Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2014 AĞUSTOS Cilt 57 Sayı 3
View as PDF
View as PDF
View as PDF
Biogeochemistry of Balıkesir Balya Pb-Zn Mine Tailings Site and Its Effect On Generation of Acid Mine Drainage
Nurgül Çelik Balci Serra Gül Meryem Menekşe Kiliç Nevin Gül Karagüler Eroal Sari M. Şeref Sönmez
View as PDF

Abstract: Biogeochemical characteristsics of Balıkesir-Balya Pb-Zn Mine Waste site, known as the oldest andlargest mine tailing site in Turkey, and its influence on generation of acid mine drainage was investigatedby geochemical, molecular and microbiological approach. The oxidation of sulfide rich rocks and waste,mostly left over from Balya Pb-Zn mining activities, is generating acidic water with low pH (2.7), andcontributing to metal contamination containing up to 1.88 mg/L Pb, 24 mg/L Zn, 2.5 mg/L As ve 17 mg/LCu. Geochemical and molecular/microbiological analysis on mine waste, sediment and water samples(acidic, surface) show that acidic surface waters generated from sulfide weathering are principal pathwaysfor mobility and redistribution of environmentally important elements in the environments. Based oncultivation based microbiological analysis carried out on acidic ponds developed around and in BalyaMine waste sites , the mean acidofilic sulfur oxidizing bacteria (aSOB) and acidophilic iron oxidizingbacteria were determined as 8.4x108cell/ml ve 9.6 x107 cell/ml, respectively.The relatively low values forsurface water of Maden creek, where mine wastes reach, were determined as 3.8 x106 cell/ml ve 5.7x103cell/ml, respectively. Molecular analysis of 16S rDNA gene sequences from acidic sediment and sedimentfrom Maden Creek show the dominance of S and Fe-oxidizing prokaryotes belonging to Acidithiobacillusspp. genus in the primary drainage communities. Relatively small populations of Sulfobacillus spp.werealso determined . Moreover, species belong to Thiobacillus spp.and Thiovirga spp. genus were onlydetermined on the sediment samples from Maden creek with low acidity relative to acidic sediment. Thesesulfur oxidizer indicates a dynamic microbial population which adapt to changing geochemical conditions.Identification of Fe oxidizer and reducer along with Jarosite, plumbojarosite and goethite in the sedimentsof acidic ponds indicate significance of microbial Fe cycle governing mobilization and redistribution ofthe metals in the waste site. Overall, it is shown that microorganisms regulating S and Fe cycle in Balyamine waste site is the key factors controlling generation and chemistry of acidic drainage water.

  • Balya Pb-Zn Mine Waste Site

  • Biogeochemistry

  • Microorganims

  • Pyrite


  • Agdemir, N., Kırıkoglu, S., Lehmann, B. ve Tietze. J., 1994. Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposits, NW Turkey. Miner Deposita, 29,366–371.

  • Akyol, Z., 1978. Balya Madeni ve Atıkları Sorunu, Yeryuvarı ve İnsan, Mayıs, 68-69

  • Akyol, Z., 1980. Balıkesir, Balya, Arı-Orta Sahası Pb-Zn-Cu Cevher Yatağı Maden Jeolojisi ve Rezerv Çalışmaları, MTA Rap. No 6973.

  • Akyol. Z., 1982. Balıkesir-Balya bölgesinin jeolojisi, mineralojisi ve maden potensiyeli). Earth Sci Rev 3(1–2),168–169.

  • Aygen, T., 1956.Balya bölgesinin jeolojisi .Bull Miner Res Expl Inst Turkey D/11.

  • Aykol, A., Orgun, Y., Budakoglu, M., Turhan, M., Gultekin, AH., Yavuz, F., Esenli, V., Kumral, M,. 2002. Heavy metal pollution in Kocadere River Balya Balikesir, Turkey (in Turkey (in Turkish). 55th Geological Congress of Turkey, pp 30–31.

  • Balcı, N., Bullen, T.D., Witte-Lien ,K., Shanks, W.C., Motelica, M. ve Mandernack, K. W.,2006. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochimica et Cosmochimica Acta, 70(3), 622-639.

  • Balcı, N., W.C. Shanks, Mayer , B., ve Mandernack, K. W., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite Geochim. Cosmochim. Acta, 622-639.

  • Balcı, N. C., 2010.Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (<3) and implications for AMD environment. Earth and Environmental Sciences. 60,485–493.

  • Balcı, N., Mayer, B, Shanks, W. C., ve Mandernack, K. W., 2012. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochimica et Cosmochimica Acta 77, 335-351.

  • Benner, S.G., Gould, W.D.ve Blowes, D.W., 2000. Microbial populations associated with the generation and treatment of acid mine drainage. Chem. Geol. 169, 435–448.

  • Bigham, J.M. ve Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C.N.,Jambor, J.L., Nordstrom, D.K. (Eds.), Sulfate Minerals Crystallography, Geochemistry, and Environmental Significance. Rev. Mineral. Geochem. 40, 351–403.

  • Blowes, D.W., Jambor, J.L., Hanton-Fong, C.J., Lortie, L.ve Gould, W.D., 1998. Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Appl. Geochem. 13, 687–705.

  • Bond, P., Druschel, G.K., ve Banfield ,J.F., 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol., 66,4962-4971.

  • Brett J. Baker ve Banfield, J. F.,2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44 ( 2) 139-152.

  • Brett J. Baker ve Banfield, Jillian F., 2003.Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44( 2). pp. 139-152.

  • Brunner, B., Yu, J.-Y., Mielke, R.E., MacAskill, J.A.,Madzunkov, S., McGenity, T.J. ve Coleman, M., 2008. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth

  • Cochran, W.G., 1950. Estimation of bacterial densities by means of the most probable number. Biometrics 6, 105–116.

  • Descostes M., Mercier F., Beaucaire C., Zuddas P., ve Trocellier P., 2001. Nature and distribution of chemical species on oxidized pyrite surface: Complementarity of XPS and nuclear microprobe analysis. Nucl. Inst. Methods Phys. Res. B.,181,603– 609

  • Descostes, M., Vitorge, P.ve Beaucaire, C., 2004. Pyrite dissolution in acidic media. Geochim. Cosmochim. Acta 68, 4559– 4569.

  • Druschel, G.K., Baker, B.J., Gihring, T.H. ve Banfield, J.F., 2004. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions 5 (2), 13-32.

  • Edwards, K.J., Hu, B., Hamers, R.J. ve Banfield, J.F., 2001. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbial Ecology, 34(3): 197-206

  • Dzombak, D.A.ve Morel, F.M.M., 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley, New York.320

  • EPA (United States Environmental Protection Agency) http://water. epa.gov/scitech/swguidance/

  • Fowler, T.A., ve Crundwell, F.K.,1998. Leaching of zinc sulfide by Thiobacillus Ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl. Environ. Microbiol, 64, 3570-3575.

  • Garrels R. M. ve Thomson M. E., 1960. Oxidation of pyrite by iron sulfate solutions. Geochim. Cosmochim. Acta 68, 4559– 4569.

  • Gaudette H., Flight W., Toner L. ve Folger D., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. J. Sediment. Petrol. 44, 249-253

  • Gleisner, M., Herbert, R. B., ve Kockum P. C. F., 2006. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem. Geol. 225, 16–29.

  • Gould, W.D. ve Kapoor, A., 2003. The microbiology of acid mine drainage. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), Environmental Aspects of Mine Wastes, Short Course Series, vol. 31. Mineralogical Association of Canada, Ottawa, 203–226.

  • Gould, W.D., McCready, R.G.L., Rajan, S., Krouse, H.R., 1989. Stable isotope composition drainage in the western United States. In: Alpers, C.N., Blowes, D.W. (Eds.), Environmental Geochemistry of Sulfide Oxidation. American Chemical Society.450

  • Gül, S., 2014. Balıkesir Balya Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna etkilerinin araştırılması . İTÜ Fen Bilimleri Enstitüsü., İstanbul, Yüksek Mühendislik Tezi, s.117.

  • Hulshof, A.H.M., Blowes, D.W. ve Gould, W.D., 2006. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison. Water Res. 40, 1816–1826.

  • Johnson, D.B. ve Hallberg, K.B.,2003. The microbiology of acidic mine waters. Res Microbiol. 154(7), 466-473.

  • Kovenko V (1940) Balya lead mines (Turkey). Bull Miner Res Expl Inst Turkey 4/21:587–594

  • Moses, C.O. ve Nordstrom K., 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta,51, 1561-1571.

  • MTA, 1984, Balya (Balıkesir) Kurşun-Çinko Cevher Yatağı Ön Fizibilite Çalışması

  • Nordstrom, D.K., Alpers, C.N., Ptacek, C.J. ve Blowes, D., 2000. Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol, 34,254–258.

  • Nordstrom, D.K., ve Alpers, C.N., 1999. Geochemistry of Acid Mine Waters in, The Environmental Geochemistry of Mineral Deposits. G.S. Plumlee and M.J. Logsdon, eds. Rev. Econ. Geol. 6A,133-160.

  • Nordstrom, D.K.ve Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In: Banfield, J.F., Nealson, K.H.(Eds.), Geomicrobiology: Interactions between microbes and minerals. Rev. Mineral. 35, 361–390.

  • Öngür, T., 2003. Balya Çinko-Kurşun Madeni,Çevre Sorunları ve Toplumsal Yeniden Kalkınma. TMMOB .

  • Plumlee, G.S., 1999. The environmental geology of mineraldeposits. In: Plumlee, G.S., Logsdon, M.J. (Eds), TheEnvironmental Geochemistry of Mineral Deposits, Part A, Processes, Techniques, and Health Issues. Rev. Econ. Geol.6A, 71–116.

  • Randall, S.R., Sherman, D.M., Ragnarsdottir, K.V., 2001. Sorption of As(V) on green rust (Fe4(II) Fe(II)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): surface complexes from EXAFS spectroscopy. Geochim. Cosmochim. Acta 65 (7), 1015–1023.

  • Rimstidt, J.ve Vaughan, D., 2003. Pyrite oxidation: a state-of-theart assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880.

  • Rimstidt,J.D; Chermak, J.A., ve Gagen, M.P. 1994.Rate of reaction of Galena,Sphalerite, Chalcopyrite and Arsenopyrite with Fe (III) in Acidic solutions, Environmental geochemistry of sulfide oxidation: Washington , D.C., American chemical society, symposium series 550, 2-14.

  • Sand W., Gehrke T., Jozsa P. G. ve Schippers A. 2001. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59, 159–175.

  • Sasaki, K., Tsunekawa, M., Ohtsuka, T.ve Konno, H., 1995. Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by FeIII ions around pH 2. Geochim. Cosmochim. Acta 59, 3155–3158.

  • Schemel, L.E., Kimball, B.A.ve Bencala, K.E., 2000. Colloidal formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado. Appl. Geochem. 15, 1003–1018.

  • Schippers, A., Jozsa, P.G. ve Sand, W., 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol, 62, 3424-3431.

  • Schippers, A., Rohwerder, T. ve Sand, W., 1999. Intermediary sulfur compounds in pyrite sediments and soils. In: Amend, J.P., Edwards, K.J., Lyons, T.W. (Eds.), Sulfur Biogeochemistry — Past and Present. : Special Paper, 379. Geological Society of

  • Schippers, A., Jozsa, P.-G., Sand, W., Kovacs, Z.M. ve Jelea, M., 2000. Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiol. J. 17, 151–162.

  • Schippers, A., 2004. Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend, J.P., Edwards, K.J., Lyons, T.W. (Eds.), Sulfur Biogeochemistry — Past and Present. : Special Paper, 379. Geological Society of America, Boulder, Colorado, USA, 49–62.

  • Schippers, A. ve Bosecker, K., 2005. Bioleaching: analysis of microbial communities dissolving metal sulfides. In: Barredo, J.-L. (Ed.), Methods in Biotechnology. Microbial Processes and Products, Vol. 18. Humana Press Inc, Totowa, New York, 412.

  • Silverman, M. P. ve Lundgren, D. G., 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77, 642-647.

  • Singer P. C. ve Stumm W., 1970. Acid mine drainage: The ratelimiting step. Science 167, 1121–1123.

  • Stumm ve Morgan, 1981. Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters. John Wiley and Sons, New York, 780s.

  • Suzuki, I. ve Chan, C. W., 1994.Oxidation of inorganic sulfur compounds by Thiobacilli. Environmental geochemistry of sulfide oxidation: Washington, D.C., American chemical society, symposium series 550, 61-67.

  • Suzuki, I., Chan, C. W.,1994. Oxidation of inorganic sulfur compounds by Thiobacilli. Environmental geochemistry of sulfide oxidation: Washington , D.C., American chemical society, symposium series 550, 61-67.

  • Sweerts, J. R. A., Beer, D. D., Nielsen, L. P., Verdouw, H., Heuvel, J. C. V. d., Cohen, Y. ve Cappenberg, T. E.,1990. Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature 344, 762-763.

  • Taylor, B., ve Wheeler, M.C.,1984b. Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite . Geochimica and Cosmochimica Acta,48 : 2669-2678.

  • Taylor, B.E.ve Wheeler, M.C., 1994. Sulfur- and oxygen-isotope geochemistry of acid mine treatment of acid mine drainage: a field comparison. Water Res. 40, 1816–182

  • Çelik Balcı, N , Gül, S , Kılıç, M , Karagüler, N , Sarı, E , Sönmez, M. (2014). Balya (Balıkesir) Pb-Zn Madeni Atık Sahasının Biyojeokimyası ve Asidik Maden Drenajı Oluşumuna Etkileri. Türkiye Jeoloji Bülteni, 57(3) , 1-24. DOI: 10.25288/tjb.298704

  • Hydrochemical Changes in Geothermal Systems with Simav(Kütahya) Earthquakes
    Özkan Ateş Salih Zeki Tutkun
    View as PDF

    Abstract: Many geothermal fields in Kütahya including Eynal, Çitgöl ve Naşa (Simav), Ilıcasu-Abide (Gediz),Muratdağı, Yoncalı, Emet, Yeniceköy, Dereli, Göbel, Ilıca (Harlek), Sefaköy ve Hamamköy (Hisarcık) andŞaphane are located between Kütahya and Simav active faults in Western Turkey. Studied area in Simav(Kütahya) is situated in the north of Simav Fault and indicated as an active fault zone in the active faultmaps of Turkey. This area is fairly active region in terms of earthquakes occurred in the instrumental period and has many geothermal systems. Most of these geothermal fields are located on active fault zones.Approximately 735 earthquakes (M>3.0) occurred between May 2010 to May 2013, including 1 earthquake with the magnitude of greater than 6.0 at Gediz in 1970 and 4 earthquakes with the magnitude ofgreater than 5.0 at Simav in 2009, 2011 and 2012. Data from a monitoring study during three years (2010-2013) from thermal springs in Eynal, Çitgöl ve Naşa geothermal fields which located at Simav (Kütahya)were used in this study. This study tried to find out relationship between geothermal springs and activefaults, and relationship between hydrochemical features of geothermal waters and high seismic activity.The results of this study indicated that some physic-chemical parameters of geothermal waters change especially increasing temperature, increasing Cl- ion value and decreasing SO4-2 ion value with earthquakeswith has 5.0 and greater magnitude value.

  • Active Fault

  • Earthquake

  • Geothermal Energy

  • Kütahya

  • Simav


  • Akdeniz N. ve Konak N., 1979b. Simav-Emet-Tavşanlı -DursunbeyDemirci yörelerinin jeolojisi, MTA Gen. Müd., Rapor No: 6547, Ankara.

  • Ateş, Ö., Özden, S. ve Tutkun, S.Z., 2011. Aktif fayların jeotermal alanlarla ilişkisine bir Örnek: 19 Mayıs 2011 Simav depremi ile jeotermal kaynaklardan elde edilen verilerin anlamı, ATAG 15. Çalıştayı Bildiri Özleri Kitabı, Adana, S:58.

  • Ateş, Ö., Özden, S. ve Tutkun, S.Z., 2012. Jeotermal kaynaklarda depremlere bağlı gözlenen değişikliklere bir örnek: 19 Mayıs 2011 Simav depremi ve etkileri, 65. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, sf 14-15.

  • Ercan, T., Günay, E. ve Savaşçın, M.Y., 1982. Simav ve çevresindeki Senozoyik yaşlı volkanizmanın bölgesel yorumlanması, MTA Dergisi, 97-98, 86-101.

  • Eroğlu, A ve Aksoy, N., 2003. Jeotermal suların kimyasal analizi, VI. Ulusal Tesisat Kongresi, Jeotermal Enerji Semineri Kitapçığı, 149-183.

  • Gün, H., Akdeniz, N. ve Günay, E., 1979, Gediz ve Emet güneyi Neojen havzalarının jeolojisi ve yaş sorunları, Jeoloji Mühendisliği Derg., 8, 3-13.

  • Konak, N., 2002. 1/500000 ölçekli Türkiye Jeoloji Haritası İzmir Paftası, M.T.A., Ankara.

  • Nicholson, K.N., 1993. Geothermal Fluids, Chemistry and Exploration Techniques, xv + 263 pp. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag. Price DM 138.00, Ös 1076.40, SFr 138.00 (hard covers). ISBN 3 540 56017 3.

  • Özden, S., Tutkun, S.Z., Bekler, T., Karaca, Ö., Komut, T., Kalafat, D., Ateş, Ö., Demirci, A.,

  • Gündoğdu, E. ve Çınar Yıldız, S., 2012. Simav Fayı ile Kütahya Fayı (Emet-Orta Batı Anadolu) arasında kalan bölgenin Neotektonik ve Sismotektonik özellikleri, TÜBİTAK 109Y103 nolu proje final raporu, 235 s.

  • Şimşek, Ş. ve Yıldırım, N., 2000, Termal Kaynaklar: Depremin habercisi, 17 Ağustos ve 12 Kasım 1999 deprem bölgelerindeki termal kaynaklarda gözlenen değişimler ve önemi, Cumhuriyet, Bilim Teknik, 01 Temmuz 2000.

  • Yücel, B., Çoşkun, B., Demirci, S. ve Yıldırım, N., 1983, Simav yöresinin jeolojisi ve jeotermal enerji olanakları, MTA Der. Rap. No: 8219, 21s.

  • http://www.deprem.gov.tr/

  • Ateş, Ö , Tutkun, S . (2014). Simav (Kütahya) Depremlerinin Jeotermal Sistemlerdeki Hidrojeokimyasal Değişimleri . Türkiye Jeoloji Bülteni , 57 (3) , 25-40 . DOI: 10.25288/tjb.298711

  • Miocene-Quaternary Geodynamics of Çameli Basin, Burdur-Fethiye Shear Zone (SW Turkey)
    İrem Elitez Cenk Yaltirak
    View as PDF

    Abstract: Çameli Basin is located on the middle of the Burdur-Fethiye Shear Zone (BFSZ) which is tectonicallya very active region in southwestern Anatolia. This region is one of the locations on BFSZ which hasextensive young sediments.BFSZ is an active shear zone which is located between the eastern Aegean extensional province,the Hellenic Arc and the Isparta Angle. Its length is about 310 km and its average width is 40 km. It ischaracterized by the Middle Miocene-Quaternary aged NE-SW-trending faults and basins. One of theseintermontane basins is the Çameli Basin.Jurassic-Cretaceous aged ophiolites, recrystallized limestones and partly clastic rocks, which areknown as Lycian Nappes, and the Eosen aged turbidites, which cover them unconformably, compose thebasement of the Çameli Basin. The Middle-Lower Miocene aged Gölhisar Formation consists of meanderand braided river deposits that are conglomerate, sandstone, claystone and shalestone and locatedunconformably on this basement. Gölhisar Formation shows lateral and vertical transition to UpperMiocene-Lower Pliocene aged İbecik Formation. İbecik Formation is a lacustrine environment unit thatconsists of clay, sandy limestone, marl, clayey limestone and thick bedded limestones. Upper PlioceneLower Quaternary aged alluvial fan deposits composed of conglomerate, mudstone, silt and clay overlieuncomformably on İbecik Formation. Recent alluvium deposits settled uncomformably on this unit that isnamed the Dirmil Formation.The recent tectonic activity on the region shows that the region is under the influence of NE-SWand almost N-S extension. When considering the fault plane solutions of the earthquakes and small andlarge scale faults, NE-SW-trending left lateral and left lateral oblique normal faults and almost N-Etrending normal faults indicate a typical left lateral shear regime. Also, NE-SW, NW-SE and almost N-Strending left lateral oblique normal and normal faults in the Miocene aged sediments are evidence of theshear and rotation on the region.The evolution of Çameli Basin began with a predominant compressional regime in the EarlyMiocene and proceeded with a left lateral movement in the Middle-Late Miocene. The basin is still situatedwithin a Pliocene-Recent aged left lateral extensional regime.

  • Çameli Basin

  • Burdur-Fethiye Shear Zone

  • Southwestern Turkey

  • active tectonics


  • Akyüz, H.S. ve Altunel, E., 1997. 417 Cibyra depremi: BurdurFethiye Fay Zonu’nun sol-yanal hareketine ait veriler (GB Anadolu). Aktif Tektonik Araştırma Grubu Birinci Toplantısı, İTÜ, İstanbul, 8-9 Aralık 1997, 161-170.

  • Akyüz, H.S. ve Altunel, E., 2001. Geological and archaeological evidence for post-Roman earthquake surface faulting at Cibyra, SW Turkey. Geodinamica Acta, 14, 95-101.

  • Alçiçek, M.C., 2001. Çameli Havzasının Sedimantolojik İncelenmesi (Geç Miyosen-Geç Pliyosen, Denizli, GB Anadolu). Ankara Üniversitesi Fen Bil. Enst., Ankara, Doktora Tezi, 110 s.

  • Alçiçek, M.C., Kazancı, N., Çemen, I., ve Özkul, M., 2002. Strikeslip faulting in the Çameli basin, southwestern Turkey: implications for inland transform prolongation of the Hellenic subduction zone. Denver Annual Meeting, 27- 30 October 2002.

  • Alçiçek, M.C., Kazancı, N., Özkul, M. ve Şen, Ş., 2004. Çameli (Denizli) Neojen Havzasının Tortul Dolgusu ve Jeolojik Evrimi. MTA Dergisi, 128, 99-123.

  • Alçiçek, M.C., Kazancı, N. ve Özkul, M., 2005. Multiple rifting pulses and sedimentation pattern in the Çameli Basin, southwestern Anatolia, Turkey. Sedimentary Geology, 173, 409-431.

  • Alçiçek, M.C., Kazancı, N. Ve Özkul, M. 2005. Üst Miyosen-Üst Pliyosen Çameli Formasyonu’nun litostratigrafisi ve alt bölümleri, Çameli Havzası, GB Anadolu. Türkiye Stratigrafi Komitesi 5. Çalıştayı. Batı Anadolu Tersiyer Karasal Çökellerinin Litostratigrafik Adlamaları, 5-6 Mayıs, 1-2, Ankara.

  • Alçiçek, M.C. ve Özkul, M., 2005. Extensional faulting induced tufa precipitation in the Neogene Çameli Basin of southwestern Anatolia, Turkey. Proceeding of the First International Symposium on Travertines and Technologies Exhibition, Denizli, Türkiye, 21-25 Eylül 2005, 120-127.

  • Alçiçek, M.C., Veen, J.H.T. ve Özkul, M., 2006. Neotectonic development of the Çameli Basin, southwestern Anatolia, Turkey. In: Robertson, A.H.F. and Mountrakis, D. (eds), Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260, 591-611.

  • Altınlı, E., 1955. Denizli güneyinin jeolojik incelemesi. İstanbul Üniversitesi Fen Fak. Mecmuası B.XX, 1/2, 1-47.

  • Barka, A.A., 1992. The north Anatolian fault zone, Annales Tectonicae Sp. Publ., 6, 164-195.

  • Barka, A., Reilinger, R., Şaroğlu, F. ve Şengor, C., 1995. The Isparta Angle: Its importance in the neotectonics of the eastern Mediterranean region. International Earth Sciences Colloquium on the Aegean Region, O. Pişkin, M. Ergun, Y. Savaşçın, G. Tarcan (Eds.), 3-18, 9-14 Ekim 1995, İzmir - Göllük, Türkiye.

  • Barka, A., Reilinger, R., Saroğlu, F. ve Şengör, A.M.C., 1997. The Isparta Angle: its importance in the neotectonics of the eastern Mediterranean region. International Earth Sciences Colloquium on the Aegean Region (IESCA-1995), Proceedings 1, 3-17.

  • Becker-Platen, J.D., 1970. Lithostratigraphische Unterschungen im Kanozoikum Südwet Anotoliens (Türkei)-(Kanozoikum und Braunkahlen der Turkei). Beihefte zum Geologischen Jahrbuch, 97, 244.

  • Bozcu, M., Yağmurlu, F. ve Şentürk. M., 2007. Fethiye-Burdur Fay Zonunun Bazı Neotektonik ve Paleosismolojik Özellikleri, GB-Türkiye. Jeoloji Mühendisliği Dergisi, 31(1), 25-48.

  • Brunn, J. H., de Graciansky, P. C., Gutnic, M., Juteau, T., Lefevre, R., Marcoux, J., Monod, O. ve Poisson, A., 1970. Structures majeures et corrélations stratigraphiques dans les Taurides occidentales. Bulletin de la Societe geologique de France, 3, 515-556.

  • Collins, A. S. ve Robertson, A. H., 1997. Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology, 25(3), 255-258.

  • Collins, A. S. ve Robertson, A. H., 1998. Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society, 155(5), 759-772.

  • Çağlar, M.F. ve Şahin, Ş., 2003. Artificial Neural Network Magnitude Prediction on the Burdur Fault Activities. International Conference on Earth Sciences and Electronics-2003, 1-12.

  • Dolmaz, M.N., 2007. An aspect of the subsurface structure of the Burdur-Isparta area, SW Anatolia, based on gravity and aeromagnetic data, and some tectonic implications. Earth Planets and Space, 59, 5-12.

  • Elitez, İ., 2010. Çameli ve Gölhisar Havzalarının MiyosenKuvaterner Jeodinamiği, Burdur-Fethiye Fay Zonu, GB Türkiye. İTÜ Avrasya Yer Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 72 s (yayınlanmamış).

  • Elitez, İ., Yaltırak, C. ve Akkök, R., 2009. Morphotectonic Evolution of the Middle of Burdur-Fethiye Fault Zone: Acıpayam, Gölhisar and Çameli Area, SW Turkey. International Symposium on Historical Earthquakes and Conservation of Monuments and Sites in the Eastern Mediterranean Region 500th Anniversary Year of the 1509 September 10 Marmara Earthquake, 10-12 Eylül 2009, İstanbul, Proceedings, 296-297.

  • Elitez, İ., Yaltırak, C. ve Akkök, R., 2011. Çameli, Gölhisar ve Acıpayam Havzalarının Miyosen-Kuvaterner Jeodinamiği, Burdur-Fethiye Fay Zonu, GB Türkiye. 64. Türkiye Jeoloji Kurultayı, 25-29 Nisan 2011, Ankara.

  • Elitez, İ., ve Yaltırak, C., 2014. Burdur-Fethiye Shear Zone (Eastern Mediterranean, SW Turkey). General Assembly European Geosciences Union (EGU), 27 Nisan-2 Mayıs 2014, Viyana, Avusturya.

  • Erakman, B., Meşhur, M., Gül, M.A., Alkan, H., Öztaş, Y. ve Akpınar, M., 1982. Toros projesine bağlı KalkanKöyceğiz-Çameli-Tefenni arasında kalan alanın jeolojisi ve hidrokarbon olanakları raporu. Türkiye Doğalgaz ve Petrol Anonim Ortaklığı (TPAO), Ankara, Teknik Rapor, 1732.

  • Erdoğan, S. ve Şahin, M., 2006. Burdur Fethiye fay zonu tektonik hareketlerinin GPS ile belirlenmesi. İTÜ Dergisi, 5, 135- 141.

  • Erdoğan, S., Şahin, M., Yavaşoğlu, H., Tiryakioğlu, I., Erden, T., Karaman, H., Tarı, E., Bilgi, S., Tüysüz, O., Baybura, T., Taktak, F., Telli, A.K., Güllü, M., Yilmaz, I., Gokalp, E. ve Boz, Y., 2008. Monitoring of deformations along Burdur Fethiye fault zone with GPS. Journal of Earthquake Engineering, 12, 109-118.

  • Ersoy, Ş., 1989. Fethiye (Muğla)-Gölhisar (Burdur) arasında Güneydağı ile Kelebekli Dağ ve dolaylarının jeolojisi. İÜ. Fen Bilimi Ens., İstanbul, Doktora Tezi, 246 s. (yayınlanmamış).

  • Eyidoǧan, H. ve Barka, A., 1996. The 1 October 1995 Dinar earthquake, SW Turkey. Terra Nova, 8(5), 479-485.

  • Fossen, H., Teyssier, C. ve Whitney, D. L., 2013. Transtensional folding. Journal of Structural Geology, 56, 89-102.

  • Glover, C. ve Robertson, A., 1998. Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298, 103-132.

  • Göktaş, F., 1990. Denizli M22-b1, b2, b3 paftalarının jeolojisi. MTA Rap. No. 9114, Ankara (yayımlanmamış).

  • Gürer, A., Bayrak, M. ve Gürer, O.F., 2004. Magnetotelluric images of the crust and mantle in the southwestem Taurides, Turkey. Tectonophysics, 391, 109-120.

  • Hall, J., Aksu, A.E., Elitez, I., Yaltırak, C. ve Çifçi, G., 2014. The Fethiye-Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, doi: 10.1016/j. tecto.2014.05.002

  • Hall, J., Aksu, A.E.,Yaltirak, C. ve Winsor, J.D., 2009. Structural Architecture of the Rhodes Basin: A Deep Depocentre that Evolved since the Pliocene at the Junction of Hellenic and Cyprus Arcs, Eastern Mediterranean. Marine Geology, 258, 1-23.

  • Kalyoncuoğlu, Ü.Y. ve Özer, M.F., 2003. Isparta Sismograf İstasyonu Altındaki Kabuk Yapısının Belirlenmesi: DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 5, 111-127.

  • Kara, H., 1976. Acıpayam (Denizli) ovasının ve civarındaki Neojen havzalarının jeolojik etüdü, MTA Enst., Derleme Rap. No: 6153 (yayınlanmamış).

  • Kazancı, N., Alçiçek, M.C., Özkul, M., Şen, Ş. ve Erten, H., 2002. Çameli Neojen Havzasının sedimantolojisi. Proje kesin raporu, TÜBİTAK-YDABAG 100 Y 004, 119 s., Ankara.

  • Kissel, C. ve Poisson, A., 1986. Etude paleomagnetique prelininaire des formations Cenozoique des Bey Dağları (Taurides occidentales - Turquie). C.R. Acad. Sci., Paris, 302 Ser. 11(8), 343-348.

  • Meşhur, M. ve Akpınar, M., 1984. Yatağan-Milas-Bodrum-KaracasuKale-Acıpayam-Tavas civarının jeolojisi ve petrol olanakları. TPAO Rap. No: 1963 (yayımlanmamış).

  • Meşhur, M. ve Yoldemir, O., 1983. Köyceğiz (Muğla)-Datça (Muğla)-Yatağan (Muğla)-Kale (Denizli) arasında kalan alanın jeolojisi ve petrol olanakları. TPAO Rap. No. 1847 (yayımlanmamış).

  • Ocakoğlu, N., 2011. Investigation of Fethiye-Marmaris Bay (SW Anatolia): seismic and morphologic evidences from the missing link between the Pliny Trench and the FethiyeBurdur Fault Zone. Geo-Marine Letters, 32, 17-28.

  • Önalan, M., 1979, Elmalı-Kaş (Antalya) arasındaki bölgenin jeolojisi. İ.Ü. Fen Fakültesi Monografileri, 29, İstanbul, Doktora Tezi, l40 s (yayınlanmamış).

  • Över, S., Pınar, A., Özden, S., Yılmaz, H., Ünlügenç, U. C. ve Kamacı, Z., 2010. Late cenozoic stress field in the Cameli Basin, SW Turkey. Tectonophysics, 492(1), 60-72.

  • Över, S., Yılmaz, H., Pınar, A., Özden, S., Ünlügenç, U.C. ve Kamacı, Z., 2013. Plio-Quaternary Stress State in the Burdur Basin, SW-Turkey. Tectonophysics, 588, 56-68.

  • Özkaptan, M., Koç, A., Lefebvre, C., Gülyüz, E., Uzel, B., Kaymakçı, N., Langereis, C.G., Özacar, A.A. ve Sözbilir, H., 2014. Kinematics of SW Anatolia implications on crustal deformation above slab tear. General Assembly European Geosciences Union (EGU), 27 Nisan-2 Mayıs 2014, Viyana, Avusturya.

  • Paradisopoulou, P.M., Papadimitriou, E.E., Karakostas, V.G., Taymaz, T., Kilias, A. ve Yolsal, S., 2010. Seismic Hazard Evaluation in Western Turkey as Revealed by Stress Transfer and Time-dependent Probability Calculations. Pure and Applied Geophysics, 167, 1013-1048.

  • Paton, S., 1992. The relationship between extension and volcanism in western Turkey, the Aegean Sea and central Greece. Cambridge Üniversitesi, Doktora Tezi, 300 s (yayınlanmamış).

  • Pınar, A., 1998. Source inversion of the October 1, 1995, Dinar earthquake (Ms = 6.1): a rupture model with implications for seismotectonics in SW Turkey. Tectonophysics, 292(3), 255-266.

  • Savaşçın, M.Y. ve Oyman, T., 1998. Tectono–Magmatic Evolution of Alkaline Volcanics at the Kırka–Afyon–Isparta Structural Trend, Sw Turkey. Turkish Journal of Earth Sciences, 7, 201-214.

  • Schreurs, G. ve Colletta, B., 1998. Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R.E., Strachan, R.A., Dewey, J.F. (Eds.), Continental Transpressional and Transtensional Tectonics. Geological Society Special Publications 135, 59–79.

  • Schreurs, G. ve Colletta, B., 2003. Analogue modelling of continental transpression. In: Schellart, W.P., Passchier, C. (Eds.), Analogue Modelling of Large-scale Tectonic Processes. Journal of the Virtual Explorer 7, 103–114.

  • Şenel, M., 1997. MTA Genel Müdürlüğü, 1:100 000 ölçekli Türkiye Jeoloji Haritaları Serisi, Denizli-K9 Paftası, No:17, MTA Jeoloji Etütleri Dairesi, Ankara.

  • Şengör, A. M. ve Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3), 181-241.

  • Şengör, A.M.C., 1979. The North Anatolian transform fault: its age, offset and tectonic significance. Jour. Geol. Soc. London. vol. 136, 269-282.

  • Similox-Tohon, D., Vanneste, K., Sintubin, M., Muchez, P. ve Waelkens, M., 2004. Two-dimensional resistivity imaging: a tool in archaeoseismology. An example from ancient Sagalassos (SW Turkey). Archaeological Prospection, 11, 1–18.

  • Sintubin, M., Muchez, Ph., Similox-Tohon, D., Verhaert, G., Paulissen, E. ve Waelkens, M., 2003. Seismic catastrophes at the ancient city of Sagalassos (SW Turkey) and their implications for the seismotectonics in the Burdur-Isparta area. Geological Journal, 38, 359–74.

  • ten Veen, J.H., 2004. Extension of Hellenic forearc shear zones in SW Turkey: the Pliocene-Quaternary deformation of the Esen Cay Basin. Journal of Geodynamics, 37, 181-204.

  • ten Veen, J.H., Boulton, S.J. ve Alcicek, M.C., 2008. From palaeotectonics to neotectonics in the Neotethys realm: The importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics, 473, 261-281.

  • USGS (U.S. Geological Survey), 2014. http://earthquake.usgs.gov, 24 Mart 2014.

  • Verhaert, G., Muchez, P., Sintubin, M., Similox, Tohon, D., Vandycke, S., Keppens, E., Hodge, E.J. ve Richards, D. A., 2004. Origin of palaeofluids in a normal fault setting in the Aegean region. Geofluids, 4(4), 300-314.

  • Verhaert, G., Similox-Tohon, D., Vandycke, S., Sintubin, M. ve Muchez, P., 2006. Different stress states in the BurdurIsparta region (SW Turkey) since Late Miocene times: a reflection of a transient stress regime. Journal of Structural Geology, 28, 1067-1083.

  • Yağmurlu, F. ve Şentürk, M., 2005. Güneybatı Anadolu’nun Güncel Tektonik Yapısı. Türkiye Kuvaterner Sempozyumu, İTÜ Avrasya Yer Bilimleri Enstitüsü, 2-5 Haziran 2005, İstanbul, 55-61.

  • Yağmurlu, F., Savaşçın, Y., ve Ergün, M., 1997. Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW Turkey. The journal of geology, 105(6), 717-728.

  • Yaltırak, C., Elitez, İ., Aksu, A., Hall, J., Çiftçi, G., Dondurur, D., Akkök, R., Küçük, M. ve Güneş, P., 2010. The Relationship and Evolution of the Burdur-Fethiye Fault Zone, the Rhodes Basin, Anaximander Seamounts, the Antalya Gulf and the Isparta Angle since Miocene to Recent in Tectonics of the Eastern Mediterranean. 63. Türkiye Jeoloji Kurultayı, 5-9 Nisan 2010, Ankara.

  • Yaltırak, C., Işler, E. B., Aksu, A. E., ve Hiscott, R. N., 2012. Evolution of the Bababurnu Basin and shelf of the Biga Peninsula: western extension of the middle strand of the North Anatolian Fault Zone, Northeast Aegean Sea, Turkey. Journal of Asian Earth Sciences, 57, 103-119.

  • Elitez, İ , Yaltırak, C . (2014). Çameli Havzası’nın Miyosen-Kuvaterner Jeodinamiği, Burdur-Fethiye Makaslama Zonu (GB Türkiye) . Türkiye Jeoloji Bülteni , 57 (3) , 41-67 . DOI: 10.25288/tjb.298714

  • View as PDF