Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2022 OCAK Cilt 65 Sayı 1
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
The Genesis, Geochemical Characteristics of Manganese Mineralization in the Southern Part of the Cihanpaşa (Yozgat) Area
Mustafa Selman Aydoğan
View as PDF

Abstract: Late Cretaceous ophiolitic mélange complexes of the Izmir-Ankara-Erzincan Suture Zone (İAESZ) thatis the remnant of the northern branch of the Neotethys Ocean host numerous manganese oxide deposits in Turkey.These deposits are observed within the red-violet radiolarian chert blocks belonging to mélange units. Of thesemélange units, the Artova mélange is observed along the İAESZ in the northern part of the Kırşehir Massif, centralTurkey, is made up mainly of pelagic limestone, pillow basalt, radiolarian-chert blocks, highly alteredserpentinite. Mn-oxide mineralizations from Cihanpaşa (Yozgat, central Anatolia) region were analysed in orderto determine their depositional conditions, paleo-redox signatures, origin  source. These mineralizations arecomposed mainly of an alternation of radiolarian cherts mudstones that overlie altered pillow basalt in anoverturned fold. Based on petrographic studies, the mineral paragenesis of the manganese oxide mineralizations iscomprised predominantly of braunite, pyrolusite, pysilomelane quartz. Geochemically, high Mn/Fe (60.2), lowΣREE (15.75 ppm) Cu+Ni+Co (730 ppm), a negative Ce anomaly weakly negative Y/Y* anomaly (0.87) suggest that the Cihanpaşa manganese mineralizations formed in a submarine hydrothermal system. A negative Ce/Ce* anomaly (0.33), low Ceanom values (< − 0.54), redox-sensitive tracers [V/(V + Ni) = 0.43, Ni/Co = 0.51,V/Mo = 6.15)] indicate that the manganese mineralization was formed by a hydrothermal system in an oxygenatedmarine sedimentary environment. Further, a weakly positive negative Eu anomaly (0.84), high Lasn/Cesn (3.96),low Al/(Al + Fe) (0.34) ΣREE/Fe (30.7x10-4) ratios highlighted that the Cihanpaşa manganese mineralizationswere formed via impact of a low-T hydrothermal system, which is relatively close to the spreading ridge of the IzmirAnkara-Erzincan Ocean.

  • Central Anatolia

  • Cihanpaşa

  • hydrothermal

  • manganese oxide mineralization

  • radiolarian chert

  • Yozgat

  • Ahmadi, J., Mirnejad, H. & Modabberi, S. (2019). Geochemical Evidence for the Depositional Environment of the Esfandaghe Manganese Deposit, Kerman Province, Iran. Geochemical International, 57, 266-281.

  • Akçay, A. E. & Beyazpirinç, M. (2017). The Geological Evolution of Sorgun (Yozgat)-Yildizeli (Sivas) Foreland Basin, Petrographic, Geochemical Aspects and Geochronology of Volcanism Affecting the Basin. Bulletin of the Mineral Research and Exploration, 155, 1-31.

  • Akçay, A. E., Dönmez, M., Kara, H., Yergök, A.F. & Esentürk, K. (2007). 1/100.000 ölçekli Türkiye Jeoloji Haritaları, Yozgat-İ33 Paftası [1-16]. MTA Genel Müdürlüğü, Jeoloji Etüdleri Dairesi, Ankara, 80.

  • Aldanmaz, E., Yalınız, M. K., Güçtekin, A. & Göncüoğlu, M. C. (2008). Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine, 145(1):37-54.

  • Alexander, B.W., Bau, M., Andersson, P. & Dulski, P. (2008). Continentallyderived solutes in shallow Archean sea water: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2):378-394.

  • Alibo, D. S. & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shalenormalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363-372.

  • Alvi, S.H. & Shaif, M. (2020). Geochemical signatures of manganese ores around Barbil, NoamundiKoira basin, Singhbhum Craton, Eastern India. Geology, Ecology, and Landscapes. https://doi:10 .1080/24749508.2020.1720489.-

  • Bau, M. & Dulski, P. (1999). Comparing yttrium and rare earths in hydrothermal fluids from the MidAtlantic Ridge: implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155 (1/2), 77-90.

  • Bau, M., Koschinsky, A., Dulski, P. & Hein, J.R. (1996). Comparison of partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta, 60, 1709-1725

  • Bau, M., Möller, P. & Dulski, P. (1997). Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56, 123-131.

  • Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T. & Usui, A. (2014). Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381:1-9.

  • Bolhar, R., Kaber, B. S., Moorbath, S., Fedo, C. M. & Whitehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222, 43-60.

  • Bolton, B. R., Both, R., Exon, N. F., Hamilton, T. F., Ostwald, J. & Smith, J. D. (1988). Geochemistry and mineralogy of seafloor hydrothermal and hydrogenetic Mn oxide deposits from the Manus Basin and Bismarck Archipelago region of the southwest Pacific Ocean. Marine Geology, 85, 65- 87.

  • Bonatti, E. (1975). Metallogenesis at oceanic spreading centers. Annu Rev Earth Planetary Science, 3, 401-431.

  • Bonatti, E., Kraemer, T. & Rydell, H. (1972). Classification and genesis of submarine ironmanganese deposits. In D.R. Horn (Ed.), Ferromanganese Deposits of the Ocean Floor, (pp. 473-489). Harriman, Petersfield, UK

  • Bortolotti, V., Chiari, M., Göncüoğlu, M. C., Marcucci, M., Principi, G., Saccani, E., Tekin, U.K. & Tassinari, R. (2018). The Jurassic-Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east of Ankara, Turkey: age and geochemistry. Geological Magazine, 155(2), 451- 478.

  • Bortolotti, V., Chiari, M., Göncüoğlu, M. C., Marcucci, M., Principi, G., Tekin, U. K., Saccani, E. & Tassinari, R. (2013) Age and geochemistry of basaltchert associations in the ophiolites of the Izmir-Ankara mélange east of Ankara, Turkey: preliminary data. Ofioliti 38(2), 157-173.

  • Bozkurt, E., Holdsworth, B. K. & Koçyiğit, A. (1997). Implications of Jurassic chert identified in the Tokat Complex, northern Turkey. Geological Magazine, 134(1), 91-97.

  • Bragin, N. Y. & Tekin, U. K. (1996). Age of radiolarianchert blocks from the Senonian Ophiolitic Melange (Ankara, Turkey). Island Arc, 5, 114-122.

  • Chen, D., Qing, H., Yan, X. & Li, H. (2006). Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert. Sedimentary Geology, 183, 203-216.

  • Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. (2013; updated) The ICS International Chronostratigraphic Chart. Episodes, 36, 199-204.

  • Condie, K.C. (1993). Chemical composition and evolution of the Upper Continental Crust: contrasing results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Crear, D.A., Namson, J., So Chyi, M., Williams, L. & Feigenson, M.D. (1982). Manganiferous cherts of the Franciscan assemblage: 1. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centres. Economic Geology, 77(3), 519-540.

  • Çakmakoğlu, A., Bilgin, Z.R. (2006). Pre-Neogene stratigraphy of the Karaburun peninsula (Wof İzmir Turkey). Bulletin of the Mineral Research and Exploration, 132, 33-61.

  • Çelik, Ö. F., Marzoli, A., Marschik, R., Chiaradia, M., Neubauer, F. & Öz, İ. (2011). Early-Middle Jurassic intra-oceanic subduction in the İzmirAnkara-Erzincan Ocean, Northern Turkey. Tectonophysics, 509, 120-134.

  • Çelik, S. (2010). Taxonomy and biostratigraphy of Jurassic-Early cretaceous radiolarian fauna of the pelagic deposits in Izmir-Ankara-Erzincan suture complex, NE and SW Cankiri, northern Turkey. [Unpublished MSc. Thesis]. Hacettepe University.

  • De Baar, H.J., German, C.R., Elderfield, H. & van Gaans, P. (1988). Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochemica et Cosmochimica Acta, 52, 1203-1219.

  • Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P. & Gamo, T. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochemica et Cosmochimica Acta, 63, 527-643.

  • Duan, J., Fu, Y., Zhang, Z., Ma, X. & Xiao, J. (2019). The metallogenic environment of the Dounan manganese deposit, Southeast Yunnan, China: evidence from geochemistry and Mössbauer spectroscopic. Acta Geochimica, 38(1), 78-94.

  • Dubinin, A. V., Kunetsov, A. B., Rimskaya-Korsakova, M. N. & Safin, T.Kh. (2018). Nd and Sr Isotope Composition in the Tooth Enamel from Fe–Mn Nodules of the Cape Basin (Atlantic Ocean): Age and Sources. Geochemistry International, 56(12), 1209-1219.

  • Dubinin, A.V., Uspenskaya, T.Yu., Gavrilenko, G. M. & Rashidov, V. A. (2008). Geochemistry and Genesis of Fe–Mn Mineralization in Island Arcs in the West Pacific Ocean. Geochemistry International, 46(12), 1206-1227.

  • Dymond, J., Lyle, M., Finney, B., Piper, D. Z., Murphy, K., Conard, R. & Pisias, N. (1984). Ferromanganese nodules from MANOP sites H, S and R-control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta 48(5), 931- 949.

  • Elderfield, H. & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296, 214-218.

  • Engstrom, D. R. & Wright, H. E. (1984). Chemical stratigraphy of lake sediments as a record of environmental change. In: E.Y., Haworth, J.W.G. Lund (Eds.), Lake Sediments and Environmental History (pp. 11-67). Leicester University Press, Leicester.

  • Escavy, J. I., Herrero, M. J. & Arribas, M. E. (2012). Gypsum resources of Spain: Temporal and spatial distribution. Ore Geology Reviews, 49, 72-84.

  • Fitzgerald, C. E. & Gillis, K. M. (2006). Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean. Marine Geology, 225,145-156.

  • Gadd, M. G., Layton-Matthews, D. & Peter, J. M. (2016). Non-hydrothermal origin of apatite in SEDEX mineralization and host rocks of the Howard’s pass district, Yukon, Canada. American Mineralogist, 101(5),1061-1071.

  • Galarraga, F., Reategui, K., Martinez, A., Martinez, M., Liamas, J. F. & Marquez, G. (2008). V/ Ni ratio as a parameter in palaeoenvironmental characterisation of nonmaturemedium-crude oils from several Latin American basins. Journal of Petroleum Science and Engineering, 61, 9-14.

  • Gallego-Torres, D., Martinez-Ruiz, F., De Lange, G. J., Jimenez-Espejo, F. J. & Ortega-Huertas, M. (2010). Traceelemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 76-89.

  • Ganno, S., Njiosseu, T.E.L., Kouankap, N.G.D., Djoukouo, S.A., Moudioh, C., Ngnotue, T. & Nzenti, J.P. (2017). A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geology Reviews, 80, 860-875.

  • Gao, J., Yang, R., Xu, H., Zhang, X., Feng, K. & Zheng, L. (2018). Genesis of Permian sedimentary manganese deposits in Zunyi, Guizhou Province, SW China: Constraints from geology and elemental geochemistry. Journal of Geochemical Exploration, 192, 142-154.

  • German, C. R. & Elderfield, H. (1990). Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography and Paleoclimatology, 5(5), 823-833.

  • Glasby, G.P. (2006). Manganese: predominant role of nodules and crusts. In: H.D. Schulz, M. Zabel (Eds.) Marine geochemistry (pp. 371-428). Springer, Heidelberg.

  • Glasby, G.P., Gwozdz, R., Kunzendorf, H., Friedrich, G. & Thijssen, T. (1987). The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and SW. Pacific. Lithos, 20(2), 97-l 13.

  • Glasby, G. P., Li, J. & Sun, Z. (2015). Deep-Sea Nodules and Co-rich Mn Crusts. Marine Georesources & Geotechnology, 33, 72-78.

  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Özcan, A. & Uysal, S. (2000). A geotraverse across NW Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In: Bozkurt E, Winchester J, Piper JA (eds) Tectonics and magmatism in Turkey and the surrounding area. Geological Society, London, Special Publications, 173, 139-161.

  • Göncüoğlu, M. C., Sayıt, K. & Tekin, U.K. (2010). Oceanization of the northern Neotethys: geochemical evidence from ophiolitic melange basalts within the Izmir-Ankara suture belt, NW Turkey. Lithos, 116, 175-187.

  • Göncüoğlu, M. C., Yalınız, M. K. & Tekin, U. K. (2006a). Geochemistry, tectono-magmatic discrimination and radiolarian ages of basic extrusives within the Izmir-Ankara-Suture Belt (NW Turkey): Time constraints for the Neotethyan evolution. Ofioliti, 31, 25-38.

  • Göncüoğlu, M. C., Yalınız, M. K. & Tekin, U. K. (2006b). Geochemical features and radiolarian ages of volcanic rocks from the Izmir-Ankara Suture Belt, western Turkey. Mesozoic ophiolite belts of the northern part of the Balkan Peninsula, International Symposium, Belgrade-Banja Luka, May 31-June 6 (pp. 41-44).

  • Gromet, L.P., Dymek, R.F., Haskin, L.A. & Korotev, R.L. (1984). The North American Shale Composite: its compilation, major and trace element characteristics. Geochemica et Cosmochimica Acta, 48(12), 2469-2482.

  • Gültekin, A.H. & Balcı, N. (2018). Geochemical Characteristics of Sedimentary Manganese Deposit of Binkılıç, Trache Basin, Turkey. Journal of Geology and Geophysics, 7(3), 1-13.

  • Gündoğan, İ., Helvacı, C. & Sözbilir, H. (2008). Gypsiferous carbonates at Honaz Dağı (Denizli): First documentation of Triassic gypsum in western Turkey and its tectonic significance. Journal of Asian Earth Sciences, 32, 49-65.

  • Halbach, P., Scherhag, C., Hebisch, U. & Marchig, V. (1981). Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean. Mineralium Deposita, 16(1), 59-84.

  • Hatch, J. R. & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the upper Pennsylvanian (Missourian) stark shale member of the Dennis lime stone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1- 3), 65-82.

  • Hay, W. H., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Flögel, S. & Söding, E. (2006). Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 3-46.

  • Hayashi, K. I., Fujisawa, H., Holland, H. D. & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from Northeastern Labrador, Canada. Geochemica et Cosmochimica Acta, 61(19), 4115- 4137.

  • Hein, J.R. (2004) Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities. In Workshop on Minerals Other than Polymetallic Nodules of the International Seabed Area, Int. Seabed Auth,. (pp. 188-256). Kingston, Jamaica

  • Hein, J. R., Conrad, T. A. & Staudigel, H. (2010). Seamount Mineral Deposits: A Source of Rare Metals for High-Technology Industries. Oceanography, 23(1), 184-189.

  • Hein, J. R. & Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules. In: H.D. Holland, K. K. Turekian (Eds.), Second edition Treatise on Geochemistry, 13, 273-291.

  • Hein, J. R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J-K. & Lubick, N. (1997). Iron and manganese oxide mineralization in the Pacific, In: K. Nicholson, J.R. Hein, B. Bühn, S. Desgupta (Eds.) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits (pp.123-138). Geological Society of London Special Publication.

  • Hein, J. R., Schulz, M.S., Dunham, R. E., Stern, R. J. & Bloomer, S. H. (2008). Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. Journal of Geophysical Research, 113(8), 1-29.

  • Helvacı, C. (2021). Sözlü Görüşme. Dokuz Eylül Üniversitesi, Jeoloji Mühendisliği Bölümü, İzmir.

  • Holtstam, D. & Mansfield, J. (2001). Origin of a carbonate-hosted Fe-Mn-(Ba-As-Pb-Sb-W) deposit of Långban-type in central Sweden. Mineralium Deposita, 36(7), 641-657.

  • IUCN (International Union for Conservation of Nature Issues Brief) (2018). Deep-sea mining. https:// www.iucn.org/resources/issues-briefs/deep-seamining.

  • Jones, B. & Manning, D.A.C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4), 111-129.

  • Josso, P., Pelleter, E., Pourret, O., Fouquet, Y., Etoubleau, J., Cheron, S. & Bollinger, C. (2017). A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geology Reviews, 87:3-15.

  • Kandemir, T. (2021). Demirciler (Dursunbey, Balikesir) Radyolarit-Çörtlerle İlişkili Manganez Oluşumlarının jeokimyasal özellikleri [Yayımlanmamış Yüksek Lisans Tezi]. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü.

  • Kang, J., Zhang, Z., Zhang, D., Huang, H., Dong, S. & Zhang, S. (2011). Geochronology and Geochemistry of the Radiolarian Cherts of the Mada’er Area, Southwestern Tianshan: implications for Depositional Environment. Acta Geologica Sinica, 85(4), 801-813.

  • Karakuş, A., Yavuz, B. & Koç, Ş. (2010). Mineralogy and Major-Trace Element Geochemistry of the Haymana Manganese Mineralizations, Ankara, Turkey. Geochemistry International, 48(10), 1014-1027.

  • Kato, Y., Yamaguchi, K.E. & Ohmoto, H. (2006). Rare earth elements in Precambrian banded iron formations: Secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen. In: S.E. Kesler, H. Ohmoto (Eds.). Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere-Constraints from Ore Deposits. Geological Society of America, 198, 269-289.

  • Kemkin, I. & Kemkina, R.A. (2020). Comparative geochemical study of the cherty rocks of the Taukha terrane (Sikhote-Alin) and its paleogeodynamic significance. Acta Geochimica, 39(4), 539-560.

  • Kılıç, G., Aydoğan, M.S. & Kumral, M. (2018). Preliminary results of the radiolarian-chert hosted manganese deposit within the Vezirler ophiolitic mélange (Kula-Manisa, western Turkey): constraints on the origin, paleo-redox conditions, and depositional environments. Arabian Journal of Geosciences, 11(628), 1-22.

  • Klein, R. T., Lohmann, K. C. & Thayer, C. W. (1996). Sr/Ca and 13C/12C ratios in skeletal calcite of MytiZus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochimica et Cosmochimica Acta, 60(21), 4207-4221.

  • Koç, Ş., Özmen, Ö. & Öksüz, N. (2000). Geochemistry characteristic of Kasımağa (Keskin-Kırıkkale) manganese oxide mineralizations. Bulletin of the Mineral Research and Exploration, 122, 107-118.

  • Kunimaru, T., Shimizu, H., Takahaski, K. & Yabuki, S. (1998). Differences in geochemical features between Permian and Triassic cherts from the southern Chichibu terrane, Southwest Japan: REE abundances, major element compositions and Sr isotope ratios. Sedimentary Geology, 119, 195- 217.

  • Kuşçu, M. & Gedikoğlu, A. (1989). Ulukent (Tavas-Denizli) güneyi manganez yataklarının jeokimyasal özellikleri. Yerbilimcinin Sesi, 17, 29-48.

  • Lan, C., Yang, A. Y., Wang, C. & Zhao, T. (2019). Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincai banded iron formation in the southern margin of the North China Craton: implications on Neoarchean seawater compositions and solute sources. Precambrian Research, 326, 240-257.

  • Laurilla, T. E., Hannington, M. D., Petersen, S. & Garbe-Schönberg, D. (2014). Early depositional of metalliferous sediments in the Atlantis II Deep of the Red Sea: evidence from rare earth element geochemistry. Geochimica et Cosmochimica Acta, 126, 146-168.

  • Lei, R-X., Zhang, K., Muhtar, M. N. & Wu, C-Z. (2020). Neoproterozoic non-glaciogenic iron formation: Insights from Fe isotope and elemental geochemistry of the Shalong iron formation from the Central Tianshan block, southern Altaids. Precambrian Research, 351, Article 105959. https://doi.org/10.1016/j.precamres.2020.105959.

  • Li, X. (2000). Geochemistry of the Late Paleozoic radiolarian cherts within the NE Jiangxi ophiolite melange and its tectonic significance. Science in China Series D: Earth Sciences 43(6), 617-624.

  • Li, S., Yan, J., Pei, Q., Sha, J., Mou, S. & Xiao, Y. (2019). Risk Identification and Evaluation of the Long-term Supply of Manganese Mines in China Based on the VW-BGR Method. Sustainability, 11(9), 1-23.

  • Lotfi, M., Kahrazehi, M. & Ghaderi, M. (2017). Geochemistry and origin of Dehoo manganese deposit, south Zahedan, southeastern Iran. Arabian Journal of Geosciences, 10(142), 1-17.

  • Lu, Z. L., Ling, H. F., Zhou, F., Jiang, S.Y., Chen, X. M. & Zhou, H. Y. (2005). Variation of the Fe/Mn ratio of ferromanganese crusts from the Central North Pacific: implication for paleoclimate changes. Progress in Natural Science, 15, 530-537.

  • Maynard, J. (2010). The chemistry of manganese ores through time: a signal of increasing diversity of earthsurface environments. Economic Geology, 105, 535-552.

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: B.R. Lipin, G.A. McKay (Eds.), Geochemistry and Mineralogy of Rare Earth Elements (pp. 168-200). Mineralogical Society of America Reviews in Mineralogy, Washington.

  • Moix, P. & Goricán, Š. (2013). Jurassic and cretaceous radiolarian assemblages from the Bornova mélange in northern Karaburun peninsula (western Turkey) and its connection to the İzmir-Ankara mélanges. Geodinamica Acta, 26(1-2),56-67.

  • Morford, J. L. & Emerson, S. (1999). The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63(11-12), 1735-1750.

  • MTA (2002). Türkiye Jeoloji Haritaları, (Ed.: M. Şenel, Düzenleyen: N. Turhan). Maden Tetkik ve Arama Genel Müdürlüğü. 1/500.000 ölçekli Türkiye Jeoloji Haritası, Ankara Paftası.

  • Murray, R.W. (1994). Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90, 213-232.

  • Murray, R.W., Buchholtz ten Brink, M.R., Jones, D.L., Gerlach, D.C. & Russ, G.P. (1990). Rare earth elements as indicators of different marine depositional environments. Geology, 18, 268-271.

  • Murray, R. W., Buchholtz ten Brink, M.R., Gerlach, D. C., Russ, G. P. & Jones, D. L. (1991). Rare earth, major and trace elements in chert from the Franciscan Complex and Monterey Group, California; assessing REE sources to fine-grained marine sediments. Geochemica et Cosmochimica Acta, 55, 1875-1895.

  • Murray, R. W., Jones, D. L. & Buchholtz ten Brink, M. R. (1992). Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet. Geology, 20(3), 271-274.

  • Naeher, S., Gilli, A., North, R. P., Hamann, Y. & Schubert, C. J. (2013). Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chemical Geology, 352, 125-133.

  • Nicholson, K. (1992). Contrasting mineralogicalgeochemical signatures of manganese oxides; guides to metallogenesis. Economic Geology, 87, 1253-1264.

  • Nicholson, K., Nayak, V. K. & Nanda, J. K. (1997). Manganese ores of the Ghoriajhor-Monmunda area, Sundergarh District, Orissa, India: geochemical evidence for a mixed Mn source. In: K. Nicholson, J.R. Hein, B. Bühn & S. Dasgupta (Eds.), Manganese mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society London Special Publication, 119, 117-121.

  • Nothdurft, L. D., Webb, G. E. & Kamer, B. S. (2004). Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochemica et Cosmochimica Acta, 68, 263-283.

  • Okay, A. I. (1986). High pressure/low temperature metamorphic rocks of Turkey. In: B.W. Evans, & E. H. Brown (Eds.), Blueschists and Eclogites, Geological Society of America,164, 333-348.

  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In: B. Durand, L. Jolivet, F. Horváth, M. Séranne (Eds.) The Mediterranean basins: tertiary extension within the alpine orogen. Geological Society, London, Special Publications, 156, 475-515.

  • Okay, A. I. & Göncüoğlu, M. C. (2004). The Karakaya Complex: A Review of Data and Concepts. Turkish Journal of Earth Sciences, 13, 77-95.

  • Olivarez, A. M. & Owen, R. M. (1989). REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochemica et Cosmochimica Acta, 53, 757-762.

  • Owen, A., Armstrong, H. & Floyd, J. (1999). Rare earth elements in chert clast as provenance indicators in the Ordovician and Silurian of the Southern Uplands of Scotland. Sedimentary Geology, 124, 185-195.

  • Oygür, V. (1990). Çayirli (Ankara-Haymana) Manganez Yatağinin Jeolojisi, Oluşumu ve Kökeni Üzerine Görüşler. Maden Tetkik ve Arama Dergisi, 110, 29-43.

  • Öksüz, N. (2011a). Geochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit, Turkey. Journal of Rare Earths, 29(3), 287-296.

  • Öksüz, N. (2011b). Geochemistry and the Origin of Manganese Mineralizations in Derbent (Yozgat) Region. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 32(3), 213-234

  • Öksüz, N. & Okuyucu, N. (2014). Mineralogy, Geochemistry, and Origin of Büyükmahal Manganese Mineralization in the Artova Ophiolitic Complex, Yozgat, Turkey. Journal of Chemistry, 2014, 1-11. https://doi.org/10.1155/2014/837972.

  • Özkan, M., Çelik, Ö. F., Soycan, H., Çörtük, R. M. & Marzoli, A. (2020). The Middle Jurassic and Early Cretaceous basalt-radiolarian chert association from the Tekelidağ Mélange, eastern IzmirAnkara-Erzincan suture zone (northern Turkey). Cretaceous Research, 107, 104-280.

  • Öztürk, H. (1997). Manganese Deposits in Turkey: Distribution, Types and Tectonic Setting. Ore Geology Reviews, 12, 187-203.

  • Öztürk, H. & Hein, J. R. (1997). Mineralogy and Stable Isotopes of Black Shale-Hosted Manganese Ores, Southwestern Taurides, Turkey. Economic Geology, 92(1), 733-744.

  • Öztürk, H., Kasapçı, C., Cansu, Z. & Hanilçi, N. (2016). Geochemical characteristics of iron ore deposits in central eastern Turkey: an approach to their genesis. International Geology Review, 58(13), 1-18.

  • Öztürk, H., Kasapçı, C. & Özbaş, F. (2019). Manganese Deposits of Turkey. In: F. Pirajno, T. Ünlü, C. Dönmez & M.B. Şahin (Eds.) Mineral Resources of Turkey (pp. 261-282). Springer Verlag.

  • Patacca, E., Scandone, P., & Giunta, G. (1979). Mesozoic paleotectonic evolution of the Ragusa zone (Southeastern Sicily). Geologica Romana, 18, 331-369.

  • Petersen, S., Kratschell, A., Jamieson, J., Hein, J. R. & Hannington, M. D. (2016). News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, 70, 175-187.

  • Piepgras, D. J. & Jacobsen, B. (1992). The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column. Geochemica et Cosmochimica Acta, 56, 1851-1862.

  • Polgári, M., Hein, J. R., Vigh, T., Szabó-Drubina, M., Fórizs, I., Bíró, L., Müller, A. & Tóth, A.L. (2012). Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geology Reviews, 47, 87-109.

  • Robertson, A., Parlak, O., Ustaömer, T., Taslı, K., İnan, N., Dumitrica, P. & Karaoğlan, F. (2014). Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: New evidence from the Eastern Pontides, Turkey. Geodinamica Acta, 26, 230-293.

  • Rojay, B., Altıner, D., Özkan-Altıner, S., Önen, A. P., James, S. & Thirlwall, M. F. (2004). Geodynamic significance of the cretaceous pillow basalts from north Anatolian Ophiolitic Mélange (Central Anatolia, Turkey): geochemical and paleontological constraints. Geodinamica Acta 17, 349-361.

  • Roy, S. (1997). Genetic diversity of manganese deposition in the terrestrial geological record. In: K. Nicholson, J.R. Hein, B. Buhn & S. Dasgupta (Eds.) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, Special Publication, London 119, 5-27.

  • Sakhno, V. G. (2008). Recent and present-day volcanism in the southern Far East [in Russian]. Dal’nauka, Vladivostok.

  • Santantonio, M., Scrocca, D., & Lipparini, L. (2013). The Ombrina-Rospo Plateau (Apulian Platform): Evolution of a Carbonate Platform and its Margins during the Jurassic and Cretaceous. Marine and Petroleum Geology, 42, 4-29.

  • Sarıfakıoğlu, E., Dilek, Y. & Sevin, M. (2017). New synthesis of the Izmir-Ankara-Erzincan suture zone and the Ankara mélange in northern Anatolia based on new geochemical and geochronological constraints. In: R. Sorkhabi (Ed.) Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions: Geological Society of America Special Paper, 525.

  • Sugisaki, R. (1984). Relation between chemical composition and sedimentation rate of Pacific Ocean-floor sediments deposited since the middle cretaceous: basic evidence for chemical constraints on depositional environments of ancient sediments. The Journal of Geology, 92(3), 235-259

  • Sugisaki, R., Yamamoto, K. & Adachi, M. (1982). Triassic bedded cherts in central Japan are not pelagic. Nature, 298, 644-647.

  • Sugitani, K., Horiuchi, Y., Adachi, M. & Sugisaki, R. (1996). Anomalously low Al2 O3 /TiO2 ratios for Archean cherts from the Pilbara Block, Western Australia-possible evidence for extensive chemical weathering on the early earth. Precambrian Research, 80, 49-76.

  • Şaşmaz, A., Türkyılmaz, B., Öztürk, N., Yavuz, F. & Kumral, M. (2014). Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from the Elazığ-Malatya region, eastern Turkey. Ore Geology Reviews, 56, 352-372.

  • Şaşmaz, A., Zagnitko, V.M. & Şaşmaz, B. (2020). Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxidehydroxide deposits in the Nikopol, Ukraine. Ore Geology Reviews, 126, 103772.

  • Şaşmaz, A., Şaşmaz, B., Hein, J.R. (2021). Geochemical approach to the genesis of the Oligocene-stratiform manganese-oxide deposit, Chiatura (Georgia). Ore Geology Reviews, 128, Article 103910. https://doi. org/10.1016/j.oregeorev.2020.103910.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241.

  • Takematsu, N., Sato, Y. & Okabe, S. (1989). Factors controlling the chemical composition of marine manganese nodules and crusts: a review and synthesis. Marine Chemistry, 26(1), 41-56.

  • Taylor, S. R. & McLennan, S. M. (1985). The continental crust: its composition and evolution. Blackwell, Oxford

  • Tekin, U.K. (1999). Biostratigraphy and systematics of late middle to late Triassic radiolarians from the Taurus mountains and Ankara region, Turkey. Geol Paläont Mitt. Innsbruck, Sonderband 5: 1-296

  • Tekin, U. K., Göncüoğlu, M. C. & Turhan, N. (2002). First evidence of late Carnian radiolarians from the Izmir-Ankara suture complex, Central Sakarya, Turkey: implications for the opening age of the Izmir-Ankara branch of neo-Tethys. Geobios, 35(1),127-135.

  • Tekin, U. K., Göncüoğlu, M. C., Özkan-Altıner, S. & Yalınız, M.K. (2006). Dating of Neotethyan volcanics by planktonic fauna, Bornova flysch zone, NWAnatolia (unpublished).

  • Tekin, U. K. & Göncüoğlu, M. C. (2007). Discovery of oldest (late Ladinian to middle Carnian) radiolarian assemblages from the Bornova flysch zone in western Turkey: implications for the evolution of the Neotethyan Izmir-Ankara Ocean. Ofioliti, 32(2),131-150.

  • Tekin, U. K. & Göncüoğlu, M. C. (2009). Late middle Jurassic (late Bathonianearly Callovian) radiolarian Cherts from the Neotethyan Bornova flysch zone, Spil Mountains, Western Turkey. Stratigraphy and Geological Correlation, 17(3), 298-308.

  • Toth, J. R. (1980). Deposition of submarine crusts rich in manganese and iron. Geological Society of America Bulletin, 91, 44-54.

  • U.S. Geological Survey (USGS). Mineral Commodity Summaries. 2019. Available online: https://doi. org/10.3133/70202434 (accessed on 10 May 2019).

  • Usui, A. & Someya, M. (1997). Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: K. Nicholson, J.R. Hein, B. Buhn, S. Dasgupta (Eds.), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits (pp. 177-198). Geological Society Special Publication, London.

  • Üner, T. (2010). Petrology of Eldivan and Ahlat (Cankiri) ophiolites [Unpublished PhD Thesis]. Ankara: Hacettepe University.

  • Wegorzewski, A. V. & Kuhn, T. (2014). The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123-138.

  • Wignall, P. B. & Myers, K. J. (1988). Age and geochemistry of late Precambrian sediments of the Hammamat series from the northeastern desert of Egypt. Journal of Geological Society, London, 146, 213-215.

  • Wonder, J. D., Spry, P. G. & Windom, K. E. (1988). Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia. Economic Geology, 83, 1070- 1081.

  • Wright, J., Schrader, H. & Holser, W. T. (1987). Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochemica et Cosmochimica Acta, 51(3), 631-644.

  • Xie, J., Sun, W., Du, J., Xu, W. Wu, L., Yang, S. & Zhou, S. (2013). Geochemical studies on Permian manganese deposits in Guichi, eastern China: implications for their origin and formative environments. Journal of Asian Earth Sciences, 74, 155-166.

  • Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. & Şengör, A. M. C. (1997). Geology and tectonic evolution of the Pontides. In: A.G. Robinson, (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists, 68, 183-226.

  • Yolsal-Çevikbilen, S., Biryol, C.K., Bech, S., Zandt, G., Taymaz, T., Adıyaman, H. E. & Özacar, A.A. (2012). 3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography. Geophysical Journal International, 188, 819-849.

  • Zarasvandi, A., Lentz, D., Rezaei, M. & Pourkaseb, H. (2013). Genesis of the Nasirabad manganese occurrence, Fars province, Iran: geochemical evidences. Chemie der Erde Geochemistry, 73, 495-508.

  • Zarasvandi, A., Rezaei, M., Sadeghi, M., Pourkaseb, H. & Sepahvand, M. (2016). Rare-earth element distribution and genesis of manganese ores associated with Tethyan ophiolites, Iran: A review. Mineralogical Magazine, 80(1), 127-142.

  • Zhang, F. F., Yan, B., Guo, Y.L., Zhu, X. K., Zhou, Q. & Yang, D. Z. (2013). Precipitation from of manganese ore deposits in Gucheng, Hubei province, and its paleoenvironment implication. Acta Geologica Sinica, 87(2), 245-258 (in Chinese with English abstract).

  • Zhu, X. K., Peng, Q. Y., Zhang, R.B., An, Z. Z., Zhang, F. F., Yan, B., Li, J., Gao, Z. F., Qin, Y. & Pan, W. (2013). Geological and geochemical characteristics of the Daotuo superlarge manganese ore deposit at Songtao County in Guizhou province. Acta Geologica Sinica 87(9), 1335-1348 (in Chinese with English abstract).


  • Aydoğan, S. (2021). Cihanpaşa (Yozgat) Bölgesinin Güney Kesimindeki Manganez Cevherleşmesinin Jeokimyasal Özellikleri ve Kökeni . Türkiye Jeoloji Bülteni , 65 (1) , 1-34 . DOI: 10.25288/tjb.975220

  • Permeability Estimation from Stoneley Waves in Carbonate Reservoirs
    Keyvan Khayer Adel Shirazy Aref Shirazi Abdolhamid Ansari Ardeshir Hezarkhani
    View as PDF

    Abstract: Permeability is one of the petrophysical properties of oil, gas reservoirs is defined as the abilityof rock to transmit fluids through the porous media. After exploration of any reservoir, permeability information isnecessary to optimize the well completion method, oil, gas production  field development. Permeability isdetermined by both direct-indirect methods. Direct methods are core analysis, well testing, modular dynamictester (MDT) the indirect method is using well logging data such as nuclear magnetic resonance (NMR) porosity. Determination of permeability from the Stoneley slowness is one of the indirect continuous methodsin the whole well-bore has been chosen as the goal of this study. The result of this correlation has been plottedagainst other well logging data, there is a very good match between this result other petrophysical properties.Due to the complex nature of permeability in carbonate reservoirs, most of the time there is not a good matchbetween this parameter other petrophysical properties. This study has been conducted on the data of a singlewell correlation has been determined. The results show that in calculation of permeability from Stoneley waves,the effective parameters are porosity, lithology, Stoneley slowness accuracy of the MDT tool. For more precisecorrelation in a reservoir/ a specific geological area, more data from other wells/ reservoirs are necessary.

  • Carbonate reservoirs

  • Dipole Shear Sonic imager

  • permeability

  • stoneley waves


  • Abbott, B., Abolins, M., Abramov, V., Acharya, B., Adams, D., Adams, M. & Anderson, E. (2000). The bb production cross section and angular correlations in pp collisions at s=1.8 TeV. Physics Letters B, 487(3-4), 264-272. https://doi. org/10.1016/S0370-2693(00)00844-3

  • Ahmed, U. ,Crary, S. & Coates, G. (1991). Permeability estimation: the various sources and their interrelationships. Journal of Petroleum Technology, 43(05), 578-587.

  • Al-Adani, N. & Al-Khatib, H. (2008). The Identification of Natural Fractures in Inclined Highly Fractured Formation. 2008 CSPG CSEG CWLS Convention, Calgary, Canada, May 12-15, 2008.

  • Al-Adani, N. & Barati, A. (2003). New hydraulic unit permeability approach with DSI. SPWLA 9th Formation Evaluation Symposium of Japan (pp. 25–26).

  • Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4), 1482-1498.

  • Burchette, T. P. (2012). Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geological Society, London, Special Publications, 370(1), 17-37.

  • Brie, A., Endo, T., Johnson, D. & Pampuri, F. (2000). Quantitative formation permeability evaluation from Stoneley waves. SPE Reservoir Evaluation & Engineering, 3(02), 109-117.

  • Doodran, R. J., Khakmardan, S., Shirazi, A. & Shirazy, A. (2020). Minimalization of Ash from Iranian Gilsonite by Froth Flotation. Journal of Minerals and Materials Characterization and Engineering, 9(1), 1-13.

  • Guan, W., Hu, H. & Wang, Z. (2013). Permeability inversion from low-frequency seismoelectric logs in fluid-saturated porous formations. Geophysical Prospecting, 61(1), 120-133.

  • Hodavand, M. & Moradzadeh, A., (2007). Estimation of reservoir permeability by studying Stoneley waves [Master’s Thesis]. Shahrood University of Technology, Iran

  • Jafari, S., Mashohor S., Ramli A. R., & Marhaban M. H. (2012). Expert Pruning Based on Genetic Algorithm in Regression Problems. In: J.S. Pan, S. M.Chen & Nguyen N.T. (Eds.), Intelligent Information and Database Systems. ACIIDS 2012. Lecture Notes in Computer Science, vol 7198. Springer, Berlin, Heidelberg.

  • Khakmardan, S., Doodran, R. J., Shirazy, A., Shirazi, A. & Mozaffari, E. (2020). Evaluation of Chromite Recovery from Shaking Table Tailings by Magnetic Separation Method. Open Journal of Geology, 10(12), 1153-1163.

  • Khakmardan, S., Shirazi, A., Shirazy, A. & Hosseingholi, H. (2018). Copper oxide ore leaching ability and cementation behavior, mesgaran deposit in Iran. Open Journal of Geology, 8(09), 841.

  • Mosalman-nejad.H, Rezaei. m, Dehghanzadeh. m, (2008), Quantitative permeability evaluation using acoustic waves and comparison with permeability from NMR and core analysis (Kangan Formation in South Pars field). The first congress of Iranian Petroleum Engineering. 106-122

  • Neasham, J. W. (1977). The morphology of dispersed clay in sandstone reservoirs and its effect on sandstone shaliness, pore space and fluid flow properties. 52nd Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, Denver, Colorado.

  • Ren, X., Zhao, Y., Deng, Q., Kang, J., Li, D. & Wang, D. (2016). A relation of hydraulic conductivity— void ratio for soils based on Kozeny-Carman equation. Engineering Geology, 213, 89-97.

  • Rosenbaum, J. H. (1974). Synthetic microseismograms: Logging in porous formations. Geophysics, 39(1), 14-32.

  • Shirazi, A., Hezarkhani, A.& Shirazy, A., (2018a). Exploration Geochemistry Data-Application for Cu Anomaly Separation Based On Classical and Modern Statistical Methods in South Khorasan, Iran. International Journal of Science and Engineering Applications, 7, 39-44.

  • Shirazi, A., Hezarkhani, A. & Shirazy, A., (2018b). Remote sensing studies for mapping of iron oxide regions, South of Kerman, Iran. International Journal of Science and Engineering Applications, 7(4), 45-51.

  • Shirazi, A., Shirazy, A. & Karami, J. (2018c). Remote sensing to identify copper alterations and promising regions, Sarbishe, South Khorasan, Iran. International Journal of Geology and Earth Sciences, 4(2), 36-52.

  • Shirazi, A., Shirazy, A., Saki, S. & Hezarkhani, A. (2018d). Geostatistics studies and geochemical modeling based on core data, sheytoor iron deposit, Iran. Journal of Geological Resource and Engineering, 6, 124-133.

  • Shirazy, A., Shirazi, A., Heidarlaki, S. & Ziaii, M. (2018e). Exploratory Remote Sensing Studies to Determine the Mineralization Zones around the Zarshuran Gold Mine. International Journal of Science and Engineering Applications, 7(9), 274- 279.

  • Shirazy, A., Shirazi, A., Ferdossi, M. H. & Ziaii, M. (2019). Geochemical and geostatistical studies for estimating gold grade in tarq prospect area by k-means clustering method. Open Journal of Geology, 9(6), 306-326.

  • Shirazy, A., Ziaii, M. & Hezarkhani, A. (2020a). Geochemical Behavior Investigation Based on K-means and Artificial Neural Network Prediction for Copper, in Kivi region, Ardabil province, IRAN. Iranian Journal of Mining Engineering, 14(45), 96-112.

  • Shirazy, A., Ziaii, M., Hezarkhani, A. & Timkin, T. (2020b). Geostatistical and remote sensing studies to identify high metallogenic potential regions in the Kivi area of Iran. Minerals, 10(10), 869.

  • Shirazy, A., Shirazy, A. & Nazerian, H. (2021a). Application of Remote Sensing in Earth Sciences–A Review. International Journal of Science and Engineering Applications 10(5), 45- 51.

  • Shirazy, A., Shirazi, A., Nazerian, H., & Khayer, K. (2021b). Geophysical study: Estimation of deposit depth using gravimetric data and Euler method (Jalalabad iron mine, kerman province of IRAN). Open Journal of Geology, 11, 340-355.

  • Sun, Y. & Han, J. (2012), Mining heterogeneous information networks: principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2), 1-159.

  • Tang, X. & Cheng, C.-H. (1996). Fast inversion of formation permeability from Stoneley wave logs using a simplified Biot-Rosenbaum model. Geophysics, 61(3), 639-645.

  • Timur, A. (1968). An investigation of permeability, porosity, & residual water saturation relationships for sandstone reservoirs. The Log Analyst, 9, 3-5.

  • Williams, J. R., Jones, C. A. & Dyke, P. T. (1984). A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE, 27(1), 129-0144.

  • Zemanek, J., Angona, F., Williams, D. & Caldwell, R. L. (1984). Continuous acoustic shear wave logging. SPWLA 25th Annual Logging Symposium.

  • Khayer, K. , Shirazy, A. , Shirazi, A. , Ansari, A. & Hezarkhani, A. (2021). Permeability Estimation from Stoneley Waves in Carbonate Reservoirs . Türkiye Jeoloji Bülteni , 65 (1) , 35-42 . DOI: 10.25288/tjb.974505

  • Recent Marine Ostracods (Crustacea) around Hovgaard, Horseshoe Islands (Antarctica Peninsula)
    Atike Nazik Yeşim Büyükmeriç Ali Murat Kiliç Zeki Ünal Yümün
    View as PDF

    Abstract: On the route of the II Turkish Antarctic Expedition (TAE-II) in the NW of the continent of Antarctica,twelve grab sediment samples were been collected from seven different locations at depths of -20 , -60 m betweenKing George, Horseshoe islands in NW Antarctica. The collected samples consist of greenish gray silty clay, fine sandy silt, as well as brownish gray sandy silty clay units containing fine gravel grains.In the Hovgaard, Horseshoe islands, six genera, six species of ostracods were identified: Copytuscaligula Skogsberg, Austrotrachyleberis antarctica (Neale), Australicythere devexa (Müller), Cativella bensoniNeale, Cytheropteron acuticaudatum Hartmann, Loxoreticulatum fallax (Müller). The species are cryophilicendemic ostracods. When the fossil, current findings are compared, Austrotrachyleberis antarctica, whichhas been known since the Oligocene, migrated from Antarctica to South America, Cativella bensonimigrated from South America to Antarctica.

  • Antarctica

  • Ostracod

  • Recent

  • zoogeography


  • Benson, R. H. (1964). Recent Cytheracean ostracodes from McMurdo Sound and the Ross Sea, Antarctica. The University of Kansas Paleontological Contributions, Arthopoda, 6, 1-36.

  • Brandão, S. N. & Dingle, R. V. (2014). Chapter 5.15. Benthic Ostracoda. In DeBroyer, C., Koubbi, P., Griffiths, H. J., Raymond, B. & Udekemd’Acoz, C.d’. (Eds.), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, (pp. 142-148). Cambridge.

  • Brandão, S.N. & Karanovic, I. (2021). World Ostracoda Database. Loxoreticulatum fallax (Mueller, 1908). Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia. php?p=taxdetails&id=391362 on 2021-11-09.

  • Brandão, S. N., Stuhlmann, A., Vital, H. & Brandt, A. (2016). Biogeography of Abyssocythere and Dutoitella (Ostracoda), with descriptions of three new species. Zootaxa 4139(3), 391-418. https:// doi.org/10.11646/zootaxa.4139.3.4

  • Büyükmeriç, Y., Yümün, Z. Ü., Nazik, A., Kılıç, A. M., Alçiçek, H., Yılmaz, İ. Ö., Kaya-Özer, C., Kayseri-Özer, M. S., Alçiçek, M.C. ve Koral, H. (2019). Antarktika Yarımadası’nin Kuzeybatısında (Horseshoe, Hovgaard, King George ve Nansen Adaları Çevresi) Güncel Kıyı Çökellerinin Sedimantolojik, Jeokimyasal Özellikleri ve Bentik Topluluklar: Ön Bulgular (s. 39-40). 3. Kutup Bilimleri Çalıştayı, (5-6 Eylül 2019, Ankara).

  • Büyükmeriç, Y., Kılıç, A. M., Yümün, Z.Ü., Nazik, A., Güney, A., Kayseri-Özer, M.S., Alçiçek, H., Yılmaz, İ. Ö. ve Kaya-Özer, C. (2021). Horseshoe, Hovgaard, King George ve Nansen Adaları çevresindeki (KB Antarktika Yarımadası) Güncel Denizel Çökellerden Elde Edilen Yeni Jeolojik Bulgular: Birleştirilmiş Bir Yaklaşım (s. 956-958). Parlak, O., Sayıt, K., Mesci, B. L., Akıllı, H. ve Akyıldız, M. (Ed.ler). 73. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı. Jeoloji Mühendisleri Odası.

  • Chapman, F. (1919). Ostracoda. Australasian Antarctic Expedition, 1911-1914. Scientific Reports, Series C., Zoology and Botany, 5, 5-45.

  • De Broyer, C., Clarke, A., Koubbi, P., Pakhomov, E., Scott, F., Vanden Berghe, E. & Danis, B. (Eds.) 2021. Register of Antarctic Marine Species. Accessed at http://www.marinespecies.org/rams on 2021-09-22.

  • Hartmann, G. (1986). Antarktische benthische Ostracoden I (Mit einer Tabelle der bislang aus der Antarktis bekannten Ostracoden). Auswertung der Fahrten der “Polarstern” Ant III/2 (Sibex−Schnitte) und der Reise 68/1 der “Walther Herwig” (1. Teil: Elephant Island) in die Antarktis. Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut, 83, 147–221.

  • Hartmann, G. (1988). Antarktische benthische Ostracoden III. Auswertung der Reise des FFS Walther Herwig 68/1. 3. Teil: Süd−Orkney−Inseln. Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut, 85,141–162.

  • Hartmann, G. (1989a). Antarktische benthische Ostracoden IV. Auswertung der wlhrend der Reise von FFS Walther Herwig (68/1) bei StidGeorgien gesammelten Ostracoden. Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut, 86, 209-230.

  • Hartmann, G. (1989b). Antarktische benthische Ostracoden V. Auswertung tier Südwinterreise yon FS Polarstern (Ps 9/V-l) im Bereich Elephant Island und der Antarktischen Halbinsel. Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut, 86, 231-288.

  • Hartmann, G. (1990). Antarktische benthische Ostracoden VI. Auswertung der Reise der Polarstern Ant. VI−2 (1. Teil, Meiofauna und Zehnerserien) sowie Versuch einer vorläufigen Auswertung aller bislang vorliegenden Daten). Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut, 87, 191–245.

  • Hartmann G. (1992). Antarktische benthische Ostracoden. VIII. Auswertung der Reise der Meteor (Ant. 11/4) in die Gewässer um Elephant Island und der Antarktischen Halbinsel. Helgoländer Meeresuntersuchungen 46, 405–424.

  • Hartmann, G., 1997. Antarktische und Subantarktische Podocopa (Ostracoda). In: J. W. Wagele & J. Sieg (Eds.), Synopses of the Antarctic Benthos, 7. Koeltz Scientific Books, Koenigstein, 355 pp.

  • http://www.marinespecies.org/aphia. php?p=taxdetails&id=391251, 8 Kasım 2021

  • https://www.swisseduc.ch/glaciers/antarctic/geology/ index-en.html, 8 Kasım 2021.

  • https://obis.org/taxon/391240, 8 Kasım 2021

  • https://obis.org/taxon/391251, 8 Kasım 2021

  • https://obis.org/taxon/391255, 8 Kasım 2021

  • https://obis.org/taxon/391349, 8 Kasım 2021

  • https://obis.org/taxon/504095, 8 Kasım 2021

  • https://obis.org/taxon/597748, 8 Kasım 2021

  • Kılıç, A. M., Büyükmeriç, Y., Yümün, Z.Ü., Alçiçek, H., Alçiçek, M.C., Nazik, A., Kaya-Özer, C., KayseriÖzer, M. S., Yılmaz, İ. Ö. ve Koral, H. (2018). İkinci Türk Antarktik Ekspedisyonu kapsamında gerçekleştirilen Antarktik Yarımadasının Kuvaterner ve daha yaşlı birimlerinin stratigrafik tarihçesi üzerine ön rapor (s.25-25). II. Kutup Bilimleri Çalıştayı Özet Kitabı (12-13 Eylül 2018), İstanbul.

  • Kornicker, L. S. (1970). Ostracoda (Myodocopina) from the Peru-Chile Trench and the Antarctic Ocean. Smithsonian Contributions to Zoology, 32, 1-42. https://doi.org/10.5479/si.00810282.32

  • Kornicker, L S. (1971). Benthic Ostracoda (Myodocopina, Cypridinacea), from the South Shetland Islands and the Palmer Archipelago, Antarctica (pp. 167-216). In: Llano, G. A. & Wallen, I. E. (Ed.), Antarctic Research Series, Biology of the Antarctic seas IV, 17.

  • Kornicker, L. S. (1975). Antarctic Ostracoda (Myodocopina). P. 1 and 2. Smithsonian Contributions to Zoology, 163, 1-720.

  • Majewski, W. & Olempska, E. (2005). Recent ostracods from Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 26. 13-36.

  • Müller, G. W. (1894). Die Ostracoden des Golfes von Neapel und der angrenzenden Meeresabschnitte. Z. S. zu Neapel (Ed.), Fauna und Flora Golf von Neapel und der angrenzenden Meeres-Abschnitte. Berlin 1894, pp. 1–404.

  • Müller, G.W. (1908). Die Ostrakoden der Deutschen Südpolar-Expedition 1901-1903. Deutsche Südpolar-Expedition 1901-1903 im Auftrage des Reichsamtes des Innern, 2(4), 51-182.

  • Nazik, A., Büyükmeriç, Kılıç, A. M., Y. ve Yümün, Z. Ü. (2021). Antarktika’nın Kuzeybatısı (680 Güney Enlemi Bölgesi), TAE-II Rotası Taban Çökeli Ostrakodları (s. 915-916). Parlak, O., Sayıt, K., Mesci, B. L., Akıllı, H. ve Akyıldız, M. (Ed.ler). 73. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı. Jeoloji Mühendisleri Odası.

  • Neale, J. W. (1967). An ostracod fauna from Halley Bay, Coats Land, British Antarctic Territory. British Antarctic Survey Scientific Reports, 58, 1-50

  • Skogsberg, T. (1939). A new genus and species of marine ostracods from South Georgia. Proceedings of the California Academy of Sciences, 4,23(27), 415- 425

  • Szczechura, J. & Blaszyk, J. (1996). Ostracods from the Pecten Conglomerate (Pliocene) of Cockburn Island. Antarctic Peninsula. 111: A. Gazdzicki (ed.) Palaeontological Results of the Polish Antarctic Expeditions. Part 11. Palaeontologica Polonica SS, 175-1 86.

  • Whatley, R. C., Staunton, M., Kaesler, R. L. & Moguilevsky, A. (1996). The taxonomy of recent Ostracoda from the southern part of the Strait of Magellan. Revista Espafiola de Micropaleontologia, 28, 51-76.

  • Yasuhara, M., Kato, M., Ikeya, N. & Seto, K. (2007). Modern benthic ostracodes from LützowHolm Bay, East Antarctica: paleoceanographic, paleobiogeographic, and evolutionary significance. Micropaleontology, 53, 469-196.

  • Nazik, A. , Büyükmeriç, Y. , Kılıç, A. M. & Yümün, Z. Ü. (2022). Hovgaard ve Horseshoe Adaları (Antarktika Yarımadası) Çevresindeki Güncel Denizel Ostrakodlar (Crustacea) . Türkiye Jeoloji Bülteni , 65 (1) , 43-52 . DOI: 10.25288/tjb.1002087

  • A Case Study on Modelling, Resource Assesment Using Geostatistical Parameters for the Flotation, Smelting Mining Waste in the Balya Region (Balıkesir, NW Turkey)
    Ahmet Baştürk Mustafa Selman Aydoğan
    View as PDF

    Abstract: Mining waste at Balya (Balıkesir) was studied, divided in two categories, flotation, smelting.90 flotation samples, 14 smelting samples from the waste were collected to analyse the valuable elements. XRFresults show that the flotation waste has an average of 4.38 wt% Pb, 4.1 wt% Zn, 8.48 wt% Fe, 0.29 wt% Cucontent; while the smelting waste includes an average concentration of 3.16 wt% Pb, 11.08 wt% Zn, 26.53 wt%Fe, 0.22 wt% Cu. The chemical data related to the waste were interpreted by statistical analysis. Using thedetermined geostatistical parameters, the area variation on the basis of grade was determined using the OrdinaryKriging method. Quantity, tonnage, density, tonnage change values of the mining waste were used in theconstructed block model. The amount of the possible reserves of the waste was then determined. A resource of516,674 tons for the smelting, flotation waste was assessed. Excluding Fe, Cu, this study revealed that miningwaste in the Balya region has an operable content of Pb, Zn. However, more detailed research, developmentwork is required for the recovery, disposal process of the Pb-Zn-rich areas, due to the presence of some sulphateminerals (bassanite, anglesite), the oxidation processes, the partial sedimentation heterogeneous structureof these wastes.

  • Balıkesir

  • Balya

  • block model

  • flotation

  • smelting

  • resource

  • waste


  • Abtew, W., Obeysekera, J. & Shih, G. (1993). Spatial analysis for monthly rainfall in South Florida. Water Resources Bulletin, 29 (2), 179-188.

  • Ağdemir, N., Kırıkoğlu, M.S., Lehmann, B. & Tietze, J. (1994). Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit NW Turkey. Mineralium Deposita 29, 366-371.

  • Akıncı, Ö. T. (2003). Maden Jeolojisi ve Arama Yöntemleri. SDÜ Yayın No: 33, 496 s.

  • Akyol, Z. (1975). Balıkesir İli Balya civarının jeolojisi [Yayımlanmamış diploma çalışması]. İstanbul Üniversitesi, Fen Fakültesi, Jeoloji Kürsüsü.

  • Akyol, Z, (1976). Balıkesir-Balya Pb-Zn-Ag’li Cürufların Tenör ve Kaynak Hesabına yönelik ön çalışma raporu. MTA, Ankara (Yayımlanmamış).

  • Akyol, Z. (1977). Balya Madeni Civarının Jeolojisi. T.M.M.O.B. Jeoloji Mühendisliği Dergisi 1(3), 10-27.

  • Akyol, Z. (1979). Balya Kurşun-Çinko Maden Yatağı. T.M.M.O.B. Jeoloji Mühendisliği Dergisi 3(1), 48-58.

  • Akyol, Z. (1982). Balıkesir-Balya cevherli sahalarının jeolojisi, mineralojisi ve maden potansiyelinin değerlendirilmesi. İstanbul Yerbilimleri Dergisi, 3(1-2), 163-189.

  • Akyürek, B. ve Soysal, Y. (1983). Biga yarımadası güneyinin (Savaştepe-Kırkağaç-BergamaAyvalık) temel jeoloji özellikleri. Maden Tetkik ve Arama Enstitüsü (MTA) Dergisi 95/96: 1–13.

  • Aslan, Z., Erdem, D., Temizel, İ. & Arslan, M. (2017). SHRIMP U-Pb zircon ages and whole-rock geochemistry for the Şapçı volcanic rocks, Biga Peninsula, Northwest Turkey: implications for pre-eruption crystallization conditions and source characteristics. International Geology Review, 59 (14), 1764-1785.

  • Aygen T. (1956). Balya Bölgesi Jeolojisinin İncelenmesi. MTA. Yayım Seri DNU- 11, Ankara.

  • Balcı, Ç. B., Gül, S., Kılıç, M. M., Karagüler, N., Sarı, E. ve Sönmez, M. Ş. (2014). Balya (Balıkesir) Pb-Zn Madeni Atık Sahasının Biyojeokimyası ve Asidik Maden Drenajı Oluşumuna Etkileri. Türkiye Jeoloji Bülteni, 57(3), 1-24. https://doi. org/10.25288/tjb.298704

  • Başkan, O. (2004). Gölbaşı Yöresi Topraklarının Mühendislik, Fiziksel Özellik İlişkilerinde Jeoistatistik Uygulaması [Yayımlanmamış doktora tezi]. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

  • Baştürk, A. (2017). Balya (Balıkesir) civarındaki flotasyon ve izabe atıklarının özelliklerinin belirlenmesi ve rezervinin hesaplanması [Yayımlanmamış yüksek lisans Tezi]. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü.

  • Bingöl, E., Akyürek, B. ve Korkmazer, B. (1975). Biga Yarımadası’nın jeolojisi ve Karakaya Formasyonunun bazı özellikleri [Geology of the Biga Peninsula and some characteristics of the Karakaya blocky series]. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi Tebliğleri (s. 70-77). MTA Enstitüsü (Congress on Earth Sciences for the 50th Anniversary of Republic of Turkey, Abstracts), [in Turkish with English Abstract].

  • Çetin, M. (1996). Jeoistatistiksel yöntem ile nokta ve alansal yağışların saptanması ve stokastik olarak modellenmesi [Yayımlanmamı doktora tezi]. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.

  • Çiloğlu, M. (2007). Osmanlı Devleti’nde Madencilik ve Balya Madenleri. Balıkesir Üniversitesi, F.E.F. Karesi Tarih Kulübü Bülteni, 31-41.

  • Daya, A. A. (2012). Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method. International Journal of Mining Science and Technology, 22, 573-577.

  • Deutsch, C.V. & Journel, A .G. (1992). Geostatistical software library and user’s guide. Oxford University Press, Inc., New York.

  • Erel, Z. (2011). Balya (Balıkesir) Polimetalik Maden Yatağı Rezervinin Jeoistatistiksel Yöntemle Analizi [Yayımlanmamış yüksek lisans tezi]. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü.

  • Erkül, F., Tatar Erkül, S. ve Aysal, N. (2016). Balya ve Çevresindeki Volkano-Plütonik Kayaçların jeokimyasal ve Petrojenetik Özellikleri, Balıkesir, Türkiye. 7. Jeokimya Sempozyumu (16-18 Mayıs, Antalya), Bildiri Özetleri (s.262).

  • Gjelsvik, T. (1962). Investigations of Lead-Zinc Deposits in Northwest Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 59, 62- 70.

  • Gökçe, A. (2005). Maden Arama ve Değerlendirme Yöntemleri. Sivas, 151 s.

  • Güneş, C., Güneş, A. T., Akıncı, G., Bektaş, G. ve Özdemir Ş. (2013). Terkedilen Balya Pb-Zn Madeni Atıklarında Asit Maden Drenaj Verileri ve ÇED. Uluslararası Çevresel Etki Değerlendirmesi Kongresi (8-10 Kasım), IKM, İstanbul.

  • Kaaden, G. (1957). Çanakkale-Biga Edremit yarımadası bölgesindeki jeolojik saha çalışmaları ve maden yatakları hakkında rapor (Rapor no: 2661). M.T.A. (yayımlanmamış), Ankara.

  • Kovenko, V. (1940). Balya Kurşun madenleri. MTA Dergisi, 21, 580-593.

  • Mohr, M. (1959). Balya mıntıkasındaki kurşun zuhurlarının prospeksiyonu hakkında toplu rapor (rapor no: 2703). MTA, Ankara.

  • Öngür, T. (2003). Balya Kurşun-Çinko Madeni, Çevre Sorunları ve Toplumsal Yeniden Kalkınma. ISBN No 975-92283-7-8, Dev.Maden-Sen Yayın Evi.

  • Öztunalı, Ö. (1984). Balya Kurşun Çinko madeni, Arısu sahası etüdü. İ.Ü Mühendislik Fakültesi D.S.R., 39, 1-84.

  • Şimşek, C., Gündüz, O. ve Elçi, A (2012). Terkedilmiş Balya (Balıkesir) Pb-Zn Maden Atıklarının Ağır Metal ve Doğal Radyoaktivite İçeriği ve Çevre Kalitesi Açısından Değerlendirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 2(1), 43-55.

  • Tahmasebi, P. & Hezarkhani, A. (2010). Application of adaptive neuro-fuzzy inference system for grade estimation; case study, Sarcheshmeh porphyry copper deposit, Kerman, Iran. Australian Journal of Basic and Applied Sciences 4, 408-420.

  • Üçürüm, M. ve Ulu, E. (1987). Balıkesir-Balya Kurşun-Çinko sahasındaki İzabe ve birinci flotasyon artıklarının teknolojik değerlendirilmesi. Madencilik Dergisi, 26(3), 5-13.

  • Ünal, E. & Gökçe, A. (2009). Geology and Fluid Inclusion Characteristics of the Hastane Tepe (Balya-Balikesir) Lead-Zinc Deposit. XX. ECROFI Meeting (31-27 September 2009), Granada, Spain.

  • Waller, L. & Gotway, C. A. (2004). Applied Spatial Statistics for Public Health Data. New Jersey, J Wiley & Sons.

  • Webster, R. & Oliver, M. A. (2007). Geostatistics for Environmental Scientist. Chichester: J Wiley & Sons.

  • Yaprak, S. ve Arslan, E. (2008). Kriging Yönteminin Geoit Modellemesinde Kullanılabilirliğinin Araştırılması. İTÜ Dergisi, 7(3), 51-62.

  • Yiğit, C. Ö. (2003). Elipsoidal yüksekliklerin ortometrik yüksekliğe dönüşümünde kullanılan enterpolasyon yöntemlerinin karşılaştırılması [Yayımlanmamış yüksek lisans tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.

  • Baştürk, A. & Aydoğan, S. (2022). Balya (Balıkesir, KB Türkiye) Bölgesindeki Flotasyon ve İzabe Atıklarında Jeoistatistiksel Parametreler Kullanarak Modelleme ve Kaynak Hesabına Örnek Bir Çalışma . Türkiye Jeoloji Bülteni , 65 (1) , 53-78 . DOI: 10.25288/tjb.999317

  • K-Means Clustering, General Regression Neural Network Methods for Copper Mineralization probability in Chahar-Farsakh, Iran
    Adel Shirazy Ardeshir Hezarkhani Aref Shirazi Shayan Khakmardan Reza Rooki
    View as PDF

    Abstract: Due to the efficiency of data mining science for analyzing, reviewing extensive data, especiallygeochemical data, essential methods ,techniques such as the hierarchical method, K-Means method, densitybased methods, Cohennon method, so forth, have been developed ,utilized by numerous researchers forclustering. One of the most notable ,widely used algorithms in the field of clustering is the K-Means algorithm.This algorithm divides the data in K clusters by emphasizing the distance criterion. This study focuses on applyingthis method according to lithogeochemical data taken from the 1:100,000 scale map of Chahar-Farsakh in SouthKhorasan province for the elements of copper, cobalt, nickel to the sampling coordinates. The optimal value ofK was classified according to the desirability of the selection, the data, thus the relationships between theseelements in the range were determined. This was analyzed by changing the value of K from 3 to 15 criteria mentionedin each class to reveal the optimal K. According to the observations, the existence of a quadratic relationship withnegative concavity between copper, cobalt elements, as well as a special exponential relationship between copper, nickel, a positive linear relationship between nickel, cobalt, were reported. Finally, considering thecoordinates of the samples, the concentration of cobalt, nickel, the quantity of copper was predicted usinga General Regression Neural Network (GRNN). The accuracy of this method was estimated to be 0.99 on trainingdata 0.76 on test data. Therefore, using the proposed method (K-means Clustering, GRNN) in this paper, itis possible to examine the extent of changes in other elements in the analysis. Also, it is possible to make deeper,broader explorations via determining the relationship between the elements.

  • Behavioral Measurement

  • Chahar-Farsakh

  • Desirability

  • General Regression Neural Network

  • K-means

  • Prediction


  • Abraham, A. (2005). Artificial neural networks. Handbook of measuring system design.

  • Alahgholi, S., Shirazy, A. & Shirazi, A. (2018). Geostatistical studies and anomalous elements detection, Bardaskan Area, Iran. Open Journal of Geology, 8(7), 697-710.

  • Artun, E., Mohaghegh, S. D., Toro, J., Wilson, T. & Sanchez, A. (2005). Reservoir characterization using intelligent seismic inversion. SPE Eastern Regional Meeting.

  • Cheung, Y.-M. (2003). k∗-Means: A new generalized k-means clustering algorithm. Pattern Recognition Letters, 24(15), 2883-2893.

  • Dayhoff, J. E. & DeLeo, J. M. (2001). Artificial neural networks: opening the black box. Cancer: Interdisciplinary International Journal of the American Cancer Society, 91(S8), 1615-1635.

  • Demuth, H. & Beale, M. (1993). Neural Network Toolbox For Use with Matlab Users’ Guide Version 3.0.

  • Ghannadpour, S. S., Hezarkhani, A. & Farahbakhsh, E. (2013). An investigation of Pb geochemical behavior respect to those of Fe and Zn based on k-Means clustering method. Journal of Tethys, 1(4), 291-302.

  • Ghorbani, M. (2013a). Economic geology of Iran (Vol. 581). Springer.

  • Ghorbani, M. (2013b). A summary of geology of Iran. In: The economic geology of Iran (pp. 45-64). Springer.

  • Hajnajafi, G., Jafarirad, A., Afzal, P. & SheikhZakariaee, S.-J. (2021). Geological interpretation using multivariate K-means and robust factor analysis in Dezak area, SW Iran. Environmental Earth Sciences, 80(1), 1-13.

  • Hamerly, G. & Elkan, C. (2003). Learning the k in k-means. Advances in neural information processing systems, 16, 281-288.

  • Heil, J., Häring, V., Marschner, B. & Stumpe, B. (2019). Advantages of fuzzy k-means over k-means clustering in the classification of diffuse reflectance soil spectra: A case study with West African soils. Geoderma, 337, 11-21.

  • Hezarkhani, A. & Ghannadpour, S. S. (2015). Geochemical behavior investigation based on K-means clustering: basics, concepts and case study. LAP (Lambert Academic Publishing).

  • Khosravi, V., Shirazi, A., Shirazy, A., Hezarkhani, A., & Pour, A. B. (2022). Hybrid Fuzzy-Analytic Hierarchy Process (AHP) Model for Porphyry Copper Prospecting in Simorgh Area, Eastern Lut Block of Iran. Mining, 2(1), 1-12.‏

  • Khayer, K., Shirazy, A., Shirazi, A., Ansari, A., Nazerian, H. & Hezarkhani, A. (2021). Determination of Archie’s Tortuosity Factor from Stoneley Waves in Carbonate Reservoirs. International Journal of Science and Engineering Applications (IJSEA), 10, 107-110.

  • Krishna, K. & Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3), 433-439.

  • Menard, S. (1995). An introduction to logistic regression diagnostics. Applied logistic regression analysis, 58-79.

  • Moritz, R. (2016). The economic geology of Iran: mineral deposits and natural resources (M. Ghorbani). In: Society of Economic Geologists.

  • Murthy, C. A., & Chowdhury, N. (1996). In search of optimal clusters using genetic algorithms. Pattern Recognition Letters, 17(8), 825-832.

  • Pelleg, D. & Moore, A. W. (2000). X-means: Extending k-means with efficient estimation of the number of clusters. Icml, Proceedings of the Seventeenth International Conference on Machine Learning.

  • Schalkoff, R. J. (1997). Artificial neural networks. McGraw-Hill Higher Education.

  • Shirazi, A., Hezarkhani, A., Shirazy, A. & Shahrood, I. (2018a). Exploration Geochemistry DataApplication for Cu Anomaly Separation Based On Classical and Modern Statistical Methods in South Khorasan, Iran. International Journal of Science and Engineering Applications, 7, 39-44.

  • Shirazi, A., Hezarkhani, A., Shirazy, A. & Shahrood, I. (2018b). Remote sensing studies for mapping of iron oxide regions, South of Kerman, Iran. International Journal of Science and Engineering Applications, 7(4), 45-51.

  • Shirazi, A., Shirazy, A. & Karami, J. (2018c). Remote sensing to identify copper alterations and promising regions, Sarbishe, South Khorasan, Iran. International Journal of Geology and Earth Sciences, 4(2), 36-52.

  • Shirazi, A., Shirazy, A., Saki, S. & Hezarkhani, A. (2018d). Geostatistics studies and geochemical modeling based on core data, sheytoor iron deposit, Iran. Journal of Geological Resource and Engineering, 6, 124-133.

  • Shirazi, A., Shirazy, A., Saki, S. & Hezarkhani, A. (2018e). Introducing a software for innovative neuro-fuzzy clustering method named NFCMR. Global Journal of Computer Sciences: theory and research, 8(2), 62-69.

  • Shirazy, A., Shirazi, A., Heidarlaki, S. & Ziaii, M. (2018a). Exploratory Remote Sensing Studies to Determine the Mineralization Zones around the Zarshuran Gold Mine. International Journal of Science and Engineering Applications, 7(9), 274- 279.

  • Shirazy, A., Shirazi, A. & Hezarkhani, A. (2018b). Predicting gold grade in Tarq 1: 100,000 geochemical map using the behavior of gold, Arsenic and Antimony by K-means method. Journal of Mineral Resources Engineering, 2(4), 11-23.

  • Shirazy, A., Shirazi, A., Ferdossi, M. H. & Ziaii, M. (2019). Geochemical and geostatistical studies for estimating gold grade in tarq prospect area by k-means clustering method. Open Journal of Geology, 9(6), 306-326.

  • Shirazy, A., Ziaii, M. & Hezarkhani, A. (2020a). Geochemical Behavior Investigation Based on K-means and Artificial Neural Network Prediction for Copper, in Kivi region, Ardabil province, Iran. Iranian Journal of Mining Engineering, 14(45), 96-112.

  • Shirazy, A., Ziaii, M., Hezarkhani, A. & Timkin, T. (2020b). Geostatistical and remote sensing studies to identify high metallogenic potential regions in the Kivi area of Iran. Minerals, 10(10), 869.

  • Shirazy, A., Ziaii, M., & Hezarkhani, A. (2021a). Geochemical behavior investigation based on k-means and artificial neural network prediction for titanium and zinc, Kivi region, Iran. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 332(3), 113-125.

  • Shirazy, A., Hezarkhani, A., Timkin, T. & Shirazi, A. (2021b). Investigation of Magneto-/Radio-Metric Behavior in Order to Identify an Estimator Model Using K-Means Clustering and Artificial Neural Network (ANN)(Iron Ore Deposit, Yazd, IRAN). Minerals, 11(12), 1304.

  • Shirazy, A., Shirazi, A. & Nazerian, H. (2021c). Application of Remote Sensing in Earth Sciences–A Review. International Journal of Science and Engineering Applications, 10, 45-51.

  • Shirazy, A., Shirazi, A., Nazerian, H. & Hezarkhani, A. (2021d). Investigation of Geochemical Sections in Exploratory Boreholes of Mesgaran Copper Deposit in Iran. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 9(8), 2364-2368.

  • Shirazy, A., Shirazi, A., Nazerian, H. & Khayer, K. (2021e). Geophysical study: Estimation of deposit depth using gravimetric data and Euler method (Jalalabad iron mine, kerman province of IRAN). Open Journal of Geology, 11, 340-355.

  • Specht, D. F. (1991). A general regression neural network. IEEE transactions on neural networks, 2(6), 568-576.

  • Tarkian, M. & Stribrny, B. (1999). Platinumgroup elements in porphyry copper deposits: a reconnaissance study. Mineralogy and Petrology, 65(3-4), 161-183.

  • Ullman, J. (1984). A review of: Pattern Recognition: A Statistical Approach. By PA Devuver and J. Kittler. (London: Prentice Hall International, 1982.) [pp. 448.]. Remote Sensing, 5(2), 464-464.

  • Xu, Z. (2012). Priority weight intervals derived from intuitionistic multiplicative preference relations. IEEE Transactions on Fuzzy Systems, 21(4), 642- 654

  • Yaghini, M., & Gereilinia, N. (2013). Genetic TKM: A hybrid clustering method based on genetic algorithm, tabu search and k-means. International Journal of Applied Metaheuristic Computing (IJAMC), 4(1), 67-77.

  • Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.

  • Shirazy, A. , Hezarkhani, A. , Shirazi, A. , Khakmardan, S. & Rooki, R. (2022). K-Means Clustering and General Regression Neural Network Methods for Copper Mineralization probability in Chahar-Farsakh, Iran . Türkiye Jeoloji Bülteni , 65 (1) , 79-92 . DOI: 10.25288/tjb.1010636

  • ISSUE FULL FILE
    View as PDF