğü, Arşiv No: 5204.

  • Görmüş, M., (1984). Kızılören (Konya) dolayının jeoloji incelemesi [Yayımlanmamış Yüksek Lisans Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Gündüz, M. (2017). Sarayköy-Sille-TatköyKüçükmuhsine (Konya Kb’sı) Çevresinde Yüzeyleyen Neojen Yaşlı Volkanik Kayaçların Jeokronolojisi, Mineral Kimyası, Element ve İzotop Jeokimyası, [Yayımlanmamış Yüksek Lisans Tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Hall, D. J., Foster, R. P., Yıldız, B. & Redwood, S.D., (2007). The Inlice High-sulphidation Epithermal Gold Discovery: Defining a Potential New Gold Belt in Turkey. Proceedings of the Ninth Biennial SGA Meeting (p. 113-116). Dublin.

  • Hedenquist, J.W., Arribas, A. Jr. & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93, 373–404.

  • Hedenquist, J. W., Arribas, A. Jr. & Gonzalez-Urien, E. (2000). Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 245–277.

  • Hedenquist, J. W. & Arribas, R. A. (2017). Epithermal ore deposits: first-order features relevant to exploration and assessment. Mineral Resources to Discover-14th SGA Biennial Meeting 2017, Quebec, Canada, 1, 47-50.

  • Hedenquist, J. W., Arribas, A. & Aoki, M. (2017). Zonation of Sulfate and Sulfide Minerals and Isotopic Composition in the Far Southeast Porphyry and Lepanto Epithermal Cu–Au Deposits, Philippines. Resource Geology, 67, 2, 174–196.

  • Hedenquist, J. W., Taguchi, S. & Shinohara, H., (2018). Features of Large Magmatic–Hydrothermal Systems in Japan: Characteristics Similar to the Tops of Porphyry Copper Deposits. Resource Geology, 1–17.

  • Hikov, A. (2004). Geochemistry of strontium in advanced argillic alteration systems – possible guide to exploration. Bulgarian Geological Society, Annual Scientific Conference Geology 2004 (p. 29–31).

  • Hikov, A., Velinova, N., Lerouge, C. & Kunov, A. (2017). Geochemistry of advanced argillic altered rocks in the area of Breznik, Western Srednogorie Unit, Bulgaria. Geologica Balcania, 46, 93–108.

  • Kadir, S. ve Karakaş, Z. (2000). Konya Miyosen yaşlı volkanik birimlerin mineralojik-petrografik ve jeokimyasal incelenmesi ile neoform kil mineral oluşumlarının irdelenmesi. Maden Tetkik ve Arama Dergisi, 122, 95-106. https://dergi.mta. gov.tr/dosyalar/images/mtadergi/makaleler/ tr/20150527142936_341_22758f4f.pdf

  • Karakaya, M, Karakaya N. & Temel A. (2001). Kaolin Occurrences in the Erenler Dagi Volcanics, Southwest Konya Province, Turkey. International Geology Review, 43, 711-721.

  • Kasapoğlu, E. K., Temel, A., Yürür, T., Aydar, E., Lyberis, N., Gourgaud, A., Chorowicz, J., Froger, J.L., Deniel, C., Vidal, P., Aksoy, H., Gillot, P. ve Olanca, K. (1997). Orta Anadolu’da VolkanizmaTektonik İlişkileri (Toros Kenet Kuşağı Kuzeyi), (Proje no: YBAG-0078/DPT). TÜBİTAK.

  • Keller, J., Jung, D., Burgath, K. & Wolff, F. (1977). Geologie und petrologie des Neogenen kalkalkali vulkanismus von Konya (Erenlerdağı-Alacadağ Massiv, Zentral Anatolien). Geol., Jahrbuch, Reihe B, Heft, 25, 37-117.

  • Ketin, I. (1966). Anadolunun tektonik birlikleri (Tectonic units of Anatolian Asia Minor). Maden Tetkik ve Arama Enstitüsü Dergisi, 66, 20-34 (in English: 23-34). https://dergi.mta. gov.tr/dosyalar/images/mtadergi/makaleler/ eng/20151020143258_862_227ff53f.pdf

  • Koç, A., Kaymakçı, N., Hinsbergen, D. J. J. V., Kuiper, K. F. & Vissers, R. L. M. (2012). TectonoSedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey. Tectonophysics, 532-535, 134- 155.

  • Koç, A., (2013). Tectono-Stratigraphic Evolution of The Continental Miocene Basins in Southwest Anatolia [Unpublished Phd Thesis). Middle East Tecnichal University, Ankara.

  • Koçak, K. & Zedef, V. (2016). Geochemical Characteristics of the Lava Domes in Yatağan Village and Sağlık Town, From Erenlerdağı (Konya, Central Turkey) Volcanites. Acta Geobalcanica, 2, 7-19.

  • Kurt, H., Özkan, M. ve Koçak, K. (2003). Orta Anadolu’da Konya’nın batısındaki dalma-batma ile ilişkili volkanik kayaçları jeolojik, petrografik ve jeokimyası. Türkiye Jeoloji Bülteni, 46(2), 39-51. https://www.jmo.org.tr/resimler/ekler/ d0f74b5955dc87f_ek.pdf

  • Kurt, S., Akgül, B. ve Kurt, H. (2005). Sağlık-Erenkaya (Konya Batısı) yöresi volkanik kayaçlarının petrografik ve jeokimyasal özellikleri. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(1), 190-204.

  • Kuşcu, İ., Gençalioğlu-Kuşcu, G., Tosdal, R.M., Ullrich, T. D. ve Friedman, R. (2011). Batı Anadolu Altın-Bakır Cevherleşmelerinin Yaşı ve Magmatizma ile olan Jeokronolojik İlişkisi. 64. Türkiye Jeoloji Kurultayı, 25-29 Nisan 2011, Ankara. https://www.jmo.org.tr/resimler/ ekler/75c525912387f05_ek.pdf

  • Kuşcu, İ., Tosdal, R. M. & Gençalioğlu-Kuşcu, G. (2019). Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geology Reviews, 107, 119–154.

  • Mavrogonatos, C., Voudouris, P., Spry, P. G., Melfos, V., Klemme, S., Berndt, J., Baker, T., Moritz, R., Bissig, T., Monecke, T. & Zaccarini, F. (2018). Mineralogical study of the advanced argillic alteration zone at the Konos Hill Mo–Cu–Re–Au porphyry prospect, NE Greece. Minerals, 8, 479.

  • MTA (2002). 1/500000 ölçekli Türkiye Jeoloji Haritası, Ankara, Paftası, (M. Şenel (Editör.), N. Turhan (Düzenleyen)).

  • Ota, R. & Dincel, A. (1975). Volcanic Rocks of Turkey. Bull. Geol. Surv. Japan, 26, 8, 393-419.

  • Özgül, N. (1976). Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeoloji Kurumu Bülteni, 19, 65-78. https://www.jmo.org.tr/resimler/ekler/ e4b4ed9f5a0b921_ek.pdf

  • Özkan, A. M. (1998). Konya Batısındaki Neojen Çökellerinin Stratigrafisi ve Sedimantolojisi [Yayımlanmamış Doktora Tezi], Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Petrov, D. & Popov, K. (2015). Correlations between elements in ores from the gold-copper deposit Chelopech, Bulgaria. Ann. Univ. Min. Geol, 58, 93-98.

  • Platzman, E. S, Tapırdamaz, C. & Sanver, M. (1998). Neogene anticlockwise rotation of central Anatolia (Turkey): preliminary palaeomagnetic and geochronological Results. Tectonophysics, 299, 175–189.

  • Rabayrol, (2018). Late Cenozoic Post-Subduction Tectonic, Magmatic and Metallogenic Evolution of the Anatolide – Tauride Orogenic Belt, Turkey [Unpublished PhD Thesis]. The University of British Columbia

  • Rabayrol, F., Hart, C. J. R. & Thorkelson, D. J. (2019a). Temporal, spatial and geochemical evolution of late Cenozoic post-subduction magmatism in central and eastern Anatolia, Turkey. Lithos, 336– 337, 67–96.

  • Rabayrol, F., Hart, C. J. R. & Creaser, R.A. (2019b). Tectonic Triggers for Postsubduction MagmaticHydrothermal Gold Metallogeny in the Late Cenozoic Anatolian Metallogenic Trend, Turkey. Economic Geology, 114(7), 1339-1363.

  • Selçuk, A. N. D. & Güney, A. (2020). Comparison of different methods on the enrichment of Konya Inlice epithermal gold ores. Physicochemical Problems of Mineral Processing, 56(1), 147-160.

  • Sillitoe, R. H. (1979). Some thoughts on gold-rich porphyry copper deposits. Mineralium Deposita, 14, 161−174.

  • Sillitoe, R.H., (1999). Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments, Pacrim ’99 Congress, Bali, Indonesia, Proceedings (p. , 29−44.). Melbourne, Australasian Institute of Mining and Metallurgy.

  • Sillitoe, R.H., (2010). Porphyry Copper Systems, Economic Geology, 105, p. 3–41.

  • Sillitoe, R.H. & Hedenquist, J.W., (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, In: Simmons SF, Graham IJ (Eds.) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth, Soc. Econ. Geol. Spec. Pub., 10, 315–343.

  • Simmons, S.F., White, N.C. & John, D.A., (2005). Geological Charactelistics of Epithermal Precious and Base Metal Deposits, Economic Geology One Hundredth Anniversary, 1905-2005, 485-522.

  • Steven, T. A. & Ratté, J. C., (1960). Geology and ore deposits of the Summitville district, San Juan Mountains, Colorado. US Government Printing Office, Washington.

  • Stoffregen, R. E., (1987). Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado, Economic Geology, 82, 1575-1591.

  • Stoffregen, R. E & Alpers, C. N., (1987). Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration, Canadian Mineralogist, 25, 201-211.

  • Stratex International PLC, (2006). Stratex Defines New Gold Target in Turkey. 12 Haziran 2006.

  • Stratex International PLC, (2008a). Stratex Announces New Gold Discovery in Konya Belt. 28 Şubat 2008.

  • Stratex International PLC, (2008b). Stratex’s Pipeline of Discoveries Grows and Drilling to Start on Priority Targets. 21 Temmuz 2008.

  • Stratex International PLC, (2009). Konya Update. 30 Mart 2009.

  • Tatar, O., Gürsoy, H. & Piper, J. D. A. (2002). Differential neotectonic rotations in Anatolia and the Tauride Arc: palaeomagnetic investigation of the Erenlerdağ Volcanic Complex and Isparta volcanic district, south–central Turkey. Journal of the Geological Society, 159, 281–294.

  • Temel, A., Gündoğdu M.N. & Gourg, A. (1998). Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey, Journal of Volcanology and Geothermal Research, 85, 327- 354.

  • Terzi, M. H. (2020). İnlice (Konya) Epitermal Altın Yatağının Jeolojisi, Jeokimyası ve Kökensel İncelenmesi [Yayımlanmamış Doktora Tezi]. Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray.

  • Terzi, M.H., Yılmazer, E., Kuşcu, İ. ve Oyman, T. (2022). İnlice (Konya, Türkiye) Yüksek Sülfidasyon Epitermal Altın Yatağının Jeolojisi, Mineralojisi ve Kökensel İncelenmesi. K. Esat ve S. Akıska (Ed.ler), Uluslararası Katılımlı 74. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı (s. 366-366). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo.org.tr/resimler/ ekler/6ab8ae54fdfdaf8_ek.pdf

  • Ulu, Ü., Öcal, H., Bulduk, A. K., Karakaş, M., Arbas, A., Saçlı, L., Taşkıran, M. A., Ekmekçi, E., Adır, M., Sözeri, Ş. ve Karabıyıkoğlu, M. (1994). İç Anadolu güneyindeki Tersiyer-Kuvaterner volkanizması. 47. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı (s. 108-108). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo. org.tr/resimler/ekler/c7dcef4ea90b05c_ek.pdf

  • URL-1., Erişim Tarihi: 15.06.2022.

  • Uyanık C. & Koçak K. (2016). Geochemical Characteristics Of The Erenlerdağı Volcanics, Konya, Central Turkey, Bulletin of the Geological Society of Greece, L, 4, 2057-2067.

  • Uysal, F., (2008). Hatip-Pamukçu-Dikmeli-Karadiğin (Konya) Civarının Jeolojisi ve Yöredeki Karbonatlı Kayaçların Yapıtaşı Olarak Kullanılabilme Özellikleri [Yayımlanmamış Yüksek Lisans Tezi], Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Terzi, M. H. , Yılmazer, E. , Kuşçu, İ. & Bozan, S. (2023). İnlice (Konya-Türkiye) Yüksek Sülfidasyon Epitermal Altın Yatağının Jeolojisi, Alterasyonu ve Jeokimyasal Karakteristikleri / Geology, Alteration and Geochemical Characteristics of Inlice (Konya-Turkey) High Sulfidation Epithermal Gold Deposit . Türkiye Jeoloji Bülteni , 66 (1) , 23-58 . DOI: 10.25288/tjb.1131745

  • The First Petrographic Textural Data of Sferulitic Rhyolites Observed in the İdrisyayla Volcanites (Kırka-Eskişehir)
    Yeşim Yücel Öztürk Cüneyt Akal
    View as PDF

    Abstract: Spherulitic structures are classically defined as concentrically zoned crystal clusters that form in igneoussystems (especially in alkaline igneous rocks), and usually occur as different mineral layers ,or shells.The volcano-sedimentary series observed in the Kırka region, south of Eskişehir, within the Kırka-Afyon-IspartaVolcanic Province, Western Anatolia, consists predominantly of Lower Miocene volcanic ,and pyroclastic sequenceswith rhyodacitic-rhyolitic composition, lacustrine limestones, borate-bearing claystones, tuff, stromatoliticlimestones ,and rhyolites ,and basalts. The formation mechanisms of the spherulitic structures observed in themarginal zone of the sub-alkaline rhyolitic lava dome outcropping within the Neogene series west of İdrisyayla in Kırka (Eskişehir) region are described for the first time with this study. The rhyolites are grayish light brown in color,have hypocrystalline hyalopilitic-holohyaline texture ,and have spherical structures defined as spherulites. Theserocks have a completely flowing structure ,and are composed of volcanic glass containing rare euhedral plagioclase,sanidine ,and quartz microcrystals, the spherical structures observed on the surface of the rhyolites are up to 10-15cm in size. The spherulites, which are almost round in shape, appear as concentric rings within the lava flow bands.The flow band texture of the volcanic glass phase is continuous with the inner texture of the spherulitic structures.This study suggests that the spherulitic structures in the İdrisyayla (Kırka-Eskişehir) region formed by thedevitrification mechanism as a result of high temperature ,and rapid cooling. The petro-mineralogical features of thespherulitic rhyolites show that during the early magmatic stage, the oversaturated liquid crystallized in silica-richfluid phases with relatively different densities, ,and radial quartz-feldspar crystal growths from a center caused theformation of the spherulitic structure. It is also suggested that the lithophysae-like structures formed by the crystalgrowths representing the solid phase in axial cavities due to the local folding of flow bands ,and the later radialmineral growths representing the liquid phase also changed the laminated texture in the marginal phase of the rhyolite.  

  • Devitrification

  • lithophysae

  • rhyolite

  • spherulite

  • Kırka

  • Eskişehir

  • Aguirre, L., Hervé, F. & Del Campo, M. (1976). An orbicular tonalite from caldera, Chile. Journal of the Faculty of Science, Hokkaido University,17(2), 231-259.

  • Alexander, D.H. (1974). Petrography and origin of an orbicular lamprophyre dike, Fremont County, Colorado [Unpublished PhD Thesis]. University of Michigan.


  • Applegarth, L. J., Tuffen, H., James, M. R. & Pinkerton, H. (2013). Degassing-driven crystallisation in basalts. Earth-Science Reviews, 116, 1-16.

  • Ballhaus, C., Raúl O.C. Fonseca, R.O.C., Münker,C., Kirchenbaur, M. & Zirner, A. (2015). Spheroidal textures in igneous rocks - textural consequences of H2 O saturation in basaltic melts. Geochimica et Cosmochimica Acta, 167, 241-252. https://doi. org/10.1016/j.gca.2015.07.029

  • Barriere, M. (1972). Orbicular gabbro of les Alharisses (Neouvielle granodirite, French Pyrenees). Bulletin de la Societe Francaise Mineralogie et de Cristallographie, 95(4), 495-506.

  • Breitkreuz, C. (2013). Spherulites and lithophysae -200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks. Bull Volcanology, 75:705, 1-16. https://doi. org/10.1007/s00445-013-0705-6

  • Burkhard, D. J. M. (2003). Thermal interaction between lava lobes. Bull Volcanology, 65, 136–143

  • Carl, J. D. & Amsutz, G. C. (1958). Three-dimensional Liesegang rings by diffusion in a colloidal matrix, and their significance for the interpretation of geological phenomena. GSA Bulletin 69 (11), 1467–1468. https://doi.org/10.1130/0016- 7606(1958)69[1467:TLRBDI]2.0.CO;2

  • Chauris, L., Hallegouet, B. & Riva, N. (1989). 1st data on an orbicular facies in the Ploumanach red granite (Armorican Massif). Comptes Rendus de l Academie des Sciences Serie Ii, 309(1), 59-62.

  • Couturié, J. P. (1973). Un nouveau gisement de granite orbiculaire dans le Massif Central français: le granite du Signal de Randon (Lozere). Contributions to Mineralogy and Petrology, 42(4), 305-312.

  • Elliston, J. N. (1984). Orbicules: an indication of the crystallisation of hydrosilicates, I. Earth-Science Reviews 20, 265–344.

  • Enz, R. D., Kudo, A. M. & Brookins, D. G. (1979). Igneous origin of the orbicular rocks of the Sandia Mountains, New Mexico. Geological Society of America Bulletin, 90(1), 138-140, 348-380.

  • Enz, R. D., Kudo, A. M. & Brookins, D. G. (1980). Igneous origin of the orbicular rocks of the Sandia Mountains, New Mexico: Discussion and reply: Reply. Geological Society of America Bulletin, 91(4), 246-247.

  • Erkül, F., Helvacı, C. & Sözbilir, H. (2005). Evidence for two episodes of volcanism in the Bigadic ̧ boratebasin and tectonic implications for western Turkey. Geological Journal, 40, 545–570.

  • Ersoy, E. Y., Helvacı, C. & Palmer, M.R. (2011). Stratigraphic, structural and geochemical features of the NE–SW trending Neogene volcanosedimentary basins in western Anatolia: implications for associations of supradetachment and transtensional strike-slip basin formation in extensional tectonic setting. Journal of Asian Earth Science, 41, 159–183.

  • Fisk, M. & McLoughlin, N. (2013). Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere, 9(2), 317-341.

  • Gimeno, D. (2003). Devitrification of natural rhyolitic obsidian glasses: petrographic and microstructural study (SEM+ EDS) of recent (Lipari island) and ancient (Sarrabus, SE Sardinia) samples. Journal of non-crystalline solids, 323(1-3), 84-90.

  • Goodspeed, C. E. (1942). Orbicular rock from Buffalo Hump, Idaho. American Mineralogist, 27, 37-41.

  • Gottfried, C. (1933) Über Lithophysen aus dem Porphyr von Baden-Baden. Geologische Rundschau, 23, 1–6

  • Helvacı, C. (1995). Stratigraphy, mineralogy, and genesis of the Bigadiç borate deposits, western Turkey. Economic Geology, 90, 1237–1260.

  • Helvacı, C., & Yağmurlu, F. (1995). Geological setting and economic potential of the lignite and evaporite-bearing Neogene basins of western Anatolia, Turkey. Israel Journal of Earth Sciences, 44(2), 91-105.

  • Helvacı, C., & Orti, F. (1998). Sedimentology and diagenesis of Miocene colemanite-ulexite deposits (western Anatolia, Turkey). Journal of Sedimentary Research, 68, 1021–1033.

  • Helvacı, C. & Alonso, R.N. (2000). Borate deposits of Turkey and Argentina: A summary and geological comparison. Turkish Journal of Earth Sciences, 9, 1–27.

  • Helvacı, C. & Orti, F. (2004). Zoning in the Kırka borate deposit, western Turkey: Primary evaporitic fractionation or diagenetic modifications?. The Canadian Mineralogist, 42, 1179–1204.

  • Helvacı, C., Yücel-Öztürk, Y., Seghedi, I. & Palmer, M. (2020). Post-volcanic activities in the Early Miocene Kırka-Phrigian caldera, western Anatolia – caldera basin filling and borate mineralization processes. International Geology Review, 62, 1719-1736. https://doi.org/10.1080/00206814.20 20.1793422.

  • Holgate, N. (1954). The Role of Liquid Immiscibility in Igneous Petrogenesis. The Journal of Geology 62 (5), 439-480. https://doi.org/10.1086/626191

  • Horwell, C. J., Williamson, B. J., Llewellin, E. W., Damby, D. E. & Le Blond, J. S. (2013). The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bulletin of Volcanology, 75(3), 696.

  • Hudyma, N. B., Burçin, A. & Karakouzian, M. (2004). Compressive strength and failure modes of lithophysae-rich Topopah Spring Tuff specimens and analog models containing cavities. Engineering Geology, 73, 179–190. https://doi. org/10.1016/j.enggeo.2004.01.003

  • Iddings, J. P. (1909). Igneous rocks: Composition, texture and classification, description and occurrance. University of Michigan Library, 744p.

  • Johnson, S. J., Bertolett, E., Gualda, G., Davidson, J. & Hampton, S.J. (2018). Investigating the origin of an orbicular granite: Karamea, New Zealand. GSA Annual Meeting; 4 Nov. 2018; Indianapolis, Indiana, U. S. A.

  • Leveson, D. J. (1966). Orbicular rocks: a review. Geological Society of America Bulletin, 77, 409- 426.

  • Lindh, A. & Näsström, H. (2006). Crystallization of orbicular rocks exemplified by the Slättemossa occurrence, southeastern Sweden. Geological Magazine, 143(5), 713–722. https://doi. org/10.1017/S001675680600210X

  • Lofgren, G. (1971). Spherulitic textures in glassy and crystalline rocks. Journal of Geophysical Research, 76(23) 5635–5648. https://doi. org/10.1029/JB076i023p05635

  • McArthur, A. N., Cas, R. A. F. & Orton, G. J. (1998). Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales). Bulletin of Volcanology, 60, 260–285. https://doi.org/10.1007/s004450050232

  • McPhie, J., Doyle, M. & Allen, R. (1993). Volcanic textures-a guide to the interpretation of textures in volcanic rocks. Univ Tasman CODES 196 pp.

  • Moore, J. G. & Lockwood, J. P. (1973). Origin of comb layering and orbicular structure, Sierra Nevada Batholith, California: Reply. Geological Society of America Bulletin, 84(12), 4007-4010.

  • Newton, T. S. (2020). A Compositional and Textural Investigation of the Goldie Lamprophyre, Fremont County, Colorado. [Unpublished MSc Thesis]. The Graduate Faculty of Texas Tech University, 258p.

  • Okay, A. I., Satır, M., Maluski, H., Siyako, M., Metzger, R., & Akyüz, S. (1996). Paleo- and Neo-Tethyan events in northwestern Turkey. In: Y. An, M. Harrison, (Eds.), Geological and Geochronological Constraints, Tectonics of Asia. Cambridge University Press, 420-441.

  • Okay, A. I., & Satır, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495-516. https:// doi.org/10.1017/S0016756800004532

  • Özcan, A., Göncüoğlu, M., Turan, N., Uysal, S.¸ Şentürk, K., Işık, V. (1988). Late Paleozoic Evolution of the Kütahya-Bolkardağ Belt. METU Journal of Pure and Applied Sciences, 21(1-3), 211–220.

  • Palmer, M. R. & Helvacı, C. (1997). The boron isotope geochemistry of the Neogene borate deposits of western Turkey. Geochemica et Cosmochimica Acta, 61, 3161-3169.

  • Péloquin, A. S., Verpaelst, P. & Ludden, J. N. (1996). Spherulitic rhyolites of the Archean Blake River Group, Canada: Implications for stratigraphic correlation and volcanogenic massive sulfide exploration. Economic Geology, 91, 343-354.

  • Piboule, M., Soden, L., Amosse, J. & Briand, B. (1989). Role of diabatic undercooling in the genesis of orbicular gabbros from Corsica. Comptes Rendus de l Academie des Sciences Serie II, 309(7), 713- 718.

  • Pourteau, A., Oberhänsli, R., Candan, O., Barrier, E., & Vrielynck, B. (2016). Neotethyan closure history of western Anatolia: a geodynamic discussion. International Journal of Earth Sciences (Geologische Rundschau), 105, 203–224. https:// doi.org/10.1007/s00531-015-1226-7

  • Prakash, H. S. M. (1996). Orbicular structures from Lingsugur Area, Raichur District, Karnataka. Journal of Geological Society of India, 47(5), 525-534.

  • Ross, C. S. & Smith, R. L. (1961). Ash-flow tuffs: Their origin, geological relation and identification. USGS Prof Pap 366, 81pp (reprint in New Mex Geol Soc Spec Publ 9, 1980).

  • Sandsta, N. R., Robins, B., Furnes, H. & De Wit, M. (2011). The origin of large varioles in flow-banded pillow lava from the Hooggenoeg Complex, Barberton Greenstone Belt, South Africa. Contributions to Mineralogy and Petrology, 162(2), 365-377.

  • Sauer, A. (1893). Porphyr studien. Mitt Großherz Bad Geol Landesanst, 2, 793–836.

  • Salotti, C. & Fouts, J. (1964). Orbicule formation through ıntrusive brecciation and compositional reorganization. The Mountain Geologist, 203-212.

  • Sederholm, J. J. (1928). On orbicular granites. Comm. Geol. Finlande, 83, 1-105.

  • Seghedi, I. & Helvacı, C., (2016). Early Miocene KırkaPhrigian Caldera, western Turkey (Eskişehir province), preliminary volcanology, age and geochemistry data. Journal of Volcanology and Geothermal Research, 327, 503–519.

  • Shrivastava, S. K., Nambiar, K. V. & Gaur, V. P. (2004). Orbucular structures in Bundelkhand Granitoid Complex near Pichhore, Shivpuri district, Madhya Pradesh Journal of Geological Society of India, 64, 677-684.

  • Spilliaert, N., Allard, P., Métrich, N. & Sobolev, A. V. (2006). Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatilerich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research: Solid Earth, 111(B4). https://doi.org/10.1029/2005JB003934

  • Srinivasan, K. N. & Kumar, D. R. (1995). Orbicular structures from a diorite body within the Granitoid Complex of Nellore Schist Belt. Journal of Geological Society of India, 45(3), 277-283.

  • Şengör, A.M.C., & Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241.

  • Thompson, T. B. & Giles, D. L. (1974). Orbicular rocks of the Sandia Mountains, New Mexico. Geological Society of America Bulletin, 85(6), 911-916.

  • Thompson, T. B. & Giles, D. L. (1980). Igneous origin of the orbicular rocks of the Sandia Mountains, New Mexico: Discussion and reply: Discussion. Geological Society of America Bulletin, 91(4), 245-246.

  • Vernon, R. H. (1985). Possible role of superheated magma in the formation of orbicular granitoids. Geology, 13, 843–845. https://doi. org/10.1130/0091-7613(1985)13<843:PROSMI> 2.0.CO;2

  • Yücel Öztürk, Y. & Akal, C. (2023). İdrisyayla Volkanitlerinde (Kırka-Eskişehir) Gözlenen Sferulitik Riyolitlere ait İlk Petrografik Dokusal Veriler / The First Petrographic Textural Data of Sferulitic Rhyolites Observed in the İdrisyayla Volcanites (Kırka-Eskişehir) . Türkiye Jeoloji Bülteni , 66 (1) , 59-74 . DOI: 10.25288/tjb.1084686

  • Investigation of Very Low Grade Metamorphism Properties of the İznik Metamorphics (Armutlu Peninsula, NW Turkey)
    Sema Tetiker
    View as PDF

    Abstract: The study area included low-grade metamorphic units representing the Karakaya Complex (LowerKarakaya-LKC) outcropping in the Armutlu-Ovacık zone in the Armutlu Peninsula. In this study, samples werecollected during field work in the Iznik and Yenişehir (Bursa) regions, and petrographic (optical microscope,SEM) and mineralogical (XRD) examinations were performed. Among the LKC units, the Iznik Metamorphics arerepresented by greenstone facies rocks (metasandstone, slate, schist, quartzite, metagabbro, metavolcanic, dolomiticmarble). Quartz, phyllosilicate (illite, chlorite, C-V, kaolinite, I-V, smectite, stilpnomelane, paragonite, antigorite),feldspar, calcite, pyroxene (augite), dolomite, amphibole (hornblende, tremolite/actinolite, anthophyllite) andopaque minerals (hematite and goethite) were identified in descending order of abundance among the LKC unit.The trioctahedral chlorites with chamosite composition had the IIb polytype, whereas the illites had 2M1 and2M+1M polytypes. The Kübler Index (KI; Δο2θ) values were in the range of 0.19-0.41 Δο2θ (mean: 0.25 Δο2θ), which indicates epi-metamorphic and very low metamorphic grade. The AI (Δο2θ) values were in the range of 0.26-0.32 Δο2θ (mean: 0.29 Δο2θ), which is compatible with the Kübler Index data from illites. Dioctahedral illites withphengite compositions had b0 values (Å) in the range of 8.952-9.030 Å (mean: 8.995 Å), and they were in the low- tomoderate-pressure facies sequence. Comparing the lithological, mineralogical and crystal chemistry parameterdata (crystallinity, polytype and b0) of the Iznik metamorphics representing LKC to those of equivalent units found incentral-northeastern Anatolia (Nilüfer Unit and Turhal Metamorphics), the unit showed diagenesis-metamorphismconditions with greenstone facies corresponding to the upper part of the Lower Karakaya (LKC-UP). Petrographicand mineralogical data (paragenesis, KI, AI, b0, index mineral associations) revealed that the Iznik Metamorphicswere affected by lower greenschist (high anchizone-epizone) metamorphism during the Permian-Early Cretaceousperiod.

  • Alpine metamorphism

  • b0

  • Illite crystallinity

  • Karakaya Complex

  • paragonite


  • Adamia, S. A., Lordkipanidze, M. B. & Zakariadze, G. S. (1977). Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics, 40, 183-189.

  • Ahn, J. & Peacor, D. R. (1985). Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays and Clay Minerals, 33(3), 228-236.

  • Akartuna, M. (1968). Armutlu Yarımadası’nın jeolojisi. İÜ Fen Fakültesi Monografileri, 20, 105 s.

  • Aksay, A., Pehlivan, S., Gedik, I., Bilginer, E., Duru, M., Akbaş, B. ve Altun, I. (2002). 1:500.000 ölçekli Türkiye Jeoloji Haritası, Zonguldak Paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Árkai, P. (1991). Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723-734.

  • Árkai, P. (2002). Phyllosilicates in very low-grade metamorphism: Transformation to micas. In A. Mottana, F. P. Sassi, J. B. Thompson, Jr. ve S. Guggenhiem, (Eds.,), Micas: Crystal Chemistry and Metamorphic Petrology, 46, (p.: 463–478). Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.

  • Attlewell, P. & Taylor, R. K. (1969). A microtextural interpretation of a Welsh slate. International Journal of Mechanics and Mining Sciences, 6, 423-443.

  • Beutner, E. C. (1978). Slaty cleavage and related strain in Martinsburg slate, Delaware Water Gap, New Jersey. American Journal of Science, 278, 1-23.

  • Bingöl, E., Akyürek, B. ve Korkmazer, B. (1975). Biga Yarımadasının jeolojisi ve Karakaya Formasyonunun bazı özellikleri. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi Tebliğleri (s.70- 77), Maden Tetkik ve Arama Enstitüsü.

  • Bozkaya, Ö., Gürsu, S. & Göncüoğlu, M. C. (2006). Textural and mineralogical evidence for a Cadomian tectonothermal event in the eastern Mediterranean (Sandıklı-Afyon area, western Taurides, Turkey). Gondwana Research, 10, 301- 315.

  • Bozkaya, Ö. & Yalçın, H. (2000). Very low-grade metamorphism of Upper Paleozoic-Lower Mesozoic sedimentary rocks related to sedimentary burial and thrusting in Central Taurus Belt, Konya, Turkey. International Geology Review, 42, 353- 367.

  • Bozkaya, Ö. & Yalçın, H. (2004). Diagenetic to lowgrade metamorphic evolution of clay mineral assemblages in Palaeozoic to early Mesozoic rocks of the Eastern Taurides, Turkey. Clay Minerals, 39, 481-500.

  • Bozkaya, Ö. & Yalçın, H. (2005). Diagenesis and very low-grade metamorphism of the Antalya Unit: mineralogical evidence of Triassic rifting, AlanyaGazipaşa, Central Taurus Belt, Turkey. Journal of Asian Earth Sciences, 25, 109-119.

  • Bozkaya, Ö. ve Yalçın, H., 2007. X-Işını difraktogramlarında kil minerallerinin karmaşık piklerinin çözümlenmesi: Türkiye’den örnekler. M. Kuşcu, O. Cengiz, E. Şener (Ed.ler), 13. Kil Sempozyumu, Bildiriler Kitabı, (s. 16-31).

  • Bozkaya, Ö., Yalçın, H. & Göncüoğlu, M. C. (2002). Mineralogic and organic responses to the stratigraphic irregularities: An example from the Lower Paleozoic very low-grade metamorphic units of the Eastern Taurus Autochthon, Turkey. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 355-373.

  • Brindley, G. W. (1980). Quantitative x-ray mineral analysis of clays. In G.W. Brindley, G. Brown (Eds.), Crystal structures of Clay Minerals and their X-ray Identification (Mineralogical Society, London, 411-438.

  • Brinkmann, R. (1966). Geotektonische Gliederung von Westanatolian. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 603-618.

  • Brinkmann, R. (1971). The Geology of western Anatolia: The Geology and History of Turkey. Chambell, 171-190.

  • Craig, J., Fitches, W. R. & Maltman, A. J. (1982). Chlorite-mica stacks in low-strain rocks from Central Wales. Geological Magazine, 119, 243- 256.

  • Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V.G., Le Pichon, X., Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, V., Lapurier, C., Perhersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin, O., Westphall, M., Bazhenov, M. L., Lauer, J. P. & Biju-Duval, B. (1986). Geological Evolution of the Tethys Belt from the Atlantic to the Pamirs since the Liassic. Tectonophysics, 123, 241-315.

  • Dimberline, A. J. (1986). Electron microscope and microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, Mid Wales, UK. Geological Magazine, 123, 299-306.

  • Eberl, D.D. ve Velde, B., 1989. Beyond the Kübler index. Clay Minerals, 24, 571-577.

  • Ehlers, E.G. & Blatt, H. (1982). Petrology: Igneous, Sedimentary and metamorphic. W. H. Freeman and Company. USA.

  • Ellero A., Frassi, C., Göncüoǧlu, M. C., Lezzerini, M., Marroni, M., Ottria, G., Pandolfi1, L., Sayit, K. & Tamponi, M. (2021). Geological, Structural and Mineralogical Approach to Investigate the Evolution of Low- and very Low-Grade Metamorphic Units from the Intra-Pontide Suture Zone, Central Pontides, Turkey. Journal of Earth Science, 32(6), 1512–1527.

  • Elmas, A. & Yiğitbaş, E. (2001). Ophiolite emplacement by strike-slip tectonics between the Pontide Zone and the Sakarya Zone in northwestern Anatolia, Turkey. Internatıonal Journal of Earth Sciences, 90(2), 257-269.

  • Elmas, A. & Yiğitbaş, E. (2005). Comment on Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, NW Turkey by Robertson and Ustaömer. Discussion. Tectonophysics, 405, 213 – 221. https://doi.org/10.1016/j.tecto.2005.05.007

  • Federici, I., Cavazza, W., Okay, A. I., Beyssac, O., Zattin, M., Corrado, Z. & Dellisanti, F. (2010). Thermal Evolution of the Permo−Triassic Karakaya Subduction-accretion Complex between the Biga Peninsula and the Tokat Massif (Anatolia). Turkish Journal of Earth Sciences, 19, 409–429. https://doi.org/10.3906/yer-0910-39

  • Frey, M. (1987). Very low-grade metamorphism of clastic sedimentary rocks. In Low Temperature Metamorphism, Glasgow, 9-58.

  • Genç, Ş. C. (1987). Geology of the Region Between Uludağ and İznik Lake: Guidebook and Field Guide Along Western Anatolia, Turkey. Mineral Research and Exploration Institute Publication, 19-25.

  • Genç, Ş. C. (1992). Geology of the Bursa region. International Symposium on the Geology of Black Sea Region. Guide Book, 22-24.

  • Genç, Ş. C. & Yılmaz, Y. (1995). Evolution of the Triassic continental margin, Northwest Anatolia. Tectonophysics, 243, 193-207.

  • Göncüoğlu, M.C., Erendil, M., Tekeli, O., Ürgün, B.M., Aksay, A. ve Kuşçu, İ. (1986). Armutlu Yarımadasının doğu kesiminin jeolojisi (Rapor no: 7786). Maden Tetkik ve Arama Genel Müdürlüğü (yayımlanmamış).

  • Göncüoğlu, M. C., Turhan, N., Şentürk, K., Uysal, Ş., Özcan, A. ve Işık, A. (1996). Orta Sakarya’da Nallıhan Sarıcakaya Arasındaki Yapısal Birliklerin Jeolojik Özellikleri [Rapor no: 10094]. Maden Tetkik ve Arama Genel Müdürlüğü (yayımlanmamış).

  • Göncüoğlu, M. C., Dirik, K. & Kozlu, H. (1997). General chracteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique de Pays Hellenique, 37, 515-536.

  • Göncüoğlu, M. C., Erendil, M., Tekeli, O., Aksay, A., Kuşçu, İ. & Ürgün, B. (1987). Geology of the Armutlu Peninsula. IGCP Project 5, Guide Book. Field Excursion along W-Anatolia, 12-18.

  • Göncüoğlu, M. C., Erendil, M., Tekeli, O., Aksay, A., Kuşçu, A. & Ürgün, B. (1992). Introduction to the geology of the Armutlu Peninsula. ISGB-92, Guide Book, 26–36.

  • Guggenheim, S., Bain, D. C., . Bergaya, F., Brigatty, M. F., Drits, A., Eberl, D. D., Formoso M. L. L., Galan, E., Merriman, R. J., Peacor, D. R., Stanjek, H. & Watanabe T. (2002). Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the Crystallinity Index. Clay Minerals, 37, 389- 393.

  • Guidotti, C.V. & Sassi, F. P. (1986). Classification and correlation of metamorphic facies series by means of muscovite b0 data from low-grade metapelites. Neues Jahrbuch für Mineralogie, Abhandlungen, 153, 363-380.

  • Hoeppener, R. (1956). Zur Problem der Bruchbildung, Schieferung und Faltung. Geologische Rundschau, 45, 247-283.

  • Holeywel, R. C. & Tullis, T. E. (1975). Mineral reorientation and slaty cleavage in the Martinsburg Formation, Lehigh Gap, Pennslylvania. Geological Society of America Bulletin, 86, 1269-1304.

  • Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Fredrichsen, H., Flehmig, W., Hochstrasser, K., Roggviler, P. & Schwander, H. (1986). The evolution of illite to muscovite. Mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92, 157-180.

  • J.C.P.D.S. (1990). Powder Diffraction File. Alphabetical Indexes Inorganic Phases. USA: Swarthmore.

  • Jaboyedoff, M., Bussy, F., Kübler, B. & Thelin, P.H. (2001). Illite crystallinity revisited. Clays and Clay Minerals, 49, 156-167.

  • Kandemir, Ö., Pehlivan, Ş., Kanar, F., Tok, T. & Çakır, K., 2014. 1:100 000 Ölçekli Türkiye Jeoloji Haritaları, Bursa-H23 Paftası. Maden Tetkik ve Arama Genel Müdürlüğü Jeoloji Etüdleri Dairesi. Ankara.

  • Kaya, O. (1977). Gemlik – Orhangazi alanının Paleozoyik temel yapısına yaklaşım. Yerbilimleri, Hacettepe Üniversitesi, 3(1/2) 115-118.

  • Kisch, H. J. (1983). Mineralogy and petrology of burial diagenesis (burial metamorphism) in clastic rocks. In G. Larsen, & G.V. Chilingar, (Eds.), Diagenesis in Sediments and Sedimentary Rocks, 2 (pp. 289- 493 & 513-541). Elsevier, Amsterdam.

  • Kisch, H. J. (1991). Development of slaty cleavage and degree of vey-low-grade metamorphism: a review. Journal of Metamorphic Geology, 9, 735-750.

  • Krinsley, D. H., Pye, K. & Kearsley, A. T. (1983). Application of backscattered electron microscopy in shale petrology. Geological Magazine, 120, 109-114.

  • Krumm, S. (1996). WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of WINFIT 1.0: a public domain program for interactive profile-analysis under WINDOWS. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Universitatis Carolinae Geologica, 38, 253-261.

  • Krushensky, R., Akçay, Y. & Karaege, E., 1980. Geology of the Karalar-Yeşiller area, Northwest natolia, Turkey. Bulletin of the United States Geological and Geographical Survey, 1461, 1-72.

  • Kübler, B. (1968). Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bulletin-Centre de Recherches Pau-SNPA, 2, 385- 397.

  • Kübler B. (1984). Les indicateurs des transformationsphysiques et chimiques dans la diagenèse, températureet calorimétrie. In M. Lagache (Ed.), Thermobarométrieet Barométrie Géologiques (pp. 489–596). Societe de Francais Minéalogie et Cristallographie, Paris (in French).

  • Merriman, R. J. (2005). Clay minerals and sedimentary basin history. European Journal of Mineralogy, 17, 7-20.

  • Merriman, R. J. & Peacor, D. R. (1999). Very lowgrade metapelites: mineralogy, microfabrics and measuring reaction progress. In M.Frey & D. Robinson (Eds.), Low-grade metamorphism (pp. 10–60). Oxford: Blackwell Science

  • Merriman, R. J. & Frey, M. (1999). Patterns of very low-grade metamorphism in metapelitic rocks. In: M. Frey, D. Robinson (Eds.), Low-Grade Metamorphism (pp. 61-107). Blackwell Science.

  • Merriman, R. J. & Roberts, B. (1985). A survey of white mica crystallinity and polytypes in pelitic rocks of Snowdonia and Llyn, Nort Wales. Mineralogical Magazine, 49(3), 305-319.

  • Merriman, R. J., Roberts, B. & Peacor, D. R. (1990). A transmission electron microscopy study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contributions to Mineralogy and Petrology, 106, 27-44.

  • Meunier, A., Velde, B. & Zalba, P. (2004). Illite K-Ar and crystal growth processes in diagenetic environments: a critical review. Terra Nova, 16, 296-304.

  • Milodowski, A.E. 6 Zalasiewicz, J. A. (1991). The origin, sedimentary, diagenetic and metamorphic evolution of chlorite-mica stacks in Llandovery sediments of central Wales, UK. Geological Magazine, 128, 263-278.

  • Morad, S. (1986). Mica-chlorite intergrowths in very low-grade metamorphic sedimentary rocks from Norway. Neues Jahrbuch für Mineralogie, Abhandlungen, 154, 271-287.

  • Okay, A. İ. (1984). Distribution and characteristics of the northwest Turkish blueschists. Geological Society, London, Special Publications, 17, 455- 466.

  • Okay, A. İ. (1989a). Edremit-Balya-Manyas arasının jeolojisi ve Jeotektoniği (Rapor No:2657). TPAO Arama Grubu.

  • Okay, A. İ. (1989b). Tectonic units and sutures in the Pontides, northern Turkey. In A.M.C. Şengör, (Ed.), Tectonic Evolution of the Tethyan Region (pp. 109-115). Kluwer Academic Publications, Dordrecht.

  • Okay, A. İ. (2000). Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau. In E. Bozkurt, J. A. Winchester, J. D. A. & Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area (pp. 25-41). Geological Society, London, Special Publications, 173.

  • Okay, A.İ. & Monié, P. (1997). Early Mesozoic subduction in the Eastern Mediterranean: evidence from Triassic eclogite in Northwest Turkey. Geology, 25, 595-598.

  • Okay, A. İ. Siyako, M. & Bürkan, K.A. (1991). Geology and Tectonic evolution of the Biga Peninsula, NW Turkey. Bulletin of the Technical University of İstanbul, 44, 191-256.

  • Okay, A. İ. & Göncüoğlu, M. C. (2004). The Karakaya Complex: A Review of Data and Concepts. Turkish Journal of Earth Sciences, 13, 77-95.

  • Okay, A.İ., Siyako, M. ve Bürkan, K. A. (1990). Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2(1), 83-121.

  • Okay, A. İ., Monod, O. & Monie, P. (2002). Triassic blueschists and eclogites from northwest Turkey: vestiges of the Paleo-Tethyan subduction. Lithos, 64, 155-178.

  • Okay, A.I., Satır, M., Zattin, M., Cavazza,W. & Topuz, G. (2008). An Oligocene ductile strike-slip shear zone: the Uludağ Massif, northwest Turkey – implication for the westward translation of Anatolia. Geological Society of American Bulletin 120, 893–911.

  • Pique, A. & Wybrecht, E. (1987). Origine des chlorites de l’épizone héritage et cristallisation synschisteuse Exemple des grauwackes cambriennes du Maroc occidental. Bulletin de Minéralogie, 110, 665-682.

  • Pye, K. & Krinsley, D. H. (1983). Inter-layered clay stacks in Jurassic shales. Nature, 304, 618-620.

  • Robertson, A. H. F. & Dixon, J. E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: J.E. Dixon, & A.H.F. Robertson, (Eds.) The Geological evolution of the Eastern Mediterranean. Geological Society, London, Special publications, 17, 1-74.

  • Robertson, A.H.F. & Ustaömer, T. (2004). Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, NW Turkey. Tectonophysics, 381, 175–209.

  • Rojay, B. & Göncüoğlu, M. C. (1997). Tectonic setting of some pre-Liassic low grade metamorphics in northern Anatolia. Yerbilimleri, 19, 109-350.

  • Roy, A. B. (1978). Evolution of slaty cleavage in relation to diagenesis and metamorphism: a study from the Hunsrückschiefer. Bulletin of Geological Society of America, 89, 1775-1785.

  • Sassi, F.P. & Scolari, A. (1974). The b0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contributions to Mineralogy and Petrology, 45, 143-152.

  • Srodon, J. (1984). X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337-349.

  • Stampfli, G. M. (2000). Tethyan oceans. In E. Bozkurt, J. A. Winchester, J. D. A. & Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area (pp. 163–185). Geological Society, London, Special Publications, 173.

  • Şengör, A. M. C. (1979). The North Anatolian tranform fault: its age, offset and tectonic significance. Journal of the Geological Society of London, 136, 269-282.

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-Slip Faulting and related basin formation in zones of tectonic escape: Turkey as a case study The Society of Economic Paleontologist and Mineralogist, 227-262. https://doi.org/10.2110/ pec.85.37.0211

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics, 75, 181-241. https://doi. org/10.1016/0040-1951(81)90275-4

  • Şengör, A. M. C., Yılmaz, Y. & Sungurlu, O. (1984). Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-Tethys. In J. E. Dixon, & A.H.F. Robertson (Eds.), The Geological Evolution of the Eastern Mediterranean (pp. 77-1112). Geological Society, London, Special Publications, 17.

  • Tekeli, O. (1981). Subduction complex of pre-Jurassic age, Northern Anatolia, Turkey. Geology, 9, 68- 72.

  • Tetiker, S., Yalcın, H. & Bozkaya, O. (2009a). Low grade metamorphism of the units from Karakaya Complex (Tokat region). Proceedings of 14th National Clay Symposium, 155-173.

  • Tetiker, S., Yalcın, H. & Bozkaya, O. (2009b). Diagenesis and low grade metamorphism of Karakaya Complex in the NW Anatolia. Yerbilimleri 30, 193–212.

  • Tetiker, S., Yalçın, H., Bozkaya, Ö. & Göncüoğlu, M. C. (2015a). Metamorphic evolution of the Karakaya Complex in northern Turkey based on phyllosilicate mineralogy. Mineralogy and Petrology, 109, 201-215.

  • Tetiker, S., Yalçın, H. ve Bozkaya, H. (2015b). Karakaya Karmaşığı’nın Düşük Dereceli Metamorfik Tarihçesine Klorit Mineralojisi ve Jeokimyası ile Yaklaşımlar. Türkiye Jeoloji Bülteni, 58(2), 55-83. https://dergipark.org.tr/tr/ pub/tjb/issue/28111/298527

  • Türkecan, A. ve Yurtsever, A. (2002). 1:500.000 ölçekli Türkiye Jeoloji Haritası, Zonguldak paftası. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.

  • Ustaömer, T. & Robertson, A. H. F. (1997). Tectonicsedimentary evolution of the north Tethyan margin in the Central Pontides of northern Turkey. In: A.G. Robinson (Ed), Regional and Petroleum Geology of the Black Sea and Surrounding Region (pp. 255-290). American Association of Petroleum Geologists Memoir, 68.

  • Ustaömer, T. & Robertson, A. H. F. (1999). Geochemical evidence used to test alternative plate tectonic models for the pre-Upper Jurassic (Palaeotethyan) units in the central Pontides, N Turkey. Geological Journal, 34, 25-53.

  • Van Der Pluijm, B. & Kaars-Sijpesteijn, C. H. (1984). Chlorite-mica aggregates: Morphology, orientation, development and bearing on cleavage formation in very-low-grade rocks. Journal of Structural Geology, 6, 399-407.

  • Voll, G. (1960). New work on petrofabrics. Liverpool and Manchester Geological Journal, 2, 503-567.

  • Warr, L. N. & Ferreiro-Mählmann, R. (2015). Recommendations for Kübler Index standardization. Clay Mineral, 50, 283-286.

  • Warr, L. N. & Rice, A. H. N. (1994). Interlabratory standartization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141-152.

  • Weber, K. (1981). Kinematic and metamorphic aspects of cleavage formation in very low-grade metamorphic slates. Tectonophysics, 78, 291-306.

  • Weber, K., Dunoyer de Segonzac, G. & Economou, C. (1976). Une nouvelle expression de la cristallinité de l’illite et des micas. Notion d’épaisseur apparente des cristallites. Compes Rendus Somm. Sociéte de la Géologique de France, 5, 225-227.

  • White, S. H., Huggett, J. M. & Shaw, H. F. (1985). Electron-optical studies of phyllosilicate intergrowths in sedimentary and metamorphic rocks. Mineralogical Magazine, 49, 413-423.

  • Williams, P. F. (1972). Development of metamorphic layering and cleavage in low grade metamorphic rocks at Bermagui, Australia. American Journal of Science, 272, 1-47.

  • Woodland, B. G. (1982). Gradational development of domainal slaty cleavage, its origin and relation to chlorite porphyroblasts in the Martinsburg Formation, eastern Pennsylvania. Tectonophysics, 82, 89-124.

  • Woodland, B. G. (1985). Relationship of concretions and chlorite-muscovite porphyroblasts to the development of domainal cleavage in low-grade metamorphic deformed rocks from north-central Wales, Great Britain. Journal of Structural Geology, 7, 205-215.

  • Yalçın, H. ve Bozkaya, Ö. (2002). Hekimhan (Malatya) çevresindeki Üst Kretase yaşlı volkaniklerin alterasyon mineralojisi ve jeokimyası: Denizsuyukayaç etkileşimine bir örnek. C.Ü. Müh. Fakültesi Dergisi Seri A-Yerbilimleri, 19, 81-98.

  • Yılmaz, A. & Yılmaz, H. (2004). Geology and structural evolution of the Tokat masif (Eastern Pontides, Turkey). Turkish Journal of Earth Sciences, 13, 231-246.

  • Yılmaz, Y., Şaroğlu, F. & Güner, Y. (1987). Initiation of the neomagmatism in East Anatolia. Tectonophysics, 134, 177-199.

  • Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. & Şengör, A.M.C., 1997. Geology and tectonic evolution of the Pontides. In A. G. Robinson (Ed.), Regional and Petroleum Geology of the Black Sea and Surroinding Region (pp.183-226). American Association of Petroleum Geologist Memoir, 68.

  • Yılmaz, Y., Gürpınar, O., Genç, C., Bozcu, M., Yılmaz, K., Şeker, H., Yiğitbaş, E. ve Keskin, M., 1990. Armutlu Yarımadası ve Dolayının Jeolojisi (Rapor no: 2796). TPAO, 210s.

  • Yiğitbaş, E., Elmas, A. & Yılmaz, Y. (1999). PreCenozoictectono-Stratigraphic Componentsof The Western Pontides And Their Geological Evolution. Geological Journal, 34, 55-74.

  • Yiğitbaş, E., Kerrich, R., Yılmaz, Y., Elmas, A. & Qianli, X. (2004). Characteristics and Geochemistry of Precambrian Ophiolites from the Western Pontides, Turkey: Following the Missing Chain of the Precambrian South European Suture Zone to the East. Precambrian Research, 132(1- 2), 179- 206.

  • Tetiker, S. (2023). İznik Metamorfitleri`nin Çok Düşük Dereceli Metamorfizma Özelliklerinin İncelenmesi (Armutlu Yarımadası, KB Türkiye) / Investigations of Very Low Grade Metamorphism Properties of the İznik Metamorphics (Armutlu Peninsula, NW Turkey) . Türkiye Jeoloji Bülteni , 66 (1) , 75-106 . DOI: 10.25288/tjb.1121834

  • Geological-Geomorphological Characteristics and Geotourism Potential of Çal Canyon and Its Surroundings (Denizli, SW Anatolia)
    Arzu Gül Mehmet Özkul
    View as PDF

    Abstract: The Çal Canyon, one of the geological values of Denizli province, is located in the upper course of theBüyük Menderes River near the town of Çal. The oldest rock units around the canyon are schists and marbles ofthe Menderes Massif. The metamorphic units overlie the carbonate (limestone, dolomitic limestone) and ophioliticrocks of the Lycian nappes with a tectonic contact. These basement units were unconformably covered by the upperMiocene to Pliocene continental succession, which is composed of fluvial, lacustrine and alluvial deposits. The canyon, which is 65 km northeast of the provincial capital of Denizli, is 4 km away from the town of Çal.The depth of the canyon, which developed in the marble of the NE-SW trending Menderes Massif, is 60 meters. Thealtitudes of the entrance and exit points of the canyon are 760 m and 700 m, respectively; consequently, there is adifference of 60 m. The high slopes of the canyon are close to 90° at some points. The canyon, which started to format the end of the Pliocene, continued its development in the Quaternary. Its length is 3 km, in a N-S direction. Theridge where the canyon developed has a threshold between the Çivril-Baklan graben to the east and the Çal basin tothe west. The canyon also creates a hydraulic connection between these two depressions.On the cascading and irregular canyon floor, waterfalls a few meters high, along with potholes, have developed.In the study area, the canyon stands out as a geological value. However, apart from the canyon, there are alsohistorical and cultural values. To the south are the ruins of the ancient city of Lounda at the entrance of the canyon.On the other hand, there is the historical Hançalar Bridge and Kayı Bazaar to the north. As an intangible culturalvalue, a "sheep passing" festival is held in the waters of the Büyük Menderes River every year in the village ofAşağıseyit near Çal in the last week of August. The canyon area, which is easy to access and close to varioussettlements, is quite suitable for geotourism activities with its geological diversity and landscape features.The aim of this study was to investigate the geological-geomorphological features of the Çal Canyon and itssurroundings from a cultural-geological perspective as well as to reveal the extensive geotourism potential.

  • Çal Canyon

  • earth science education

  • geological value

  • geotourism


  • Alçiçek, M. C., Mayda, S. & Alçiçek, H. (2012). Faunal and palaeoenvironmental changes in the Çal Basin, SW Anatolia: implications for regional stratigraphic correlation of late Cenozoic basins. Comptes Rendus Geoscience, 344, 89–98.

  • Alçiçek, H. & Alçiçek, M.C. (2014). Palustrine carbonates and pedogenic calcretes in the Çal basin of SW Anatolia: Implications for the PlioPleistocene regional climatic pattern in the eastern Mediterranean. Catena, 112, 48–55.

  • Altunel, E. (2012). Kültürel Jeoloji; jeolojinin insanoğlunun yaşamı üzerindeki etkileri. N. Kazancı ve A. Gürbüz (Ed. ler), Kuvaterner Bilimi, (s. 195–214). Ankara Üniversitesi Yayını.

  • Arpat, E. (1976). İnsan Ayağı İzi Fosilleri: Yitirilen Bir Doğal Anıt. Yeryuvarı ve İnsan, 1, 2, 3-4.

  • Atalay, E. Ö. (1982). Kırklareli – Dupnisa Mağara Sistemi. Yeryuvarı ve İnsan, 7 (2), 22-25.

  • Atayeter, Y., Çiloğlu, M. H. ve Büyükkal, A. H. (2007). Uçansu Çağlayanları (Gebiz – Antalya). Marmara Coğrafya Dergisi,16, 207–222.

  • Boyraz, S. (2011). Denizli yöresi (Çal, Çivril, Baklan) Neojen yaşlı eski toprakların (paleosol) sedimantolojisi, Güneybatı Anadolu, Türkiye [Yayımlanmamış Doktora Tezi]. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

  • Boyraz, S. ve Yedek, Ö. (2012). KızılcahamamÇamlıdere Jeoparkı. TMMOBJeoloji Mühendisleri Odası Haber Bülteni, 2, 21–24.

  • Božić, S. & Tomić, N. (2015). Canyons and gorges as potential geotourism destinations in Serbia: Comparative analysis from two perspectives– general geotourists and pure geotourists. Open Geosciences, 7(1), 531–546.

  • Bozkurt, E., (2001). Neotectonics of Turkey-A synthesis: Geodinamica Acta, 14, 3–30.

  • Canik, B. (1972). Jeoloji mostralarına saygı. Türkiye Jeoloji Kurumu, Yıllık Bülteni.

  • Canpolat, E., Çılğın, Z., Bayrakdar, C. (2020). Jeomorfoturizm Potansiyeli Bakımından Emecik Kanyonu – Şelalesi (Çameli, Denizli). Jeomorfolojik Araştırmalar Dergisi, 5, 64-86.

  • Çiftçi, Y. ve Yıldırım, G. (2021). Nemrut - Süphan öneri jeopark alanında (Bitlis - Türkiye) doğal ve kültürel miras bütünleşmesi ile jeokoruma önerileri. Maden Tetkik ve Arama Dergisi, 165, 191-215. https://doi.org/10.19111/bulletinofmre.860092

  • Doğan, U. & Koçyiğit, A. (2018). Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey. Geomorphology, 306, 13–27.

  • Ekici, M. (2006). Denizli Halk Edebiyatı ve Halk Kültüründe Çal Yöresinin yeri. Çal Sempozyumu Bildirileri (s.:474-490). 01-03 Eylül 2006, Denizli.

  • Erdan, E. (2020). Cup-Marks in Alinda. M. Çekilmez ve U. Kapuci, U. (Eds.) Alinda Araştırmaları I Alinda Antik Kenti ve Çevresi Arkeolojik Yüzey Araştırmaları - Eski Belgeler ve Yeni Araştırmalar (s.:45-62). Adnan Menderes Üniversitesi Matbaası, Aydın.

  • Erinç, S. (2012). Jeomorfoloji I (Güncelleştirenler, A. Ertek ve C. Güneysu). Der Yayınları, İstanbul.

  • Gedik, A. 1977. Korunması gerekli doğal anıtlarımızdan Akyatan Gölü (Lagün). Yeryuvarı ve İnsan, 2(3), 38-44.

  • Gül, A., Boyraz, S. ve Özkul, M. (2007). Kısık Kanyonu (Çal-Denizli) Jeositi ve Jeoturizm Özellikleri. 60. Türkiye Jeoloji Kurultayı (16-20 Nisan 2007) Bildiri özleri Kitabı. MTA, Ankara. https://www. jmo.org.tr/resimler/ekler/d033f2517f2915c_ ek.pdf

  • Güldalı, N. (1972). Mağaralar: Yıkıma uğrayan doğal güzelliğimiz. Yeryuvarı ve İnsan, 2(1), 70-72.

  • Güldalı, N., Önal, Ö. ve Nazik, L. (1981). Türkiye’de Mağara Araştırmaları. Yeryuvarı ve İnsan 6(3-4), 5-7.

  • Güldalı, N. ve Şaroğlu, F. (1983). Konya Yöresi Obrukları. Yeryuvarı ve İnsan, 7, 14-18.

  • Gündoğan, İ., Helvacı, C. & Sözbilir, H. (2008). Gypsiferous carbonates at Honaz Dağı (Denizli): first documentation of Triassic gypsum in western Turkey and its tectonic significance. Journal of Asian Earth Sciences, 32, 49–65.

  • Güngör, Y. (2009). Doğanın Öyküsünü Anlamak: Jeoturizm, Mavi Gezegen, 14, 4-8.

  • Gürbüz, A., Boyraz, S. M. & Ismael, M. T. (2012). Plio-Quaternary development of the Baklan-Dinar graben: Implications for cross-graben formation in SW Turkey. International Geology Review, 54(1), 33-50.

  • Gürgöze, S. ve Uzun, A. (2020). Ozan Kanyonu’nun jeomorfolojisi, Malatya, Türkiye. Kesit Akademi Dergisi, 6(25), 116-128.

  • Hose, T. A. (1995). Selling the Story of Britain’s Stone. Environmental Interpretation, 10(2), 16-17.

  • Hose, T. A. (2000). Rocks, Rudists & Writing: An Examination of Populist Geosite Literature. In K. Addison (Ed.), Proceedings of the Third UK Annual Riggs Conference (pp.:39-62), Newton Rigg, Penrith.

  • İmamoğlu, İ. ve Çetin, M. (2016). Osmanlı ve Cumhuriyet Tarihi Arşiv Belgelerinde Çal Tarihi kitabı. Denizli Büyük Şehir Belediyesi Kültür Yayınları, Birinci baskı, 274 s.

  • İnaner, H., Sümer, Ö. & Akbulut, M. (2019). New geosite candidates at the western termination of the Büyük Menderes graben and their importance on science education. Geoheritage, 11(4), 1291- 1305.

  • Karlstrom, K. E., Timmons, J. M. & Crossey, L. J. (2012). Introduction to Grand Canyon geology, In J.M. Timmons, & K. E. Karlstrom (Eds.), Grand Canyon Geology: Two Billion Years of Earth’s History (pp.: 1-6). Geological Society of America, Special Paper 489.

  • Kaymakçı, N. (2006). Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): implications of spatial variation of relative paleostress magnitudes and orientations. Journal of Asian Earth Sciences, 27, 207–222.

  • Kazancı, N. (2005). Kültürel Jeoloji. Mavi Gezegen 12, 14–16.

  • Kazancı, N. (2010). Jeolojik Koruma; Kavram ve Terimler. Jeolojik Mirası Koruma Derneği yayını, Ankara, 60.

  • Kazancı, N., Dündar, S., Alçiçek, M. C. & Alper, G. (2009). Quaternary deposits of the Büyük Menderes Graben in western Anatolia, Turkey: Implications for river capture and the longest Holocene estuary in the Aegean Sea. Marine Geology, 264(3–4), 165-176.

  • Kazancı, N., Gürbüz, A. ve Boyraz, S. (2011). Büyük Menderes Nehri’nin Jeolojisi ve Evrimi. Türkiye Jeoloji Bülteni, 54(1-2), 25-56. https://dergipark. org.tr/tr/pub/tjb/issue/46966/589505

  • Kazancı, N., Boyraz, S., Özkul, M., Alçiçek, M. C., Kadıoğlu, Y. K., 2012. Late Holocene terrestrial tephra record at western Anatolia, Turkey: Possible evidence of an explosive eruption outside Santorini in the eastern Mediterranean. Global and Planetary Change, 80–81, 36-50.

  • Kazancı, N., Şaroğlu, F. ve Suludere, Y. (2015). Jeolojik Miras ve Türkiye Jeositleri Çatı Listesi. Maden Tetkik ve Arama Dergisi, 151, 263-272. https:// doi.org/10.19111/bmre.39701

  • Kazancı, N., Erdem Özgen, N. ve Erturaç, M. K. (2017). Kültürel jeoloji ve Jeolojik Miras; Yerbilimlerinin Yeni Açılımları. Türkiye Jeoloji Bülteni, 60(1), 1-16. https://doi.org/10.25288/tjb.297797

  • Keskin Citiroglu, H., Işık, S. & Pulat, O. (2017). Utilizing the geological diversity for sustainable regional development, a case study-Zonguldak (NW Turkey). Geoheritage, 9, 211–223.

  • Ketin, İ. (1977). Doğal Anıtlar (in Turkish). In: Yerbilimlerinde Panel 2. Geological Association of Turkey, Ankara.

  • Koçyiğit, A. (2005). The Denizli graben–horst system and the eastern limit of western Anatolian continental extension: basin-fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta, 18, 167–208.

  • Koralay, T. & Kılınçarslan, S. (2015) Mineropetrographic and isotopic characterization of two antique marble quarries in the Denı̇zlı̇ region (western Anatolia, Turkey), Periodico di Mineralogia, 84, 2, 263-288.

  • Koralay, T. & Kılınçarslan, S. (2016). A multi-analytical approach for determining the origin of the marbles in Temple-A from Laodicea ad Lycum (DenizliWestern Anatolia. Journal of Cultural Heritage, 17, 42–52.

  • Koyuncu Okca, A. (2019). Çoban Bayramı: Sudan Koyun Geçirme (Denizli-Çal-Aşağıseyit). Art-e Sanat Dergisi, 12, 108-124.

  • Kök, Ş. (2006). Çal Yöresi Su Değirmenleri. Çal Sempozyumu Bildirileri kitabı (s.: 835-849), Denizli.

  • Köroğlu, F. & Kandemir, R. (2019). Vulnerable Geosites of Çayırbağı-Çalköy (Düzköy-Trabzon) in the Eastern Black Sea Region of NE Turkey and Their Geotourism Potential. Geoheritage, 11, 1101–1111.

  • Kula–Salihli UNESCO Global Jeoparkı (2021, 12 Nisan), https://kulasalihligeopark.com/ hakimizda/.

  • Özkul, M. ve Yağız, S. (2007). Çal Bölgesi’nin jeolojisi ve Doğaltaş kaynakları. B. Topuz, R. Urhan, M. A. Gülel (Ed.ler), 21. Yüzyıla Girerken Geçmişten Günümüze Çal Yöresi, Baklan-Çal-Bekilli (s.: 198-202). Çal Sempozyumu Bildirileri, Denizli.

  • Özkul, M., Kele, S., Gökgöz, A., Shen, C. C., Jones, B., Baykara, M. O., Fόrizs, I., Nemeth, T., Chang, Y.-W. & Alçiçek, M. C. (2013) Comparison of the Quaternary travertine sites in the Denizli Extensional Basin based on their depositional and geochemical data. Sedimentary Geology, 294, 179–204.

  • Özler, H. M. (2000). Hydrogeology and geochemistry in the Çürüksu (Denizli) hydrothermal field, western Turkey. Environmental Geology, 39, 1169–1180.

  • Perinçek, D. (1979). Cilo Dağı, Sat Gölleri. Yeryuvarı ve İnsan, 4, 3, 25-35.

  • Polat, S. ve Güney, Y. (2013). Uşak ili arazisinde karstik şekiller. Marmara Coğrafya Dergisi, 27, 440-475.

  • Sinanoğlu, D., Siyako, M., Karadoğan, S. ve Özgen Erdem, N. (2017). Kültürel Jeoloji Açısından Hasankeyf (Batman) Yerleşmesi. Türkiye Jeoloji Bülteni 60(1), 35–47. https://doi.org/10.25288/ tjb.297815

  • Şengün, M. T. (2011). Saklikent Canyon (FethiyeTurkey). Procedia Social and Behavioral Sciences, 19, 571–579.

  • Şenol, F. ve Şenol, M. (1978). KB Bulgaristan’da bulunan Panora Karst Sistemi’ne bağlı bazı mağaralar ve Türkiye’de mağaracılık. Yeryuvarı ve İnsan, 3(1), 11-14.

  • Şimşek, Ş. (2003). Hydrogeological and isotopic survey of geothermal fields in the Büyük Menderes graben, Turkey. Geothermics, 32, 669–678.

  • Tekkaya, İ. (1976). İnsanlara ait fosil ayak izleri. Yeryuvarı ve İnsan, 1(2), 8-12.

  • Topal, S. (2018). Quantitative analysis of relative tectonic activity in the Acıgöl fault, SW Turkey. Arabian Journal of Geosciences, 11, Article 198. https://doi.org/10.1007/s12517-018-3545-z.

  • Ulakoğlu, M.S. (1978). Yeni bir çağlayanlar dizisi. Yeryuvarı ve İnsan, 3,(1), 8-11.

  • Uncu, L. & Karakoca, E. (2019). Evaluating the geomorphological features and geotourism potentials of Harmankaya canyon (Bilecik, Turkey). Journal of Tourism and Hospitality Management, 7(1), 1-15.

  • Ünal İbret, B. ve Cansız, E. (2016). Kanyon turizmi ve ekoturizm açısından değerlendirilmesi gereken bir yöre: Küre Ersizlerdere-Karacehennem kanyonu. Marmara Coğrafya Dergisi, 34, 107-117.

  • Gül, A. & Özkul, M. (2023). Çal Kanyonu ve Çevresinin (Denizli, GB Anadolu) Jeolojik-Jeomorfolojik Özellikleri ve Jeoturizm Potansiyeli / Geological-Geomorphological Characteristics and Geotourism Potential of Çal Canyon and its Surroundings (Denizli, SW Anatolia) . Türkiye Jeoloji Bülteni , 66 (1) , 107-126 . DOI: 10.25288/tjb.935447

  • Petrographical and Geochemical Characteristics of the Kestanelik Granitoid (Biga Peninsula, Çanakkale)
    Didem Kiray Oya Cengiz
    View as PDF

    Abstract: In this study, the petrographical and geochemical signatures of the Kestanelik Granitoid outcropping nearthe Şahinli region (Lapseki, Çanakkale) on the Biga Peninsula and associations with Au-Ag mineralization weredetermined. The Late Ediacaran-Early Cambrian Çamlıca metamorphics form the basement of the study area withinthe Karabiga massif in the Sakarya Zone. These metamorphics were thrusted tectonically in the Upper CretaceousÇetmi mélange. The Çamlıca metamorphics are cut by the Eocene Kestanelik Granitoid, and the granodiorite isunconformably overlain by the Soğucak Formation composed of clastic sedimentary rocks. The Şahinli Formationcomprises andesite-basalt, fragmented pyroclastics, basalt dykes and lava flows, and mudstone. Quaternary alluviumunconformably covers all units in the area. The Kestanelik Granitoid is an intrusive mass in the form of a stock andcontains rocks with granite, quartz monzonite and quartz-rich granitoid composition. The main minerals in theserocks are quartz, K-feldspar, plagioclase, amphibole, hornblende and biotite, and there are secondary mineralssuch as sericite, illite, chlorite, smectite, kaolinite, dolomite, hematite, cristobalite and alunite. This granitoid hasundergone strong alteration and argillic, propylitic and silicification alteration are observed. The Kestanelik Granitoid generally has shoshonitic, calc-alkaline, subalkaline and metaluminous character,and was derived from an I-type magma. It has high silica content (64.9-75.49%), and major-trace element changesindicate that plagioclase and K-feldspar fractionation were effective in the development of the granitoid. In thegranitoid, LILE enrichment is quite high on the REE diagram normalized to the primary mantle. Normalized tochondrite, the granitoid is enriched in light REE and depleted in heavy REE, and also has a negative Eu anomaly(Eu/Eu*=0,87). The Kestanelik Granitoid comprises granites of synchronous age to the volcanic arc and collision,and has magmatic ,or crustal origin.

  • Biga Peninsula

  • Kestanelik Granitoid

  • petrography

  • geochemistry

  • origin


  • Akgündüz, S., Duru, O. & Elmas, M. A. (2012). KB Anadolu’da Eosen-Oligosen çarpışma sonrası magmatizma: Asartepe granitik ve Sarıkaya volkanik kayalarından jeokimyasal ve jeokronolojik veriler. İstanbul Yerbilimleri Dergisi, 25(2), 119-143.

  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. & Mitchell, J.G. (2000). Petrogenetic evolution of Late Cenozoic, post collision volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Reseach, 102, 67-95.

  • Altunkaynak, Ş. & Dilek, Y. (2013). Eocene mafic volcanism in northern Anatolia: its causes and mantle sources in the absence of active subdunction. International Geology Review, 55(13), 1641-1659.

  • Altunkaynak, Ş. & Genç, Ş. C. (2008). Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia. Lithos, 102(1), 316-340.

  • Altunkaynak, Ş., Sunal, G., Aldanmaz, E., Genç, C.Ş., Dilek, Y., Furnes, H., Foland, K.A., Yang, J. & Yıldız, M. (2012b). Eocene granitic magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U–Pb and 40Ar– 39Ar geochronology and isotope geochemistry on magma genesis ad emplacement. Lithos, 155, 289-309.

  • Arth, J.G. (1979). Some trace elements in troundhjemites their implication to magma genesis and paleotectonic setting. Developments in Petrology, Chapter 3,Volume 6, 123-132p.

  • Arslan, Z. (2005). Petrography and petrology of the calc-alkaline Sarıhan granitoid (NE Turkey): an example of magma mingling and mixing. Turkish Journal of Earth Sciences, 14(2), 183-207.

  • Aydın, Ü, Pınar, Şen, P., Özmen, Ö. & Şen, E. (2019). Petrological and geochemical features of Biga Peninsula granitoids, NW Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 160(160), 81-115.

  • Aysal, N. (2015). Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Nortwest Turkey. Journal of Asian Eart Science, 105, 68-84.

  • Aysal, N., Öngen, S. & Hanilçi, N. (2012). Karadoru granitoid plütonu yan kayaçlarının petrografisi ve skarn zonunun özellikleri, Yenice-Çanakkale. İstanbul Yerbilimleri Dergisi, 19(2), 183-194.

  • Bingöl E, Delaloye, M. & Atama, G. (1982). Granitic intrusions in Western Anatolia: A contribution of the geodynamic study of this area. Eclogae Geologisch Helvetica, 75, 437-446.

  • Birkle, P. & Satır, M. (1995). Dating, geochemistry and geodynamic significance of the tertiary magmatism of the Biga Peninsula, NW-Turkey. In: A. Erler, T. Ercan, E. Bingöl, S. Örçen (Eds.), Geology of the Black Sea Region (pp. 171-180). MTA, Ankara.

  • Boynton, W.V. (1984). Cosmochemistry of the rare earth elements: Meteorite studies. Chapter 3. Development of Geochemistry, 2, 63-114.

  • Chesser Resources Co. (2012). Chesser Resources Limited. annual report. Çanakkale.

  • Çakır, Ş. & Karakaş, A. (2018). Biga-Karabiga (Çanakkale) çevresinin jeolojisi. Uygulamalı Yerbilimleri Dergisi, 17(1), 27-38.

  • Delaloye, M. & Bingöl, E.(2000). Granitoids from western and nortwestern Anatolia: Geochemistry and modeling of geodynamic evolution. International Geology Review, 42, 241-268.

  • Duru, M., Pehlivan, Ş., Okay, A.İ., Şentürk, Y. & Kar, H. (2012). Biga Yarımadası’nın Tersiyer öncesi jeolojisi. Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi. MTA Özel Yayın Serisi-28, 7-77.

  • Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7), 641-644.

  • Erenoğlu, O. (2014). Dededağ Çevresindeki (Beyçayır-Çanakkale) Eosen, Oligo-Miyosen volkaniklerinin krono-stratigrafik konumu ve Biga Yarımadası’nda bölgesel volkanizma içindeki önemi [Yayımlanmamış Doktora Tezi]. Çanakkale Onsekiz Mart Üniversitesi, Jeoloji Mühendisliği Anabilim Dalı, Çanakkale.

  • Erenoğlu, O. & Bozcu, M. (2021). Geological features and lithostratigraphy of Eocene-Oligocene magmatic rocks in the Dededağ area-Biga Peninsula, NW Turkey. International Journal of Environment and Geoinformatics, 8(4), 435-449.

  • Genç, S. C. (1998). Evolution of the Bayramiç magmatic complex, Northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85, 233–249.

  • Genç, Ş. C. & Altunkaynak, Ş. (2007). Eybek graniti (Biga yarımadası, KB Anadolu) üzerine: Yeni jeokimya verileri ışığında yeni bir değerlendirme. Yerbilimleri, 28(2), 75-98.

  • Göncüoğlu, M.C. (2010). Introduction to the geology of Turkey: Geodynamic evolution of the PreAlpine and Alpine Terranes. Jeoloji Müh.Bölümü, 06531, Ankara.

  • Güçtekin, A., Köprübaşı, N. & Aldanmaz, E. (2004). Karabiga (Çanakkale) granitoyidinin jeokimyası. Yerbilimleri, 25(29), 29-38.

  • Harris N.B.W., Pearce, J.A. & Tindle, A.G. (1986). Geochemical characteristics of collision zone magmatism. In M.P. Coward, & A. C. Ries (Eds.), Collision Tectonics, Geological Society, London, Special Publication, 19(1), 67-81.

  • Hedenquist, J.W. (2011). Observations on the Kestanelik and Karaayi prospects, Biga Peninsula, Turkey. Unpublished report for Chesser Resources.

  • Irvine, T. N. & Baragar, W.A.R. (1971). Aguide to chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-547.

  • Ishikawa, Y., Sawaguchi, T., Iwaya, S. & Horiuchi, M. (1976). Delineation of prospecting targets for Kuroko deposits bades on models of volcanism of underlying dacite and alteration haloes. Mining Geology, 26, 105-117.

  • Karacık, Z. & Yılmaz, Y. (1998). Geology of the ignimbrites and the associated volcano–plutonic complex of the Ezine area, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1-4), 251-264.

  • Karacık, Z., Yılmaz, Y., Pearce, J. A. & Ece, Ö. I. (2008). Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey. International Journal of Earth Sciences (Geologische Rundschau), 97, 1181-1200.

  • Karaoğlu, Ö. & Helvacı, C. (2014). Isotopic evidence for a transition from subduction to slabtear related volcanism in western Anatolia, Turkey. Lithos, 192-195, 226-239.

  • Ketin, İ. (1966). Anadolu’nun tektonik birlikleri. MTA Dergisi, 66, 20-34. https://dergi.mta. gov.tr/dosyalar/images/mtadergi/makaleler/ tr/20151020143258_862_227ff53f.pdf

  • Kıray, D. (2021). Şahinli (Lapseki-Çanakkale, Batı Türkiye) bölgesindeki Kestanelik AuAg cevherleşmesinin jeolojik, mineralojik ve jeokimyasal incelemeler ile kökeninin belirlenmesi [Yayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü.

  • Köprübaşı, N. & Aldanmaz, E. (2004). Geochemical constraints o the petrogenesis of Cenozoic I-type granitoids in Northwest Anatolia, Turkey: Evidence for magma generation by lithospheric delamination in a post-collisional setting. International Geology Review, 46, 705-729.

  • Large, R. R., Gemmell, J. B., Paulick, H. & Huston, D. L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96(5), 957-971.

  • Middlemost, E.A.K.(1985). Magmas and magmatic rocks. Longman Group Limited, Essex, 266 p.

  • MTA, (2012). General and economic geology of the Biga Peninsula (Eds.:E. Yüzer & G. Tünay]. Special Publication Series 28, p. 326 (in Turkish).

  • Myers, R. E. & MacLean, W. H. (1983). The geology of the New Insco copper deposit, Noranda district, Quebec. Canadian Journal of Earth Sciences, 20, 1291-1304.

  • Nesbitt, H. W. & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.

  • Norman, M. D., Leeman, W. P. & Mertzman, S. A. (1992). Granites and rhyolites from the northwestern USA: Temporal variation in magmatic processes and relations to tectonic setting: Transactions of the Royal Society of Edinburgh. Earth Science, 83, 71–81.

  • O’Connor, J. T. (1965). A classification for quartzrich igneous rocks based on feldspar ratios. In: US Geological Survey Professional Paper B525. USGS, 79–84.

  • Okay, A. İ., Siyako, M. ve Bürkan, K. A. (1990). Biga Yarımadası’nın jeolojisi ve tektonik evrimi. TPJD Bülteni, 2(1), 83-121.

  • Okay, A. İ., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. & Akyüz, S. (1996). Paleo-and Neotethyan events in Northwest Turkey. In: A, Yin, & M. Harrison (Eds.), Tectonics of Asia (420- 441). Cambridge University Press, Cambridge.

  • Okay, A. I. & Satır, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495-516.

  • Okay, A. İ. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In: B. Durand, L. Jolivet, F. Horvath, M. Seranne, M. (Eds.), The Mediterranean Basin: Tertiary Extansion within the Alpine Orogen, 156 (pp. 75– 515). Geological Society, Special Publications, London.

  • Özdamar, Ş. (2018). Evciler Plütonu’nun (KB Türkiye) petrolojisi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(2), 149-165.

  • Pearce J. A. (1983). Role of the sub-continental lithosphere in magma genesis at activecontinental margins. In: C. J. Hawkesworth, & M. J. Norry, (Eds). Continental Basalts and Mantle Xenolites. Nantwich, Shiva, 230–249.

  • Pearce, J. A., Harris, N. B. W. & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.

  • Peccerillo, A. & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1), 63-81

  • Ramadhan, I. A. A., Darmaputra, M. K. M., Najah, M. B. & Sucipta, I. G. B. E. (2021). Geochemical characteristics of Schwaner Mountains Granitoids and their relationship to magmatism in the Southwest Borneo Block. Proceedings Joint Convention Bandung (JCB), December 1-3, 2021, 3-6

  • Shand, S. J. (1948). Eruptive rocks: their genesis, composition, classification, and their relation to ore deposits, with a chapter on meteorites. Journal of Geology, 56(6), 593-593.

  • Streckeisen, A. l. (1967). Classification and nomenclature of igneous rockes. Neues Jahrbuch für Mineralogie – Abhandlungen, 107, 144-240.

  • Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, M. J. Norry, (Eds.), Magmatism in Ocean Basins, 42 (pp.: 313–345). Geological Society Special Publication.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.

  • Şengör, A. M. C., Lom, N., Sunal, G., Zabcı, C. & Sancar, T. (2019). The Phanerozoic palaeotectonics of Turkey. Part I: an inventory. Mediterranean Geoscience Reviews, 1, 91-161.

  • Topuz, G., Altherr, R., Siebel, W., Schwarz, W. H., Zack, T., Hasözbek, A., Mathias, B., Satır, M. & Şen, C. (2010). Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: the Gümüşhane pluton (NE Turkey). Lithos, 116(1-2), 92-110.

  • Tunç, İ. O., Yiğitbaş, E., Şengün, F., Wazeck, J., Hofmann, M. & Linnemann, U. (2012). U-Pb zircon geochronology of Northern metamorphic massifs in the Biga Peninsula (NW AnatoliaTurkey): New data and a new approach to understand the tectonostratigraphy of the region. Geodinamica Acta, 25(3-4), 202-225.

  • Tümad Madencilik (2020). Tümad Madencilik San. ve Ltd.Şti. Yıllık rapor,10, Çanakkale.

  • Wilson, M. (1989). Igneous petrogenesis. Unwin Hyman Press, London, 456 pp.

  • Yılmaz Şahin, S., Örgün, Y., Güngör, Y., Göker, A., Gültekin, A. H. & Karacık, Z. (2010). Mineral and whole-rock geochemistry of the Kestanbol Granitoid (Ezine-Çanakkale) and its mafic microgranular enclaves in northwestern Anatolia: evidence of felsic and mafic magma interaction. Turkish Journal of Earth Sciences, 19(1), 101- 122.

  • Yılmaz Y. (1990). Comparision of young volcanic associations of western and eastern Anatolia under conpressional regime; A review. Journal of Volcanology and Geothermal Research, 44, 69–87.

  • Yılmaz, Y., Genç, Ş.C., Karacık, Z. & Altunkaynak, Ş. (2001). Two contrasting magmatic associations of NW Anatolia and their tectonic signifacance. Journal of Geodynamics, 31, 243-271.

  • Yiğitbaş, E. ve Tunç, İ. O. (2020). Biga Yarımadası’nda Sakarya Zonunun Prekambriyen metamorfik kayaları; Geç Ediyakaran Gondwanaland Aktif Kıta Kenarı. Türkiye Jeoloji Bülteni, 63(3) 277- 302. https://doi.org/10.25288/tjb.589144

  • Yücel-Öztürk, Y., Helvacı, C. & Satır, M. (2005). Genetic relations between skarn mineralization and petrogenesis of the Evciler Granitoid, Kazdağ, Çanakkale, Turkey and comparison with World skarn granitoids. Turkish Journal of Earth Sciences, 14(3), 255-280.

  • Kıray, D. & Cengiz, O. (2023). Kestanelik Granitoyidinin Petrografik ve Jeokimyasal Özellikleri (Çanakkale, Biga Yarımadası) / Petrographical and Geochemical Characteristics of the Kestanelik Granitoid (Çanakkale, Biga Peninsula) . Türkiye Jeoloji Bülteni , 66 (1) , 127-148 . DOI: 10.25288/tjb.1187739

  • Geotourism: Who is the Geotourist?
    Angus M. Robinson
    View as PDF

    Abstract: Ecotourism is ecologically sustainable tourism, focusing on natural areas. Its aim is to fosterenvironmental and cultural understanding, appreciation and conservation. Geotourism isecotourism with an added geological theme.Geotourism has great potential as a new niche ecotourism product, but will require the samedisciplines that apply to other niche, "high value" tourism activities. Where ever tourismcontributes a direct environmental benefit to a visited location, its clients gain empathy for theholistic heritage of the area, and this reward creates enhanced customer loyalty to the operator.The Commonwealth Government`s 1994 National Ecotourism Strategy considered thatecotourists may include a mix of independent travelers, people who travel in organised groupsof a scientific, educational ,or recreational nature, and individuals ,or families who are interestedin an ecotourism experience as part of a varied holiday. Whilst based on limited sources, theStrategy then considered that the ecotourist appears to be well educated, professional/semiprofessional, 20-50 years of age, independent and individualistic, looking for alternatives to betraditional tourist destinations and experiences, and with significant spending power.Having regard to demographic and lifestyle considerations, it is hoped that geotourism, ifpositioned as a supplementary, knowledge-adding product within an attractive ecotourismexperience, will attract a different demographic i.e. affluent "over 45 y.o." customers. Thesemay come from amongst geoscience professionals from within these segmentations, as well astheir partners and friends, particularly through alumni and professional societies such as theGeological Society of Australia.Given the relatively small size of the Australian "geoscience interest" market, product contentpackaging will be critical. To address this issue, Leisure Solutions®and the School ofMarketing, Tourism & Leisure at Edith Cowan University are currently undertaking acooperative market research survey of members of the Geological Society of Australia.This paper addresses the rationale for and scope of this research work as well as reviews otheravailable research material which can assist marketers in understanding who are the people mostlikely to be interested in geotourism, as well as introducing some of the preliminary results fromthis study. 

  • Sustainable Geotourism

  • Marketing

  • Over 45 y.o.

  • Geotourists

  • Alumni

  • Experiential Tourism


  • Australian Government (2004). Tourism White Paper. Tourism Australia. Canberra.

  • Buckley, R. (2003). Environmental inputs and outputs in ecotourism; geotourism with a positive triple line? Journal of Ecotourism, 2(1), 76-82.

  • Canning, S. (2008). Boomers the neglected goldmine. The Australian, 22 May 2008, p. 31. Sydney

  • Coenraads, R. R. & Koivula J. I. (2007). Geologica. Penguin Group (Australia), Melbourne.

  • Commonwealth Department of Tourism (1994). National Ecotourism Strategy. Commonwealth of Australia. Canberra.

  • Dowling, R. & Newsome, D. (2008). Preface: Discover The Earth Beneath Our Feet. Inaugural Global Geotourism Conference. Fremantle, WA, August 2008. 1-2.

  • Hossain, A., Heaney, L. & Carter, P. (2005). Cultural Tourism in Regions of Australia. Tourism Research Australia. Canberra.

  • Joyce, E. B. (2006). Geomorphological Sites and the New Geotourism in Australia. Geological Society of Australia. Melbourne.

  • Lang, R. (2003). Geotourismus and Geotopschultz in Rheinland-Pfalz. Landesamat für Geologie und Bergbau Rheinland-Pfalz (available at http:// www.lgb-rlp.de/geotop.html).

  • Maxwell, J. (2008). Packed with Experience. The Australian Financial Review, 6 June 2008. Sydney.

  • McKeever, P., Larwood, J. & McKirdy, A. (2006). Geotourism in Ireland and Britain. Geotourism. Elsevier. Oxford, 193-197.

  • Megerle, A. & Megerle, H. (2002). Geotourism? Geotourism! Attempto, 13, 16-17.

  • Pforr C. & Megerle A. (2006). Geotourism: a perspective from Southwest Germany. Geotourism. Elsevier. Oxford, 120-121.

  • Robinson Angus, M. (1979). Modern-day Explorers. See Australia, 2(iii), 106-109.

  • Robinson Angus, M. & Roots, David. (2008) Marketing Tourism Sustainably. Inaugural Global Geotourism Conference, Fremantle, WA, August 2008, 303-317.

  • Smith William, L. (2006). Experiential Tourism Around the World: Definitions and Standards. International Journal of Services and Standards, 2(1), 1-14.

  • Stokes Andrea M., Cook Suzanne D. & Drew Dawn (2003). The New Trend in Travel. Travel Industry Association of America and the National Geographic Traveler Magazine.

  • Stroud Dick (2005). The 50-Plus Market. Kogan Page Limited. London (available at http:// www.20plus30.com).

  • Tourism Research Australia (2007). International and national visitor surveys. Canberra.

  • Tourism Research Australia (2008). Through the Looking Glass: The future of domestic tourism in Australia. Canberra.

  • Robınson, A. M. (2023). Jeoturizm: Kime Jeoturist Denir? (Y. Çiftçi, Çev.) . Türkiye Jeoloji Bülteni , 66 (1) , 149-158 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/70023/1121016

  • View as PDF
    ISSUE FULL FILE
    View as PDF