Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2019 AĞUSTOS Cilt 62 Sayı 3
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Sedimentary Traces of Tsunamis in the Aegean Sea During the Last 1500 Years, (Karine Lagoon, W Turkey)
Ulaş Avşar
View as PDF

Abstract: As high energy tsunami waves reach shallow near-shore environments, the height of the waves increasesand sea water propagates towards the land. During this movement, significant amounts of sediment are transportedinland from the nearshore, foreshore and beach. While a lagoon that is separated from the sea by a low, thin sandbarrier has a relatively calm depositional environment under normal conditions, during a tsunami the sea waterclimbs over the sand barrier and deposits material from the nearshore, foreshore and sand barrier onto inner partsof the lagoon. This phenomenon is the reason why investigation of sedimentary sequences in lagoons reveals thesedimentary traces of past tsunamis. In this study, the physical and geochemical properties of sediments in two ca.3.2 m-long cores collected from Karine Lagoon on the coast of Aydın-Söke (western Turkey) were investigated inorder to determine the traces of past tsunamis in the Aegean Sea. An ITRAX micro-XRF scanner was used to obtain0.2 mm-resolution radiographic images and 1mm-resolution XRF data from the cores. High-resolution analysis detected three heterogeneous and high-density intercalations within the relatively homogenous and occasionallylaminated background sediments. XRF data revealed that these intercalations had significantly higher Ca/Ti valuescompared to the background sediments, i.e. they were rich in carbonates. Observation under a stereo-microscopedetermined that while the background sediments contained fresh bivalve shells smaller than 1 cm in diameter, theintercalations contained weathered/broken bivalve shells approximately 4 cm in diameter. Considering the physicaland geochemical observations together, it was concluded that the intercalations containing relatively coarser andintensely-weathered bivalve shells are deposits that were transported from the sand barrier of the lagoon duringtsunamis. Radiocarbon dating shows that three intercalations in the sequence of Karine Lagoon were depositedduring the tsunamis, from AD 1956, 1650 and 1303.  

  • Karine Lagoon

  • core radiography

  • ITRAX micro-XRF scanner

  • radiocarbon

  • paleotsunami

  • Alpar, B., Ünlü, S., Altınok, Y., Özer, N. ve Aksu, A., 2012. New approaches in assessment of tsunami deposits in Dalaman (SW Turkey). Natural Hazards, 63, 181-195.

  • Avşar, U., 2019. Sedimentary geochemical evidence of historical tsunamis in the Eastern Mediterranean from Ölüdeniz Lagoon, SW Turkey. Journal of Paleolimnology, 61 (3), 373-385.

  • Baranes, H.E., Woodruff, J.D., Wallace, D.J., Kanamaru, K. ve Cook, T.L., 2016. Sedimentological records of the C.E. 1707 Hoei Nankai Trough tsunami in the Bungo Channel, southwestern Japan. Natural Hazards, 84, 1185-1205.

  • Bertrand, S., Doner, L., Akçer Ön, S., Sancar, U., Schudack, U., Mischke, S., Çağatay, M.N. ve Leroy, S.A.G., 2011. Sedimentary record of coseismic subsidence in Hersek coastal lagoon (Izmit Bay, Turkey) and the late Holocene activity of the North An

  • Bronk Ramsey, C., 2017. OxCal Program v. 4.3.2”. University of Oxford, Radiocarbon Accelerator Unit.

  • Bruins, H.J., MacGillivray, J.A., Synolakis, C.E., Benjamini, C., Keller, J., Kisch, H.J., Klügel, A. ve van der Plicht, J., 2008. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Arch

  • Chagué-Goff, C., 2010. Chemical signatures of palaeotsunamis: A forgotten proxy?. Marine Geology, 271, 67–71.

  • Chagué-Goff, C., Schneider, J.L., Goff, J.R., DomineyHowes, D. ve Strotz, L., 2011. Expanding the proxy toolkit to help identify past events - Lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth Science Reviews, 107,

  • Chagué-Goff, C., Szczuciński, W. ve Shinozaki, T., 2017. Applications of geochemistry in tsunami research: A review. Earth Science Reviews, 165, 203-244.

  • Clark, K., Cochran, U. ve Mazengarb, C., 2011. Holocene coastal evolution and evidence for paleotsunami from a tectonically stable region, Tasmania, Australia. Holocene, 21, 883-895.

  • Croudace, I.W. ve Rothwell, R.G., 2015. Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us?, I.W. Croudace ve R.G. Rothwell (Eds.). Micro-XRF Studies of Sediment Cores, Developments in Paleoenvironmental Research

  • Dominey-Howes, D.T.M., Papadopoulos, G.A. ve Dawson, A.G., 2000a. Geological and Historical Investigation of the 1650 Mt. Columbo Eruption and Tsunami, Aegean Sea, Greece. Natural Hazards, 21, 83–96.

  • Dominey-Howes, D.T.M., Cundy, A. ve Croudace, I., 2000b. High energy marine flood deposits on Astypalaea Island, Greece: possible evidence for the AD 1956 southern Aegean tsunami. Marine Geology, 163, 303–315.

  • Donato, S.V., Reinhardt, E.G., Boyce, J.I., Pilarczyk, J.E. ve Jupp, B.P., 2009. Particle-size distribution of inferred tsunami deposits in Sur Lagoon, Sultanate of Oman. Marine Geology, 257, 54–64.

  • Dura, T., Cisternas, M., Horton, B.P., Ely, L.L., Nelson, A.R., Wesson, R.L. ve Pilarczyk, J.E., 2015. Coastal evidence for Holocene subductionzone earthquakes and tsunamis in central Chile. Quaternary Science Reviews, 113, 93-111.

  • Emre, Ö., Doğan, A. ve Özalp, S., 2011. 1:250.000 Ölçekli Türkiye Diri Fay Haritaları Serisi. Maden Tetkik ve Arama Genel Müdürlüğü, AnkaraTürkiye.

  • Fischer, P., Finkler, C., Röbke, B.R., Baika, K., Hadler, H., Willershäuser, T., Rigakou, D., Metallinou, G. ve Vött, A., 2016. Impact of Holocene tsunamis detected in lagoonal environments on Corfu (Ionian Islands, Greece) - geomorphological, sedime

  • Galanopoulos, A.G., 1957. The seismic sea-wave of 9 Iouliou 1956. Praktika Academy Athens, 32 pp. 90–101 (in Greek with Engl. abstr.).

  • Goodman-Tchernov, B.N., Dey, H.W., Reinhardt, E.G., McCoy, F. ve Mart, Y., 2009. Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology, 37, 943- 946.

  • Goff, J., Lamarche, G., Pelletier, B., Chague-Goff, C. ve Strotz, L., 2011. Predecessors to the 2009 South Pacific tsunami in the Wallis and Futuna archipelago. Earth Science Reviews, 107, 91–106.

  • Graehl, N.A., Kelsey, H.M., Witter, R.C., HemphillHaley, E. ve Engelhart, S.E., 2015. Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA. Geologica

  • Gutierrez-Mas, J.M., Lopez-Arroyo, J. ve Morales, J.A., 2009. Recent marine lithofacies in Cadiz Bay (SW Spain) Sequences, processes and control factors. Sedimentary Geology, 218, 31–47.

  • ITIC, 2018. International Tsunami Information Center. http://itic.ioc-unesco.org

  • Jackson, K.L., Eberli, G.P., Amelung, F., McFadden, M.A., Moore, A.L., Rankey, E.C. ve Jayasena, H.A.H., 2014. Holocene Indian Ocean tsunami history in Sri Lanka. Geology, 42, 859-862.

  • Kelsey, H.M., Nelson, A.R., Hemphill-Haley, E. ve Witter, R.C., 2005. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geological Society of America Bulletin, 117, 1009-1032.

  • Kempf, P., Moernaut, J., Van Daele, M., Vermassen, F., Vandoorne, W., Pino, M., Urrutia, R., Schmidt, S., Garrett, E. ve De Batist, M., 2015. The sedimentary record of the 1960 tsunami in two coastal lakes on Isla de Chiloé, south central Chile. Sedi

  • Kempf, P., Moernaut, J., Van Daele, M., Vandoorne, W., Pino, M., Urrutia, R. ve De Batist, M., 2017. Coastal lake sediments reveal 5500 years of tsunami history in south central Chile. Quaternary Science Reviews, 161, 99-116.

  • Kitamura, A., Fujiwara, O., Shinohara, K., Akaike, S., Masuda, T., Ogura, K., Urano, Y., Kobayashi, K., Tamaki, C. ve Mori, H., 2013. Identifying possible tsunami deposits on the Shizuoka Plain, Japan and their correlation with earthquake activity ov

  • Mamo, B., Strotz, L. ve Dominey-Howes, D., 2009. Tsunami sediments and their foraminiferal assemblages. Earth Science Reviews, 96, 263- 278.

  • Mathes-Schmidt, M., Schwarzbauer, J., Papanikolaou, I., Syberberg, F., Thiele, A., Wittkopp, F. ve Reicherter, K., 2013. Geochemical and micropaleontological investigations of tsunamigenic layers along the Thracian Coast (Northern Aegean Sea, Greece)

  • May, S.M., Vött, A., Brückner, H. ve Smedile, A. 2012a. The Gyra washover fan in the Lefkada Lagoon, NW Greece—possible evidence of the 365 AD Crete earthquake and tsunami. Earth, Planets and Space, 64, 859–874.

  • May, S.M., Vött, A., Brückner, H., Grapmayer, R., Handl, M. ve Wennrich, V., 2012b. The Lefkada barrier and beachrock system (NW Greece) — Controls on coastal evolution and the significance of extreme wave events. Geomorphology, 139- 140, 330-347.

  • Minoura, K., Imamura, F., Kuran, U., Nakamura, T., Papadopoulos, G.A., Takahashi, T. ve Yalçıner, A.C., 2000. Discovery of Minoan tsunami deposits. Geology, 28, 59-62.

  • Mischke, S., Schudack, U., Bertrand, S. ve Leroy, S.A.G., 2012. Ostracods from a Marmara Sea lagoon (Turkey) as tsunami indicators. Quaternary International, 261, 156-161.

  • Nanayama, F., Furukawa, R., Kiyoyuki, S., Makino, A., Soeda, Y. ve Igarashi, Y., 2007. Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sedimentary Geology, 200, 275-294.

  • NCEI/WDS, 2019. Global Historical Tsunami Database. NOAA National Centers for Environmental Information. Doi: 10.7289/V5PN93H7 [Erişim tarihi: 19.01.2019]

  • Papadopoulos, G.A. ve Imamura, F., 2001. A proposal for a new tsunami intensity scale. Proceedings of the International Tsunami Symposium 2001, Seattle, 569–577.

  • Papadopoulos, G.A., Minoura, K., Imamura, F., Kuran, U., Yalçiner, A., Fokaefs, A. ve Takahashi, T., 2012. Geological evidence of tsunamis and earthquakes at the Eastern Hellenic Arc: correlation with historical seismicity in the eastern Mediterranea

  • Papadopoulos, G.A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P.M., Pantosti, D., González, M., Yalciner, A.C., Mascle, J., Sakellariou, D., Salamon, A., Tinti, S., Karastathis, V., Fokaefs, A., Camerlenghi, A., Novikova, T. ve Papageorgiou,

  • Peterson, C.D., Carver, G.A., Cruikshank, K.M., Abramson, H.F., Garrison-Laney, C.E. ve Dengler, L.A., 2011. Evaluation of the use of paleotsunami deposits to reconstruct inundation distance and runup heights associated with prehistoric inundation ev

  • Pilarczyk, J.E. ve Reinhardt, E.G., 2012. Testing foraminiferal taphonomy as a tsunami indicator in a shallow arid system lagoon: Sur, Sultanate of Oman. Marine Geology, 295-298, 128-136.

  • Pirazzoli, P.A., Ausseil-Badie, J., Giresse, P., Hadjidakit, E. ve Arnold, M., 1992. Historical environmental changes at Phalasarna harbour, West Crete. Geoarchaeology, 7, 371-392.

  • Ramírez-Herrera, M.T., Lagos, M., Hutchinson, I., Kostoglodov, V., Machain, M.L., Caballero, M., Goguitchaichvili, A., Aguilar, B., Chagué-Goff, C., Goff, J., Ruiz-Fernández, A.C., Ortiz, M., Nava, H., Bautista, F., Lopez, G.I. ve Quintana, P., 2012.

  • Razjigaeva, N.G., Ganzey, L.A., Grebennikova, T.A., Ivanova, E.D., Kharlamov, A.A., Kaistrenko, V.M., Arslanov, Kh.A. ve Chernov, S.B., 2014. The Tohoku Tsunami of 11 March 2011: The Key Event to Understanding Tsunami Sedimentation on the Coasts of C

  • Reimer, P.J., vd., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves, 0-50,000 years cal BP. Radiocarbon, 55 (4), 1869-1887.

  • Röbke, B.R. ve Vött, A., 2017. The tsunami phenomenon. Progress in Oceanography, 159, 296-322.

  • Ruiz, F., Abad, M., Cáceres, L.M., Vidal, J.R., Carretero, M.I., Pozo, M. ve González-Regalado, M.L., 2010. Ostracods as tsunami tracers in Holocene sequences. Quaternary Research, 73, 130-135.

  • Sakellariou, D. ve Tsampouraki-Kraounaki, K., 2019. Plio-Quaternary Extension and StrikeSlip Tectonics in the Aegean. Duarte, J.C. (ed.), Transform Plate Boundaries and Fracture Zones. Elsevier. 478 s.

  • Sawai, Y., Kamataki, T., Shishikura, M., Nasu, H., Okamura, Y., Satake, K., Thomson, K.H., Matsumoto, D., Fujii, Y., Komatsubara, J. ve Aung, T.T., 2009. Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hok

  • Scheffers, A. ve Scheffers, S., 2007. Tsunami deposits on the coastline of west Crete (Greece). Earth and Planetary Science Letters, 259, 613-624.

  • Smedile, A., De Martini, P.M., Pantosti, D., Bellucci, L., Del Carlo, P., Gasperini, L., Pirrotta, C., Polonia, A. ve Boschi, E., 2011. Possible tsunami signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily-Italy). Marine Ge

  • Stuiver, M. ve Polach, H. A., 1977. Discussion: Reporting of 14C data. Radiocarbon, 19, 355-363.

  • Tjallingii, R., Röhl, U., Kölling, M. ve Bickert, T., 2007. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry Geophysics Geosystems, 8, 1-12.

  • Tyuleneva, N., Braun, Y., Katz, T., Suchkov, I. ve Goodman-Tchernov, B., 2018. A new chalcolithicera tsunami event identified in the offshore sedimentary record of Jisr al-Zarka (Israel). Marine Geology, 396, 67-78.

  • van den Bergh, G.D., Boer, W., de Haas, H., van Weering, Tj.C.E. ve van Wijhe, R., 2003. Shallow marine tsunami deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption. Marine Geology, 197, 13-34.

  • Vött, A., Brüeckner, H., Brockmüeller, S., Handl, M., May, S.M., Gaki-Papanastassiou, K., Herd, R., Lang, F., Maroukian, H., Nelle, O. ve Papanastassiou, D., 2009. Traces of Holocene tsunamis across the Sound of Lefkada, NW Greece. Global and Planeta

  • Vött, A., Lang, F., Brüeckner, H., Gaki-Papanastassiou, K., Maroukian, H., Papanastassiou, D., Giannikos, A., Hadler, H., Handl, M., Ntageretzis, K., Willershaeuser, T. ve Zander, A., 2011. Sedimentological and geoarchaeological evidence of multiple

  • Vött, A., Bruins, H.J., Gawehn, M., GoodmanTchernov, B.N., De Martini, P.M., Kelletat, D., Mastronuzzi, G., Reicherter, K., Röbke, B.R., Scheffers, A., Willershauser, T., Avramidis, P., Bellanova, P., Costa, P.J.M., Finkler, C., Hadler, H., Koster, B

  • Wagner, B., Bennike, O., Klug, M. ve Cremer, H., 2007. First indication of Storegga tsunami deposits from East Greenland. Journal of Quaternary Science, 22, 321-325.

  • Werner, V., Baika, K., Fischer, P., Hadler, H., Obrocki, L., Willershäuser, T., Tzigounaki, A., Tsigkou, A., Reicherter, K., Papanikolaou, I., Emde, K. ve Vött, A., 2018. The sedimentary and geomorphological imprint of the AD 365 tsunami on the coast

  • Werner, V., Baika, K., Tzigounaki, A., Reicherter, K., Papanikolaou, I., Emde, K., Fischer, P. ve Vött, A., 2019. Mid-Holocene tectonic geomorphology of northern Crete deduced from a coastal sedimentary archive near Rethymnon and a Late Bronze Age Sa


  • Avşar, U . (2019). Son 1500 Yıl Boyunca Ege Denizi’ndeki Tsunamilerin Sedimanter İzleri . Türkiye Jeoloji Bülteni , 62 (3) , 199-220 . DOI: 10.25288/tjb.545990

  • Investigation of Relative Tectonic Activity of the Northeastern Part of the Fethiye Burdur Fault Zone (Burdur-Southwestern Anatolia) by Geomorphic Indices
    Berkant Coşkuner Yaşar Eren Ramazan Demircioğlu Rahmi Aksoy
    View as PDF

    Abstract: This study aims to investigate the tectonic activity with geomorphological indices within Burdur andYarışlı Basins in the south of Burdur. The study area consists of Jurassic– Cretaceous ophiolitic melange, LateTriassic-Early Jurassic recrystallized limestone, Late Miocene – Early Pliocene marl and clayed limestone and LatePliocene – Early Pleistocene alluvial fan deposit. The study area covers the NE section of the Fethiye - Burdur FaultZone (FBFZ). The FBFZ, which caused many earthquakes in historical and instrumental periods, is representedby NE-SW trending Burdur, Karakent, Karacaören faults and NW-SE trending Karaçal fault. In addition there aremany small scale faults in the area. In order to determine the tectonic activity of the region, some geomorphologicalindices such as Mountain-Front Sinuosity (Smf), Ratio of Valley-Floor Width to Valley Height (Vf), NormalizedStream Length – Gradient Index (SLK), Asymmetry Factor (AF), Topographic Symmetry Factor (T), and Indexof relative active tectonics (Iat) were calculated. The obtained data were compared with the field observations.According to the results, Smf ranges between 1.03-1.66, average Vf ranges between 0.28-10.85, average SLK rangesbetween 1.84-7.95 and T ranges between 0-0.6. The AF value of Burdur Basin is 60,14 whereas the Iat values of subareas cover Class-2 and Class-3. Geomorphic indices, confirming the other geological findings, show that the studyarea has moderate to high level tectonic activity.

  • Burdur Basin

  • Fethiye-Burdur Fault Zone

  • Geomorphic indices

  • Iat

  • SLK

  • Aksarı, S., 2016. Burdur - Fethiye Fay Zonunun Kemer (Burdur) - Çameli (Denizli) arasındaki bölümünün yapısal evrimi. Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 194 s., (yayımlanmamış).

  • Aksoy, R. ve Aksarı, S., 2016. Neogene-Quaternary evolution of the Tefenni basin on the FethiyeBurdur fault zone, SW Anatolia-Turkey. Journal of African Earth Sciences, 118, 137-148.

  • Alçiçek, M.C., 2001. Sedimentological Investigation of Çameli Basin (Late Miocene - Late Pliocene, Denizli, (SW Anatolia). Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 110 s., (yayımlanmamış).

  • Alçiçek, M. C., Mayda, S. ve Titov, V. V., 2013. Lower Pleistocene stratigraphy of the Burdur basin of SW Anatolia. Comptes Rendus Palevol, 12, 1-11.

  • Alçiçek, M.C., 2015. Comment on “The Fethiye– Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics 635, 80–99” by J. Hall, A.

  • Angelier, J., Dumont, J., Karamanderesi, H., Poisson, A., Şimşek, Ş. ve Uysal, Ş., 1981. Analyses of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. Tectonophysics, 75 (3.), 1-9.

  • Azor, A., Keller, E. A. ve Yeats, R. S., 2002. Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline, Ventura basin, southern California. Geological Society of America Bulletin, 114 (6), 745-753.

  • Bagha, N., Arian, M., Ghorashi, M., Pourkermani, M., El Hamdouni, R. ve Solgi, A., 2014. Evaluation of relative tectonic activity in the Tehran basin,central Alborz, northern Iran. Geomorphology, 213, 66-87.

  • Barka, A. ve Reilinger, R., 1997. Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annals of Geophysics, 40 (3), 587-610.

  • Barka, A., Reilinger, R., Şaroğlu, F. ve Şengör, A., 1995. The Isparta Angle: its importance in the neotectonics of the Eastern Mediterranean Region. International Earth Sciences Colloqium on the Aegean Region, 1, 3-17.

  • Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, 2019. www.koeri.boun.edu. tr, 22 Mart 2019.

  • Bozcu, M., Yağmurlu, F. ve Şentürk, M., 2007. FethiyeBurdur Fay Zonunun Bazı Neotektonik ve Paleosismolojik Özellikleri, GB-Türkiye. Jeoloji Mühendisliği Dergisi, 31 (1), 25-48.

  • Bozkurt, E., 2001. Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14 (1-3), 3-30.

  • Brookfield, M., 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards. Geomorphology, 22 (3-4), 285-312.

  • Bull, W.B., 1978. Geomorphic Tectonic class of the South Front of the San Gabriel Mountains, California. U.S. Geological Survey, Contract Report, 14-08-001-G-394.

  • Bull, W.B. ve McFadden, L.D., 1977. Tectonic Geomorphology North and South of the Garlock Fault, California. Geomorphology in Arid Regions. 8th Annual Geomorphology Symposium, University of New York, 23-24 September 1977, D.O. Doehring (ed.), Bingham

  • Chen, Y. C., Sung, Q. ve Cheng, K. Y., 2003. Alongstrike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56 (1-2), 109-137.

  • Cheng, Y., He, C., Rao, G., Yan, B., Lin, A., Hu, J., Yu, Y. ve Yao, Q., 2018. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation. Tectonophysics, 722, 11-24.

  • Cohen, H., Dart, C., Akyüz, H. ve Barka, A., 1995. Syn-rift sedimentation and structural development of the Gediz and Büyük Menderes graben, western Turkey. Journal of the Geological Society, 152 (4), 629-638.

  • Coşkuner, B., 2017. Fethiye – Burdur Fay Zonunun Kozluca - Burdur Arasındaki Bölümünün Neotektonik Özellikleri, GB Anadolu, Türkiye. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 80 s., (yayımlanmamış).

  • Coşkuner, B., ve Aksoy, R., 2017. Kinematic and Structural Characteristics Of The Fethiye-Burdur Fault Zone Between Boğaziçi and Çendik (Burdur), SW Anatolia, Turkey. Internatıonal Symposium On GIS Applications In Geography & Geosciences, Çanakkale,

  • Cox, R. T., 1994. Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106 (5), 571-581.

  • Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A., Motamedi, H. ve Hosseiniasl, A., 2010. Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, 121 (3-4), 329-341.

  • Dilts, T. E., 2015. Polygon to Centerline Tool for ArcGIS. University of Nevada Reno. Available at: http://www.arcgis.com/home/item.html?id=bc642 731870740aabf48134f90aa6165

  • Dumont, J., Poisson, A. ve Şahinci, A., 1979. Sur l’existence de coulissements sinistres recentes a l’extermité orientale de l’arc ageen (sud-ouest de la Turquie). Comptes Rendus Acadademie Science Paris, 289, 261-264.

  • Duvall, A., Kirby, E. ve Burbank, D., 2004. Tectonic and lithologic controls on bedrock channel profiles and processes in costal California. Journal of Geophysical Research, 109 (F3).

  • Elitez, İ. ve Yaltırak, C., 2014. Çameli Havzası’nın Miyosen-Kuvaterner Jeodinamiği, Burdur-Fethiye Makaslama Zonu (GB Türkiye). Türkiye Jeoloji Bülteni, 57 (3), 41-67.

  • Elitez, İ., Yaltırak, C., Hall, J., Aksu, A.E. ve Çifçi, G., 2015. Reply to the comment by M.C. Alçiçek on “The Fethiye–Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyp

  • Elitez, İ., Yaltırak, C. ve Aktuğ, B., 2016. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone. Tectonophysics, 688, 26-35.

  • Elitez, İ., Yaltırak, C., Kürçer, A., Özdemir, E. ve Güldoğan, Ç. U., 2017. A critical review of the Kibyra Fault (Burdur-Fethiye Shear Zone, SW Turkey). Geodinamica Acta, 29(1), 91-102.

  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. ve Keller, E., 2008. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96 (1-2), 150- 173.

  • Emre, Ö., Duman, T.Y., Özalp, S. ve Elmacı, H., 2011. 1:250.000 ölçekli Türkiye diri fay haritası serisi, Isparta Paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye. Seri No: 17.

  • Erakman, B., Meşhur, M., Gül, M., Alkan, H., Öztaş, Y. ve Akpınar, M., 1982. Fethiye-Köyceğiz-TefenniElmalı-Kalkan arasında kalan alanın jeolojisi, Türkiye, 6. Petrol Kongresi, Ankara, 23-31.

  • Eyidoǧan, H. ve Barka, A., 1996. The 1 October 1995 Dinar earthquake, SW Turkey. Terra Nova, 8 (5), 479-485.

  • Font, M., Amorese, D. ve Lagarde, J. L., 2010. DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology, 119 (3-4), 172-180.

  • Gao, M., Zeilinger, G., Xu, X., Wang, Q. ve Hao, M., 2013. DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology, 190, 61-72.

  • Graciansky, P. C., 1972. Recherches géologiques dans le Taurus Lycien. Doktora Tezi, Universite de Paris-Sud, Centre d’Orsay, Paris, 731 s.

  • Gürbüz, E., Kazancı, N. ve Gürbüz, A., 2015. Strikeslip faulting, topographic growth and block movements as deduced from drainage anomalies: the Yeşilırmak River basin, northern Turkey. Geomorphology, 246, 634–648.

  • Hack, J. T., 1973. Stream-profile analysis and streamgradient index. Journal of Research of the US Geological Survey, 1 (4), 421-429.

  • Hall, J., Aksu, A., Yaltırak, C. ve Winsor, J., 2009. Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, 258 (1), 1-23.

  • Hall, J., Aksu, A., Elitez, I., Yaltırak, C. ve Çifçi, G., 2014. The Fethiye–Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophy

  • Hare, P. W. ve Gardner, T. W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.

  • Jackson, J. ve McKenzie, D., 1988. Rates of active deformation in the Aegean Sea and surrounding regions. Basin Research, 1 (3), 121-128.

  • Karaman, M., 1986. Burdur dolayının genel stratigrafisi. Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 2, 23-35.

  • Karaman, M., 1994. Isparta-Burdur arasının jeolojisi ve tektonik özellikleri. Türkiye Jeoloji Bülteni, 37 (2), 119-134.

  • Kaymakci, N., Özacar, A.A., Özkaptan, M., Koç, A., Gülyüz, E., Lefebvre, C., Uzel, B., Langereis, C.G. ve Sözbilir, H., 2014. Fethiye–Burdur fault zone: a myth. In: The 8th International Symposium on Eastern Mediterranean Geology (ISEMG-8), Muğla.

  • Kaymakci, N., Langereis, C., Özkaptan, M., Özacar, A.A., Gülyüz, E., Uzel, B. ve Sözbilir, H., 2017. Fethiye-Burdur Fault Zone (SW Turkey): a myth? In: 19th EGU General Assembly, EGU2017. COPERNICUS, Vienna, Austria, 5443.

  • Kaymakci, N., Langereis, C., Özkaptan, M., Özacar, A.A., Gülyüz, E., Uzel, B. ve Sözbilir, H., 2018. Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101–115.

  • Keller, E.A., 1986. Investigation of active tectonics: use of surficial earth processes. Active Tectonics, Studies in Geophysics. National Academy Press, Washington, DC, 136–147 s.

  • Keller, E.A. ve Pinter, N., 2002. Active Tectonics: Earthquakes, Uplift, and Landscape, Prentice Hall, Upper Saddle River, New Jersey, 362 s.

  • Kirby, E. ve K.X. Whipple., 2012. Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54-75.

  • Kissel, C., Laj, C. ve Müller, C., 1985. Tertiary geodynamical evolution of northwestern Greece: paleomagnetic results. Earth and Planetary Science Letters, 72 (2–3), 190-204.

  • Koçyiğit, A., 1984. Güneybatı Türkiye ve yakın dolayında levha içi yeni tektonik gelişim. Türkiye Jeoloji Kurumu Bülteni, 27 (1), 1-16.

  • Koçyiğit, A. ve Özacar, A. A., 2003. Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turkish Journal of Earth Sciences, 12 (1), 67-90.

  • Köle, M. M., 2016. Devrez Çayı Vadisinin Tektonik Özelliklerinin Morfometrik İndisler ile Araştırılması. Coğrafya Dergisi, 33, 20-36.

  • Mahmood, S. A. ve Gloaguen, R., 2012. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, 3 (4), 407-428.

  • Moix, P., Vachard, D., Jamesallibon, R., Wernli, R., Kozur, H. ve Stampfli, G., 2013. Palaeotethyan, Neotethyan and hulu - pindos seriesin the lycian nappes (SW Turkey) Geodynamica implications, The Triassic System. New Developments in Stratigraphy a

  • Molin, P., Pazzaglia, F.J. ve Dramis, F., 2004. Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy. American Journal of Science, 304 (7), 559–589.

  • Ntokos, D., Lykoudi, E. ve Rondoyanni, T., 2016. Geomorphic analysis in areas of low-rate neotectonic deformation: South Epirus (Greece) as a case study. Geomorphology, 263, 156-169.

  • Özkaptan, M., Koç, A., Lefebvre, C., Gülyüz, E., Uzel, B., Kaymakci, N., Langereis, C.G., Özacar, A.A.ve Sözbilir, H., 2014. Kinematics of SW Anatolia implications on crustal deformation above slab tear. In: EGU General Assembly Conference Abstracts,

  • Özkaptan, M., Kaymakcı, N., Langereis, C.G., Gülyüz, E., Özacar, A.A., Uzel, B. ve Sözbilir, H., 2018, Age and kinematics of the Burdur basin: Inferences for the existence of the Fethiye-Burdur Fault Zone in SW Anatolia (Turkey). Tectonophysics, 744,

  • Özkaymak, Ç., 2015. Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27 (2-3), 110-129.

  • Pérez-Peña, J., Azañón, J., Azor, A., Delgado, J. ve González-Lodeiro, F., 2009, “Spatial analysis of stream power using GIS: SLk anomaly maps”. Earth Surface Processes and Landforms, 34 (1), 16-25.

  • Price, S., 1989. Sedimentation and Neotectonic of the Burdur Region, SW Turkey. Doktora Tezi, University of Leicester, Leicester.

  • Poisson, A., 1977. Recherches géologiques dans les Taurides occidentales (Turquie). Doktora Tezi, Universite de Paris-Sud., Centre D’Orsay.

  • Ramírez-Herrera, M.T., 1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23, 317–332.

  • Sarp, G. ve Düzgün, Ş., 2012. Spatial analysis of morphometric indices: the case of Bolu pull-apart basin, western section of North Anatolian Fault System, Turkey. Geodinamica Acta, 25 (1-2), 86- 95.

  • Seeber, L. ve Gornitz, V., 1983. River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, 92 (4), 335-367.

  • Selim, H., Tüysüz, O., Karakaş, A. ve Taş, K., 2013. Morphotectonic evidence from the southern branch of the North Anatolian Fault (NAF) and basins of the south Marmara sub-region, NW Turkey. Quaternary international, 292, 176-192

  • Seyitoğlu, G. ve Scott, B., 1991. Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128 (02), 155-166.

  • Silva, P. G., Goy, J., Zazo, C. ve Bardajı, T., 2003. Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50 (1-3), 203-225.

  • Şaroğlu, F., Emre, Ö. ve Boray, A., 1987. Türkiye’nin diri fayları ve depremsellikleri. MTA Rapor No 394.

  • Şenel, M., Selçuk, H., Bilgin, Z., Şen, A., Karaman, T., Dinçer, M. ve Bilgi, C., 1989. Çameli (Denizli)- Yeşilova (Burdur)-Elmalı (Antalya) ve Dolayının Jeolojisi. MTA Raporu, 9429.

  • Şenel, M. ve Bölükbaşı, A., 1997. Geological Map of Fethiye, M9 quadrangle, No: 5, 1: 100,000, General Directorate of Mineral Research and Exploration, Ankara, Turkey.

  • Şengör, A. M. C., 1987. Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society London Special Publications, 28 (1), 575-589.

  • Taymaz, T. ve Price, S., 1992. The 1971 May 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophysical Journal International, 108 (2), 589- 603.

  • Ten Veen, J. H., 2004. Extension of Hellenic forearc shear zones in SW Turkey: the Pliocene– Quaternary deformation of the Eşen Çay Basin. Journal of Geodynamics, 37 (2), 181-204.

  • U. S. Geological Survey, 2019. www.usgs.gov, 22 March 2019.

  • VanLaningham, S., Meigs, A. ve Goldfinger, C., 2006. The effects of rock uplift and rock resistance on river morphology in a subduction zone forearc, Oregon, USA. Earth Surface Processes and Landforms, 31 (10), 1257–1279.

  • Whipple, K.X., 2004. Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32, 151–185.

  • Wu, L., Xiao, A., ve Yang, S., 2014. Impact of wind erosion on detecting active tectonics from geomorphic indexes in extremely arid areas: a case study from the Hero Range, Qaidam Basin, NW China. Geomorphology, 224, 39-54.

  • Xue, L., Gani, N. D. ve Abdelsalam, M. G., 2017. Geomorphologic proxies for bedrock rivers: A case study from the Rwenzori Mountains, East African Rift system. Geomorphology, 285, 374- 398.

  • Yağmurlu, F., Savaşçın, Y. ve Ergün, M., 1997. Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW Turkey. The journal of geology, 105 (6), 717-728.

  • Yağmurlu, F., 2000. Burdur fayının sismotektonik özellikleri. Batı Anadolunun Depremselliği Sempozyumu, 24-27 Mayıs 2000, İzmir, 143-151.

  • Yağmurlu, F., Bozcu, M. ve Şentürk, M., 2005. BurdurFethiye Arasındaki Bölgede Burdur Fayının Sismotektonik Özellikleri. TÜBİTAK, Proje No: 101Y027, 79 s.

  • Yaltırak, C., İşler, E.B., Aksu, A.E. ve Hiscott, R.N., 2012. Evolution of the Bababurnu Basin and shelf of the Biga Peninsula: western extension of the middle strand of the North Anatolian Fault Zone, Northeast Aegean Sea. Turkey. Journal of Asian E

  • Yazıcı, M., Zabcı, C., Sançar, T. ve Natalin, B.A., 2018. The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 321, 129–145.

  • Yıldırım, C., 2014. Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183-192.

  • Zanchi, A., Kissel, C. ve Tapırdamaz, C., 1993. Late Cenozoic and Quaternary brittle continental deformation in western Turkey. Bulletin de la Société Géologique de France, 164 (4), 507-517.


  • Coşkuner, B , Eren, Y , Demircioğlu, R , Aksoy, R . (2019). Fethiye Burdur Fay Zonu’nun Kuzeydoğu Kesiminin (Burdur-Güneybatı Anadolu) Göreceli Tektonik Aktivitesinin Jeomorfik İndislerle İncelenmesi . Türkiye Jeoloji Bülteni , 62 (3) , 221-246 . DOI

  • Çizgisellikler Yardımı ile Tektonik ve Volkanik Yapıların Belirlenmesi: Çan-Etili (Çanakkale) Linyit Havzası Örneği
    Öznur Karaca Mustafa Bozcu
    View as PDF

    Abstract: In this study, the aim is to determine the volcanic and tectonic structures developed in the “Çan-EtiliLignite basin” with the aid of satellite images. The Çan-Etili lignite basin consists of Oligocene-Early Miocenevolcanics (Çan Volcanics) overlying early-Middle Miocene lignite-bearing stream and lake sediments (Çan formation)occurring above an unconformity. In order to complete this study, two different satellite images (ASTER and ALOSPALSAR) and a digital elevation model (DEM) of the region were used. Multispectral optical remote sensing dataprovide information about material composition, while radar data reflect surface topography and morphology better.During mapping of lineaments on satellite images, in addition to visual assessment, image processing techniqueswere used. A variety of orientation filters were applied to ASTER satellite images for lineament mapping. Thelineaments on PALSAR images were determined with visual methods.Using DEM data along with ASTER and PALSAR satellite images for the study area, lineaments were mapped. Theresults were shown that a significant portion of the lineaments had NE-SW strike. This orientation coincides with theNE-SW striking Çan-Etili fault. Additionally, some curved linear structures were obtained from satellite images andare interpreted to be associated with caldera development.

  • ALOS/PALSAR

  • ASTER

  • lineament analysis

  • Çan-Etili basin

  • volcanic structures

  • Abrams, M. and Ramachadram, S., 2003. ASTER user handbook. Pasadena: Jet Propulsion laboratory, California Institute of Technology 135. https:// asterweb.jpl.nasa.gov/content/03_data/04_ Documents/aster_user_guide_v2.pdf, 27 June 2019.

  • Balkış, M. and Yazıcı, B., 1996. Çan Linyit İşletme Raporu. Türkiye Kömür İşletmeleri, Çanakkale (in Turkish, unpublished).

  • Bozcu, M., Akgün, F., Gürdal, G., Bozcu, A., Yeşilyurt, S.K. and Karaca, Ö., 2008. Sedimentologic, petrologic, geochemical and palinologic examination of Çan Yenice Bayramic (Çanakkale) lignite basin. The Scientific and Technological Research Council

  • Bozcu, M., Akgün, F., Gürdal, G., Bozcu, A., Yeşilyurt, S.K. and Karaca, Ö., Akkiraz, M.S., 2015. Evolution of Çan-Etili (Çanakkale-NWTurkey) lignite basin: Sedimentology, petrology, palynology and lignite characterization. International Journal of S

  • Chorowicz, J., Dhont, D. and Gündoğdu, N., 1999. Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. Journal of Structural Geology, 21, 511–532.

  • Collet, B., Taud, H., Parrot, J.F., Bonavia, F. and Chorowicz, J., 2000. A new kinematic approach for the Danakil block using a Digital Elevation Model representation. Tectonophysics, 316, 343– 357.

  • Ercan, T., Satir, M., Steinitz, G., Dora, A., Sarifakioglu, E., Adis, C., Walter, H.J. and Yildirim, T., 1995. Characteristics of the Tertiary volcanism in the Biga Peninsula, Gökçeada, Bozcaada and Tavşanadası, NW Anatolia. Bulletin of the Mineral R

  • Ganas, A., Pavlides, S. and Karastathis, V., 2005. DEMbased morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology, 65 (3-4), 301-319.

  • Hamazaki, T., 1999. PALSAR Performance, NASDA doc. NBF99019, National Space Development Agency of Japan, Oct. 1999.

  • Hariri, M., 1995. Lineaments studies and fracture control on the Tertiary gold-silver deposits, Northern Black Hills, South Dakota, USA. Ph.D. thesis, South Dakota School of Mines and Technology, USA

  • Heddi, M., Eastaff, D.J. and Petch, J., 1999. Relationships between tectonic and geomorphological linear features in The Guadix-Baza Basin, Southern Spain. Earth Surface Processes and Landforms, 24 (10), 931-942.

  • Hezarfen, C., 1976. Çanakkale-Çan coal bed feasibility study, Geology-1, Mineral Research and Exploration Report, No: 367, 24 p (unpublished report).

  • Hobbs, W.H., 1904. Lineaments of The Atlantic Border Region. Geological Society American Bulletin, 15, 483-506.

  • Jordan, G., 2003. Morphometric analysis and tectonic interpretation of digital terrain data: a case study. Earth Surface Processes and Landforms, 28 (8), 807-822.

  • Jordan, G., Meijninger, B.M.L., van Hinsbergen, D.J.J., Meulenkamp, J.E. and van Dijk, P.M., 2005. Extraction of morphotectonic features from DEMs_Development and applications for study areas in Hungary and NW Greece. International Journal of Applied

  • Kavak, K.Ş. and Çetin, H., 2007. A detailed geologic lineament analysis using Landsat TM Data of Gölmarmara/Manisa region, Turkey. Online Journal of Earth Sciences Online Journal of Earth Sciences 1 (3), 145-153.

  • Morelli, M. and Piana, F., 2006. Comparison between remote sensed lineaments and geological structures in intensively cultivated hills (Monferrato and Langhe domains, NW Italy). International Journal of Remote Sensing, 27, 4471–4493.

  • Okada, K. and Ishii, M., 1993. Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator. Geoscience and Remote Sensing Symposium, 1993. IGARSS ’93. ‘Better Understanding of Earth Environment’, International 1,

  • Okay, A.I., Siyako, M. and Burkan, K.A., 1990. Geology and tectonic evolution of the Biga Peninsula, Bulletin of the Turkish Association of Petroleum Geologists, 2 (1), 83–121.

  • O’Leary, D.W., Freidman J.D. and Pohn H.A., 1976. Lineament, linear, lineation: Some proposed new definitions for old terms. Geological Society of America Bulletin 87 (10), 1463-1469.

  • Oliveira, C., Filho, A. and Rossetti, D.F., 2012. Effectiveness of SRTM and ALOS-PALSAR data for identifying morphostructural lineaments in northeastern Brazil. International Journal of Remote Sensing, 33 (4), 1058-1077.

  • Över, S., Kavak, K.Ş., Bellier, O. and Özden, S., 2004. Is the Amik Basin (SE-Turkey) a Triple Junction Area? Analyses of SPOT XS Imagery and Seismicity, International Journal of Remote Sensing, 25 (19) 3857-3872.

  • Permenter, J.L. and Oppenheimer, C., 2007. Volcanoes of the Tibesti massif (Chad, northern Africa). Bulletin of Volcanology, 69 (6), 609–626.

  • Pieri, D. and Abrams, M., 2004. ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. Journal of Volcanology and Geothermal Research, 135 (1–2) 13-28.

  • Ramsey, M., Flynn, L. and Wright, R. (eds), 2004. Volcanic observations from space: New results from the EOS satellite instruments. Journal of Volcanology and Geothermal Research, 135 (1-2), 1–219.

  • Rowan, L.C. and Bowers, T.L., 1995. Analysis of linear features mapped in Landsat thematic mapper and side-looking airborne radar images of the Reno 1ß by 2ß Quadrangle, Nevada and California: Implications for Mineral Resource Studies. Photogrammetri

  • Saepuloh, A. and Trianaputri. M.O., 2015. Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data. AIP Conference Proceedings 4th International Symposium on Earthquake and Disaster Mitigation

  • Saepuloh, A., Bakker, E. and Suminar, W., 2016. The Significance of SAR Remote Sensing In VolcanoGeology For Hazard and Resource Potential Mapping. AIP Conf. Proc., 1857, 070005-1 070005-10.

  • Sukumar, M., Venkatesan, N. and Nelson Kennedy Babu, C., 2014. A review of various lineament detection techniques for high resolution satellite images. International Journal of Advanced Research in Computer Science and Software Engineering, 4 (3), 72

  • Süzen, M.L. and Toprak, V., 1998. Filtering of Satellite Images in Geological Lineament Analyses: An Application to A Fault Zone in Central Turkey. International Journal of Remote Sensing, 196 (6), 1101-1114.

  • Zakir, F.A., Qari, M.H.T. and Mostafa, M.E., 1999. Technical note a new optimizing technique for preparing lineament density maps. International Journal of Remote Sensing, 20, 1073-1085.


  • Karaca, Ö , Bozcu, M . (2019). Determination of Tectonic and Volcanic Structures with the aid of Lineaments: Example from Çan-Etili (Canakkale) Lignite Basin . Türkiye Jeoloji Bülteni , 62 (3) , 247-262 . DOI: 10.25288/tjb.570362

  • Palaentological Findings on Historical Coastal Inundation Events on the Eastern Coastal Plain of the Gulf of Saros, Turkey.
    İbrahim Engin Meriç Yildiz Altinok Bedri Alpar Atike Nazik Niyazi Avşar M. Baki Yokeş Nafiye G. Kiyak
    View as PDF

    Abstract: Significantly rich assemblages of foraminifera (11 samples), ostracoda (8 samples) and mollusca (7samples) have been detected from the 14 samples recovered from the salty swamp plain behind a dunefield alongthe eastern coast of the Gulf of Saros, North Aegean Sea. Preliminary paleontological findings, together with theOptically Stimulated Luminescence (OSL) late Quaternary dating technique, have indicated that big-scale stormwaves and occasional tsunamis have inundated the large coastal areas at the eastern part of gulf, as much as a fewkilometres, in the past, at least during the last 2200 years.

  • Gulf of Saros

  • Aegean Sea

  • foraminifera

  • ostracoda

  • mollusca

  • OSL dating

  • storm waves

  • tsunamis

  • Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London, 351 s.

  • Altınok, Y., Alpar, B., Özer, N. and Aykurt, H. 2011. Revision of the tsunami catalogue affecting Turkish coasts and surrounding regions, Natural Hazards and Earth System Sciences, 11 (2), 273- 291.

  • Altınok, Y., Alpar, B., Yaltırak, C., Kıyak, N.G. and Zabcı, C. 2013. Tsunami effects on the eastern coast of Saros Bay, Turkey. 40th CIESM Congress Proceedings, Marseille, France, 28 October - 1 November 2013, Vol 40, p. 42.

  • Ambraseys, N.N., 1962. Data for the investigation of the seismic sea-waves in the Eastern Mediterranean, Bulletin of Seismological Society of America, 52 (4), 895–913.

  • Ambraseys, N.N., 2002. Seismic sea waves in the Marmara Sea region during the last 20 centuries, Journal of Seismology, 6 (4), 571-578.

  • Avşar, N., 2002. Gökçeada, Bozcaada ve Çanakkale üçgeni kıta sahanlığı (KD Ege Denizi) bentik foraminifer dağılımı ve taksonomisi. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni-Yerbilimleri, 26, 53-75, Ankara.

  • Babin, C. 1980. Elements of Palaeontology. John Wiley and Sons, Chichester. 446 s

  • Bignot, G., 1985. Elements of Micropaleontology. Graham and Trotman Limited London, 217 s.

  • Bonaduce, G., Ciampo, G. and Massoli, M., 1975. Distribution of ostracoda in the Adriatic Sea, Pubblicazioni Della Stazione Zoologica di Napoli, 40 Suppl., 1-304.

  • Breman, E., 1975. The distribution of ostracodes in the bottom sediments of the Adriatic Sea. Vrije Universiteit te Amsterdam. Krips Repro Meppel, 165 s.

  • Çağatay, M.N., Görür, N., Alpar, B., Saatçılar, R., Akkök, R., Sakınç, M., Yüce, H., Yaltırak, C. and Kuşcu, İ. 1998. Geological evolution of the Gulf of Saros, NE Aegean Sea. Geo-Marine Letters, 17 (1), 1-9.

  • Erginal, A.E., Kıyak Güney, N. and Özcan, H. 2009. Optically stimulated luminescence to date coastal dunes and a possible tsunami layer on the Kavak Delta (Saros Gulf, NW Turkey). Turkish Journal of Earth Science, 18 (3), 465–474.

  • Frontalini, F., Kaminski, M. A., Mikellidou, I. and du Chatelet, E.A., 2015. Checklist of benthic foraminifera (class Foraminifera: d’Orbigny 1826; phylum Granuloreticulosa) from Saros Bay, northern Aegean Sea: a biodiversity hotspot. Marine Biodiver

  • Goff, J. and Chagué-Goff, C., 2012. A review of palaeo-tsunamis for the Christchurch region, New Zealand. Quaternary Science Reviews, 57, 136- 156.

  • Karnik, V., 1971. Seismicity of the European Area, Part 2. D. Reidel Publishing Company, Dordrecht, 212 s.

  • Krstic, N., 1977. The ostracod genus Tyrrhenocythere. In: Aspect of the ecology and zoogeography of recent and fossil ostracoda (Eds: Loffer, H. and Danielopol, D.). Dr. W. Junk b.v. Publishers, The Hague, 395-405.

  • Kubanç, N., 2006. Saros Körfezi ostrakod (crustacea) faunası. Istanbul University Journal of Fisheries and Aquatic Sciences, 20, 27-43.

  • Meriç, E., Avşar, N., Görmüş, M. ve Orak, H., 2002. Saros Körfezi (Kuzey Ege Denizi) Harmantaşı mevkii sualtı yükseltisi çevresinin foraminifer faunası ile bu alandaki kaynakların canlı yaşamına etkisi hakkında ön bulgular. Sualtı Bilim ve Teknolojis

  • Meriç, E., Avşar, N., Nazik, A., Eryılmaz, M. ve Yücesoy-Eryılmaz, F., 2004a. Saros Körfezi’nin (Kuzey Ege Denizi) güncel bentik ve planktik foraminifer toplulukları ile çökel dağılımı. Çukurova Üniversitesi Yerbilimleri (Geosound), 44-45, 1-44.

  • Meriç, E., Avşar, N. and Bergin, F., 2004b. Benthic foraminifera of Eastern Aegean Sea (Turkey): Systematics and Autoecology. Turkish Marine Research Foundation and Chamber of Geological Engineers of Turkey, Publication 18, İstanbul, 306 s.

  • Meriç, E., Perinçek, D., Avşar, N., Nazik, A., ve Yokeş, M.B., 2007, Yenikapı batıkları alt ve üst bölümlerinde gözlenen güncel çökellerin foraminifer, ostrakod ve mollusk içeriği. 11. Sualtı Bilim ve Teknolojisi Toplantısı Bildiriler Kitabı, İstanbu

  • Meriç, E., Avşar, N., Tunoğlu, C., Nazik, A., Yokeş, B., Barut, İ.F., Yücesoy-Eryılmaz, F., Tuğrul, B., Görmüş, M., Öncel, M.S., Orak, H., Kam, E. ve Dinçer, F. 2008. Harmantaşı Mevkii (Saros Körfezi-Kuzey Ege Denizi) deniz içi kaynakları çevresinde

  • Meriç, E., Avşar, N., Mekik, F., Yökeş, B., Barut, İ.F., Dora, Ö., Suner, F., Yücesoy-Eryılmaz, F., Eryılmaz, M., Dinçer, F., ve Kam, E., 2009a. Alibey ve Maden Adaları (Ayvalık-Balıkesir) çevresi genç çökellerinde gözlenen bentik foraminifer kavkıla

  • Meriç, E., Avşar, N., Nazik, A., Yokeş, B., Ergin, M., Eryılmaz, M., Yücesoy-Eryılmaz, F., Gökaşan, E., Suner, F., Tur, H., Aydın, Ş., ve Dinçer, F., 2009b. Çanakkale Boğazı’nın güncel bentik foraminifer, ostrakod ve mollusk topluluğunu denetleyen fa

  • Özcan, H., Erginal, A.E., Akbulak, C., Sungur, A., and Bozcu, M., 2010. Physico-chemical characteristics of coastal dunes on the Saros Gulf, Turkey. Journal of Coastal Research, 26 (1), 132-142.

  • Özhan, E., ve Abdalla, S. 1999. Türkiye Kıyıları için Rüzgâr ve Derin Deniz Dalga Atlası, ODTÜ, İnşaat Müh. Böl., Ankara, 296-297.

  • Öztürk B., Doğan A., Bitlis-Bakır B., and Salman A., 2014. Marine molluscs of the Turkish coasts: an updated checklist. Turkish Journal of Zoology, 38, 832-879.

  • Papadopoulos, G.A., Daskalaki, E., Fokaefs, A., ve Giraleas, N., 2007. Tsunami hazards in the eastern Mediterranean: strong earthquakes and tsunamis in the East Helenic Arc and Trench system, Natural Hazards and Earth System Sciences, 7, 57-64.

  • Sakınç, M., 2008. Marmara Denizi Bentik Foraminiferleri: Sistematik ve Otoekoloji. Istanbul Teknik Üniversitesi Rektörlüğü, Yayın No: 1638, İstanbul, 134 s.

  • Sgarrella, F. and Moncharmont-Zei, M. 1993. Benthic foraminifera of the Gulf of Naples (Italy): sistematics and autoecology. Bollettino Della Societa Paleontologica Italiana, 32, 145–264.

  • Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S. and Shchetnikov, N.A., 2000. Tsunamis in the Mediterranean Sea 2000 B.C.-2000 A.D., Kluwer Academic Publishers, Netherlands, 237 s.

  • Van Morkhoven, F.P.C.M., 1963. Post Palaeozoic ostracoda. Elsevier, Amsterdam, 2, 478 s.

  • Wakefield, M.I. and Monteil, E. 2002. Biosequence stratigraphical and palaeoenvironmental findings from the Cretaceous through Tertiary succession, Central Indus Basin, Pakistan. Journal of Micropalaeontology, 21 (2), 115–130.

  • Yassini, I., 1979. The littoral system ostracodes from the Bay of Bou-Ismail, Algiers, Algeria. Revista Espanola de Micropaleontologia, 11 (3), 353-416.

  • Yolsal, S., Taymaz, T. and Yalçıner, A.C., 2007. Understanding tsunamis, potential source regions and tsunami prone mechanisms in the Easrtern Mediterrenean, The Geodynamics of the Aegean and Anatolia. The Geological Society, Special Publication, Lon


  • Meriç, E, Altınok, Y, Alpar, B, Nazik, A, Avşar, N, Yokeş, B, Güneç Kıyak, N. (2019). Saros Körfezi Doğu Kıyı Alanında Tarihsel Deniz Suyu Girişlerine Ait Paleontolojik Bulgular. Türkiye Jeoloji Bülteni, 62 (3) , 263-274. DOI: 10.25288/tjb.530227

  • A New Comprehension of the Basement Undulation in North Iraq Resorting to Geomagnetic Investigation
    Maan Hasan Abdullah Almajid Marwan Mutib
    View as PDF

    Abstract: Because there are no wells in Iraq that go down to the basement complex of igneous and metamorphicrocks which are thought to be aggregated during the Late Precambrian, so the current study is important in trackingthe surface boundary with the sedimentary cover and try to identify the structural appearance and the effect of this inconstruction of the geological situation in the region. The geophysical survey included 87 magnetic measurementswith implantation the required corrections as well as using the upward continuation to remove the noises that notrequired in the present study.A quantitative interpretation has been made using Oasis Montaj program across five magnetic profiles (Tr1, Tr2, Tr3,Tr4, and Tr5) with control of well logging, gravity, and seismic information. The results showed varying depths ofthe basement rocks ranging from 10 km in the northeastern part (Aqra structure) to less than 6 km in the south-westof the study area. In addition, a number of grabens, half grabens and horsts have been simulated in the magneticsections for the present study.

  • Magnetic survey

  • Basement rocks

  • Oasis Montaj

  • 2D modeling

  • Northern Iraq

  • Al-Brifkani, M.J.N., 2008. Structural and Tectonic Analysis of the Northern Thrust Zone (East Khabour River) in Iraq. University of Mosul, Iraq, Ph.D. Thesis (Unpublished, in Arabic).

  • Al-Majid, M. H., 2013. Contribution to the Geology of Parts of the Folded Zone of Iraq From Gravity Evidences. University of Mosul, Iraq, Ph.D. Thesis Unpublished.

  • Al-Shaikh, Z. D. and Mohammed, Z. S., 1997. An interpretation of the gravity anomalies over the Tertiary basins of Shaqlawa - Harir area using variable density-depth function. Iraqi Geological Journal, 30 (2), 77-84.

  • Baban, E. N., 1983. Analysis of geophysical data available on Abu Rassain area. University of Mosul, Iraq, M.Sc. Thesis (Unpublished, in Arabic).

  • Ditmar, V. and Iraqi-Soviet Team, 1971. Geological conditions and hydrocarbon prospects of the Republic of Iraq (northern and central parts). Iraq National Oil Company, manuscript report, Baghdad, Iraq

  • Geosoft reference manual, 2008. Software for Earth Sciences, Geosoft INC., Toronto, Canada.

  • Ghaib, F.A., 2001. Geophysical study of Erbil and Aqra plains and their geological implications. University of Salahaddin, Erbil, Iraq, Ph.D. Thesis, 185 p. (unpublished).

  • Gulf Keystone, 2010. Resource Evaluation of Gulf Keystone’s Shaikan No. 1-B Discovery, Iraq

  • Hussain, S. H., 2012. Facies analysis and sedimentary environments of Gercus formation in selected surface sections northern Iraq. University of Mosul, Iraq, Ph.D. Thesis, (unpublished).

  • Jassim, S.Z. and Goff J.C., 2006. Phanerozoic Development of the Northern Arabian Plate, chapter in: Geology of Iraq. Dolin and Moravian Museum, Brno p. 32-44.

  • Kent, W. N., 2010. Structures of Northern Iraq and Syria, and Their Implications for Interpretation of the Region’s Stratigraphy, AAPG Annual Convention and Exhibition, New Orleans, Louisiana.

  • Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press, New York. 354 p.

  • Mutib M. and Abdulrahman, F. H., 2012. Gravimetric Signature of the Tectonostratigrahy of the Mosul Block Oil Fields, Using Map Enhancement Techniques. Journal of University of Duhok, 15 (2), 1-15.

  • Mutib, M., Almajid, M., H., and Gaib, F.,2019. Implementation of Gravity Investigations across Aqra Structures-Iraq. Journal of Geology and Geophysics, 8 (2), (in press).

  • Nettleton, L.L., 1976. Gravity and magnetic in oil prospecting. McGraw Hill Brook Co, Inc., New York, 464 p.

  • Parasnis, D.S, 1997. Principles of Applied Geophysics, 5th ed., Chapman & Hall, New York 429 p.

  • Reynolds, J. M., 2003. An introduction to Applied and Environmental Geophysics, Reynolds Geosciences Ltd., UK, 206 p.

  • Jacoby, W. and Smilde, L.P., 2009. Gravity Interpretation, Fundamentals and Application of Gravity Inversion and Geological Interpretation. Springer-Verlag Berlin, Heidelberg, 395 p.

  • Talwani, M., J. L., Worzel, and M., Landisman, 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64, 49-59.

  • Webring, M., 1985. Saki Fortran program for generalized linear inversion of gravity and magnetic profiles: U.S.Geological survey openfile report 85-122, 29 p.

  • Zeng, H., Xu, D. and Tan, H., 2007. A Model Study for Estimating Optimum Upward Continuation Height for Gravity Separation with Application to a Bouguer Gravity Anomaly Over a Mineral Deposit, Jilin Province, Northeast China. Geophysics, 72, 145–150.


  • Abdullah, M , Mutib, M . (2019). A New comprehension of the Basement undulation in The North of Iraq Resorting to Geomagnetic Investigation . Türkiye Jeoloji Bülteni , 62 (3) , 275-292 . DOI: 10.25288/tjb.540954

  • ISSUE FULL FILE
    View as PDF