Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2023 NİSAN Cilt 66 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Geochemistry, Mineral Chemistry and Crystallization Conditions of Late Cretaceous Alkaline Plutonic and Subvolcanic Rocks in Avanos (Nevşehir, Central Anatolia)
Erman Divilioğlu Ayşe Orhan
View as PDF

Abstract: Karahıdır plutonic and subvolcanic rocks exposed to the northwest of Avanos (Nevşehir) are included inthe Central Anatolian Granitoids. Subvolcanic rocks presenting porphyritic texture with coarse K-feldspar crystalswere emplaced in the region by cutting in the medium-coarse grained plutonic rocks. These rocks, which havesimilar mineral content, contain orthoclase, plagioclase, quartz, amphibole and biotite minerals. According to theresults of mineral chemistry, plagioclases are in andesine-albite-anorthoclase (Ab57-98), biotites are in Fe biotite(annite-sideophyllite), and amphibole are in Mg-Fe hornblende (magnesiohastingsite-ferroparhasite) compositions. Hornblende and biotite compositions represent a subalkaline–alkaline magma character. The geothermobarometricresults of the minerals indicated that the Karahıdır pluton and subvolcanic rocks crystallized under the 0.41-1.91kbar pressure (P) and 692-804 °C temperature (T) conditions.Geochemically, Karahıdır pluton and subvolcanic rocks have quartz syenite and dacite porphyry, andesite porphyryand trachyandesite porphyry compositions. They are characterized by high total alkali (K2O+Na2O) content, Feindex value, large ion lithophile (LIL: Rb, Sr, Ba, K) and rare earth (REE) element content and low abundances ofCo, Ni and Sc and a low CaO/Al2O3 ratio and low Mg# value. The rocks exhibit shoshonitic, alkali-calcic to alkaline,metaluminous to peraluminous and ferroan in composition. In the chondrite normalized REE diagram, samplesexhibit enrichment of light rare earth elements (LREE) with a pattern (La/Ybn=16.33–29.80) and negative-Eu [(Eu/Eu*)n=0.39–0.,66] anomaly. The rocks are relative to the primary mantle, enriched in some large ion lithophile (LIL;Rb, K and Th) and rare earth elements (REE), while depleted in field strength elements (such as HFSE; Nb, Zr, andTi). The Karahıdır pluton and subvolcanic rocks show typical post-collisional aluminum A-type granite featuresbearing subduction component. Plutonic and subvolcanic rocks derived from the lithospheric and asthenosphericmantle, which contains an important continental crust component 

  • A-type granite

  • geochemistry

  • mineral chemistry

  • Nevşehir

  • Central Anatolia


  • Advokaat, E., Van Hinsbergen, D. V., Kaymakçı, N., Vissers, R. & Hendriks, B. (2014). Late Cretaceous extension and Palaeogene rotationrelated contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. International Geology Review, 56(15), 1813–1836.

  • Akıman, O., Erler, A., Göncüoğlu, M. C., Güleç, N., Geven, A., Türeli, T. K. & Kadıoğlu, Y. K. (1993). Geochemical characteristics of granitoids along the western margin of the Central Anatolian Crystalline Complex and their tectonic implications. Geological Journal, 28, 371–382.

  • Alçiçek, Ö. N. (2016). Dadağı (Gülşehir-Nevşehir) Çevresinde Uranyum İçin Jeokimyasal Arama Çalışmaları [Yayımlanmamış Doktora Tezi]. T.C. Fırat Üniversitesi Fen Bilimleri Enstitüsü.

  • Anderson, J. L. & Smith, D. R. (1995). The effects of temperature and ƒO2 on the Al-in-hornblende barometer. American Mineralogist, 80, 549–559.

  • Atabey, E. (1989). 1/100.000 ölçekli açınsama nitelikli Türkiye Jeoloji Haritaları Serisi, Kayseri-H 19 paftası. MTA Genel Müdürlüğü.

  • Atabey, E., Tarhan, N., Yusufoğlu, H. & Canpolat, M. (1988). Geology of between Hacıbektaş, Gülşehir and Kalaba (Nevşehir)-Himmetdede (Kayseri) (Rapor no: 8523). General Directorate of Mineral Research and Exploration (MTA), (yayımlanmamış).

  • Aydın, N. S., Göncüoğlu, M. C. & Erler, A. (1998). Latest Cretaceous magmatism in the Central Anatolian Crystalline Complex: Review of field, petrographic and geochemical features. Turkish Journal of Earth Sciences, 7, 259–268.

  • Bonin, B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2), 1–29.

  • Bonin, B., Azzouni-Sekkal, A., Bussy, F. & Ferrag, S. (1998). Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrological constraints and geodynamic settings. Lithos, 45, 45–70.

  • Boztuğ, D. & Harlavan, Y. (2008). K-Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and Central Anatolia, Turkey. International Journal of Earth Sciences, 97, 585–599.

  • Boztuğ, D. (1998). Post-collisional Central Anatolian alkaline plutonism Turkey. Turkish Journal of Earth Sciences, 7, 145–165.

  • Boztuğ, D., Arehart, G.B., Platevoet, B., Harlavan, Y. & Bonin, B. (2007). High-K, calc-alkaline I-type granitoids from the composite Yozgat batholith generated in a post-collisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Mineralogy and Petrology, 91, 191–223.

  • Chappell, B. W. & White, A. J. R., 1974. Two contrasting granite types. Pacific Geology, 8, 173–174.

  • Clemens, J. D., Holloway, J. R. & White, A. J. R. (1986). Origin of an A-type granite: experimental constraints. American Mineralogist, 71, 317–324.

  • Collins, W. J., Beams, S. D., White, A. J. R., Chappell, B. W. (1982). Nature and origin of A-type granite with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189–200.

  • Deer, W. A., Howie & R. A., Zussman, J. (1992). An Introduction to the Rock-forming Minerals. Longman Scientific and Technical, ISBN 0470218096, 696 p.

  • Demircioğlu, R. (2014). Gülşehir-Özkonak (Nevşehir) Çevresindeki Kırşehir Masifi ve Örtü Birimlerinin Jeolojisi ve Yapısal Özellikleri [Yayınlanmamış Doktora Tezi]. T.C. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.

  • Deniz, K. & Kadıoğlu, Y. K. (2016). Assimilation and fractional crystallization of foid-bearing alkaline rocks: Buzlukdağ intrusives, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 25(4), 341–366.

  • Divilioğlu, E. (2022). Avanos (Nevşehir) Civarındaki Plütonik ve Subvolkanik Kayaçların Mineralojik ve Jeokimyasal Özellikleri [Yayınlanmamış Yüksek Lisans Tezi]. T.C. Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü.

  • Eby, G. N. (1992). Chemical subdivision of the A-Type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641–644.

  • Edwards, C., Menzies, M. & Thirlwall, M. (1991). Evidence from Muriah, Indonesia, for The Interplay of Supra-Subduction Zone and Intraplate Processes in The Genesis of Potassic Alkaline Magmas. Journal of Petrology, 32(3), 555–592.

  • Frost, B. R. (1991). Oxide Minerals: Petrologic and Magnetic Significance, (D. H. Lindsley (Ed.)), Volume 25, New York, 509 p.

  • Frost, B.R., Barnes, C. G., Collins, W. J. & Arculus, R. J. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033–2048.

  • Frost, C. D. & Frost, B. R. (2011). On ferroan (A-type) granites: their compositional variability and modes of origin. Journal of Petrology 52, 39–53.

  • Giret, A., Bonin, B. & Leger, J. M. (1980). Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Canadian Mineralogist, 18, 481–495.

  • Göncüoğlu, M. C. (1986). Geochronological data from the southern part (Nigde Area) of the Central Anatolian Massif. Mineral Research Exploration Bulletin, 105-106, 83–96.

  • Göncüoğlu, M.C., Toprak, V., Kusçu, İ., Erler, A. & Olgun, E. (1991). Geology of the western part of the Central Anatolian Massif Part 1: Southern Section (Report no: 2909, unpublished).

  • Hammarstrom, J.M. & Zen, E.A. (1986). Aluminium in hornblende: An empirical igneous geobarometer. American Mineralogist, 71, 1297–1313.

  • Ishihara, S. (1977). The magnetite-series and ilmeniteseries granitic rocks. Mining Geology, 27, 293– 305.

  • İlbeyli, N., Pearce, J. A., Thirlwall, M. F. & Mitchell, J.vG. (2004). Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72, 163–182.

  • Jahn, B. M., Wu, F. Y., Lo, C. H. & Tsai, C. H. (1999). Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157, 119–146.

  • Kadıoğlu, Y. K., Dilek, Y. & Foland, K. A. (2006). Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex. Geological Society of America (special paper), 409, 381–415.

  • King, P. L., White, A. J. R., Chappell, B. W., Allen, C. M. (1997). Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38, 3, 371–391.

  • Koç, A. (2021). Ayhan Havzası’nın (Orta Anadolu) litolojik haritalaması ve jeolojik çıkarımlar: Bir uzaktan algılama ve arazi çalışması entegrasyonu. Türkiye Jeoloji Bülteni, 64(3), 309–348. https:// doi.org/10.25288/tjb.913294

  • Köksal, S. (1996). İdiş Dağı-Avanos yöresinin jeolojik ve petrolojik özellikleri (Nevşehir-Orta Anadolu) [Yayımlanmamış Yüksek Lisans Tezi]. Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü.

  • Köksal, S. & Göncüoğlu, M. C. (2008). Sr and Nd isotopic characteristics of some S-I and A-type granitoids from Central Anatolia. Turkish Journal of Earth Sciences, 17, 111–127.

  • Köksal, S., Göncüoğlu, M. C. & Floyd, P. A. (2001). Extrusive members of postcollisional A-Type magmatism in Central Anatolia: Karahıdır volcanics, Idisdagı-Avanos area, Turkey. International Geology Review, 43, 683–694.

  • Köksal, S., Romer, R. L., Göncüoğlu, M. C. & Toksoy, F. (2004). Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences, 93, 974–989.

  • Le Maitre, R. (1984). A proposal by the IUGS Sub commission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Sciences, 31, 243– 255.

  • Leake, B. E., Woolly, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J. & Krivovichev, V. G. (1997). Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names. European Journal of Mineralogy, 9, 623–651.

  • Lefebvre, C., Peters, M. K., Wehrens, P. C., Brouwer, F. M., Van Roermund, H. L. M. (2015). Thermal history and extensional exhumation of a hightemperature crystalline complex (Hırkadağ Massif, Central Anatolia). Lithos, 238(15), 156– 173.

  • Loiselle, M. C. & Wones, D. R. (1979). Characteristics of anorogenic granites. Geological Society of America (Abstracts with Programs), 11, 468 p.

  • Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. (1984). The 1982 eruptions of El Chicón Volcano, Chiapas, Mexico: Mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research, 23, 69– 108.

  • Maniar, P. D. & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643.

  • Molina, J. F., Scarrow, J. H. & Montero, F. B., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalichybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158, 69–98.

  • Nachit, H., Razafimahefa, N., Stussi, J. M. & Carron, J. P. (1985). Composition chimique des biotites et typologie magmatique des granitoides. Comptes Rendus Hebdomadaires de I’Acadimie del Sciences, 301(11), 813–818.

  • Okay, A. & Tüysüz, O. (1999). Tethyan Sutures of northern Turkey. Geological Society London Special Publications, 156(1), 475–515.

  • Orhan, A., Akçe, M. A. & Divilioğlu, E. (2022). Nevşehir-Niğde Bölgesi Plütonik Kayaçların Mineral Bileşimleri ve Kristalizasyon Koşullarının (P-T) Araştırılması (Proje no: ABAP21F22,). NEÜBAP Nevşehir, 74 s. (yayınlanmamış).

  • Orhan, A. & Demirbilek, M. (2018). Kapadokya bölgesi (Nevşehir, Orta Anadolu) kalk-alkalen ve alkalen plütonik/subvolkanik kayaçların petrografik ve jeokimyasal özellikleri. Türkiye Jeoloji Bülteni, 61(1), 23–50. https://doi.org/10.25288/tjb.358171

  • Patino Douce, A.E. (1997). Generation of metaluminous A-type granites by low-pressure melting of calcalkaline granitoids. Geology, 25, 743–746.

  • Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22, 47–263.

  • Ridolfi, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals, 11(3), 324.

  • Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160, 45–66.

  • Rollinson, H. R. (1993). Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical, 352.

  • Rudnick, R. L. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309.

  • Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304–310.

  • Seymen, İ. (1981). Kaman (Kırşehir) dolayında Kırşehir Masifi’nin stratigrafisi ve metamorfizması. Türkiye Jeoloji Bülteni, 24(2), 7–14. https://jmo. org.tr/resimler/ekler/049a9571563f351_ek.pdf

  • Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In A.D. Saunders & M.J. Norry, (Eds.), Magmatism in the Ocean Basins (pp. 313-345). Geological Society, London, Special Publications, 42.

  • Tischendorf, G., Gottesmann, B., Förster, H. J. & Trumbull, R. B. (1997). On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(408), 809–834.

  • Tulloch, A. J., Challis, G. A. (2000). Emplacement depths of Paleozoic- Mesozoic plutons from western New Zealand estimated by hornblende- AI geobarometry. New Zealand Journal of Geology and Geophysics, 43(4), 555–567.

  • Uchida, E., Endo, S., Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47–56.

  • Uçakcıoğlu, S. (1988). Nevşehir (Gülşehir) ve Civarı Uranyum Aramaları Raporu (Rapor no: 8453). MTA Derleme Raporu.

  • Vache, R. (1963). Akdağmadeni kontakt yatakları ve bunların Orta Anadolu Kristalinine karşı olan jeolojik çevresi. Maden Tetkik ve Arama Dergisi, 60, 22–36.

  • Van Hinsbergen, D. J. J., Maffione, M., Plunder, A., Kaymakçı, N., Ganerød, M., Hendriks, B. W. H., Corfu, F., Gürer, D., Gelder, G.I.N.O., Peters, K., McPhee, P. J., Brouwer, F. M., Advokaat, E., Vissers, R. L. M. (2016). Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, 35(4), 983–1014.

  • Whalen, J. B., Currie, K. L, Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419.

  • Whalen, J. B., Jenner, G. A., Longstaffe, F. J., Robert, F. & Gariepy, C. (1996). Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 37(6), 1463–1489.

  • Whitney, D. L., Hamilton, M. A. (2004). Timing of high-grade metamorphism in central Turkey and the assembly of Anatolia. Journal of the Geological Society, 161(5), 823–828.

  • Whitney, D. L., Teyssier, C., Dilek, Y., Fayon, A. K., (2001). Influence of orogen-normal collision vs. wrench-dominated tectonics on metamorphic P-T-t paths, Central Anatolia Crystalline Complex, Turkey. Journal of Metamorphic Geology, 19(4), 411–432.

  • Winchester, J., Floyd, P. A. (1977). Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20, 325–343.

  • Wones, D. R. (1989), Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist, 74, 744–749.

  • Wu, F., Sun, D., Huimin, L., Jahn, B. & Wilds, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187, 143–173.

  • Yalınız, K. M., Floyd, P. & Göncüoğlu, M. C. (1996). Suprasubduction zone ophiolites of Central Anatolia: geochemical evidence from the Sarıkaraman ophiolite, Aksaray, Turkey. Mineralogical Magazine, 60, 697–710.

  • Yalınız, M. K. ve Göncüoğlu, M. C. (1998). Orta Anadolu ofiyolitlerinin genel jeolojik özellikleri ve dağılımı. Yerbilimleri, 19(2), 19–30.

  • Yang, Z. Y., Wang, Q., Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X. P. & Zhao, Z. H. (2018). Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: new insights into the genesis of highly evolved granites. Lithos, 312–313, 258–73.

  • Divilioğlu, E. & Orhan, A. (2023). Avanos (Nevşehir, Orta Anadolu) Yöresindeki Geç Kretase Yaşlı Alkalen Plütonik ve Subvolkanik Kayaçların Jeokimyası, Mineral Kimyası ve Kristallenme Koşulları . Türkiye Jeoloji Bülteni , 66 (2) , 159-188 . DOI: 10.25288/tjb.1212341

  • Mineralogical and Geochemical Changes During Hydrothermal Alteration of Pyroclastic Rock in the Central Anatolian Volkanic Province (CAVP): Simulating Natural Formation Conditions
    Lütfiye Akin Hüseyin Evren Çubukçu
    View as PDF

    Abstract: The majority of the pyroclastic flow deposits in the Central Anatolia Volcanic Province (CAVP) havealready been subjected to hydrothermal alteration. In this study, we aimed to identify the dominant alteration typeunder different conditions and reveal the physicochemical conditions and geological processes that influencedsecondary mineral formation. The Zelve ignimbrite represents one of the most hydrothermally altered pyroclasticflow units in the study area. Juvenile pumice fragments from the Zelve ignimbrite were reacted with alkaline solutionsunder controlled experimental conditions, and reaction products in the form of zeolites were identified. Experimentalstudies were carried out under autogenic pressure and using alkaline solution activity agents such as NaOH, KOH,and NaHCO3 at a temperature of 150 °C, considering the most effective hydrothermal conditions in the region. Thereaction products obtained in experimental studies were identified by X-ray diffraction (XRD) and characterized  by scanning electron microscopy (SEM). As a result, zeolite minerals such as phillipsite (K- and Na-), analcime,mordenite, and chabazite were synthesized. We concluded that NaOH alkaline solution is an effective activity agentin the formation of zeolite minerals during hydrothermal alteration of a juvenile volcanic product. In addition,zeolite phases naturally crystallizing in the region (analcime, phillipsite, chabazite, mordenite, clinoptilolite, anderionite) mostly coincide with the reaction products from experimental studies. Major and trace element compositionsof reaction products exhibited distinct differences with respect to starting composition. Reaction products wereenriched in major oxides of Na2O, K2O and CaO, whereas they were depleted in trace element concentrations of Rb,Ba and P. This indicates elemental exchange occurred between the solution and starting material to form zeolites.

  • Alteration

  • experimental mineralogy

  • hydrothermal reaction

  • ignimbrite

  • synthesis

  • zeolites


  • Akin, L., Aydar, E., Schmitt, A. K. & Çubukçu, H. E. (2019). Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective. Turkish Journal of Earth Science, 28(3), 351–371. http://doi.org/10.3906/yer-1806-20

  • Akin, L., Aydar, E., Schmitt, A. K., Çubukçu & H. E., Gerdes, A. (2021). Zircon geochronology and O-Hf isotopes of Cappadocian ignimbrites: New insights into continental crustal architecture underneath the Central Anatolian Volcanic Province, Turkey, Gondwana Research, 91, 166- 187. https://doi.org/10.1016/j.gr.2020.12.003

  • Alderton, D. (2021). Zeolites, Encyclopedia of Geology (Second Edition). Academic Press, 313–325. https://doi.org/10.1016/B978-0-08-102908- 4.00041-2

  • Armbruster, T. & Gunter, M. E. (2001) Crystal Structures of Natural Zeolites. Reviews in Mineralogy and Geochemistry, 45. Natural Zeolites: Occurrence, Properties, Applications, 1–116.

  • Aydar, E., Schmitt, A. K., Çubukçu, H. E., Akin, L., Ersoy, O., Sen, E., Duncan, R.A. & Atici, G. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research, 213–214, 83–97. https://doi.org/10.1016/j. jvolgeores.2011.11.005

  • Banfield, J.F. & Barker, W. W. (1998). Low-Temperature Alteration in Tuffs from Yucca Mountain, Nevada. Clays and Clay Minerals. 46, 27–37. https://doi. org/10.1346/CCMN.1998.0460104

  • Barrer, R. M. (1948). Synthesis of a zeolitic mineral chabazite-like sorptive properties. Journal of the Chemical Society, p.127.

  • Barrer, R. M., (1982). Hydrothermal chemistry of zeolites. Academic Press. London.

  • Bonetto, L., Camblor, M.A., Corma, A. & PérezPariente, J. (1992). Optimization of zeolite-β in cracking catalysts influence of crystallite size. Applied Catalysis A: General, 82(1), 37–50. https://doi.org/10.1016/0926-860X(92)80004-V

  • Breck, D. W. (1974). Zeolite Molecular Sieves. John Wiley and Sons, New York, p.77.

  • Carbone, M., Emri, S., Dogan, A. U., Steele, Tuncer, M., Pass, H. I. & Baris, Y. I. (2007). A mesothelioma epidemic in Cappadocia: Scientific developments and unexpected social outcomes. Nature Reviews Cancer, 7, 147–154. https://doi.org/10.1038/ nrc2068

  • Cicerali, D., Arslan, M., Adioğlu-Yazar, E., Yücel, C., Temizel, İ., Park, S. & Schroeder, P. A. (2020). Mineralogy, chemistry, and genesis of zeolitization in Eocene tuffs from the Bayburt area (NE Turkey): Constraints on alteration processes of acidic pyroclastic deposits. Journal of African Earth Sciences, 162, 103690. https:// doi.org/10.1016/j.jafrearsci.2019.103690

  • Cipera, S. J., Apps, J. A. (2001). Geochemical stability of natural zeolites. In D.L. Bish & D.W. Ming (Eds.), Natural Zeolites: Occurrences, Properties, Applications (pp. 117–161. Mineralogical Society of America, Washington, DC.

  • Cundy, C. (1998). Microwave Techniques in the Synthesis and Modification of Zeolite Catalysts. A Review. Collection of Czechoslovak Chemical Communications, 63, 1699–1723. https://doi. org/10.1135/cccc19981699

  • Çiflikli, M. (2020). Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: an example from Miocene ignimbrite units in Avanos, Central Turkey. Arabian Journal of Geoscience, 13, 1044. https://doi.org/10.1007/s12517-020- 06021-2.

  • Çiner, A. & Aydar, E. (2019). A Fascinating Gift from Volcanoes: The Fairy Chimneys and Underground Cities of Cappadocia. In C. Kuzucuoğlu, A. Çiner, N. Kazancı, (Eds.), Landscapes and Landforms of Turkey (pp.: 535-549). World Geomorphological Landscapes. Springer, Cham. https://doi. org/10.1007/978-3-030-03515-0_31

  • Çiner, A., Aydar, E. & Sarıkaya, M. A. (2015). Volcanism and evolution of the landscapes in Cappadocia. La Cappadoce Méridionale, 1–15. http://dx.doi.org/10.4000/books.ifeagd.3212

  • De Gennaro, M., Langella, A., Cappelletti, P. & Colella, C. (1999). Hydrothermal Conversion of Trachytic Glass to Zeolite. 3. Monocationic Model Glasses. Clays and Clay Minerals, 47, 348–357. https:// doi.org/10.1346/CCMN.1999.0470311

  • Deer, R. A., Howie, W. A., Wise, W. S., Zussman, J. (2004). Rock Forming Minerals, Volume 4B. Framework silicates: Silica Minerals, Feldspathoids and the Zeolites. 2nd edition. The Geological Society, London, 982 pp. https://doi. org/10.1180/0680831

  • Dogan, A. U. (2003). Zeolite mineralogy and Cappadocian erionite. Indoor and Built Environment, 12, 337–342. https://doi. org/10.1177%2F142032603036408.

  • Font, O., Moreno, N., Díez, S., Querol, X., López-Soler, A., Coca, P. & García Peña, F. (2009). Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. Journal of Hazardous Materials, 166(1), 94–102. https:// doi.org/10.1016/j.jhazmat.2008.10.120

  • Goni S., Pena R. & Guerrero A. (2010). Hydrothermal synthesis of zeolite from coal class F fly ash. Materials de Construcción, 60, 51–60. https://doi. org/10.3989/mc.2010.47808

  • Gottardi, G. (1989). The genesis of zeolites. European Journal of Mineralogy, 1(4), 479–488. https://doi. org/10.1127/ejm/1/4/0479

  • Göz, E., Kadir, S., Gürel, A. & Eren, M. (2014). Geology, mineralogy, geochemistry, and depositional environment of a Late Miocene/ Pliocene fluviolacustrine succession, Cappadocian Volcanic Province, central Anatolia, Turkey. Turkish Journal of Earth Science, 23(84), 386– 411. https://doi.org/10.3906/yer-1307-17.

  • Hincapie, B.O., Garces, L. J., Zhang, Q., Sacco, A., Suib, S. L. (2004). Synthesis of mordenite nanocrystals. Microporous Mesoporous Materials, 67(1), 19–26. https://doi.org/10.1016/j.micromeso.2003.09.026

  • Hou, J., Yuan, J., Xu, J., Fu, Y. & Meng, C. (2013). Template-free synthesis and characterization of K-phillipsite for use in potassium extraction from seawater. Particuology, 11, 786–788. http://dx.doi. org/10.1016%2Fj.partic.2013.02.003

  • Idrus, A., Kolb, J. & Meyer, F. M. (2009). Mineralogy, lithogeochemistry and elemental mass balance of the hydrothermal alteration associated with the gold-rich Batu Hijau porphyry copper deposit, Sumbawa Island, Indonesia. Resource Geology, 59(3), 215–230. https://doi.org/10.1111/j.1751- 3928.2009.00092.x

  • Innocenti, F., Mazzuoli, R., Pasquarè, G., Radicati Di Brozolo, F. & Villari, L. (1975). The Neogene calcalkaline volcanism of Central Anatolia: geochronological data on Kayseri—Nigde area. Geological Magazine, 112, 349–360. https://doi. org/10.1017/S0016756800046744

  • Jakobsson, S. P., Moore, J. G. (1986). Hydrothermal minerals and alteration rates at Surtsey volcano, Iceland. GSA Bulletin, 97(5), 648–659. https://doi. org/10.1130/0016-7606(1986)97<648:HMAARA >2.0.CO;2

  • Kawano, M. & Tomita, K. (1997). Experimental Study on the Formation of Zeolites from Obsidian by Interaction with NaOH and KOH Solutions at 150 and 200 °C. Clays and Clay Minerals, 45, 365–377. https://doi.org/10.1346/CCMN.1997.0450307

  • Kim, J. & Kim, D. H. (2018). Synthesis of faulted CHAtype zeolites with controllable faulting probability. Microporous and Mesoporous Materials, 256, 266–274. https://doi.org/10.1016/J. MICROMESO.2017.08.051

  • Kumar V., Nagae M., Matsuda M. & Miyake M. (2009). Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems. Journal of Environmental Management, 90, 2507–2514. https://doi.org/10.1016/j.jenvman.2009.01.009

  • Le Pennec, J.L., Bourdier, J.-L., Forger, J.-L., Temel, A., Camus, G. & Gourgaud, A. (1994). Neogene ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research, 63, 59–87. https://doi. org/10.1016/0377-0273(94)90018-3

  • Le Pennec, J. L., Temel, A., Froger, J. L., Sen, S., Gourgaud, A. & Bourdier, J. L. (2005). Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paléontologie, radiochronologic, geochemical and paleomagnetic data. Journal of Volcanology and Geothermal Research, 141, 45–64

  • Lu, B. W., Yakushi, Y., Oumi, Y., Itabashi, K. & Sano, T. (2006). Control of crystal size of highsilica mordenite by quenching in the course of crystallization process. Microporous Mesoporous Materials, 95(1–3), 141–145.

  • Morales-Pacheco, P., Domínguez, J., Bucio, L., Alvarez, F., Sedran, U. & Falco, M. (2011). Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catalysis Today, 166, 25–38. https://doi. org/10.1016/j.cattod.2010.07.005

  • Mues-Schumacher, U. & Schumacher, R. (1996). Problems of stratigraphic correlation and new K-Ar data for ignimbrites from Cappadocia, Central Turkey. International Geology Review, 38, 737– 746. https://doi.org/10.1080/00206819709465357

  • Núñez, V. M. S. & Torres, L. D. B. (2015) Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide. Revista Internacional de Contaminacion Ambiental, 31(2), 185–193.

  • Ortíz, F. A. Q, Valenzuela, J. T. & Reyes, C.A.R. (2011). Zeolitisation of Neogene sedimentary and pyroclastic rocks exposed in Paipa (Boyacá), in the Colombian Andes: simulating their natural formation conditions. Earth Science Research Journal, 15(2), 89–100.

  • Palčić, A., Subotić, B., Valtchev, V. & Bronić, J. (2013). Nucleation and crystal growth of zeolite A synthesised from hydrogels of different density. CrystEngComm, 15, 5784–5791. https://doi. org/10.1039/C3CE40450A

  • Pasquarè, G. (1968). Geologie of the Senozoic volkanic area of Central Anatolia. Atti della Accademia Nazionale dei Lincei. No. Delince, Menorie Serie, 1968, Roma, VIII, IX, 55–204.

  • Pasquarè, G., Poli, S., Vezzoli, L. & Zanchi, A. (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysic, 146, 217–230. https://doi.org/10.1016/0040- 1951(88)90092-3

  • Querol, X., Umanã, J. C., Plana, F., Alastuey, A., LopezSoler, A., Medinaceli, A., Valero, A., Domingo, M. J. & Garcia-Rojo, E. (2001). Synthesis of Na zeolites from fly ash in a pilot plant scale. Examples of potential environmental applications. Fuel, 80, 857–865. https://doi.org/10.1016/S0016- 2361(00)00156-3

  • Rani, N., Shrivastava, J. P., Bajpai, R. K. (2012). Near hydrothermal alteration of obsidian glass: Implications for long term performance assessments. Journal of Geological Society of India, 79, 376–382. https://doi.org/10.1007/ s12594-012-0058-3

  • Saracci, R., Simonato, L., Baris, Y., Artvinli, M. & Skidmore, J. (1982). The age-mortality curve of endemic pleural mesothelioma in Karain, Central Turkey. British Journal of Cancer, 45, 147–149. https://dx.doi.org/10.1038%2Fbjc.1982.19

  • Sheppard, R. A. & Hay, R. L. (2001). Formation of Zeolites in Open Hydrologic Systems. Reviews in Mineralogy and Geochemistry, 45(1), 261–275. https://doi.org/10.2138/rmg.2001.45.8

  • Sherman, J. D. (1999). Synthetic zeolites and other microporous oxide molecular sieves. Proceeding of the National Academy of Science of the United States of America, 96(7), 3471–3478. https://doi. org/10.1073/pnas.96.7.3471

  • Sun, S. S. & McDonough, W. F., (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publication, 42, 313–345. https://doi.org/10.1144/ GSL.SP.1989.042.01.19

  • Surdam, R. C. & Sheppard, R. A. (1978). Zeolites in saline, alkaline-lake deposits.In L. B. Sand, & F. A. Mumpton (Eds), Natural Zeolites: Occurrence, Properties, Use (145-174). Pergamon Press, Elmsford, N.Y.

  • Temel, A. & Gündoğdu, M. N. (1996). Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, central Anatolia, Turkey. Mineralium Deposita, 31(6), 539–547. https://doi.org/10.1007/BF00196134

  • Temel, A., Gündoğdu, M. N., Gourgaud, A. & Le Pennec, J-L. (1998). Ignimbrites of Cappadocia (Central Anatolia, Turkey): petrology and geochemistry. Journal of Volcanology and Geothermal Research, 85(1–4), 447-471. https:// doi.org/10.1016/S0377-0273(98)00066-3

  • Thien, B. M. J., Kosakowski, G. & Kulik, D. A. (2015). Differential alteration of basaltic lava flows and hyaloclastites in Icelandic hydrothermal systems. Geothermal Energy, 3, 11. https://doi.org/10.1186/ s40517-015-0031-7

  • Tomita, K., Yamane, H., Kawano, M. (1993). Synthesis of smectite from volcanic glass at low temperature. Clays and Clay Minerals, 41, 655–661. https:// doi.org/10.1346/CCMN.1993.0410603

  • Toprak, V. & Göncüoğlu, M. C. (1993). Tectonic control on the development of the Neogene Quaternary Central Anatolian Volcanic Province, Turkey. Geological Journal, 28, 357–369. https:// doi.org/10.1002/gj.3350280314

  • Trejda, M., Ziolek, M., Millot, Y., Chalupka, K., Che, M. & Dzwigaj, S. (2010). Methanol oxidation on VSiBEA zeolites: influence of V content on the catalytic properties. Journal of Catalysis, 281(1), 169–176. https://doi.org/10.1016/j. jcat.2011.04.013

  • Utada, M. (2001). Zeolites in Hydrothermally Altered Rocks. Reviews in Mineralogy and Geochemistry, 45(1), 305–322. https://doi.org/10.2138/ rmg.2001.45.10

  • Viereck-Goette, L., Lepetit, P., Gürel, A., Ganskow, G., Çopuroğlu, I. & Abratis, M. (2010). Revised volcanostratigraphy of the Upper Miocene to Lower Pliocene Ürgüp Formation, Central Anatolian volcanic province, Turkey. Geological Society of America, 464, 85–112. http://dx.doi. org/10.1130/2010.2464(05)

  • Wang, L., Yang, W. Y., Xin, C. L., Ling, F. X., Sun, W. F., Fang, X. C. & Yang, R., (2012). Synthesis of nano-zeolite IM-5 by hydrothermal method with the aid of PEG and CTAB. Materials Letters, 69, 16–19. http://dx.doi.org/10.1016%2Fj. matlet.2011.11.073

  • Wise, W.S. (2013). Minerals, Zeolites. Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489. https:// doi.org/10.1016/B978-0-12-409548-9.02906-7

  • Xue, Z., Ma, J., Zhang, T., Miao, H. & Li, R. (2012). Synthesis of nanosized ZSM-5 zeolite with intracrystalline mesopores. Materials Letters, 68, 1–3. https://doi.org/10.1016/j.matlet.2011.10.019

  • Yao, J., Huang, Y. & Wang, H. (2010). Controlling zeolite structures and morphologies using polymer networks. Journal of Materials Chemistry, 20(44), 9827–9831. https://doi.org/10.1039/C0JM01003K

  • Zhang, L., van Laak, A.N.C., de Jongh, P.E. & de Jong, K.P., (2009). Synthesis of large mordenite crystals with different aspect ratios. Microporous and Mesoporous Materials, 126(1–2), 115–124. https://doi.org/10.1016/j.micromeso.2009.05.034

  • Zhang, L., Xie, S., Xin, W., Li, X., Liu, S. & Xu, L. (2011). Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis. Materials Research Bulletin, 46(6), 894–900. https://doi. org/10.1016/j.materresbull.2011.02.018

  • Akın, L. & Çubukçu, H. E. (2023). Orta Anadolu Volkanik Bölgesi`nde (OAVB) Piroklastik Kayacın Hidrotermal Alterasyonu Sırasında Gözlenen Mineralojik ve Jeokimyasal Değişimler: Doğal Oluşum Koşullarının Simülasyonu . Türkiye Jeoloji Bülteni , 66 (2) , 189-210 . DOI: 10.25288/tjb.1214770

  • Potentially Toxic Element-Induced Ecological Risk Assessment of Kilitbahir Port, Çanakkale, Türkiye
    Uğur Oran Ahmet Evren Erginal
    View as PDF

    Abstract: This study discusses the results of ecological risk analysis of sediments taken from Kilitbahir Port,one of the most active ports along the Çanakkale Strait (Dardanelles). ICP-MS analyses of the collected samplesrevealed moderate enrichment in Mo, Cu, and Zn in relation to anthropogenic activities in the studied sediments.The compatibility of the geoaccumulation and enrichment factor data indicates that the pollution is anthropogenic.No significant toxic risk was detected, although Mo is the most enriched potentially toxic element. The ecologicalrisk determined in terms of Hg and Cd is likely to be related to oil and fuel leaks caused by marine vessels passingto/from the Kilitbahir port and road traffic moving over the study area.

  • Çanakkale

  • ecological risk

  • Kilitbahir Port

  • potentially toxic element


  • Acquavita, A., Floreani, F. & Covelli, S. (2021). Occurrence and speciation of arsenic and mercury in alluvial and coastal sediments. Current Opinion in Environmental Science & Health 22, Article 100272.

  • Akarsu, T. (2021). Çanakkale Kentsel Gelişim Alanı Boyunca Sarıçay’ın Ekolojik Risk Analizi ve Coğrafya Öğretmeni Adaylarının Görüşleri [Unpublished Msc Thesis]. Çanakkale Onsekiz Mart Ünivesitesi Lisansüstü Eğitim Enstitüsü.

  • Akarsu, T., Kükrer, S. & Erginal, A. E. (2022). Trace metal-induced ecological risk analysis of Sarıçay River sediments, Çanakkale, NW Turkey. International Journal of Environment and Geoinformatics, 9(2): 45-53. https://doi. org/10.30897/ijegeo.989882

  • Ashayeri, N. Y. & Keshavarzi, B. (2019). Geochemical characteristics, partitioning, quantitative source apportionment, and ecological and health risk of heavy metals in sediments and water: A case study in Shadegan Wetland, Iran. Marine Pollution Bulletin, 149, Article 110495.

  • Baba, A. & Deniz, O. (2004). Effect of warfare waste on soil: a case study of Gallipoli Peninsula (Turkey). International Journal of Environment and Pollution, 22(6): 657-675.

  • Botello, A. V., Villanueva, F. S., Rivera, R. F., Velandia, A. L. & de la Lanza, G. E. (2018). Analysis and Tendencies of Metals and POPs in a Sediment Core from the Alvarado Lagoon System (ALS), Veracruz, Mexico. Archives of Environmental Contamination and Toxicology 75(1): 157-173.

  • Brady, J. P., Ayoko, G. A., Martens, W. N. & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, Article 306. https://doi. org/10.1007/s10661-015-4563-x

  • Chen, Z., Huang, B., Hu, W., Wang, W., Muhammad, I., Lu, Q., Jing, G. & Zhang, Z. (2021). Ecologicalhealth risks assessment and source identification of heavy metals in typical greenhouse vegetable production systems in Northwest China. Environmental Science and Pollution Research, 28(31): 42583-42595.

  • Çayır, A., Coşkun, M. & Coşkun, M. (2012). Evaluation of metal concentrations in mussel M. galloprovincialis in the Dardanelles Strait, Turkey in regard of safe human consumption. Bulletin of Environmental Contamination and Toxicology,89(1): 91-95. https://doi.org/10.1007/ s00128-012-0658-z

  • Demir, N. & Akkuş, G. (2018). Çanakkale Boğazı (Kepez) Midye (Mytilus galloprovincialis L., 1819) Örneklerinde Ağır Metal ve Antioksidan Enzim Düzeylerinin Mevsimsel Değişimi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4): 659–666.

  • Duodu, G. O., Goonetilleke, A. & Ayoko, G. A. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin 117(1): 523- 531.

  • Fural, Ş., Kukrer, S., Curebal, I. & Aykir, D. (2021a). Spatial distribution, environmental risk assessment, and source identification of potentially toxic metals in Atikhisar dam, Turkey. Environmental Monitoring and Assessment, 193, 268, 1-16.

  • Fural, Ş. & Kükrer, S. (2021b). Sulak alanlarda potansiyel toksik element (PTE) kaynaklı bölgesel ekolojik risk araştırmalarında kullanılan analitik metotlar. Türk Coğrafya Dergisi, 77, 211-222.

  • Güven, K. S. & Ilgar, R. (2002). Oil and detergent pollution on coastal areas of Dardanelles in 1996- 1997. Turkish Journal of Marine Sciences 8(1): 3-8.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975-1001.

  • Ilgar, R., Güven, K. & Güven, K. C. (2007). Çanakkale Boğazı Petrol Kirlilik Düzeyinin Saptanması. Marmara Coğrafya Dergisi (15), 117-130.

  • Ilgar, R. (2008). Çanakkale Boğazı Fiziki Coğrafyası. Gazi Kitabevi, Ankara.

  • Ilgar, R. (2015). Çanakkale Boğazındaki Gemi Hareketliliği ve Kaza Risk Haritasının Belirlenmesi. Türk Coğrafya Dergisi, 65, 1-10.

  • Jahan, S. & Strezov, V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin, 128, 298–306.

  • Jeong, H., Choi, Y. J., Lim, J., Shim, J. W., Kim, Y. O. & Ra, K. (2020). Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Marine Pollution Bulletin, 161, Article 111717.

  • Kaya, H., Akbulut, M., Selvi, K., Ileri, B. & Duysak, M. (2014). Heavy Metal Accumulation, Biomarker Responses and Sensitivity to Oxidative Stress in Isopoda Asellus aquaticus from Saricay Creek (Canakkale-Turkey). Ekoloji, 23, 8-15.

  • Kılıç, A. & Sanal, H. T. (2015). Çanakkale Boğazı’nda Karaya Oturmayla Sonuçlanan Gemi Kazaları. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2): 38-50.

  • Koçum, E. & Dursun, O. (2007). Monitoring of phytoplankton biomass and nutrients in a polluted stream. International Journal of Environment and Pollution 29(4), 505-517.

  • MacDonald, D., Carr, R., Calder, F. & Long, E. (1997). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253-278.

  • MacDonald, D., Ingersoll, C. & Berger, T. (2000). Development and evaluation of consensusbased sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39, 20-31.

  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. Geojournal 2, 108 -118.

  • Özden, S. (2013). Gelibolu Yarımadası ve Saroz Körfezi Kıyılarında Askıda Katı Madde, sediment, Mytilus galloprovincialis ve Ulva rigida’da Ağır Metal Düzeylerinin Araştırılması [Unpublished, PhD Thesis]. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Su Ürünleri Anabilim Dalı.

  • Özden, S. & Tunçer, S. (2015). Ulva rigida’daki Ağır Metal (Pb, Cu, Zn ve Fe) Düzeyleri (Dardanel, Çanakkale). Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 4(1), 35-42.

  • Özkan, E. Y., Fural, Ş., Kükrer, S. & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. Environmental Science and Pollution Research, 29, 62669–62689.

  • Palas, S. (2020). Aliağa Körfezi Geç Kuvaterner-Güncel yüzey sedimanlarında ağır metal birikiminin incelenmesi. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 29, 29-48.

  • Rogan Šmuc, N, Dolenec, M., Kramar, S. & Mladenović, A. (2018). Heavy metal signature and environmental assessment of nearshore sediments: Port of Koper (Northern Adriatic Sea). Geosciences, 8, 398.

  • Sutherland, R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611- 627.

  • Ustunada, M., Erduğan, H., Yılmaz, S., Akgul, R. & Aysel, V. (2011). Seasonal concentrations of some heavy metals (Cd, Pb, Zn, and Cu) in Ulva rigida J. Agardh (Chlorophyta) from Dardanelles (Canakkale, Turkey). Environmental Monitoring Assessment, 177(1-4), 337-342.

  • Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T. & Yu, X. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54, 974-982.

  • Zhang, G., Bai, J. & Zhao, Q. (2016). Heavy metals in wetland soils along a wetland-forming chronose quence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, 69, 331–339.

  • Oran, U. & Erginal, A. E. (2023). Potentially Toxic Element-Induced Ecological Risk Assessment of Kilitbahir Port, Çanakkale, Türkiye . Türkiye Jeoloji Bülteni , 66 (2) , 211-222 . DOI: 10.25288/tjb.1220278

  • Formation and Origin of Magnesite Veins in Yakacık Area (NW-Ankara)
    Habibe Eren Köroğlu Elif Ahiska Zehra Semra Karakaş Sinan Ahiska
    View as PDF

    Abstract: Magnesite occurrences in Turkey are generally formed as veins and stockworks in fractures and fissuresof sedimentary rocks and altered ultramafic rocks. Ophiolitic units and magnesite formations crop out in the CentralAnatolia part of the Anatolian Block within the İzmir-Ankara-Erzincan Suture Belt and around Yakacık village,located 15 km northwest of Ankara.  The genetical investigation of the ore-forming fluid(s) was carried out using mineralogy and petrography, XRDcharacteristics, geochemical investigations and C-O isotope studies of ophiolitic units and magnesite formationsin this study. Magnesite mineralizations were observed in two different forms, as quartz magnesite veins and asvein-stockworks, within the serpentinites of the Kapaklı member, which consists of olistostromal layers containingserpentinite, gabbro, diabase, basalt, radiolarite, and limestones around Yakacık. The vein-type magnesites showcryptocrystalline and microcrystalline structures and are accompanied by quartz, chlorite, dolomite, and serpentineminerals. Quartz, serpentine, olivine, calcite, and dolomite were determined in stockwork-type magnesite. The clayminerals were chlorite, smectite, and kaolinite.In mineralogical and Raman spectroscopic studies, both the vein- and stockwork-type mineralizations,alterations from olivine to kammererite and kammererite minerals were detected. The values obtained from the resultsof the geochemical analysis indicate that magnesites are associated with ultramafic rocks. In order to determine theorigin of magnesites, δ13C (VPDB) and δ18O (VSMOW) stable isotope studies were carried out on magnesite andlimestone. The δ13C and δ18O values are -3.07 to 9.67‰ and 23.05 to 27.49‰ for magnesites and 0.20 to 3.74‰ and27.05 to 28.96‰ for limestones, respectively. The most important rocks that could be the main source for the C andO of magnesite formations are Jurassic limestones.In conclusion, the movement of surface waters towards the depths, the heating role of volcanism during theearly-middle Miocene, the decarbonation of limestones due to the warming of the deep-flowing fluids, and theincorporation of CO2, partly from a magmatic contribution, are the main formation mechanisms of magnesite formedin the fractures of serpentinized ultramafic rocks.

  • C-O isotope

  • kammererite

  • magnesite

  • ultramafic

  • XRD


  • Abu-Jaber, N. S. & Kimberley, M. M. (1992). Origin Of Ultramafic-Hosted Vein Magnesite Deposits. Ore Geology Reviews, 7(3), 155-191. https://doi. org/10.1016/0169-1368(92)90004-5

  • Aharon, P. (1988). A stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: Implications for the origin of strata-bound massive magnesites. Chemical Geology 69(1), 127-145.

  • Akyürek, B., Bilginer, E., Dağer, Z., Soysal, Y. ve Sunu, O. (1980). Eldivan-Şabanözü (Çankırı), HasayazÇandır (Kalecik-Ankara) dolayının jeolojisi (Rapor no: 6741). MTA Raporu (yayımlanmamış).

  • Akyürek, B., Bilginer, E., Akbaş, B., Hepşen, N., Pehlivan, Ş., Sunu, O., Soysal, Y., Dağer, Z., Çatal, E., Sözeri, B., Yıldırım, H. ve Hakyemez, Y. (1982). Ankara-Elmadağ-Kalecik dolayının jeolojisi (Rapor no: 7298). MTA Raporu (yayımlanmamış).

  • Altıner, D., Koçyiğit, A., Farinacci, A., Nicosia, U.I & Conti M. A. (1991). Jurassic-Lower Cretaceus Stratigraphy and Paleogeographic Evolution of the southern Part of NorthWestern Anatolia (Turkey). Geologica Romana, 27, 13-80.

  • Altınlı, G. E. (1965). İnegöl havzasının jeolojisi ve hidrojeolojik incelemesi. G.Ü. Fen Fak. Mecmuası, B.28 (3-4), 173-199.

  • Altınlı, G. E. (1973). Bilecik Jurasiği. Cumhuriyet’in 50. Yılı Yerbilimleri Kongresi, Tebliğler Kitabı, s.: 103-111.

  • Aydın, M., Serdar, H. S., Şahintürk, Ö., Yazman, M., Çokuğraş, R., Demir, O. ve Özçelik, Y. (1987). Çamdağ (Sakarya)-Sünnicedağ (Bolu) yöresinin jeolojisi. Türkiye Jeoloji Kurumu Bülteni, 30(1), 101-107. https://jmo.org.tr/resimler/ ekler/4feb0096faa8326_ek.pdf

  • Baker, A. J. & Fallick, A. G. (1989). Evidence from Lewisian limestones for isotopically heavy carbon in ten-thousand-million-year-old seawater. Nature, 337, 352–354.

  • Bindeman, I. (2008). Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy & Geochemistry 69, 445–478.

  • Borshcevskiy, Y. A. (1980). Oxygen and hydrogen isotope data on the nature of hydrothermal mineralizing fluids. Geochemistry International 17, 40-50

  • Braithwaite, C. J. R. & Zedef, V. (1996). Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Gölü, Turkey. Journal of Sedimantary Research, 66(5), 991-1002.

  • Clark, I. D. & Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, N.Y.

  • Criss, R.E. (1999). Principles of Stable Isotope Distribution. Oxford University Press, New York.

  • de Obeso, J. C. & Kelemen, P. B. (2018). Fluid rock interactions on residual mantle peridotites overlain by shallow oceanic limestones: insights from Wadi Fins, Sultanate of Oman. Chemical Geology 498, 139–149. https://doi.org/10.1016/j. chemgeo.2018.09.022

  • Deines, P. (1989). Stable isotope variations in carbonatites. In: K. Bell, (Ed.), Carbonatites: genesis and evolution (301-359). Unwin Hyman, London.

  • Demeny, A., Ahijado, A., Casillas, R. & Vennemann, T. W. (1998). Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): C, O, H isotope study. Lithos 44, 101–115.

  • Demeny, A. & Harangi, S. Z. (1996). Stable isotope studies on carbonate formations in alkaline basalt and lamprophyre series: evolution of magmatic fluids and magma-sediment interactions. Lithos 37, 335–349.

  • Duru, M ve Aksay A. (2002). 1/100.000 ölçekli Açınsama nitelikli Türkiye Jeoloji Haritaları, Bolu H29 Paftası. MTA. No:42.

  • Eroskay, O. (1965). Geology of the Paşalar gorgeGölpazarı area. İstanbul Üniversitesi Fen Fakültesi Mecmuası, Seri B 30(3-4), 133-170.

  • Fallick, A. E., Ilich, M. & Russell, M. J. (1991). A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. Economic Geology 86, 847–861.

  • Fritz, P. (1976). Oxygen and carbon isotopes in ore deposits in sedimentary rocks. In: K. H. Wolf (Ed.), Handbook of Strata-bound and Stratiform Ore Deposits, Ch. 7 (pp.: 191-217). Elsevier, Amsterdam.

  • Gartzos, E. (1990). Carbon and oxygen isotope constraints on the origin of magnesite deposits North Evia (Greece). Schweizerische Mineralogische und Petrographische Mitteilungen 70, 67-72.

  • Granit, Y. & Tintant, H. (1960). Observation preliminaires sur le Jurassique de la region de Bilecik (Turquie). C.R. Acad. Sc. Paris, 251, 1801-1803.

  • Hodson, J. D. (1977). Stable isotopes and limestone lithification. Journal of the Geological Society of London 133, 637–660.

  • Hoefs, J. (1997). Stable isotope geochemistry. Springer, Heidelberg, 1–214.

  • Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S. & Garbe-Schönberg, D. (2002). Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology 142, 520–542.

  • Hofmann, B. A., Bernasconi, S. M. (1998). Review of occurrences and carbon isotope geochemistry of oxalate minerals: implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids. Chemical Geology 149,127–146.

  • Kahya, A. & Kuşcu, M. 2014. Source of the mineralizing in ultramafic related magnesite in the Eskişehir area, northwest Turkey, along the İzmir – Ankara Suture: a stable isotope study. Turkish Journal of Earth Sciences 23, 1-15.

  • Kilias, S. P., Pozo, M., Bustillo, M., Stamatakis, M. G. & Calvo, J. P. (2006). Origin of the Rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence. Mineralium Deposita, 41, 713- 733.

  • Kralik M., Aharon P., Schroll E. & Zachmann, D. (1989). Carbon and oxygen isotope systematics of magnesites: a review. In P. Moller (Ed.) On the formation of Magnesite-Monograph Series on Mineral Deposits, 28 (pp. 197-223). Geburder Borntraeger, Berlin.

  • Lorrain, A., Savoye, N., Chauvaud, L., Paulet, Y. M. & Naulet, N. (2003). Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low carbonated suspended particulate material. Analytica Chimica Acta 491, 125–133.

  • Lugli, S., Morteani, G. & Blamart, D. (2002). Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the Upper Triassic Burano Evaporites (Secchia Valley, northern Apennines): contributions from sedimentary, hydrothermal and metasomatic sources. Mineralium Deposita 37, 480-494.

  • MTA. (1982). Türkiye Manyezit Envanteri. MTA Yayınları, No:186, 258.

  • Morteani, G. (1982). The rare earth element contents and the origin of the sparry magnesite mineralizations of Tux-Lanersbach, Entachen Alm, Spiessnagel and Hochfilzen, Austria and the lacustrine magnesite deposits of Aiani-Kozani, Greece and Bela-Stena, Yugoslavia. Economic Geology 77, 617-631

  • Möller, P. (1989). Minor and trace elements in magnesite monograph series on mineral deposits. Gebrüder Borntradger, 28, 173-195.

  • O’Neil, J. R. & Barnes, I. (1971). 13C and 18O Composition In Some Fresh-Water Carbonate Associated With Ultramafic Rocks: Western United States. Geochimica Et Cosmochimica Acta, 35, 687-697.

  • Pohl, W. (1989). Comparative Geology of Magnesite Deposits and Occurences In P. Moller, Magnesite. Geology, Mineralogy, Geochemistry And Formation Of Mg- Carbonates (Monography Series On Mineral Deposits, 28). Gebruder Borntaeger, Berlin.

  • Pohl, W. & Siegl, W. (1986). Sediment-hosted megnesite deposits. In K. H. Wolf, (Ed.): Handbook of Stratabound and stratiform deposits, Part IV, Volume 14, Regional Studies and Specific Deposits, (pp.: 223- 310). Elsevier Science Publishers B.V.

  • Ray, J. S., Ramesh, R. & Pande, K. (1999). Carbon isotopes in Kerguelen plume-derived carbonatites: evidence for recycled inorganic carbon. Earth and Planetary Science Letters 170, 205–214.

  • Rruff, 2022. https://rruff.info/clinochlore/ display=default/ 16.12.2022. 09.01.2023.

  • Saner, S. (1980). Batı pontidlerin ve komşu havzaların oluşumlarının levha tektoniği kavramı ile açıklanması, Kuzeybatı Türkiye. MTA Dergisi, c. 93/94, 1-19.

  • Santos, R. V. & Clayton, R. N. (1995). Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochimica Et Cosmochimica Acta 59, 1339–1352.

  • Schmid, I. H. (1987). Turkey’s Salda Lake, a genetic model for Australia’s newly discovered magnesite deposits. Industrial Minerals, 239, 19-31.

  • Schroll, E. (2002). Genesis of magnesite deposits in the view of isotope geochemistry. Boletim Paranaense de Geociencias, 50, 59-68.

  • Şener, M. & Şengüler, I. (1998). Geological, mineralogical and geochemical characteristics of oil shale bearing deposites in the Hatildag oil shale field, Göynük, Turkey. Fuel, 77(8), 871-880.

  • Şentürk, K. & Karaköse, C. (1979). Orta Sakarya dolayının temel jeolojisi (Rapor no: 6642). MTA Raporu (yayımlanmamış).

  • Taylor, H. E., Frechen, J., Degens, E. T. (1967). Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District Sweden. Geochimica Et Cosmochimica Acta, 31, 407–430.

  • Taylor, H. P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843-883. https://doi. org/10.2113/gsecongeo.69.6.843

  • Ten Dam, A. & Erentöz, C. 1970. Kizildere geothermal field-Western Anatolia. Geothermics 2(1), 124- 129.

  • Topak, Y. (2006). Yukarıtırtar - Aşağıtırtar Köyleri (Isparta Kuzeydoğusu) Arasında Gözlenen Manyezit Yatağının Oluşumu ve Kökeni [Yayımlanmamış, Doktora Tezi]. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı.

  • Türkecan, A., Dinçel, A., Hepşen, N., Papak, İ., Akbaş, B., Sevin, M., Özgür, İ. B., Bedi, Y., Mutlu, G., Sevin, D., Ünay, E., Saraç, G. ve Karataş, S., 1991. Bolu-Çankırı (Köroğlu Dağları) arasındaki Neojen yaşlı volkanitlerin stratigrafisi ve petrolojisi. Türkiye Jeoloji Kurultayı Bülteni, Cilt:6, 85-103.

  • Üner, T., ve Aksoy, İ. (2018). Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(3), 1067-1082.

  • Valley, J. W. (1986). Stable isotope geochemistry of metamorphic rocks. In J. W. Valley, H. P. Taylor, Jr. & J. R. O’Neil (Eds.), Stable Isotopes in High Temperature Processes, Mineralogical Society of America, Reviews in Mineralogy, Vol. 16, 445- 489.

  • Whitney, D. L. & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-18.

  • Zedef, V. (1994). The origin of magnesite in Turkey, a stable isotope study [Unpublished PhD. Thesis]. Glasgow, UK, Glasgow University.

  • Zedef, V., Russell, M. J. & Fallick, A. E. (2000). Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: a stable isotope study. Economic Geology 95, 429–446.

  • Eren Köroğlu, H. , Akıska, E. , Karakaş, Z. & Akıska, S. (2023). Yakacık (KB-Ankara) Bölgesi Manyezit Damarlarının Oluşumu ve Kökeni . Türkiye Jeoloji Bülteni , 66 (2) , 223-256 . DOI: 10.25288/tjb.1242468

  • Physical, Chemical and Mineralogical Properties of Gallstones obtained from Antalya Province of Turkey
    Dilek Kabakçi Mustafa Gürhan Yalçin Gülsüm Özlem Elpek Iosif Volfson
    View as PDF

    Abstract: Gallbladder stone disease is the most common disease with a high prevalence in many societies in theword. In the literature, the primary risk factors discussed for this disease have been evaluated as gaining and losingweight rapidly, obesity, age, gender, genetic factors, having given birth too many children, life style and medications.The aim of this investigation is to find out the chemical and physical properties of gallstones in patients living inthe province of Antalya, Turkey. For this purpose, the chemical and mineralogical properties of 1243 gallstonesamples from 69 patients were analyzed using X-ray diffractometer (XRD), scanning electron microscopy (SEM)and Fourier-transform infrared spectroscopy (FTIR) applications.In accordance with the outcome of SEM and FTIR analysis, cholesterol, calcium carbonate, calcium bilirubinate,calcium phosphate, carbonate apatite, and protein contents were observed. Cholesterol was detected in 95% of 69patients; with 44 samples obtained from female patients. X-Ray Diffractometer (XRD) analysis showed newberyite,struvite, and aragonite minerals were found in the composition of gallstones. Newberyite was present in 59% ofthe samples. The physical, chemical and mineralogical characteristics of these gallstones are very important for theunderstanding of gallstone formation. The results of the study are consistent with the 5F Rule (Female, Forty, Fatty,Fair, Fertile). The relationship between bilirubinate and the presence of bacteria was determined. The presence ofbarium acetate and aluminum silicate in gallstones revealed the relationship with environmental pollutants.

  • Aragonite

  • Gallstone properties

  • medical geology

  • newberyite

  • struvite


  • Altinkaya, N., Koc, Z., Alkan, O., Demir, S. & Belli, S. (2011). Multidetector computed tomography diagnosis of ileal and anthropologic gallstone ileus. Turkish Journal of Trauma and Emergency Surgery, 17(5), 461-463. https://doi.org/10.5505/ tjtes.2011.50103

  • Altura, B. M. (1991). Basic Biochemistry and Physiology of Magnesium; A Brief Review, Magnes Trace Element, 10, 167-71 .

  • Antalya Provincial Environmental Status Report. webdosya.csb.gov.tr/db/ced/icerikler/ a n t a l y a _ 2 0 1 7 _ c e v r e _ d u r u m _ r a p o r u 20180705142911.pdf (2017).

  • Ashok, M., Rautray, T., Nayak, P., Vijayan, V., Jayanthi, V. & Narayana, K. S. (2003). Energydispersive X-ray fluorescence analysis of gallstones. Journal of Radioanalytical and Nuclear Chemistry, 257(2), 333-335. https://doi. org/10.1023/A:1024735930031

  • Athanasiadou, D., Godelitsas, A., Sokaras, D., Karydas, A. G., Dotsika, E., Potamitis, C., ... & Becker, U., 2013. New insights into the chemical and isotopic composition of human-body biominerals. I: Cholesterol gallstones from England and Greece. Journal of Trace Elements in Medicine and Biology, 27(2), 79-84. https://doi.org/10.1016/j. jtemb.2012.08.004

  • Baysal, A., Kececioglu, S. & Arslan, P. (1991). Compositionof Foods, Turkish Dietetic Association Publication No 1.Yenicag, BasınYayın San, Ankara, Turkey

  • Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H. & Winham, D. M. (2011). Nonsoy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(2), 94-103. https://doi.org/10.1016/j. numecd.2009.08.012

  • Bijvoet, Olav L. M. (1977). Kidney function in calcium and phosphate metabolism. In: Metabolic bone disease. Academic Press, p. 49-140. https://doi. org/10.1016/B978-0-12-068701-5.50008-7

  • Bistgani, M. M. & Imani, R. (2013). Bacteria isolated from patients with cholelithiasis and their antibacterial susceptibility pattern. Iranian Red Crescent Medical Journal, 15(8), 759 https://doi. org/10.5812/ircmj.3883

  • Butanovs, E., Zolotarjovs, A., Kuzmin, A. & Polyakov, B. (2021). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. https://doi.org/10.1016/j. nima.2021.165736

  • Cen, L., Pan, J., Zhou, B., Yu, C., Li, Y., Chen, W. & Shen, Z. (2018). Helicobacter Pylori infection of the gallbladder and the risk of chronic cholecystitis and cholelithiasis: A systematic review and meta‐ analysis. Helicobacter, 23(1), Article no: e12457. https://doi.org/10.1111/hel.12457

  • Chuang, S. C., Hsi, E. & Lee, K. T. (2012). Mucin genes in gallstone disease. Clinica Chimica Acta, 413(19-20), 1466-1471. https://doi.org/10.1016/j. cca.2012.06.015

  • Cohen, S. Z., Creeger, S. M., Carsel, R. F. & Enfield, C. G. (1984). Potential pesticide contamination of groundwater from agricultural uses. Treatment and Disposal of Pesticide Wastes, 259, 297. https://doi.org/10.1021/bk-1984-0259.ch018

  • Damalas, C. A., Telidis, G. K. & Thanos, S. D. (2008). Assessing farmers’ practices on disposal of pesticide waste after use. Science of the total environment, 390(2-3), 341-345. https://doi. org/10.1016/j.scitotenv.2007.10.028

  • Dorvash, M. R., Khoshnood, M. J., Saber, H., Dehghanian, A., Mosaddeghi, P. & Firouzabadi, N. (2018). Metformin treatment prevents gallstone formation but mimics porcelain gallbladder in C57Bl/6 mice. European Journal of Pharmacology, 833, 165-172. https://doi. org/10.1016/j.ejphar.2018.06.002

  • Finkelman, R. B., Skinner H. C. W, Plumlee, G. S. & Bunnell, J. E. (2001). Medical Geology. Geotimes, 20-23

  • Flores, C., Maguilnik, I., Hadlich, E. & Goldani, L. Z. (2003). Microbiology of choledochal bile in patients with choledocholithiasis admitted to a tertiary hospital. J Gastroenterol Hepatol, 18(3):333-6. https://doi.org/10.1046/j.1440- 1746.2003.02971.x

  • Gazali, Z., Thakur, S. N. & Rai, A. K. (2019). Compositional study of gallbladder stone using photoacoustic spectroscopy. Optics & Laser Technology, 111, 696-700. https://doi. org/10.1016/j.optlastec.2018.09.003

  • Glasdam, S. M., Glasdam, S. & Peters, G. H. (2016). The importance of magnesium in the human body: a systematic literature review. In Advances in Clinical Chemistry,73, 169-193. https://doi. org/10.1016/bs.acc.2015.10.002

  • Golovanova, 0. A., Pakhik, N. A., Berezina, N. Y., & Yudina, L. N. (2006). Comparative characteristics of the mineral and microelement composition of gallstones extracted from patients in the Novosibirsk and Omsk regions. Chemistry for Sustainable Development, 14, 125- 131.

  • Göbel, T., Kubitz, R., Blondin, D., & Häussinger, D. (2011). Intrahepatic type II gall bladder perforation by a gall stone in a CAPD patient. European journal of medical research, 16(5), 213- 216. https://doi.org/10.1186/2047-783X-16-5-213

  • Griffith, D. P. (1978). Struvite stones. Kidney International, Vol. 13, 372 - 382. https://doi. org/10.1038/ki.1978.55

  • Grigor’eva, I. N. (2020). Gallstone disease, obesity and the Firmicutes/Bacteroidetes ratio as a possible biomarker of gut dysbiosis. Journal of Personalized Medicine, 11(1), 13. https://doi. org/10.3390/jpm11010013

  • Grubbs, R. D. & Maguire, M. E. (1987). Magnesium as a regulatory cation: Criteria and Evajuation. Magnesium, 6, 113-27.

  • Güdücüoğlu, H., Bozkurt, H., Bayram, Y., Yaman, G., Berktas, M. (2004). Microorganisms isolated from bile samples of the patients who had cholecystectomy and their antibiotics susceptibilities. Genel Tıp Dergisi (Journal of General Medicine), 14(1), 13-7.

  • Hanafi, N. I., Mohamed, A. S., Kadir, S. A., Hamimah, S. & Othman, M. H. D. (2018). Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules, 8(4), 159. https:// doi.org/10.3390/biom8040159

  • Hu, H., Shao, W., Liu, Q., Liu, N., Wang, Q., Xu, J., ... & Gu, A. (2022). Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nature Communications, 13(1), 252. https://doi. org/10.1038/s41467-021-27758-8

  • Hundal, R., & Shaffer, E. A. (2014). Gallbladder cancer: epidemiology and outcome. Clinical Epidemiology, 99-109. https://doi.org/10.2147/ CLEP.S37357

  • Huner, U., Gulec, H. A. & Damar Huner, I. (2017). Effect of gas type and application distance on atmospheric pressure plasma jet-treated flax composites. Journal of Reinforced Plastics and Composites, 36(17), 1197-1210. https://doi. org/10.1177/0731684417703490

  • Iordanidis, A., Garcia-Guinea, J., Giousef, C., Angelopoulos, A., Doulgerakis, M. & Papadopoulou, L. (2013). Characterization of gallbladder stones from cholelithiasis patients of Northern Greece, using complementary techniques. Spectroscopy Letters, 46(4), 301-306. https://doi.org/10.1080/00387010.2012.728552

  • Ismail, A.A. & Ismail, N.A. (2016). Magnesium: A mineral essential for health yet generally underestimated or even ignored. J. Nutr. Food Sci, 6(2). https://doi.org/10.4172/2155-9600.1000523

  • Kabakci D., Yalcin M. G. & Elpek G. O. (2016). The Determination of the Mineralogical and Chemical Composition of Gallstones (Antalya) and Assessment in Terms of Medical Geology. 69th Geological Congress of Turkey, 11-15 April 2016, 46-47. ISBN: 978-605-01-0869-9

  • Kleiner, O., Ramesh, J., Huleihel, M., Cohen, B., Kantarovich, K., Levi, C. & Mordechai, S. (2002). A comparative study of gallstones from children and adults using FTIR spectroscopy and fluorescence microscopy. BMC Gastroenterology 2(1), 3. https://doi.org/10.1186/1471-230x-2-3

  • Kose, S. H., Grice, K., Orsi, W. D., Ballal, M. & Coolen, M. J. L. (2018). Metagenomics of pigmented and cholesterol gallstones: the putative role of bacteria. Scientific Reports, 8, Article 11218. https://doi. org/10.1038/s41598-018-29571-8

  • Kurtul, Y. H., Sahin, G., Ekin, E. E., Erok, B. & Adas G. T. (2017). Diagnostic Contribution of Magnetic Resonance Cholangiopancreatography in Biliary Obstruction: Additional Findings and Misdiagnosis. JAREM, 7, 135-9. https://doi. org/10.5152/jarem.2017.1371

  • Lammert, F., Gurusamy, K., Ko, C. W., Miquel, J. F., Mendez-Sanchez, N., Portincasa, P. & Wang, D. Q. H. (2016). Gallstones. Nature reviews Disease primers, 2(1), 1-17. https://10.1038/nrdp.2016.24

  • Liu, G., Xing, D., Wang, H. & Wu, J. (2002). Vibrational spectroscopic study of human pigment gallstones and their insoluble materials. Journal of Molecular Structure, 616(1-3), 187-191. https:// doi.org/10.1016/S0022-2860(02)00330-7

  • Mandarano, G. & Sim, J. (2008). The diagnostic MRCP examination: overcoming technical challenges to ensure clinical success. Biomedical Imaging and Intervention Journal, 4, Article e28. https://doi. org/10.2349/biij.4.4.e28

  • McBride, M.B. (1995). Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective?. Journal of Environmental Quality, 24(1), 5-18. https://doi.org/10.2134/ jeq1995.00472425002400010002x

  • Mir, M. A., Malik, U. Y., Wani, H. & Bali, B. S. (2013). Prevalence, pattern, sensitivity and resistance to antibiotics of different bacteria isolated from port site infection in low risk patients after elective laparoscopic cholecystectomy for symptomatic cholelithiasis at tertiary care hospital of Kashmir. International Wound Journal, 10(1), 110-113. https://doi.org/10.1111/j.1742- 481X.2012.00963.x

  • Moctezuma-Velázquez, C., Gómez-Sámano, M. Á., Cajas-Sánchez, M. B., Reyes-Molina, D. L., Galindo-Guzmán, M., Meza-Arana, C. E., CuevasRamos, D., Gómez-Pérez, F. J. & Gulias-Herrero, A., (2017). High dietary magnesium intake is significantly and independently associated with higher insulin sensitivity in a Mexican-mestizo population: a brief cross-sectional report. Revista de Investigación Clínica, 69(1), 40-46. https://doi. org/10.24875/ric.17002086

  • Moe, S.M. (2008). Disorders involving calcium, phosphorus, and magnesium. Primary Care: Clinics in Office Practice, 35(2), 215-237. https:// doi.org/10.1016/j.pop.2008.01.007

  • Molinero, N., Ruiz, L., Milani, C., Gutiérrez-Díaz, I., Sánchez, B., Mangifesta, M., Segura, J., Cambero, I., Campelo, A.B., García-Bernardo, C.M., Cabrera, A., Rodríguez, J.I., González, S.I., Rodríguez, J.M., Ventura, M., Delgado, S. & Margolles, A. (2019). The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome, 7(1), 100. https://doi.org/10.1186/s40168-019- 0712-8

  • Nan, X., Prabha, R. D., Rashid, M. & Patel, B. (2023). Journey of a stone-thirty years on. Journal of Surgical Case Reports, 2, rjad069. https://doi. org/10.1093/jscr/rjad069

  • Omer, L. S. (2011). Quantitative analysis in (33) traces metals in human gallstones by ICP-AES. International Journal of Chemistry, 3(2), 105. https://doi.org/10.5539/ijc.v3n2p105

  • Ortega, R. M., Fernández-Azuela, M., Encinas-Sotillos, A., Andres, P. & Lopez-Sobaler, A. M. (1997). Differences in diet and food habits between patients with gallstones and controls. Journal of the American College of Nutrition, 16(1), 88-95. https://doi.org/10.1080/07315724.1997.10718655

  • Önür, N. D. & Beyler, A. R. (2001). Safra Asitleri Metabolizmasi. Ankara Universitesi Tıp Fakültesi Mecmuası, 54(1). (in Turkish).

  • Palchik, N. A. & Moroz, T. N., (2005). Polymorph modifications of calcium carbonate in gallstones. Journal of Crystal Growth, 283(3-4), 450-456. https://doi.org/I10.1016/j.jcrysgro.2005.05.035

  • Parviainen, A., Marchesi, C., Suarez-Grau, J. M., Garrido, C. J., Perez-Lopez, R., Nieto, J. M. & Cobo-Cardenas, G. (2018). Unraveling the impact of chronic exposure to metal pollution through human gallstones. Science of the Total Environment, 624, 1031-1040. https://doi. org/10.1016/j.scitotenv.2017.12.224

  • Parviainen, A., Suarez-Grau, J. M., Perez-Lopez, R., Nieto, J. M., Garrido, C. J. & Cobo-Cardenas, G. (2016). Combined microstructural and mineralogical phase characterization of gallstones in a patient-based study in SW Spain-Implications for environmental contamination in their formation. Science of the Total Environment, 573, 433-443. https://doi.org/10.1016/j.scitotenv.2016.08.110

  • Petakovic, G., Korica, M, Gavrilovic, S., 2002. Bacteriologic examination of gallbladder contents, Med Pregl, 55(5-6):225-8. https://doi. org/10.2298/mpns0206225p

  • Pichugina, A. A., Tsyro, L.V. & Unger, F. G., (2018). IR Spectroscopy and X-Ray Phase Analysis of the Chemical Composition of Gallstones. Journal of Applied Spectroscopy, 84(6), 1024-1029. https:// doi.org/10.1007/s10812-018-0581-0

  • Portincasa P., Moschetta A., Petruzzelli M., Palasciano G., Di Ciaula A. & Pezzolla A., (2006). Gallstone disease: symptoms and diagnosis of gallbladder stones. Best Practice & Research Clinical Gastroenterology, 20, 1017–29. https://doi. org/10.1016/j.bpg.2006.05.005

  • Qiao, T., Ma, R. H., Luo, X. B., Yang, L. Q., Luo, Z. L. & Zheng, P. M. (2013). The systematic classification of gallbladder stones. PLOS One, 8(10), Article e74887. https://doi.org/10.1371/ journal.pone.0074887

  • Ramya, J. R., Arul, K. T., Epple, M., Giebel, U., Guendel-Graber, J., Jayanthi, V., Sharma, M., Rela, M. N. & Kalkura, S. N. (2017). Chemical and structural analysis of gallstones from the Indian subcontinent. Materials Science and Engineering, C, 78, 878-885. https://doi.org/10.1016/j. msec.2017.04.004

  • Rautray, T. R., Vijayan, V. & Panigrahi, S. (2007). Analysis of Indian pigment gallstones. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 255(2), 409-415 https://doi.org/10.1016/j. nimb.2006.12.147

  • Robins, S. J., Fasulo, J. M. & Patton, G. M., (1982). Lipids of pigment gallstones. Biochimica et Biophysica Acta, 712, 21–25. https://doi. org/10.1016/0005-2760(82)90079-0

  • Selinus, 0., Alloway, B., Centeno, J. A., Finkelman, R. B, Fuge, R., Lindh, U. & Smedley, P. (2005). Esential Medical Geology. 115-594. https://doi. org/10.1007/978-94-007-4375-5

  • Sharma, R., Soy, S., Kumar, C., Sachan, S. G. & Sharma, S.R. (2015). Analysis of gallstone composition and structure in Jharkhand region. Indian Journal of Gastroenterology, 34(1), 29-37. https://doi.org/10.1007/s12664-014-0523-6

  • Skar, V., Skar, A. G. & Bratlie, J. (1989). Betaglucuronidase Activity in the Bile of Gallstone Patients Both with and without Duodenal Diverticula. Scandinavian Journal of Gastroenterology, 24, 205. https://doi. org/10.3109/00365528909093038

  • Sleisenger & Fordtran. (1998). Gastrointestinal and Liver Disease, 6th ed., p. 631-644.

  • Soodan, R. K., Pakade, Y. B., Nagpal, A. & Katnoria, J. K. (2014). Analytical techniques for estimation of heavy metals in soil ecosystem. A tabulated review. Talanta, 125, 405-410. https://doi.org/10.1016/j. talanta.2014.02.033

  • Soto, J. A., Barish, M. A., Yucel, E. K., Siegenberg, D., Ferrucci, J. T. & Chuttani, R. (1996). Magnetic resonance cholangiography: comparison with endoscopic retrograde cholangio pancreatography. Gastroenterology 110(2), 589-97. https://doi. org/10.1053/gast.1996.v110.pm8566608

  • Srinivasan, K. (2016). BiologicaJ activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Critical Reviews in Food Science and Nutrition, 56(9), 1488-1500 https://doi.org/10.1080/10408398.2013.772090

  • Stinton, L. M. & Shaffer, E. A. (2012). Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut and liver, 6(2), 172. https://doi.org/10.5009/ gnl.2012.6.2.172

  • Suhara, M., Matsuda, K. & Sera, K., (1998). Elemental concentrations of four types of human gallstones by PIXE analysis. International Journal of PIXE, 8(01), 73-88. https://doi.org/10.1142/ S0129083598000091

  • Suzuki, N., (1966). On bilirubin-metal complex compounds in relation to black pigments of gallstones. The Tohoku Journal of Experimental Medicine, 90, 195-205. https://doi.org/10.1620/ tjem.90.195

  • Suzuki, N., Nakamura, Y., Kobayashi, N. & Sato, T. (1975). On metal elements in pure pigment gallstones. The Tohoku Journal of Experimental Medicine, 116(3), 233-240. https://doi. org/10.1620/tjem.116.233

  • Kabakci Kurgun, D. , Yalcın, M. G. , Elpek, G. Ö. & Volfson, I. (2023). Physical, Chemical and Mineralogical Properties of Gallstones obtained from Antalya Province of Turkey . Türkiye Jeoloji Bülteni , 66 (2) , 257-274 . DOI: 10.25288/tjb.1233117

  • FULL FILE ISSUE
    View as PDF