Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2024 OCAK Cilt 67 Sayı 1
COVER
PDF Olarak Görüntüle
COPYRIGHT PAGE
PDF Olarak Görüntüle
CONTENTS
PDF Olarak Görüntüle
Influence of the Ptolemy-Pliny-Strabo Fault Zone in Bozburun Peninsula (Southwest Türkiye): Evidence from Structural Data and Focal Mechanism Solutions
Gürol Seyitoğlu Bülent Kaypak Edanur Tanülkü Tolga Karabiyikoğlu Begüm Koca
PDF Olarak Görüntüle

Abstract: Structural data obtained from fault surfaces in the Bozburun Peninsula, southwest Türkiye indicate that the previously known active normal faults are indeed strike-slip structures. The configuration of left- and right-lateral strike-slip segments and lineaments observed from high-resolution satellite images, plus the evaluation of available focal mechanism solutions of the earthquakes having less than 30 km depth around Bozburun Peninsula, show that the study area is under influence of the left-lateral Ptolemy-Pliny-Strabo Fault Zone.

  • Aegean Arc

  • Bozburun Peninsula

  • Ptolemy-Pliny-Strabo Fault Zone

  • Southwest Türkiye

  • Alçiçek, M. C. (2015). Comment on The FethiyeBurdur Fault Zone: a component of upper plate extension of the subduction edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, 635, 80-99.

  • Alçiçek, M. C., ten Veen J.H. & Özkul, M. (2006). Neotectonic development of the Çameli Basin, southwestern Anatolia, Turkey. Geological Society Special Publication, 260, 591-611.

  • Allmendinger, R. W., Cardozo, N. C. & Fisher, D. (2012). Structural Geology Algorithms: Vectors and Tensors. Cambridge University Press, 289 p.

  • Barka, A. & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, XL, 587-610.

  • Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonnin, J. (1973). Plate Tectonics and the evolution of the Alpine system. Geological Society of America Bulletin, 84, 3137-3180.

  • Dikbaş, A., Akyüz, H.S., Basmenji, M. & Kırkan, E. (2022). Earthquake history of the Gökova fault zone by paleoseismologic trenching, SW Turkey. Natural Hazards, 112, 2695-2716. https://doi. org/10.1007/s11069-022-05284-0

  • Elitez, İ. & Yaltırak, C. (2014). Miocene-Quaternary geodynamics of Çameli Basin, Burdur-Fethiye Shear Zone (SW Turkey). Geological Bulletin of Turkey, 57(3) 41-67. https://doi.org/10.25288/ tjb.298714

  • Emre, Ö., Duman, T. Y. & Özalp, S. (2011). 1:250,000 Scale Active Fault Map Series of Turkey, Marmaris (NJ35-15) Quadrangle. Serial Number 8, General Directorate of Mineral Research and Exploration, Ankara-Türkiye.

  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active Fault Map of Turkey with an Explanatory Text 1:1,250,000 scale. General Directorate of Mineral Research and Exploration, Special Publication Series 30.

  • Hall, J., Aksu, A.E., Elitez, İ., Yaltırak, C. & Çifçi, G. (2014). The Fethiye - Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, 635, 80-99. https://doi.org/10.1016/j.tecto.2014.05.002

  • Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84, 1081-1088. https://doi.org/10.1785/0220110096

  • Howell, A., Jackson, J., Copley, A., McKenzie, D. & Nissen, E. (2017). Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International, 211(1), 593-620. https:// doi.org/10.1093/gji/ggx307

  • Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A. A., Gülyüz, E., Uzel, B. & Sözbilir, H. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101-115. https:// doi.org/10.1016/j.epsl.2018.06.022

  • Kılıç, T., Kartal, R. F., Kadirioğlu, F. T., Duman, T. Y. & Özalp, S. (2017). Türkiye ve yakın çevresi için düzenlenmiş moment tensor (1906-2012) kataloğu Mw=4,0). T. Y. Duman (Ed.), Türkiye Sismotektonik Haritası, Özel Yayınlar Serisi-34, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Koçyiğit, A. & Özacar, A. (2003). Extensional neotectonics regime through the NE edge of the outer Isparta angle, SW Turkey: New field and seismic data. Turkish Journal of Earth Sciences, 12, 67-90.

  • Le Pichon, X. & Angelier, J. (1979). The Hellenic Arc and Trench System: A key to the Neotectonic evolution of the Eastern Mediterranean Area. Tectonophysics, 60, 1-42.

  • Marrett, R. & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973-986.

  • McKenzie, D. (1970). Plate Tectonics of the Mediterranean Region. Nature, 226, 239-243.

  • McKenzie, D. (1972). Active Tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 30, 109-185.

  • Nissen, E., Cambaz, M. D., Gaudreau, E., Howell, A., Karasözen, E. & Savidge, E. (2022). A reappraisal of active tectonics along the Fethiye - Burdur trend, southwestern Turkey. Geophysical Journal International, 230(2), 1030-1051. https://doi. org/10.1093/gji/ggac096

  • Ocakoğlu, N. (2012). Investigation of Fethiye-Marmaris Bay (SW Anatolia): seismic and morphologic evidences from the missing link between the Pliny Trench and the Fethiye-Burdur Fault Zone. GeoMarine Letters, 32, 17-28. https://doi.org/10.1007/ s00367-011-0234-2

  • Ocakoğlu, N., Nomikou, P., İşcan, Y., Loreto, M.F. & Lampridou, D. (2018). Evidence of extensional and strike-slip deformation in the offshore Gökova-Kos area affected by the July 2017 MW6.6 Bodrum-Kos earthquake, eastern Aegean Sea. Geo-Marine Letters, 38, 211-225. https://doi. org/10.1007/s00367-017-0532-4

  • Över, S., Pınar, A., Özden, S., Yılmaz, H., Ünlügenç, U. C. & Kamacı, Z. (2010). Late Cenozoic stress field in the Çameli basin, SW Turkey. Tectonophysics, 492, 60-72.

  • Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R. & Govers, R. (2013). The Pliny-Strabo trench region: A large shear zone resulting from slab tearing. Earth and Planetary Science Letters, 375, 188-195.

  • Özkaptan, M., Kaymakçı, N., Langereis, C. G., Gülyüz, E., Özacar, A. A., Uzel, B. & Sözbilir, H. (2018). Age and kinematics of the Burdur Basin: inferences for existence of the Fethiye - Burdur Fault Zone in SW Anatolia (Turkey). Tectonophysics, 744, 256- 274. https://doi.org/10.1016/j.tecto.2018.07.009

  • Papazachos, B. C. & Comninakis, P. E. (1971). Geophysical and tectonic features of the Aegean Arc. Journal of Geophysical Research, 76, 8517- 8533.

  • Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488, 22-30.

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., … Karam, G. (2006). GPS constraints on continental deformation in the Africa - Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111(B5), Article B05411. https://doi. org/10.1029/2005JB004051

  • Seyitoğlu, G., Aktuğ, B., Esat, K. & Kaypak, B. (2022a). Neotectonics of Turkey (Türkiye) and surrounding regions: a new perspective with block modelling. Geologica Acta, 20, 1-21. https://doi. org/10.1344/GeologicaActa2022.20.4

  • Seyitoğlu, G., Tunçel, E., Kaypak, B., Esat, K. & Gökkaya, E. (2022b). The Anatolian Diagonal: a broad left-lateral shear zone between the North Anatolian Fault Zone and the Aegean/Cyprus Arcs. Geological Bulletin of Turkey, 65(2), 93- 116. https://doi.org/10.25288/tjb.1015537

  • Shaw, B. & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 81, 966- 984.

  • Tanülkü, E., Güvenli, B., Bilgiç, T., Koca, B. & Kaypak, B. (2022). Source parameters of the Gulf of Gökova and surrounding earthquakes. In K. Esat & S. Akıska (Eds.), 74th Geological Congress of Turkey, Abstracts Book (pp.: 399). Chamber of Geological Engineers of Turkey Publications, Ankara.

  • Taymaz, T., Jackson, J. & Westaway, R. (1990). Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International, 102, 695-731.

  • ten Veen, J. H., Woodside, J. M., Zitter, T. A. C., Dumont, J. F., Mascle, J. & Volkonskaia, A. (2004). Neotectonic evolution of the Anaximander Mountains at the junction of the Hellenic and Cyprus arcs. Tectonophysics, 391, 35-65.

  • ten Veen, J. H., Boulton, S. J. & Alçiçek, M. C. (2009). From palaeotectonics to neotectonics in the Neotethys realm: The importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics, 473, 261-281.

  • Tiryakioğlu, İ., Floyd, M., Erdoğan, S., Gülal, E., Ergintav, S., McClusky, S. & Reilinger, R. (2013). GPS Constraints on active deformation in the Isparta Angle region of SW Turkey. Geophysical Journal International, 195(3), 1455-1463. https:// doi.org/10.1093/gji/ggt323

  • Tosun, L., Avşar, U., Avşar, Ö., Dondurur, D. & Kaymakçı, N. (2021). Active tectonics and kinematics of Fethiye – Göcek Bay, SW Turkey: Insight about the eastern edge of Pliny-Strabo Trenches. Journal of Structural Geology, 145, Article 104287. https://doi.org/10.1016/j. jsg.2021.104287




  • SEYİTOĞLU, G., KAYPAK, B., TANÜLKÜ, E., KARABIYIKOĞLU, T., vd. (2024). Influence of the Ptolemy-Pliny-Strabo Fault Zone in Bozburun Peninsula (southwest Türkiye): Evidence from structural data and focal mechanism solutions. Türkiye Jeoloji Bülteni, 67(1), 1-16. https://doi.org/10.25288/tjb.1341249

  • SEYİTOĞLU G, KAYPAK B, TANÜLKÜ E, KARABIYIKOĞLU T, KOCA B. Influence of the Ptolemy-Pliny-Strabo Fault Zone in Bozburun Peninsula (southwest Türkiye): Evidence from structural data and focal mechanism solutions. Türkiye Jeol. Bül. Ocak 2024;67(1):1-16. doi:10.25288/tjb.1341249

  • SEYİTOĞLU, Gürol, Bülent KAYPAK, Edanur TANÜLKÜ, Tolga KARABIYIKOĞLU, ve Begüm KOCA. “Influence of the Ptolemy-Pliny-Strabo Fault Zone in Bozburun Peninsula (southwest Türkiye): Evidence from Structural Data and Focal Mechanism Solutions”. Türkiye Jeoloji Bülteni 67, sy. 1 (Ocak 2024): 1-16. https://doi.org/10.25288/tjb.1341249.

  • Evidence for High-Angle Origin of the Alaşehir Detachment Fault and Layer-Parallel Shortening During Miocene Time in Alaşehir Graben, Western Anatolia
    Fatih Şen Serdal Karaağaç Ümitcan Erbil
    PDF Olarak Görüntüle

    Abstract: Western Anatolia is a well-known continental extension province in the world. The most distinctive structural elements of the region are E-W trending grabens. The Alaşehir Graben forms the boundary between the northern and central parts of the Menderes Massif. It trends E-W from Ahmetli to Turgutlu and NW-SE from Salihli to Alaşehir. This paper documents the outcomes of field work along the southern margin of the Alaşehir Graben between the Salihli and Alaşehir areas.The tectono stratigraphy of the southern margin of the Alaşehir Graben is divided in the footwall and hanging wall of the Alaşehir detachment fault. The footwall comprises the Bayındır and Bozdağ Nappes and the syn-extensional Salihli granitoid intruding the Bayındır Nappe. The hanging wall consists of the Çine Nappe and Neogene-Quaternary sedimentary rocks, and Miocene fills tectonically overlying the Çine Nappe, which is above the Alaşehir detachment fault in the Alaşehir area. Structural data show three types of master fault sets, including (i) the low-angle Alaşehir detachment fault, which is composed of cataclastic rocks; (ii) low-angle normal faults, which are devoid of any cataclastic rocks;and (iii) Plio-Quaternary high-angle normal faults cutting them. Two different low-angle normal faults were coevaland active during the Miocene, and low-angle normal faults were synthetic and antithetic faults of the Alaşehir detachment fault. Their initial position was high-angle and the original position had 55°-75° dip during the Miocene.In the Salihli and Alaşehir segments, several major fold geometries are defined in the footwall and hanging wall ofthe Alaşehir detachment fault. The fold axis is NE-trending and plunges mainly northeast in the Salihli segment inthe footwall of the Alaşehir detachment fault. The other is ~ E-W-trending and plunges mainly west in the Alaşehir segment in the footwall and hanging wall of the Alaşehir detachment fault. They are associated with extensional structures formed by layer-parallel shortening during the Miocene. The Alaşehir detachment fault, as indicated bythe difference in fold axes between the Salihli and Alaşehir segments, was cut and back-rotated by Plio-Quaternary high-angle normal faults and tilted to the south.

  • Alaşehir detachment fault

  • Alaşehir Graben

  • fold axis

  • low- and high-angle normal faults

  • slickenside

  • stretching lineation

  • Western Anatolia

  • Ağırbaş, H. (2006). Alkan köyü (Alaşehir) ve yakın çevresinde Gediz grabeni‘ nin stratigrafisi ve yapısal özellikleri [B.Sc. thesis]. İstanbul University, (in Turkish),115 pp.

  • Ağırbaş, H. & Şen, F. (2012). Neogene-Quaternary stratigraphy and tectonics of Alaşehir graben, Western Anatolia. International Earth Science Colloquium on the Aegean Region, Proceedings (p.38). 1-5 October 2012, İzmir, Turkey, pp:38.

  • Arpat, E. & Bingöl, E. (1969). The rift system of western Turkey: Thoughts on its development. Bulten of the Mineral Research and Exploration Institute, 75, 1-9.

  • Axen, G.J. & Bartley, J. M. (1997). Field test of rolling hinges: Existence, mechanical types and implications for extensional tectonics. Journal of Geophysical Research, 102, 20515-20537.

  • Beccaletto, L. & Steiner, C. (2005). Evidence of TwoStage Extensional Tectonics from the Northern Edge of the Edremit Graben, NW Turkey. Geodinamica Acta, 18(3-4), 283–297. https://doi. org/10.3166/ga.18.283-297

  • Bozkurt, E. (2000). Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications. In E. Bozkurt, E., Winchester, J. A. & Piper, J. D. A. (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society London, Special Publications 173, 385- 403.

  • Bozkurt, E. (2001). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30. https:// doi.org/10.1016/S0985-3111(01)01066-X

  • Bozkurt, E. (2003). Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16, 61–81. https://doi.org/10.1016/S0985-3111(03)00002-0

  • Bozkurt, E. (2007). Extensional vs contractional origin for the Southern Menderes shear zone, Southwest Turkey: tectonic and metamorphic implications. Geological Magazine, 144, 191–201. https://doi. org/10.1017/S0016756806002664

  • Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two extension in western Turkey. Geological Magazine, 141, 63–79 https://doi.org/10.1017/ S0016756803008379

  • Bozkurt, E. & Rojay, B. (2005) Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodinamica Acta, 18, 299-316. https://doi. org/10.3166/ga.18.299-316

  • Bhattacharya, A. R. (2022). Superposed Folds. In Structural Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-80795- 5_20

  • Buck, W. R. (1988). Flexural rotation of normal faults. Tectonics, 7, 959-973.

  • Buscher, J. T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C. & Ratz, M. (2013). Quantifying rates of detachment faulting and erosion in the central Menderes massif (western Turkey) by thermochronology and cosmogenic 10Be. Journal of Geological Society London, 170, 669-683. https://doi.org/10.1144/ jgs2012-132

  • Candan, O., Dora, O., Oberhänsli, R., Çetinkaplan, M., Partzch, J., Warkus, F. & Dürr, S. (2001). Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. International Journal of Earth Sciences 89, 793–811. https://doi. org/10.1007/s005310000097

  • Candan, O., Koralay, O. E., Topuz, G., Oberhänsli, R., Fritz, H., Collins, A. S. & Chen, F. (2016). Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana. Gondwana Research, 34, 158-173. https://doi.org/10.1016/j. gr.2015.02.015

  • Cohen, H. A., Dart, C. J., Akyüz, H. S. & Barka, A. A. (1995). Syn-rift sedimentation and structural development of Gediz and Büyük Menderes graben, western Turkey. Journal of the Geological Society London, 152, 629–638

  • Çemen, İ., Tekeli, O., Seyitoğlu, G. & Işık, V. (2005). Are turtleback fault surfaces common tectonomorphologic features of highly extended terranes?. Earth Science Reviews, 73, 139–148. https://doi. org/10.1016/j.earscirev.2005.07.001

  • Çiftçi, N. B. & Bozkurt, E. (2008). Folding of the Gediz Graben fill, SW Turkey: extensional and/or contractional origin?. Geodinamica Acta, 21, 145- 167. https://doi.org/10.3166/ga.21.145-167

  • Çiftçi, N. B. & Bozkurt, E. (2009). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sediment Geology, 216, 49-79. https://doi. org/10.1016/j.sedgeo.2009.01.004

  • Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution of the Gediz Graben, SW Turkey temporal and spatial variation of the graben basin. Basin Research, 22, 846-873. https://doi.org/10.1111/ j.1365-2117.2009.00438.x

  • Demircioğlu, D., Ecevitoğlu, B. & Seyitoğlu, G. (2010). Evidence of a rolling hinge mechanism in the seismic records of hydrocarbon-bearing Alaşehir graben, western Turkey. Petroleum Geoscience 16, 155-160.

  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding region: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90, 84– 92.

  • Dewey, J. D. (1988). Extensional collapse of orogens. Tectonics, 7, 1123–1139.

  • Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F. & Savaşçın, Y. (2002). On the extension in western Anatolia and the Aegean Sea. Journal of Virtual Exploration, 8, 169–183.

  • Doğan, B. (2020). Comparative New Insight into the Tectonic Origin of Folds and Thrust Faults of an Extensional Basin: Söke-Kuşadası Basin, Aegean, Western Turkey. Journal of Earth Science, 31(3), 582–595. https://doi.org/10.1007/s12583-020- 1400-0

  • Dora, O. Ö., Candan, O., Kaya, O., Koralay, E. & Dürr, S. (2001). Revision of “Leptite-gneisses” in the Menderes Massif: a supracrustal metasedimentary origin. International Journal of Earth Sciences, 89, 836-851. https://doi.org/10.1007/s005310000102

  • Ediger, V., Batı, Z. & Yazman, M. (1996). Palynology of possible hydrocarbon source rocks of the Alaşehir- Turgutlu area in the Gediz graben (western Anatolia): Turkish Association of Petroleum Geologists Bulletin, 8, 94-112.

  • Emre, T. (1990). Sart Mustafa (Salihli)-Adala-Dereköy (Alaşehir) arasının jeolojisi ve Gediz Grabeni’nin yapısına bir Yaklaşım (Rapor no TBAG-732/ YBAG-0001). TÜBİTAK, 65 Unpublished (In Turkish).

  • Emre, T. (1996). Geology and tectonics of Gediz Graben. Turkish Journal of Earth Sciences, 5, 171-185.

  • Emre, T. & Sözbilir, H. (1997). Field evidence for metamorphic core complex, detachment faulting and accommodation faults in the Gediz and Büyük Menderes grabens (western Turkey). In International Earth Science Colloquium on the Aegean Region (73-94). İzmir, Turkey.

  • Erdoğan, B. & Güngör, T. (2004). The problem of the core-cover boundary of the Menderes massif and an emplacement mechanism for regionally extensive gneissic granites, western Anatolia (Turkey). Turkish Journal of Earth Sciences, 13, 15-36.

  • Eyidoğan, H. & Jackson, J. (1985). A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969–70 in western Turkey: Implication for the nature and geometry of deformation in the continental crust. Geophysical Journal of the Royal Astronomical Society, 81, 569–607.

  • Gessner, K. (2000). Eocene Nappe Tectonics and Late-Alpine Extension in the Central Anatolide Belt, Western Turkey-Structure, Kinematics and Deformation History [Ph.D thesis]. Johannes Gutenberg University Earth Sciences Department, Mainz, Germany.

  • Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C. W. & Güngör, T. (2001). An active bivergent rolling hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology, 29, 611-614. https://doi. org/10.1130/0091-7613(2001)029<0611:AABRH D>2.0.CO;2

  • Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U. & Thomson, S.T. (2013). What caused the denudation of the Menderes massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research, 24, 243–274. http://dx.doi. org/10.1016/j.gr.2013.1001.1005

  • Glodny, J. & Hetzel, R. (2007). Precise U–Pb ages of syn-extensional Miocene intrusions in the central Menderes Massif, western Turkey. Geological Magazine, 144, 235-246. https://doi.org/10.1017/ S0016756806003025

  • Gürer, A., Gürer, Ö. F., Pinçe, A. & Ilkisik, O. M. (2001). Conductivity structure along the Gediz graben west Anatolia, Turkey: Tectonic implications: International Geology Review, 43, 1129-1144. https://doi.org/10.1080/00206810109465065

  • Heineke, C., Hetzel, R., Nilius, N.P., Zwingmann, H., Todd, A., Mulch, A., Wölfler, A., Glotzbach, C., Akal, C., Dunkl, I. & Raven, M. (2019). Detachment faulting in a bivergent core complex constrained by fault gouge dating and lowtemperature thermochronology. Journal of Structural Geology, 127, Article 103865. https:// doi.org/10.1016/j.jsg.2019.103865

  • Hetzel, R., Passchier, C. W., Ring, U. & Dora, O. Ö. (1995a). Bivergent extension in orogenic belts: the Menderes Massif (SW Turkey). Geology, 23, 455-458. https://doi.org/10.1130/0091- 7613(1995)023<0455:BEIOBT>2.3.CO;2

  • Hetzel, R., Ring, U., Akal, C. & Troesch, M. (1995b). Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society, 152, 639-654. https://doi.org/10.1144/gsjgs.152.4.0639

  • Hetzel, R., Zwigmann, H., Mulch, A., Gessner, K., Akal, C., Hampel, A., Güngör, T., Petschick, R., Mikes, T. & Wedin, F. (2013). Spatiotemporal evolution of brittle normal faulting and fluid infiltration in detachment fault systems: a case study from Menderes massif, western Turkey. Tectonics, 32, 1-13.

  • Işık, V., Seyitoğlu, G. & Çemen, İ. (2003). Ductilebrittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes Massif, western Turkey. Tectonophysics, 374, 1-18. https://doi. org/10.1016/S0040-1951(03)00275-0

  • Jackson, J. & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors and rates of active deformation in the Mediterranean and Middle East. Geophysical Journal, 93, 45–73.

  • Jolivet, L. & Patriat, M. (1999). Ductile extension and the formation of the Aegean Sea. In Durand, B., Jolivet, L., Seranne, M. (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen. Geological Society, London, Special Publications, 156, 356–427.

  • Jolivet, L. & Faccenna, C. (2000). Mediterranean extension and the Africa–Eurasia collision. Tectonics, 19, 1095–1106, https://doi. org/10.1029/2000TC900018

  • Jolivet, L. & Brun, J. P. (2010). Cenozoic Geodynamic Evolution of the Aegean. International Journal of Earth Sciences, 99(1), 109–138. https://doi. org/10.1007/s00531-008-0366-4

  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denele, Y., Brun, J.P., Philippon, M., Paul, A., Salaun, G., Karabulut, H., Piromallo, C., Monie, P., Gueydan, F., Okay, A.I., Oberhansli, R., Pourteau, A., Augier, R., Gadenne, L. & Driussi, O. (2013). Aegean tectonics: strain localization, slab tearing and trench retreat. Tectonophysics, 597–598, 1–33.

  • Kaya, O. (1979). Ortadoğu Ege çöküntüsünün (Neojen) stratigrafi si ve tektoniği [Neogene Stratigraphy and tectonics of the Middle East Aegean depression]. Geological Society of Turkey Bulletin, 22(1), 35–58 [in Turkish with English abstract]. https://www.jmo.org.tr/resimler/ ekler/96a754649af389e_ek.pdf

  • Ketin, İ. & Canıtez, N. (1979). Yapısal Jeoloji. İstanbul Teknik Üniversitesi Kütüphanesi, Sayı: 1143, İkinci baskı, İstanbul/Türkiye.

  • Kissel, C., & Laj, C. (1988). Tertiary geodynamical evolution of the Aegean arc: a palaeomagnetic reconstruction. Tectonophysics, 146, 183–201.

  • Koçyiğit, A., Yusufoğlu, H. & Bozkurt, E. (1999). Evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society, 156, 605-616. https://doi. org/10.1144/gsjgs.156.3.0605

  • Konak, N. (2002). Geological map of turkey in 1/500,000 scale. İzmir Area Map (Şenel, M. (Ed.). General Directorate of Mineral Research and Exploration, Publication of Mineral Research and Exploration Directorate of Turkey.

  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60, 1–42.

  • Le Pichon, X. & Angelier, J. (1981). The Aegean Sea. Philosophical Transactions of Royal Society, London, Seri A, 300, 357–372.

  • Lips, A. L. W., Cassard. D., Sözbilir. H., Yılmaz. Y. & Wijbrans, J. R. (2001). Multistage exhumation of the Menderes Massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89, 781- 792. https://doi.org/10.1007/s005310000101

  • Manning, A. H. & Bartley, J. M. (1994). Postmylonitic deformation in the Raft River metamorphic core complex, northwestern Utah: Evidence of a rolling hinge. Tectonics, 13, 596-612.

  • McKenzie, D. (1978). Active tectonics of the AlpineHimalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal of Astronomical Society, 55, 217–254.

  • Mercier, J. L. (1981). Extensional-compressional tectonics associated with the Aegean arc: comparison with the Andean Cordillera of south Peru–north Bolivia. Philosophical Transactions of Royal Society, London, Seri A, 300, 337–355.

  • Meulenkamp, J. E., Wortel, W. J. R., Van Wamel, W.A., Spakman, W. & Hoogerduyn-Strating, E. (1988). On the Hellenic subduction zone and geodynamic evolution of Crete in the late Middle Miocene. Tectonophysics, 146, 203–215.

  • Meulenkamp, J.E., Van Der Zwaan, G.J., & Van Wamel, W.A. (1994). On Late Miocene to recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics, 234, 53–72.

  • Oberhänsli, R., Candan, O., Dora, O. Ö. & Dürr, S. (1997). Eclogites within the Menderes Massif/ western Turkey. Lithos, 41, 135-150. https://doi. org/10.1016/S0024-4937(97)82009-9

  • Okay, A. İ., & Satır, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137, 495–516.

  • Önalan, M. (2000). Sahada Yerbilimi Çalışmaları. İstanbul Üniversitesi Basımevi ve Film Merkezi, İkinci baskı, İstanbul/Türkiye.

  • Öner, Z. & Dilek, Y. (2011). Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. GSA Bulletin, 123, 2115-2141 https://doi.org/10.1130/ B30468.1

  • Öner, Z. & Dilek, Y. (2012). Erratum Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey (v. 123, no. 11/12, p. 2115–2141, doi: 10.1130/ B30468.1 . GSA Bulletin, 124(1-2), 256.

  • Öner, Z. & Dilek, Y. (2013). Fault kinematics in Supradetachment basin formation, Menderes core complex of western Turkey. Tectonophysics, 608, 1394–1412. https://doi.org/10.1016/j. tecto.2013.06.003

  • Purvis, M. & Robertson, A. (2005). Sedimentation of the Neogene-Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology 173, 373–408. https://doi.org/10.1016/j. sedgeo.2003.08.005

  • Ring, U., Laws, S. & Bernet, M. (1999). Structural analysis of a complex nappe sequence and late orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology 21, 1575-1601. https://doi.org/10.1016/S0191- 8141(99)00108-X

  • Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine 140, 421-441. https://doi.org/10.1017/ S0016756803007878

  • Sarıca, N. (2000). The Plio-Pleistocene age of Büyük Menderes and Gediz grabens and their tectonic significance on N-S extensional tectonics in West Anatolia: mammalian evidence from the continental deposits. Geological Journal 35, 1-24. https://doi.org/10.1002/ (SICI)1099-1034(200001/03)35:1<1::AIDGJ834>3.0.CO;2-A

  • Seyitoğlu, G., & Scott, B.C. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geology Magazine, 28, 155–166.

  • Seyitoğlu, G. & Scoot, B. (1992). The age of the Büyük Menderes Graben (west Turkey) and its tectonic implications. Geological Magazine, 129, 239–42.

  • Seyitoğlu, G. (1999). Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society London, 156, 1240-1242. https://doi.org/10.1144/ gsjgs.156.6.1240

  • Seyitoğlu, G., Çemen, İ. & Tekeli, O. (2000). Extensional folding in the Alaşehir (Gediz) graben, western Turkey. Journal of the Geological Society London, 157, 1097-1100. https://doi.org/10.1144/ jgs.157.6.1097

  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık, V. (2002). The role of flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir Graben, western Turkey. Geology Magazine 139, 15-26. https://doi.org/10.1017/ S0016756801005969

  • Seyitoğlu, G., Işık, V. & Çemen, İ. (2004). Complete Tertiary exhumation history of the Menderes Massif, western Turkey: an alternative working hypothesis. Terra Nova, 16, 358–363

  • Seyitoğlu, G., Işık, V. & Esat, K. (2014). A 3D model for the formation of Turtleback surfaces: The Horzum Turtleback of Western Turkey as a case study. Turkish Journal of Earth Sciences, 23, 479- 494. https://doi.org/10.3906/yer-1401-23

  • Seyitoğlu, G. &, Işık, V. (2015). Late Cenozoic extensional tectonics in western Anatolia: Exhumation of the Menderes core complex and formation of related basins. Bulletin of the Mineral Research and Exploration, 151, 49-109 https:// doi.org/10.19111/bmre.49951

  • Sözbilir, H. (2001). Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Sciences 10, 51- 67

  • Şen, F. (2004). Karadut ve çevresinde Gediz grabeni’ nin stratigrafisi ve yapısı [B.Sc. thesis]: İstanbul, İstanbul University, (in Turkish), 110 pp.

  • Şen, F. & Ağırbaş, H. (2012). Fold geometry in Karadut fault, Alaşehir graben, Western Anatolia. International Earth Science Colloquium on the Aegean Region, Proceedings.( pp.:31). İzmir, Turkey

  • Şen, F. (2016). Late Miocene termination of tectonic activity on the detachment in the Alaşehir Rift, Western Anatolia: Depositional records of the Göbekli Formation and high-angle cross-cutting faults. EGU General Assembly 18:3541

  • Şen, Ş. & Seyitoğlu, G. (2009). Magnetostratigraphy of early–middle Miocene deposits from east–west trending Alaşehir and Büyük Menderes grabens in western Turkey, and its tectonic implications. Geological Society of London Special Publication 311, 321–342. https://doi.org/10.1144/SP311.13

  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of lowangle normal faulting: examples from eastern Turkey. In Coward, M.P., Dewey, J.F., Hancock, P.L. (Eds.), Continental Extensional Tectonics. Geological Society, London, Special Publications, 28, 575–589

  • Şengör, A. M. C., Görür, N., & Şaroğlu, F. (1985). Strike–slip deformation, basin formation and sedimentation: strike–slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Biddle, K., ChristieBlick, N. (Eds.), Strike-Slip Deformation, Basin Formation and Sedimentation. Society of Economic Palaeontologists and Mineralogists, Special Publication, 37, 227–264.

  • Şengör, A. M. C. & Bozkurt, E. (2012). Layerparallel shortening and related structures in zones undergoing active regional horizontal extension. International Journal of Earth Sciences, 102, 101- 119. https://doi.org/10.1007/s00531-012-0777-0

  • Thomson, S. N., Stöckhert, B., & Brix, M. R. (1998). Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology, 26, 259–262.

  • Wernicke, B. & Axen, G.J. (1988). On the role of isostasy in the evolution of normal fault systems. Geology, 16, 848-851.

  • Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.- P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I. & Christl, M. (2017). Late Cenozoic cooling history of the central Menderes Massif: Timing of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhumation. Tectonophysics, 717, 585–598. https://doi.org/10.1016/J.TECTO.2017.07.004

  • Yılmaz, Y., Genç, Ş. C., Gürer, Ö. F, Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş. & Elmas, A. (2000). When did western Anatolian grabens begin to develop?. Geological Society of London Special Publication, 173, 353-384. https://doi. org/10.1144/GSL.SP.2000.173.01.17





  • ŞEN, F., KARAAĞAÇ, S., & ERBİL, Ü. (2024). Evidence for High-Angle Origin of the Alaşehir Detachment Fault and Layer-Parallel Shortening During Miocene Time in Alaşehir Graben, Western Anatolia. Türkiye Jeoloji Bülteni, 67(1), 17-50. https://doi.org/10.25288/tjb.1318465

  • ŞEN F, KARAAĞAÇ S, ERBİL Ü. Evidence for High-Angle Origin of the Alaşehir Detachment Fault and Layer-Parallel Shortening During Miocene Time in Alaşehir Graben, Western Anatolia. Türkiye Jeol. Bül. Ocak 2024;67(1):17-50. doi:10.25288/tjb.1318465

  • ŞEN, Fatih, Serdal KARAAĞAÇ, ve Ümitcan ERBİL. “Evidence for High-Angle Origin of the Alaşehir Detachment Fault and Layer-Parallel Shortening During Miocene Time in Alaşehir Graben, Western Anatolia”. Türkiye Jeoloji Bülteni 67, sy. 1 (Ocak 2024): 17-50. https://doi.org/10.25288/tjb.1318465.

  • ŞEN F, KARAAĞAÇ S, ERBİL Ü (01 Ocak 2024) Evidence for High-Angle Origin of the Alaşehir Detachment Fault and Layer-Parallel Shortening During Miocene Time in Alaşehir Graben, Western Anatolia. Türkiye Jeoloji Bülteni 67 1 17–50.

  • Anatomy of a Landslide: Evaluation of the Importance of Basic Geological Investigations as Exemplified in the Kuzulu (Koyulhisar-Sivas, Türkiye) Landslide of 17 March 2005
    Halil Gürsoy Orhan Tatar Bekir Levent Mesci Oktay Canbaz Ali Polat Zafer Akpinar
    PDF Olarak Görüntüle

    Abstract: On 17 March 2005, a large and complex landslide occurred west of Koyulhisar (Sivas, Turkey). This landslide, mostly comprising debris derived from volcanic rocks and mud flow, moved over the Kuzulu settlement area in the valley in a very short time and 15 people were killed. The Kuzulu landslide zone is not a simple mass movement limited to a single movement. Instead, complexities are introduced by the regional topographic structureand location of the crown and heel zone so that at least 4 other large flow movements occurred in this region between 17 March 2005 and August 2007. One of the most important factors initiating and accelerating this landslide hasbeen the influence of surface and groundwater seep age from melting snow. This seepage has followed the densepattern of discontinuities and normal fault planes observed in and around the crown region. These waters saturated the profoundly altered volcanic bedrocks with water, and as a result, a slip surface developed between the underlying limestone and weathered volcanic rocks. This was responsible for the catastrophic mass movement.To correctly interpret the causes and consequences of mass movements, where the movement speeds and directions can be monitored in detail using the advanced technological tools available today, detailed geological mapping is essential. There are currently differing interpretations of the development and triggering factors responsible for the Kuzulu landslide. This is primarily because the geological and tectonic structure of the landslide zone and its surroundings have not hit her to been investigated in the necessary detail.In this study, a detailed new geological map revealing the basic geological features of the region has been compiled and the characteristics of the landslide re-evaluated for comparison with previous studies. With the help of Digital Elevation Model (DEM) maps created from the satellite images of the Kuzulu Landslide area before and after the landslide, a total volumetric movement of 10.367.766 m3 is estimated to have occurred. We calculate that anet 9,372,880 m3 of material flowed from the area within the landslide boundary. Any assessments of ground suitable for settlement with a view to urban development and planning requires aproper understanding of the geomorphological structure of the surrounding region and the engineering geologicalproperties of the ground. The fact that Koyulhisar district centre is located both in the immediate vicinity ofan active fault zone such as KAFZ and on an active landslide area emphasises this issue. Detailed geological, geomorphological, landslide susceptibility, hazard and risk maps are of great importance to prevent / mitigate the damaging consequences of earthquakes and the landslides that they may be motivated

  • Geological mapping

  • geomorphology

  • Koyulhisar

  • Kuzulu landslide

  • volume calculation

  • AFAD-ARAS, (2023a). https://www.afad.gov. tr/kurumlar/afad.gov.tr/3506/xfiles/96- 2014060215311-heyelan_yogunluk_a1_olceksiz. pdf (Erişim tarihi 20 Ekim 2023)

  • AFAD-ARAS, (2023b). https://www.afad.gov.tr/afetrisk-azaltma-sistemi-aras. Afet Risk Azaltma Sistemi web sayfası (Erişim tarihi 5 Ekim 2023)

  • Cruden, D. M. (1991). A Simple Definition of a Landslide. Bulletin of the International Association of Engineering Geology, 43, 27-29.

  • Çan, T., Duman, T. Y., Olgun, Ş., Çörekçioğlu, Ş., Karakaya Gülmez, F., Elmacı, H., Hamzaçebi S. ve Emre, Ö. (2013). Türkiye Heyelan Veri Tabanı. TMMOB Coğrafi Bilgi Sistemleri Kongresi, 11-13 Kasım 2013, Ankara.

  • Dai, F. C., Lee C. F. & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64, 65–87.

  • Das, H. O., Sönmez, H., Gökçeoğlu, C. & Nefeslioğlu, H.A. (2013). Influence of seismic acceleration on landslide susceptibility maps: a case study from NE Turkey (the Kelkit Valley). Landslides, 10, 433–454.

  • Duman, T., Gökçeoğlu, C., Nefeslioğlu, H.A. ve Sönmez H. (2005). 17/03/2005 Kuzulu (SivasKoyulhisar) Heyelanı. Maden Tetkik ve Arama Genel Müdürlüğü Jeoloji Etütleri Dairesi ve Hacettepe Üniversitesi. https://www.mta.gov.tr/ v3.0/sayfalar/bilgi-merkezi/deprem/pdf/sugozu_ heyelani.pdf

  • Duman, T. Y., Çan, T. ve Emre, Ö. (2011). 1/1.500.000 ölçekli Türkiye Heyelan Envanteri Haritası. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi-27, Ankara, Türkiye. ISBN: 978- 605-4075-84-3

  • Erik, D. ve Yılmaz, H. (2005). 17.03.2005 Kuzulu (Sugözü Koyulhisar Sivas) moloz çığı. 58.Türkiye Jeoloji Kurultayı Bildiri Özetleri Kitabı (s.: 179- 180). 11-17 Nisan 2005, Ankara.

  • Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272. https://doi.org/10.1139/t94-031

  • Florinsky, I. V. (2012). Digital Terrain Modeling: A Brief Historical Overview, Chapter-1. In I. V. Florinsky (Ed.), Digital Terrain Analysis in Soil Science and Geology (pp.:1-4). Academic Press. https://doi.org/10.1016/B978-0-12-804632- 6.00001-8

  • Gili, J. A., Corominas, J. & Rius, J. (2000). Using Global Positioning System techniques in landslide monitoring, Engineering Geology 55, 167-192.

  • Gökçeoğlu, C., Sönmez, H., Nefeslioğlu, H., Duman, T.Y. & Çan, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslidesusceptibility map of its near vicinity. Engineering Geology, 81(1), 65–83.

  • Hastaoğlu, K.Ö. & Şanlı, D. U. (2011). Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities, Natural Hazards,58, 1275-1294. https://doi. org/10.1007/s11069-011-9728-5

  • Karadoğan, S. & Yıldırım, A. (2007). Fault zone landslides: The Effects and Geomorphological Characteristics of Koyulhisar (Sivas-Turkey) Landslide, March 2005. International Symposium on Geography, Environment and Culture in the Mediterranean Region (pp.: 193-200). 5-8 June 2007, Kemer-Antalya/Turkey.

  • Kilburn, C. R. J. & Petley, D.N. (2003). Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology, 54, 21– 32.

  • Li, T. & Wang, S. (1992). Landslide Hazards and their Mitigation in China. Science Press, Beijing, 84 pp.

  • Öztürk, K. (2002). Heyelanlar ve Türkiye’ye etkileri. G.Ü. Gazi Eğitim Fakültesi Dergisi, 22(2), 35-50.

  • Semenza, E. & Ghirotti, M. (2000). History of the 1963 Vaiont slide: the importance of geological factors. Bulletin of Engineering Geology and the Environment 59, 87–97 https://doi.org/10.1007/ s100640000067

  • Schuster, R. L &, Fleming, R. W. (1986). Economic losses and fatalities due to landslides. Bulletin of the Association of Engineering Geologists, 23(1), 11– 28.

  • Sendir, H. & Yılmaz I. (2002). Structural, geomorphological and geomechanical aspects of the Koyulhisar landslides in the North Anatolian Fault Zone (Sivas, Turkey). Environmental Geology, 42, 52-60. https://doi.org/10.1007/ s00254-002-0528-9

  • Seymen, İ. (1975). Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği [Dr. Tezi]. İstanbul Teknik Üniversitesi Maden Fakültesi.

  • Şengör, A. M. C, Tüysüz, O., İmren C., Sakınç, M., Eyidoğan H., Görür N., Le-Pichon X. & Rangin, C. (2005). The North Anatolian Fault; A new look. Annual Review of Earth and Planetary Sciences, 33, 37–112.

  • Tatar, O., Gürsoy, H., Koçbulut, F. ve Mesci, B. L. (2005). Active fault zones and landslides: the 17 March 2005 Kuzulu (Koyulhisar) landslide. Cumhuriyet Bilim Teknik Dergisi, 941, 5–6.

  • Terlemez, İ. ve Yılmaz A. (1980). Ünye-OrduKoyulhisar- Reşadiye arasında kalan yörenin stratigrafisi. Türkiye Jeoloji Bülteni (Türkiye Jeoloji Kurumu Bülteni) 23(2), 179-191. https://www.jmo.org.tr/resimler/ekler/ eacf7a18a32812d_ek.pdf

  • Terzioğlu, N. (1986). Reşadiye, Gölköy ve Koyulhisar arasındaki Tersiyer-Kuvaterner yaşlı volkanitlerin genel stratigrafik özellikleri. C.Ü. Müh. Fak Dergisi, Seri A- Yerbilimleri, 3(1), 3-13.

  • Toprak, V. (1989). Tectonic and stratigraphic characteristics of the Koyulhisar segment of the North Anatolian Fault Zone (Sivas, Turkey) [PhD thesis]. Middle East University, Ankara.

  • Ulusay, R., Aydan, Ö. & Kılıç, R. (2007). Geotechnical assessment of the 2005 Kuzulu landslide (Turkey). Engineering Geology, 89, 112–128. https://doi. org/10.1016/j.enggeo.2006.09.020

  • Wu, W. & Sidle, R.C. (1995). A distributed slope stability model for steep forested basins, Water Resources Research, 31(8), 2097– 2110.

  • Yıldırım, A. (2006). Koyulhisar-Kuzulu (Sivas) heyelanının jeomorfolojik etüdü, Eastern Geographical Review, 11(15), 323-338.

  • Yılmaz, I., Ekemen, T., Yıldırım, M., Keskin, I. & Özdemir, G. (2006). Failure and flow development of a collapse induced complex landslide: the 2005 Kuzulu (Koyulhisar-Turkey) landslide hazard. Environmental Geology, 49(3), 467-476.

  • Yılmaz, I. (2009). A case study from Koyulhisar (SivasTurkey) for landslide susceptibility mapping by artificial neural Networks. Bulletin of Engineering Geology and the Environment, 68: 297–306. https://doi.org/10.1007/s10064-009-0185-2




  • GURSOY, H., TATAR, O., MESCİ, B. L., CANBAZ, O., vd. (2024). Bir Heyelanın Anatomisi: 17 Mart 2005 Kuzulu (Koyulhisar - Sivas, Türkiye) Heyelanı Örneğinde Temel Jeolojik Araştırmaların Öneminin Değerlendirilmesi. Türkiye Jeoloji Bülteni, 67(1), 51-70. https://doi.org/10.25288/tjb.1373825

  • GURSOY H, TATAR O, MESCİ BL, CANBAZ O, POLAT A, AKPINAR Z. Bir Heyelanın Anatomisi: 17 Mart 2005 Kuzulu (Koyulhisar - Sivas, Türkiye) Heyelanı Örneğinde Temel Jeolojik Araştırmaların Öneminin Değerlendirilmesi. Türkiye Jeol. Bül. Ocak 2024;67(1):51-70. doi:10.25288/tjb.1373825

  • GURSOY, Halil, Orhan TATAR, Bekir Levent MESCİ, Oktay CANBAZ, Ali POLAT, ve Zafer AKPINAR. “Bir Heyelanın Anatomisi: 17 Mart 2005 Kuzulu (Koyulhisar - Sivas, Türkiye) Heyelanı Örneğinde Temel Jeolojik Araştırmaların Öneminin Değerlendirilmesi”. Türkiye Jeoloji Bülteni 67, sy. 1 (Ocak 2024): 51-70. https://doi.org/10.25288/tjb.1373825.

  • Structural Elements and Neogene Lithostratigraphy of the Manavgat Basin (Antalya, Türkiye)
    Yusuf Emrah Yilmaz Ayşe Atakul Özdemir Ayten Koç
    PDF Olarak Görüntüle

    Abstract: The Tauride fold-thrusts belt has formed under ~S–N convergence between the Africa and Eurasian platessince Cretaceous time. This movement also resulted in the development of the complex tectonic structure known asthe Isparta Angle. In the Neogene period, the western and central Taurides and the inner part of the Isparta Angle became overlain by marine sedimentary basins (Antalya Basin Complex).The Manavgat Basin is one of these marine basins, and unconformably rests on the Tauride in the north. Basically, the Manavgat Basin has a sedimentation thickness of more than 1 km from the Early Miocene to Pliocene.  Hence, it is expected to keep the geological records regarding the crustal deformation, besides the lithostratigraphic records during this time. Lithostratgraphically, seven basic units have been identified in the Manavgat Basin. These are, in line with previous studies; 1) Tepekli Formation (Burdigalian-E. Langhian), 2) Oymapınar Limestone (G.Burdigalian-Langhian), 3) Çakallar Breccia (Langhian), 4) Geceleme Formation (G. Langhian-Serravalian), 5)Karpuzçay Formation (G. Langhian-Tortonian), 6) Pliocene units (Yenimahalle and Kurşunlu formations), and 7)Belkıs Conglomerate (Quaternary).Biosamples were collected from two different measured sections of the Karpuzçay Formation, and the age of the formation was determined. These show that the Karpuzçay Formation was deposited in a deep marine outer neritic bathyal environment from the Late Langhian to Tortonian. In addition to lithostratigraphic features, structural elements forming the Manavgat Basin were also studied, and the Tortonian aged Çardakköy Fault was described forthe first time in this study.As a result, the presence of two different tectonic regimes in the region was determined. Accordingly, theManavgat Basin developed under the influence of an extensional tectonic regime before the Tortonian, and of acompressional system during the post-Tortonian. This study indicated that N-S directional convergence between Eurasia and Africa and the kinematics of the fragmented subducted plate under the Isparta Angle should be reevaluated based on these paleostress phases.

  • Crustal deformation

  • Isparta Angle

  • Manavgat Basin

  • Miocene marine basins

  • Akay, E. ve Uysal, Ş. (1984). Stratigraphy, sedimentology and structural geology of Neogene deposits in the west of the central Taurides (Antalya) (Report No. 2147). Maden Tetkik ve Arama Genel Müdürlüğü, (in Turkish; Unpublished).

  • Akay, E., Uysal, S., Poisson, A., Cravatte, J. ve Muller, C. (1985). Antalya Neojen Havzasının Stratigrafisi. Türkiye Jeoloji Kurumu Bülteni, 28(2), 105-119. https://www.jmo.org.tr/resimler/ ekler/a816fcbb327dfbb_ek.pdf

  • Akay, E. ve Uysal, S. (1985). Orta Torosların batısındaki (Antalya) Neojen çökellerinin stratigrafisi, sedimantolojisi ve yapısal jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü, (Yayımlanmamış Rapor).

  • Akbulut, A. (1977). Etude Geologique dune partie du Taurus occidentale au sud d’Eğridir (Turquie) (Thesis). Univ. Paris-Sud, Orsay.

  • Altınlı, E., 1944. Etude stratigraphique de la région d’Antalya. Rev. Fac. Sci. Univ. Istanbul, B IX, 3, 27-38.

  • Barrier, E. & Vrielynck, B. (2008). Palaeotectonic map of the Middle East, Atlas of 14 maps, Tectonosedimentary–Palinspastic maps from Late Norian to Pliocene. Commission for the Geologic Map of the World (CCMW, CCGM), Paris.

  • Biryol, C. B., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184: 1037-1057. https://doi.org/10.1111/j.1365- 246X.2010.04910.x

  • Blumenthal, M. (1951). Recherches geologiques dans le Taurus occidental dans l’arrierepays d’Alanya. Maden Tetkik Arama Enstitüsü Publications, no. D5, 134: 1955.

  • Clark, M. & Robertson, A. (2002). The role of the Early Tertiary Ulukisla Basin, southern Turkey, in suturing of the Mesozoic Tethys ocean. Journal of the Geological Society, 159(6), 673-690.

  • Collins, A. S. & Robertson, A. H. (1997). Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology, 25(3), 255-258.

  • Collins, A. S. & Robertson, A. H. (1998). Processes of Late Cretaceous to Late Miocene episodic thrustsheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society, 155(5), 759-772.

  • Collins, A. S. & Robertson, A. H. (2003). Kinematic evidence for Late Mesozoic–Miocene emplacement of the Lycian Allochthon over the western Anatolide belt, SW Turkey. Geological Journal, 38(3-4): 295-310.

  • Cosentino, D., Schildgen, T. F., Cipollari, P., Faranda, C., Gliozzi, E., Hudackova, N., Lucifora, S. & Strecker, M. R. (2012). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. GSA Bulletin 124(1– 2):133–145 https://doi. org/10.1130/B30466.1

  • Çiner A., Karabıyıkoğlu M., Monod O., Deynoux, M. & Tuzcu, S. (2008). Late Cenozoic sedimentary evolution of the Antalya basin, southern Turkey. Turkish Journal of Earth Sciences, 17, 1-41.

  • de Boorder, H., Spakman, W., White, S. H. & Wortel, M. (1998). Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth and Planetary Science Letters, 164(3-4):569–575. https://doi.org/10.1016/ S0012-821X(98)00247-7

  • Deynoux, M., Çiner, A., Monod, O., Karabıyıkoglu, M., Manatschal, G. & Tuzcu, S. (2005). Facies architecture and depositional evolution of alluvial fan to fan-delta complexes in the tectonically active Miocene Köprüçay Basin, Isparta Angle, Turkey. Sedimentary Geology, 173(1-4): 315-343.

  • Dilek, Y., Thy, P., Hacker, B. & Grundvig, S. (1999). Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111(8), 1192-1216.

  • Dumont, J. F. & Kerey, K. (1975). Basement geological study in the south of Egirdir lake. Türkiye Jeoloji Kurumu Bülteni, 18(2), 169-174. https://www.jmo. org.tr/resimler/ekler/fe2d4655b7cd3ed_ek.pdf

  • Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. & Regard, V. (2006). Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242(1-2): 85-97.

  • Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., ... & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean. Reviews of Geophysics, 52(3), 283-332.

  • Flecker, R. (1995). Miocene Basin Evolution of The Isparta Angle, Southern Turkey [Phd thesis]. University of Edinburgh

  • Flecker, R., Ellam, R. M., Müller, C., Poisson, A., Robertson, A. H. F. & Turner, J. (1998). Application of Sr isotope stratigraphy and sedimentary analysis to the origin and evolution of the Neogene basins in the Isparta Angle, southern Turkey. Tectonophysics, 298(1-3), 83-101.

  • Flecker, R., Poisson, A. & Robertson, A. H. F. (2005). Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional eastern Mediterranean context. Sedimentary Geology, 173(1-4), 277-314.

  • Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B. & Ozacar, A. A. (2009). Detecting the limit of slab break-off in central Turkey: new high-resolution Pn tomography results. Geophysical Journal International, 179(3), 1566-1572.

  • Glover, C. P. & Robertson, A. H. (1998). Role of regional extension and uplift in the PlioPleistocene evolution of the Aksu Basin, SW Turkey. Journal of the Geological Society, 155(2), 365-387. https://doi.org/10.1144/gsjgs.155.2.0365

  • Govers, R. & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters, 236(1-2),505–523. https://doi. org/10.1016/j.epsl.2005.03.022

  • Göncüoğlu, M. C. & Dirik, K. (1996). Neotectonic characteristics of central Anatolia. International Geology Review, 38(9), 807-817.

  • Göncüoğlu, M. C., Dirik, K. & Kozlu, H. (1997). General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. In Annales Geologique de Pays Hellenique, 3, 515-536.

  • Görür, N., Oktay, F. Y., Seymen, I. & Şengör, A. M. C. (1984). Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo- Tethyan closure. Geological Society, London, Special Publications, 17(1), 467- 482.

  • Gülyüz, E., Kaymakçi, N., Meijers, M. J., van Hinsbergen, D. J., Lefebvre, C., Vissers, R. L. & Peynircioğlu, A. A. (2012). Late Eocene evolution of the Çiçekdağı Basin (central Turkey): Synsedimentary compression during microcontinent continent collision in central Anatolia. Tectonophysics, 602, 286-299.

  • Güvercin, S. E., Konca, A. Ö., Özbakır, A. D., Ergintav, S. & Karabulut, H. (2021). New focal mechanisms reveal fragmentation and active subduction of the Antalya slab in the Eastern Mediterranean. Tectonophysics, 805, Article 228792. https://doi. org/10.1016/j.tecto.2021.22879

  • Hadımlı, L. (1968). Manavgat-Akkuşlar bentleri ve rezervuarının jeolojisi. İ. Ü. F. F. Tatbiki Jeoloji Kürsüsü diploma çalışması, yayınlanmamış.

  • Hall, J., Aksu, A. E., King, H., Gogacz, A., Yaltırak, C. & Çifçi, G. (2014). Miocene-Recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Marine Geology, 349, 1–23. https://doi.org/10.1016/j. margeo.2013.12.009

  • Hayward, A. B. (1984). Miocene clastic sedimentation related to the emplacement of the Lycian Nappes and the Antalya Complex, SW Turkey. Geological Society, London, Special Publications, 17(1), 287- 300.

  • Hüsing, S. K., Zachariasse, W. J., Van Hinsbergen, D. J., Krijgsman, W., Inceöz, M., Harzhauser, M. & Kroh, A. (2009). Oligocene–Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geological Society, London, Special Publications, 311(1), 107-132.

  • İslamoğlu, Y. (2002). Antalya Miyosen Havzasının mollusk faunası ile stratigrafisi. MTA Dergisi,123-124, 27-58.

  • Janecke, U. S., Vandenburg, J. C., Blankenau, J. J. (1998). Geometry, mechanisms and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, U.S.A. Journal of Structural Geology 20(7), 841–856. https://doi.org/10.1016/S0191-8141(98)00016-9

  • Kalyoncuoğlu, Ü. Y., Elitok, Ö., Dolmaz, M. N. & Anadolu, N. C. (2011). Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. Journal of Geodynamics 52(1), 70– 82. https://doi.org/10.1016/j.jog.2010.12.001

  • Karabıyıkoğlu, M., Çiner, A., Monod, O., Deynoux, M., Tuzcu, S. & Örçen, S. (2000). Tectonosedimentary evolution of the Miocene Manavgat Basin, western Taurides, Turkey. In: E. Bozkurt, J. A. Winchester & J. D. A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications, 173, 271-294. https://doi.org/10.1144/GSL. SP.2000.173.01.14

  • Karabıyıkoğlu, M., Tuzcu, S., Çiner, A., Deynoux, M., Örçen, S. & Hakyemez, A. (2005). Facies and environmental setting of the Miocene coral reefs in the late-orogenic fill of the Antalya Basin, western Taurides, Turkey: implications for tectonic control and sea-level changes. Sedimentary Geology, 173(1-4), 345-371.

  • Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A. A., Gülyüz, E., Uzel, B. & Sözbilir, H. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101-115.

  • Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collisionrelated volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24), Article 8046. https://doi.org/10.1029/2003GL018019

  • Khair, K. & Tsokas, G. N. (1999). Nature of the Levantine (eastern Mediterranean) crust from multiple-source Werner deconvolution of Bouguer gravity anomalies. Journal of Geophysical Research: Solid Earth, 104(B11): 25469-25478.

  • Koç, A., Kaymakçı, N., Van Hinsbergen, D. J. & Kuiper, K. F. (2017). Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau. Global and Planetary Change, 158, 83- 102.

  • Koç, A., Kaymakçı, N., van Hinsbergen, D. J., Kuiper, K. F. & Vissers, R. L. (2012). TectonoSedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey. Tectonophysics, 532, 134-155

  • Koç, A., Kaymakçı, N., Van Hinsbergen, D. J. & Vissers, R. L. (2016a). A Miocene onset of the modern extensional regime in the Isparta Angle: constraints from the Yalvaç Basin (southwest Turkey). International Journal of Earth Sciences, 105(1), 369-398.

  • Koç, A., van Hinsbergen, D. J., Kaymakçı, N. & Langereis, C. G. (2016b). Late Neogene oroclinal bending in the central Taurides: A record of terminal eastward subduction in southern Turkey. Earth and Planetary Science Letters, 434, 75-90.

  • Koçyİğİt, A., ünay, E., & Saraç, G. (2000). Episodic graben formation and extensional neotectonic regime in west Central Anatolia and the Isparta Angle: a case study in the Akşehir-Afyon Graben, Turkey. Geological Society, London, Special Publications, 173(1), 405-421.

  • Meijers, M. J., Kaymakçı, N., Van Hinsbergen, D. J., Langereis, C. G., Stephenson, R. A. & Hippolyte, J. C. (2010). Late Cretaceous to Paleocene oroclinal bending in the central Pontides (Turkey). Tectonics, 29(4). TC4016. https://doi. org/10.1029/2009TC002620

  • Monod, O. (1977). Recherches Geologiques dans le Taurus occidental au Sud de Beyşehir (Turquie) [Yayımlanmamış, Tez]. These d’Etat Univ. Paris Sud (Orsay).

  • Oberhänsli, R., Bousquet, R., Candan, O. & Okay, A. I. (2012). Dating Subduction Events in East Anatolia, Turkey. Turkish Journal of Earth Sciences, 21(1), 1-17. https://doi.org/10.3906/yer-1006-26

  • Oberhänsli, R., Candan, O., Bousquet, R., Rimmele, G., Okay, A. & Goff, J. (2010). Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey. In M. Sosson, N. Kaymakci, R. A. Stephenson, F. Bergerat, V. Starostenko (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform Geological Society, London, Special Publications, 340 (1), 461-483. https://doi.org/10.1144/sp340.20

  • Okay, A. I. (1986). High-Pressure/low-Temperature Metamorphic Rocks of Turkey. B. W. Evans & E. H. Brown (Eds.), Blueschists and Eclogites. Geological Society of America, Vol:164 https:// doi.org/10.1130/MEM164-p333

  • Okay, A. I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. & Akyüz, S. (1996) Paleo- and NeoTethyan events in northwest Turkey: geological and geochronological constraints. In A. Yin & M. Harrison (Eds.), Tectonics of Asia. Cambridge University Press, Cambridge, 420–441.

  • Okay, A. I. & Özgül, N. (1984). HP/LT metamorphism and the structure of the Alanya Massif, Southern Turkey: an allochthonous composite tectonic sheet. Geological Society, London, Special Publications, 17(1), 429-439.

  • Okay, A. I., Zattin, M. & Cavazza, W. (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology, 38(1), 35-38.

  • Okay. A. I., Tüysüz, O. (1999) Tethyan sutures of northern Turkey. In D. B. Jolivet, L. Horváth, F, Séranne M (eds.) The Mediterranean Basins: Tertiary extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 475–515. https://doi.org/10.1144/GSL. SP.1999.156.01.22

  • Papazachos, B. C. & Papaioannou, C. A. (1999). Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics, 308(1-2), 193-204.

  • Parlak, O. & Robertson, A. (2004). The ophioliterelated Mersin Melange, southern Turkey: its role in the tectonic–sedimentary setting of Tethys in the Eastern Mediterranean region. Geological Magazine, 141(3): 257-286.

  • Poisson, A. (1977). Recherches géologiques dans les Taurides occidentales (Turquie) [Doctorat d’état thesis]. Université de Paris-Sud, Orsay, France.

  • Poisson, A., Orszag-Sperber, F., Kosun, E., Bassetti, M. A., Müller, C., Wernli, R. & Rouchy, J. M. (2011). The Late Cenozoic evolution of the Aksu basin (Isparta Angle; SW Turkey). New insights. Bulletin de la Société Géologique de France, 182(2), 133-148.

  • Poisson, A., Wernli, R., Sagular, E. K. & Temiz, H. (2003). New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geological Journal, 38, 311–327. https://doi.org/10.1002/ gj.958

  • Pourteau, A., Candan, O. & Oberhänsli, R. (2010). High-pressure metasediments in central Turkey: Constraints on the Neotethyan closure history. Tectonics, 29(5), TC5004. https://doi. org/10.1029/2009TC002650

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... & Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5), B05411. https://doi. org/10.1029/2005JB004051

  • Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S. & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488(1–4), 22–30.

  • Robertson, A. H. F. & Dixon, J. E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17(1), 1-74.

  • Robertson, A. H. F. & Woodcock, N. H. (1982). Sedimentary history of the southwestern segment of the Mesozoic-Tertiary Antalya continental margin, southwestern Turkey. Eclogae Geologicae Helvetiae, 75(3), 517-562.

  • Robertson, A. H. F. & Woodcock, N. H. (1984). The SW segment of the Antalya Complex, Turkey as a Mesozoic-Tertiary Tethyan continental margin. Geological Society, London, Special Publications, 17(1): 251-271.

  • Robertson, A. H. & Mountrakis, D. (2006). Tectonic development of the Eastern Mediterranean region: an introduction. Geological Society, London, Special Publications, 260(1): 1-9.

  • Robertson, A. H. & Ustaömer, T. (2009). Formation of the Late Palaeozoic Konya Complex and comparable units in southern Turkey by subduction–accretion processes: Implications for the tectonic development of Tethys in the Eastern Mediterranean region. Tectonophysics, 473(1-2): 113-148.

  • Robertson, A. H., Ustaömer, T., Pickett, E. A., Collins, A. S., Andrew, T. & Dixon, J. E. (2004). Testing models of Late Palaeozoic–Early Mesozoic orogeny in Western Turkey: support for an evolving open-Tethys model. Journal of the Geological Society, 161(3): 501-511.

  • Schildgen, T. F., Cosentino, D., Caruso, A., Buchwaldt, R., Yıldırım, C., Bowring, S. A. & Strecker, M. R. (2012). Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey. Tectonics, 31(2), TC2005. https:// doi.org/10.1029/2011TC003021

  • Stampfli, G. M. & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2), 17-33.

  • Storetvedt, K. M. (1990). The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system. Physics of the Earth and Planetary Interiors, 62(1–2), 141-184. https://doi.org/10.1016/0031-9201(90)90198-7

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

  • Şengör, A. M. C., Özeren, S., Genç, T. & Zor, E. (2003). East Anatolian high plateau as a mantlesupported, north-south shortened domal structure. Geophysical Research Letters, 30(24), Artcile 8045. https://doi.org/10.1029/2003GL017858

  • Şengör, A. C., Lom, N., Sunal, G., Zabcı, C. & Sancar, T. (2019). The phanerozoic palaeotectonics of Turkey. Part I: an inventory. Mediterranean Geoscience Reviews, 1, 91-161. https://doi. org/10.1007/s42990-019-00007-3

  • Şengör, A. C. & Yazıcı, M. (2020). The aetiology of the neotectonic evolution of Turkey. Mediterranean Geoscience Reviews, 2, 327-339. https://doi. org/10.1007/s42990-020-00039-0

  • Van Hinsbergen, D. J., Dekkers, M. J. & Koc, A. (2010). Testing Miocene remagnetization of Bey Dağları: Timing and amount of Neogene rotations in SW Turkey. Turkish Journal of Earth Sciences, 19(2), 123-156.

  • Wasoo, M. H., Özkaptan, M. & Koç, A. (2020). New insights on the Neogene tectonic evolution of the Aksu Basin (SE Turkey) from the Anisotropy of Magnetic Susceptibility (AMS) and paleostress data. Journal of Structural Geology, 139, 104-137.

  • Wasoo, M. H. & Koç, A. (2021). Aksu Havzası’nın (Antalya, Türkiye) Neojen Stratigrafisi ve Yapısal Unsurları. Türkiye Jeoloji Bülteni, 64(1), 83-128. https://doi.org/10.25288/tjb.682776

  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251-271.




  • YILMAZ, Y. E., ATAKUL-ÖZDEMİR, A., & KOÇ, A. (2024). Manavgat Havzasının (Antalya, Türkiye) Neojen Litostratigrafisi ve Yapısal Unsurları. Türkiye Jeoloji Bülteni, 67(1), 71-114. https://doi.org/10.25288/tjb.1291058

  • YILMAZ YE, ATAKUL-ÖZDEMİR A, KOÇ A. Manavgat Havzasının (Antalya, Türkiye) Neojen Litostratigrafisi ve Yapısal Unsurları. Türkiye Jeol. Bül. Ocak 2024;67(1):71-114. doi:10.25288/tjb.1291058

  • YILMAZ, Yusuf Emrah, Ayşe ATAKUL-ÖZDEMİR, ve Ayten KOÇ. “Manavgat Havzasının (Antalya, Türkiye) Neojen Litostratigrafisi Ve Yapısal Unsurları”. Türkiye Jeoloji Bülteni 67, sy. 1 (Ocak 2024): 71-114. https://doi.org/10.25288/tjb.1291058.

  • Modeling of a Low-Temperature Geothermal Field Using UAV-based TIR and RGB Images: A Case Study of Kocabaşlar Geothermal Field, Northwestern Türkiye
    Deniz Şanliyüksel Yücel Mehmet Ali Yücel
    PDF Olarak Görüntüle

    Abstract: Kocabaşlar geothermal field is located in Çanakkale province in northwestern Türkiye. A well was drilledto a depth of 650 m with a temperature of 46 °C. There is also a geothermal spring with a temperature of 38.1°C. The objective of this study was to model the Kocabaşlar geothermal field for the first time using an unmannedaerial vehicle (UAV) equipped with a dual camera to capture high-resolution thermal infrared (TIR) and visible(RGB) images. The UAV survey was conducted on January 6, 2023, when the air temperature was low and themeteorological conditions were favorable for image acquisition. The flight altitude was 40 m above ground level, andthe flight speed was 2.5 m/s. Image front and side overlaps were 80% and 70%, respectively. As a result of processinga total of 1718 TIR and RGB images, a high-resolution TIR orthophoto (5.25 cm/pixel), an RGB orthophoto (1.37cm/pixel), and a digital surface model (5.47 cm/pixel) were generated. The generated images were visualized in Geographic Information Systems software. The surface temperature in the geothermal field varied between 6 °C and38 °C. The Kocabaşlar geothermal field will be monitored for an extended period using UAV technology in order tocontribute to the development and sustainability of the utilization areas for geothermal energy.

  • Geographic information systems

  • geothermal energy

  • orthophoto

  • thermal infrared imaging

  • unmanned aerial vehicle

  • Akay, S. S. (2023). İHA tabanlı 3 boyutlu verilere farklı perspektiflerde bakış: İTÜ Ayazağa Kampüsü. Turkish Journal of Remote Sensing and GIS, 4(1), 47-63. https://doi.org/10.48123/rsgis.1195012

  • Akkuş, İ., Akıllı, H., Ceyhan S., Dilemre, A. & Tekin Z. (2005). Türkiye jeotermal kaynakları envanteri. Maden Tetkik Arama Genel Müdürlüğü Envanter Serisi, Ankara, 849 s.

  • Akkuş, İ. & Alan, H. (2016). Türkiye’nin jeotermal kaynakları, projeksiyonlar, sorunlar ve öneriler raporu. TMMOB Jeoloji Mühendisleri Odası, Ankara, 76 s.

  • Akkuş, İ. (2017). Neden Jeotermal Enerji? Türkiye İçin Önemi, Hedefler ve Beklentiler. Mavi Gezegen, 23, 25-39.

  • Amici, S., Turci, M., Giammanco, S., Spampinato, L. & Giulietti, F. (2013). UAV thermal infrared remote sensing of an Italian Mud Volcano. Advances in Remote Sensing, 2, 358–364.

  • Baba, A., Deniz, O. & Şanlıyüksel, D. (2007). Kocabaşlar jeotermal alanı (Lapseki-Çanakkale) ve çevresinin hidrojeokimyasal ve izotopik incelenmesi. Çanakkale Onsekiz Mart Üniversitesi, Lapseki Sempozyumu, (s.146–155). Lapseki, Çanakkale, Türkiye.

  • Banerjee, B. P., Raval, S., Maslin, T. J. & Timms, W. (2020). Development of a UAV-mounted system for remotely collecting mine water samples. International Journal of Mining, Reclamation and Environment, 34(6), 385–396. https://doi.org/10.1 080/17480930.2018.1549526

  • Bjornsson, G., Grimsson, G., Sigurdsson, A. & Laenen, V. S. (2019). Thermal mapping of Icelandic geothermal surface manifestations with a drone. Proceedings of 44th Workshop on Geothermal Reservoir Engineering, (pp.1–8). Stanford University, Stanford, California.

  • Chaudhry, M., Ahmed, A. & Gulzar, Q. (2020). Impact of UAV surveying parameters on mixed urban landuse surface modelling. ISPRS International Journal of Geo-Information, 9(11), Article 656. https://doi.org/10.3390/ijgi9110656

  • Cherkasov, S. V., Farkhutdinov, A. M., Rykovanov, D. P. & Shaipov, A. A. (2018). The use of unmanned aerial vehicle for geothermal exploitation monitoring: Khankala field example. Journal of Sustainable Development of Energy, Water and Environment Systems, 6(2), 351–362.

  • Chio, S. & Lin, C. (2017). Preliminary study of UAS equipped with thermal camera for volcanic geothermal monitoring in Taiwan. Sensor, 17(7), Article 1649. https://doi.org/10.3390/s17071649

  • De Beni, E., Cantarero, M. & Messina, A. (2019). UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. Journal of Volcanology and Geothermal Research, 369, 250–262.

  • Deniz, O., Bozcu, M. & Ateş, Ö. (2016). Feasibility study of the Kocabaşlar geothermal field (Lapseki/Canakkale/Turkey). 16th International Multidciplinary Scientific Conference, (s.383– 387).

  • Doğdu, M. Ş. (2004). Jeotermal suların rezervuar sıcaklığının tahmininde kullanılan jeotermometre hesaplamaları için bilgisayar programı. Jeoloji Mühendisliği Dergisi, 28(2), 1-12.

  • Dönmez, M., Akçay, A. E., Genç, Ş. G. & Acar, Ş. (2005). Biga Yarimadası’nda Orta-Üst Eosen volkanizmasi ve denizel ignimbiritler. MTA Dergisi, 131, 49-61.

  • Eker, R., Aydın, A. & Hübl, J. (2018). Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environmental Monitoring and Assessment, 190(1), 28. https://doi.org/10.1007/ s10661-017-6402-8

  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E., Adis, C., Walter, H. J. & Yıldırım T. (1995). Biga Yarımadası ile Gökçeada, Bozcaada ve Tavşan Adalarındaki KB Anadolu Tersiyer volkanizmasının özellikleri. MTA Dergisi, 117, 55–86.

  • Genç, Ş. C., Dönmez, M., Akçay, A. E., Altunkaynak, Ş., Eyüpoğlu, M. & Ilgar, Y. (2012). Biga Yarımadası Tersiyer volkanizmasının stratigrafik, petrografik ve kimyasal özellikleri. E. Yüzer & G. Tunay (Eds.), Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi, (s.122-162). MTA Özel Yayın Serisi-28, Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Harvey, M. C., Pearson, S., Alexander, K. B., Rowland, J. & Wite, P. (2014). Unmanned aerial vehicles (UAV) for cost effective aerial orthophotos and digital surface models (DSM). New Zealand Geothermal Workshop Proceedings, (pp.1-4). Auckland, New Zealand.

  • Harvey, M. C., Rowland, J. V. & Luketina, K. M. (2016). Drone with thermal infrared camera provides high resolution georeferenced imagery of theWaikite geothermal area, New Zealand. Journal of Volcanology and Geothermal Research, 325, 61–69. https://doi.org/10.1016/j. jvolgeores.2016.06.014

  • Hastaoğlu, K., Gül, Y., Poyraz, F. & Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, Article 101916. https://doi.org/10.1016/j. jag.2019.101916

  • İzci, V. & Ulvi, A. (2021). Yer kontrol noktalarının harita üretimine etkileri. M. Yakar (Ed.), Proceedings Book of the 1st International Geoinformatics Symposium, (s.41–47). https://publish.mersin.edu. tr/index.php/igss/article/view/11/12

  • Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., Regenspurg, S., Ziegler, M., Ayling, B., Richter, A. & Zemedkun, T. M. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2(5), 324–339. https://doi. org/10.1038/s43017-021-00154-y

  • Karaca, Z., Şanlıyüksel Yücel, D., Yücel, M. A., Kamacı, C., Çetiner, Z. S., Erenoğlu R. C. & Akçay, Ö. (2013). Çanakkale ili (Biga Yarımadası) jeotermal kaynakları ve özelliklerinin belirlenmesi, Biga Yarımadası jeotermal bilgi sistemi (Rapor no: TR22/12/DFD/0011). Güney Marmara Kalkınma Ajansı.

  • Kavzaoğlu, T. & Çölkesen, İ. (2011). Uzaktan algılama teknolojileri ve uygulama alanları. Türkiye’de Sürdürülebilir Arazi Yönetimi Çalıştayı, (s.1–9). İstanbul.

  • Kıray, D. & Cengiz, O. (2023). Kestanelik granitoyidinin petrografik ve jeokimyasal özellikleri (Çanakkale, Biga Yarımadası). Türkiye Jeoloji Bülteni, 66(1), 127–148. https://doi.org/10.25288/tjb.1187739

  • Koçman, A. (1993). Türkiye iklimi. Ege Üniversitesi Yayınları, No:72, İzmir, 83s.

  • Koparan, C., Koç, A. B., Privette, C. V., Sawyer, C. B. & Sharp. J. L. (2018). Evaluation of a UAV-assisted autonomous water sampling. Water, 10(5), Article 655. https://doi.org/10.3390/w10050655

  • Kun, M. & Güler, Ö. (2019). İnsansız görüntüleme sistemleri ile elde edilen sayısal yüzey modellerinin mermer madenciliğinde kullanımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(63), 1005-1013. https://doi.org/10.21205/deufmd.2019216328

  • Lund, J. W. & Toth, A. N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90, Article 101915. https://doi. org/10.1016/j.geothermics.2020.101915

  • Manajitprasert, S., Tripathi, N. K. & Arunplod, S. (2019). Three-Dimensional (3D) modeling of cultural heritage site using UAV imagery: A case study of the Pagodas in Wat Maha That, Thailand. Applied Science, 9(18), Article 3640. https://doi. org/10.3390/app9183640

  • Marmara, H., Şanlıyüksel Yücel, D., Özden, S. & Yücel, M. A. (2020). Kestanbol jeotermal akışkanının hidrokimyasının ve çevresel etkilerinin belirlenmesi. Türkiye Jeoloji Bülteni, 63(1), 97– 116. https://doi.org/10.25288/tjb.604842

  • Marwan, M., Idroes, R., Yanis, M. & Idroes, G. M. (2021). A low-cost UAV based application for identify and mapping a geothermal feature in ie jue manifestation, Seulawah Volcano, Indonesia. GEOMATE Journal, 20(80), 135-142. https://doi. org/10.21660/2021.80.j2044

  • Mertoğlu, O., Şimşek, S. & Başarır, N. (2021). Geothermal Energy Use: Projections and Country Update for Turkey. In Proceedings World Geothermal Congress 2020+1, (pp. 1–11). Reykjavik, Iceland.

  • Meteoroloji Genel Müdürlüğü, (2023a, 20 Temmuz). İllere ait mevsim normalleri, Çanakkale. https:// www.mgm.gov.tr/veridegerlendirme/il-ve-ilceleristatistik.aspx?k=undefined&m=CANAKKALE

  • Meteoroloji Genel Müdürlüğü, (2023b, 20 Temmuz). İklim sınıflandırması Çanakkale. https:// mgm.gov.tr/iklim/iklim-siniflandirmalari. aspx?m=CANAKKALE

  • Nex, F. & Romandino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6, 1–15.

  • Nishar, A., Richards, S., Breen, D., Robertson, J. & Breen, B. (2016). Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei - Tauhara geothermal field, Taupo, New Zealand. Renewable Energy, 86, 1256–1264.

  • Olafsson, J. M. (2018). UAV geothermal mapping in Austurengjar [Master of Science in Sustainable Energy Science]. Reykjavík University, Iceland.

  • Özcan, O. (2017). İnsansız hava aracı (İHA) ile farklı yüksekliklerden üretilen sayısal yüzey modellerinin (SYM) doğruluk analizi. Mühendislik ve Yer Bilimleri Dergisi, 2(1), 1–7.

  • Öztürk, E. & Erduran Nemutlu, F. (2018). Kültürel peyzaj değerlerinin kentsel tasarımda kullanımı: Lapseki (Çanakkale) ilçesi örneği. Bartın Orman Fakültesi Dergisi, 20(1), 14–25.

  • Sarp, S., Burçak, M., Yıldırım, T. & Yıldırım, N. (1998). Biga Yarımadası’nın jeolojisi ve jeotermal enerji olanakları ile Balıkesir-Havran-Derman kaplıcasının detay jeotermal etüdü ve gradyan sondajları raporu (Rapor No: 10537). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Sarp, S. & Duman, Ö. (2008). Çanakkale-LapsekiKocabaşlar kaplıca sahası jeotermal enerji aramaları jeoloji ve jeofizik etüt raporu (Rapor No: 11100). Maden Tetkik ve Arama Genel Müdürlüğü, Enerji Hammadde Etüt ve Arama Dairesi Başkanlığı, Ankara. 42 s.

  • Sedano-Cibrián, J., Pérez-Álvarez, R., de Luis-Ruiz, J. M., Pereda-García, R. & Salas-Menocal, B. R. (2022). Thermal water prospection with UAV, low-cost sensors and GIS. application to the Case of La Hermida. Sensors, 22(18), Article 6756. https://doi.org/10.3390/s22186756

  • Silvestri, M., Marotta, E., Buongiorno, M. F., Avvisati, G., Belviso, P., Sessa, E. B., Caputo, T., Longo, V., De Leo, V. & Teggi, S. (2020). Monitoring of surface temperature on Parco delle Biancane (Italian geothermal area) using optical satellite data, UAV and field campaigns. Remote Sensing, 12(12), Article 2018. https://doi.org/10.3390/ rs12122018

  • Siyako, M., Bürkan, K. A. & Okay, A. İ. (1989). Biga ve Gelibolu Yarımadalarının Tersiyer jeolojisi ve hidrokarbon olanakları. Türkiye Petrol Jeologları Derneği Bülteni, 1(3), 183–199.

  • Snavely, N., Seitz, S. M. & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics, 25(3), 835–846.

  • Şanlıyüksel, D. & Baba, A. (2011). Hydrogeochemical and isotopic composition of a low-temperature geothermal source in Northwest Turkey: case study of Kirkgecit geothermal area. Environmental Earth Sciences, 62(3), 529–540. https://doi. org/10.1007/s12665-010-0545-z

  • Şanlıyüksel Yücel, D., Karaca, Z. & Yücel, M. A. (2013). Determining hydrogeochemical characteristics of geothermal resources in Biga Peninsula (city of Canakkale), NW Turkey. International Association of Hydrogeologists 40th International Congress, Perth, Avusturalya, 261.

  • Şanlıyüksel Yücel, D. & Yücel, M. A. (2017). Terk edilmiş kömür ocaklarında oluşan maden göllerinin hidrokimyasal özelliklerinin belirlenmesi ve insansız hava aracı ile üç boyutlu modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 780–791. https://doi.org/10.5505/ pajes.2016.37431

  • Şanlıyüksel Yücel, D., Özden, S. & Marmara, H. (2021). Hydrochemical and isotopic monitoring of the Kestanbol geothermal field, Turkey and its relationship with seismic activity. Turkish Journal of Earth Sciences, 30, 1112–1133. https://doi. org/10.3906/yer-2105-15

  • Şener, E. (2019). İnsansız hava araçları kullanılarak Süleyman Demirel Üniversitesi Yerleşkesinin yüksek çözünürlüklü ortofoto haritasının hazırlanması. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 393–402. https://doi.org/10.21923/ jesd.511561

  • Şener, M. F., Baba, A., Uzelli T., Akkuş, İ. & Mertoğlu, O. (2022). Türkiye Jeotermal Kaynaklar Strateji Raporu. Enerji ve Tabi Kaynaklar Bakanlığı Maden ve Petrol İşleri Genel Müdürlüğü, 119 s.

  • Taşkıran, L. (2023). Jeotermal enerji alanında yapılan çalışmalar, jeotermal enerji kullanımı, potansiyelimiz ve yeni hedefler. GT’2023 Türkiye Jeotermal Kongresi Bildiriler Kitabı, (s.11-23). Ankara.

  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, (2022, 17 Ağustos). Yenilenebilir enerji, kaynaklar, jeotermal. https://enerji.gov.tr/eigm-yenilenebilirenerji-kaynaklar-jeotermal

  • Tombul, M. (2015). Çanakkale kültür envanteri, arkeolojik yerleşim alanları ve sanat tarihi yapıları. T.C. Çanakkale Valiliği, Ege Yayınları, 653 s.

  • Tut Haklıdır, F. S. (2017). Batı Anadolu’da yüksek sıcaklıklı jeotermal sistemlerde gözlenen kabuklaşma türleri ve kabuklaşma oluşumunun kontrolünün sağlanmasında kullanılan sistemler; Kızıldere-II (Denizli) jeotermal güç santrali örneği. Türkiye Jeoloji Bülteni, 60(3), 363–382. https://doi.org/10.25288/tjb.325384

  • Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London Series B. Biological Sciences, 203(1153), 405–426.

  • Ulusoy, İ., Şen, E., Tuncer, A., Sönmez, H. & Bayhan, H. (2017). 3D multi-view stereo modelling of an open mine pit using a lightweight UAV. Türkiye Jeoloji Bülteni, 60(2), 223–242. https://doi. org/10.25288/tjb.303032

  • Ulusoy, İ., Diker, C., Şen, E., Çubukcu, H. E. & Gümüş, E. (2022). Multisource and temporal thermal infrared remote sensing of Hasandağ Stratovolcano (Central Anatolia, Turkey). Journal of Volcanology and Geothermal Research, 428, Article 107579. https://doi.org/10.1016/j. jvolgeores.2022.107579

  • Ünal, O. T. (1967). Trakya jeolojisi ve petrol imkanları (Rapor no: 391), TPAO (yayımlanmamış).

  • Vengosh, A., Helvacı, C. & Karamanderesi, İ. H. (2002). Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry, 17, 163–183.

  • Walter, T. R., Belousov, A., Belousova, M., Kotenko, T. & Auer, A. (2020). The 2019 eruption dynamics and morphology at Ebeko Volcano monitored by unoccupied aircraft systems (UAS) and field stations. Remote Sensing, 12, Article 1961. https:// doi.org/10.3390/rs12121961

  • Wang, H., Liu, H., Chen, D., Wu, H. & Jin, X. (2022). Thermal response of the fractured hot dry rocks with thermal-hydro-mechanical coupling effects. Geothermics, 104, Article 102464. https://doi. org/10.1016/j.geothermics.2022.102464

  • Xiang, J., Cen, J., Sofia, G., Tian, Y. & Tarolli, P. (2018). Open‑pit mine geomorphic changes analysis using multi‑temporal UAV survey. Environmental Earth Sciences, 77, Article 220. https://doi.org/10.1007/ s12665-018-7383-9

  • Xu, P., Zhang, Q., Qian, H., Li, M. & Hou, K. (2019). Characterization of geothermal water in the piedmont region of Qinling Mountains and Lantian-Bahe Group in Guanzhong Basin, China. Environmental Earth Sciences, 78, Article 442. https://doi.org/10.1007/s12665-019-8418-6

  • Yalçın, T. (2007). Geochemical characterization of the Biga Peninsula thermal waters (NW Turkey). Aquatic Geochemistry, 13 (1), 75–93.

  • Yalçın, T. & Sarp, S. (2012). Biga Yarımadası termal sularının jeokimyasal ve jeotermal potansiyeli. Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi. E. Yüzer ve G. Tunay (Eds.), MTA Özel Yayın Serisi, (s. 289–301). Ankara.

  • Yalçıner, C., Kurban Y. C., Gündoğdu, E. & Yücel M. A. (2021). Gelibolu Yarımadası savaş arkeojeofiziği çalışmaları: Şahindere Şehitliği ve Lone Pine Anıtı örnek bölgeleri. Journal of Advanced Research in Natural and Applied Sciences, 3, 408–422. https:// doi.org/10.28979/jarnas.909872

  • Yılmaz, D. & Yücel, M. A. (2020). Kuzey Troas Bölgesi arkeolojik yüzey araştırmasında İHA görüntüsü tabanlı mekânsal analizlerin kullanımı. V. Keleş (Ed.), Propontis ve Çevre Kültürleri, (s. 923–933). Zero to Three, İstanbul.

  • Yücel, M. A. & Turan, R. Y. (2016). Areal change detection and 3D modeling of mine lakes using high-resolution unmanned aerial vehicle images. Arabian Journal for Science and Engineering, 41(12), 4867–4878. https://doi.org/10.1007/ s13369-016-2182-7

  • Yücel, M. A., Şanlıyüksel Yücel, D., Yalçıner, C. Ç. & Yılmaz, D. (2018). 3D modelling of historical remains using unmanned aerial vehicle, a case study: Gallipoli Peninsula. XXVIII International Symposium on Modern Technologies, Education and Professional Practice in Geodesy and Related Fields, (pp.101–107). Sofya, Bulgaristan.

  • Yücel, M. A. & Yılmaz, D. (2019). Çanakkale ili insansız hava aracı destekli yüzey araştırması. Anadolu Araştırmaları, 22, 107–128. https://doi. org/10.26650/anar.2019.22.633114

  • Yücel, M. A. & Şanlıyüksel Yücel, D. (2023). UAVbased RGB and TIR imaging for geothermal monitoring: a case study at Kestanbol geothermal field, Northwestern Turkey. Environmetal Monitoring and Assessment, 195. Article 541. https://doi.org/10.1007/s10661-023-11182-0

  • Zeybek, M. & Şanlıoğlu, İ. (2019). Topoğrafik yüzey değişimlerinin görüntü işleme teknikleriyle belirlenmesi üzerine bir araştırma. Doğal Afetler ve Çevre Dergisi, 5(2), 350–367. https://doi. org/10.21324/dacd.531719

  • Zuffi, C., Manfrida, G., Asdrubali, F. & Talluri, L. (2022). Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics, 104, Article 102434. https://doi.org/10.1016/j. geothermics.2022.102434




  • ŞANLIYÜKSEL YÜCEL, D., & YUCEL, M. A. (2024). Düşük Sıcaklıklı Bir Jeotermal Alanın İnsansız Hava Aracı Termal ve RGB Görüntüleri ile Modellenmesi: Kocabaşlar Jeotermal Alanı Örneği, Kuzeybatı Türkiye. Türkiye Jeoloji Bülteni, 67(1), 115-136. https://doi.org/10.25288/tjb.1331011

  • ŞANLIYÜKSEL YÜCEL D, YUCEL MA. Düşük Sıcaklıklı Bir Jeotermal Alanın İnsansız Hava Aracı Termal ve RGB Görüntüleri ile Modellenmesi: Kocabaşlar Jeotermal Alanı Örneği, Kuzeybatı Türkiye. Türkiye Jeol. Bül. Ocak 2024;67(1):115-136. doi:10.25288/tjb.1331011

  • ŞANLIYÜKSEL YÜCEL, Deniz, ve Mehmet Ali YUCEL. “Düşük Sıcaklıklı Bir Jeotermal Alanın İnsansız Hava Aracı Termal Ve RGB Görüntüleri Ile Modellenmesi: Kocabaşlar Jeotermal Alanı Örneği, Kuzeybatı Türkiye”. Türkiye Jeoloji Bülteni 67, sy. 1 (Ocak 2024): 115-36. https://doi.org/10.25288/tjb.1331011.

  • Historical Development of the Earthquake Research Commission Reports Submitted to the Grand National Assembly of Türkiye
    Bülent Özmen
    PDF Olarak Görüntüle

    Abstract: After a significant earthquake, Earthquake Research Commissions are established in the Grand National Assembly of Türkiye in order to help heal the wounds of the earthquake quickly, to reveal problem areas, to determine solutions that may be suggested, and to carry out earthquake-related studies. Starting from the first commission established in 1962, Earthquake Research Commissions were established eight times under different names in 1966,1997, 1999, 2010, 2020 and 2023. In addition to these, earthquake-related research commissions were established 4 times in the Senate of the Grand National Assembly in 1962, 1976, 1977 and 1978. It is equally important tomake findings and suggestions in the commission reports, as well as to follow them up and check whether they areimplemented. In order for the recommendations to be implemented, they must be legally binding. For this reason,it is important that the Grand National Assembly has the duty to put in practice the opinions and suggestionsstated in the reports of the Parliamentary Earthquake Research Commission and to make the proposed legislative changes. It will make significant contributions to Türkiye`s efforts to reduce earthquake risks if all political partiesin the Parliament work together and follow up on the proposals made in the reports, put their suggestions regarding legislative regulations on the agenda of Parliament as soon as possible and enact them, and ensure their implementation by checking whether their suggestions are implemented.The purpose of this article is to provide information about the Parliamentary Earthquake Research Commissions and reports prepared by these commissions that have been established from past to present, as well as to contribute to the development of recommendations and studies on reducing earthquake risks and to guide the commissions to be established in the future.  

  • Research commission

  • earthquake

  • report

  • TBMM

  • ISSUE FULL FILE
    PDF Olarak Görüntüle