Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2015 NİSAN Cilt 58 Sayı 2
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Stratigraphic evolution of the Kemalpaşa (İzmir) Plio-Quaternary Basin
Fikret Göktaş Hüseyin Yavuz Hakyemez
View as PDF

Abstract: The Kemalpaşa Plio-Quaternary basin was constructed during the period of N-S extension which has beenreactivated nearly 5 Ma BP causing the opening of E-W trending grabens following a short-time compressionphase in Western Anatolia. The Kemalpaşa basin, southwestern one of the westerly furcated branches ofGediz Graben, has a Neogene basement composed of Lower-Middle Miocene and Upper Miocene-lowermostPliocene continental sedimentary sequences seperated by a regional unconformity. The Lower-MiddleMiocene Kemalpaşa group is represented by the Dereköy, Örnekköy and Topçutepe formations depositedin fandelta, lacustrine and fluvial environments respectively and the calcalkaline andesitic Yukarıkızılcavolcanics. The Çiçekliköy group, which is deposited during the Late Miocene to early Early Pliocene, consists of alluvial Ulucak formation in its lower part and overlying lacustrine Yaka limestone.The deposition in the Kemalpaşa basin, which is formed in two successive phases during the late EarlyPliocene and Holocene respectively, is represented by the Gediz group. The first phase depositsof lateEarly Pliocene-Plesitocene on the hanging wall of Gediz Graben detachment fault arethe lacustrineÇiniliköy formation and lateral alluvial Kızılca and Armutlu formations. Alluvial fan and fluvial depositsof the second phase have been deposited in the Holosen basin opening on the first phase deposits by theKemalpaşa high-angled oblique-slip normal fault.

  • Kemalpaşa basin

  • Gediz Graben

  • Plio-Quaternary

  • basin evolution


  • Akdeniz, N., Konak, N., Öztürk, Z., Çakır, M.H., 1986. İzmirManisa dolayının jeolojisi. MTA Derleme No: 7929, (yayımlanmamış).

  • Becker-Platen, J. D., Sickenberg, O., Tobien, H., 1975a. Die Gliederung der Känozoischen sedimente der Türkei nach Vertebraten-Faunengruppen. in: Die Gliederung des höheren Jungtertiärs und Altguartärs in der Türkei nach Vertebraten und ihre Bedeutung für die internationale Neogen-Stratigraphie (Känozoikum und Braunkohlen der Türkei, 17). Geologisches Jahrbuch, B/15, 19-45.

  • Becker-Platen, J. D., Sickenberg, O., Tobien, H., 1975b. VertebratenLokalfaunen der Türkei und ihre Altersstellung. in: Die Gliederung des höheren Jungtertiärs und Altguartärs in der Türkei nach Vertebraten und ihre Bedeutung für die internationale Neogen-Stratigraphie (Känozoikum und Braunkohlen der Türkei, 17). Geologisches Jahrbuch, B/15, 47-99.

  • Bozkurt, E., 2001. Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30.

  • Bozkurt, E., 2003. Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16, 61-81.

  • Bozkurt, E. , Sözbilir, H., 2004. Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geological Magazine, 141/1, 63-79.

  • Bozkurt, E. , Sözbilir, H., 2006. Evolution of the large-scale active Manisa Fault, Southwest Turkey: Implications on fault development ve regional tectonics. Geodinamica Acta, 19 (6), 427-453.

  • Bruijn, H. de, Mayda, S., Ostende, L., Kaya T., Saraç, G., 2006. Small mammals from the Early Miocene of Sabuncubeli (Manisa, SW Anatolia, Turkey). Beitrage zur Paläontologie, 30, 57-87.

  • Candan, O., Dora, Ö., Oberhanslı, R., Koralay, E., Çetinkaplan, M., Akal, C., Satır, M., Chen, F., Kaya, O., 2011. Menderes Masifi’nin Pan-Afrikan temelin stratigrafisi ve Gondvana’nın Geç Neoproterozoyik/Kambriyen evrimi. Maden Tetkik ve Arama Dergisi, 142, 25-68.

  • Cohen, H.A., Dart, C.J., Akyüz, H.S., Barka, A.A., 1995. Syn-rift sedimentation and structural development of Gediz and Büyük Menderes graben, western Turkey. Journal of Geological Society, 152, 629-638.

  • Çiftçi, N.B., Bozkurt, E. 2007. Anomalous stress field and active breaching at relay ramps: a field example from Gediz Graben, SW Turkey. Geological Magazine, 144, 687- 699.

  • Çiftçi, N.B., Bozkurt, E. 2008. Folding of the GedizGraben fill, SW Turkey: extensional and/or contractional origin? GeodinamicaActa, 21, 145-167.

  • Çiftçi, N.B., Bozkurt, E. 2009 a. Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, 473, 234- 260.

  • Çiftçi, N.B., Bozkurt, E. 2009 b. Evolution of the Miocene sedimentary fill of the Gediz Graben. Journal of Sedimentary Geology,216, 49-79.

  • Çiftçi, N.B., Bozkurt, E. 2010. Structural evolution of the Gediz Graben, SWTurkey: temporal and spatial variation of the graben basin. Basin Research, 22, 846-873.

  • Çiftçi, N.B. 2013. In-situ stress field and mechanics of fault reactivation in the Gediz Graben, Western Turkey. Journal of Geodynamics, 65, 136-147.

  • Dart, C., Cohen, H.A., Akyüz, H.S., Barka, A.A., 1995. Basinward migration of rift-border faults: Implications for facies distributions and preservation potential. Geology, 23/1, 69-72.

  • Emre, Ö., Barka, A., 2000. Gediz Grabeni-Ege Denizi arasının (İzmir yöresi) aktif fayları. Batı Anadolu’nun depremselliği Sempozyumu (BADSEM-2000), 24-27 Mayıs 2000, İzmir, Bildiriler, 131-132.

  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C., Göktaş, F., 2005. İzmir yakın çevresinin diri fayları ve deprem potansiyelleri. MTA Derleme No: 10754 (yayımlanmamış).

  • Emre, T., 1996. Gediz grabeninin jeolojisi ve tektoniği. Turkish Journal of Earth Sciences, 5, 171-186.

  • Ferré, B., 1990. Les mammifères du gisement de Develi (Manisa, Turquie).Mémoire de DEA de Paléontologie, université de Montpellier 2.

  • Göktaş, F., Ünay, E., 2000. The stratigraphy of the NW parts of the Akhisar (Manisa) Neogene basin. International Earth Sciences Colloquium on the Aegean Region (IESCA-2000), 25-29 September, İzmir, Abstracts, 72.

  • Göktaş, F., 2012. Kemalpaşa-Torbalı (İzmir) havzası ile yakın çevresindeki Neojen-Kuvaterner tortullaşması ve magmatizmasının jeolojik etüdü. MTA Derleme No: 11575 (yayımlanmamış).

  • Göktaş, F., 2013. Cumaovası volkanitlerinin zamanstratigrafik konumuna ilişkin yeni veriler hakkında kısa not. Maden Tetkik ve Arama Dergisi, 147, 179-183.

  • Göktaş, F., 2015. Kemalpaşa-Torbalı (İzmir) havzasındaki Neojen volkanizmasına ilişkin kısa not. Maden Tetkik ve Arama Dergisi, 150 (basılıyor).

  • Hakyemez, H.Y., Erkal. T., Göktaş, F., 1999. Late Quaternary evolution of the Gediz and Büyük Menderes grabens, Western Anatolia, Turkey. Quaternary Science Reviews, 18, 549-554.

  • Hakyemez, H.Y., Göktaş, F., Erkal T., 2013. Gediz Grabeninin Kuvaterner Jeolojisi ve Evrimi. Türkiye Jeoloji Bülteni, 56/2, 1-26.

  • ICS (International Commision on Stratigraphy), 2013.. http://www. stratigraphy.org/column.php?id=Chart/Time Scale, 26 February 2013.

  • İnci, U. 1991., Torbalı (İzmir) kuzeyindeki Miyosen tortul istifinin fasiyes ve çökelme ortamları. Maden Tetkik ve Arama Dergisi, 112, 13-26.

  • İztan, H., Yazman, M., 1990. Geology and hydrocarbon potential of the Alaşehir (Manisa) area, Western Turkey. International Earth Sciences Colloquium on the Aegean Region (IESCA 1990), 1-6 Ekim 1990, İzmir, Proceedings I, 327-338.

  • Kaya, O. 1979., Ortadoğu Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği. Türkiye Jeoloji Kurumu Bülteni, 22/1, 35-58.

  • Kaya, O., Müller, E.D., Ülkümen, N., Kaya, T., 1998. Biostratigraphic and environmental aspects of the Late Miocene-Early Pliocene deposits in Develiköy (Manisa, Turkey). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Histor. Geologie, 38, 3-7.

  • Kaya, O., Ünay, E., Saraç, G., Eichhorn, S., Hassenrück, S., Knappe, A., Pekdeğer, A., Mayda, S., 2004. Halitpaşa Transpressive Zone: Implications for an Early Pliocene compressional phase in central Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 13, 2-13.

  • Kaya, O., Ünay, E., Göktaş, F., Saraç, G., 2007. Early Miocene stratigraphy of Central West Anatolia, Turkey: implications for the tectonic evolution of the Eastern Aegean area. Geological Journal, 42, 85-109.

  • Kaya, T., 1994. Ceratoterium neumayri (Rhinocerotidae-Mammalia) in the Upper Miocene of Western Anatolia. Turkish Journal of Earth Sciences, 3/1, 13-22.

  • Koçyiğit, A., Yusufoğlu, H., Bozkurt, E., 1999. Evidence from the Gediz graben for episodic two-stage extension in Western Turkey. Journal of the Geological Society, 156, 605-616.

  • Konak, N., Çakmakoğlu, A., 2007. Menderes Masifi ve yakın çevresindeki Mesozoyik-Alt Tersiyer istiflerinin tektonik üniteler bazında tartışılması. Menderes Masifi Kolokyumu, 5-10 Kasım 2007, İzmir, Genişletilmiş Bildiri Özleri Kitabı, 56-64.

  • Mayda, S., 2008. Sabuncubeli (Manisa) Erken Miyosen memeli faunasının sistematiği ve biyostratigrafisi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, 224 s.

  • Mayda, S., Titov, V.V., Tesakov, A.S., Göktaş, F. ve Alçiçek, M.C., 2013. Revision of Plio-Pleistocene mammalian faunas from Çobanisa area (Western Turkey). VIII All-Russian Conference on Quternary Research, “Fundamental Problems of Quaternary, Results and Main Trends of Future Studies, 10-15 June 2013, Rostov-on-Don, Collection of papers, 396-397.

  • Mayda, S., 2014, Kişisel görüşme. Ege Üniversitesi Tabiat Tarihi Müzesi, İzmir.

  • Okay, A., Siyako, M., 1991. The new position of the İzmir-Ankara Neo-Tethyan Suture between İzmir and Balıkesir. Ozan Sungurlu Symposium, 26-28 Kasım 1991, Ankara, Proceedings, 333-355.

  • Özkaymak, Ç., Sözbilir, H., 2008. Stratigraphic and Structural Evidence for Fault Reactivation: The Active Manisa Fault Zone, Western Anatolia. Turkish Journal of Earth Science, 17, 615-635.

  • Özkaymak, Ç., Sözbilir, H., Uzel, B., 2012. Neogene–Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the Izmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.

  • Paton, S., 1992. Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society, 149, 1031-1044.

  • Purvis, M., Robertson, A., 2004. A pulsed extension model for the Neogene-Recent E-W trending Alaşehir Graben and the NE-SW trending Selendi and Gördes Basins, western Turkey. Techtonophysics, 391, 171-201.

  • Purvis, M., Robertson, A., 2005. Sedimentation of the NeogeneRecent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology, 173, 373-408.

  • Rummel, M., 1998. Die Cricetiden aus dem Mittel- und Obermiozän der Türkei. Documenta Naturae, 1-300, München.

  • Saraç, G., 2003. Türkiye omurgalı fosil yatakları. MTA Derleme No: 10609 (yayımlanmamış).

  • Sarıca, N., 2000. The Plio-Pleistocene age of Büyük Menderes and Gediz grabens and their significance on N-S extensional tectonics in West Anatolia: mammalian evidence from the continental deposits. Geological Journal, 35, 1-24.

  • Seyitoğlu, G., Scott, B., 1996. Age of the Alaşehir graben (West Turkey) and its tectonic implications. Geological Journal, 31, 1-11.

  • Seyitoğlu, G., Çemen, İ., Tekeli, O. 2000. Extensional folding in Alaşehir (Gediz) graben. Journal of the Geological Society London, 157, 1097-1100.

  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş., Işık, V., 2002. The role of the flexural rotation/Rolling hinge model in the tectonic evolution of the Alaşehir graben, western Turkey. Geological Magazine, 139/1, 15-26.

  • Sözbilir, H., 2001.Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, Western Turkey. Turkish Journal of Earth Sciences, 10, 51-67.

  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö., Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, western Anatolia,Turkey. Basin Research, 23, 423-448.

  • Steininger, F.F., 1999. Chronostratigraphy, geochronology and biochronology of the Miocene “European Land Mammal Mega-Zones” (ELMMZ) and the Miocene “MammalZones (MN-Zones)”. Rössner, G. and Heissig, K. (eds). The Miocene Land Mammals of Europe, München, Verlag Dr. Friedrich Pfeil, 9-24.

  • Şahinci, A., 1976. Manisa yöresi Gediz alüvyonları hakkında bazı incelemeler. Ege Üniversitesi Fen Fakültesi İlmî Raporlar Serisi, 233, İzmir, 11 s.

  • Şen, Ş., Jaeger, J.J., Dalfes, N., Mazin, J.M., Bocherens, H., 1989. Decouverte d’une faune de petits mammiferes pliocenesen Anatolie occidentale. Comptes rendus de l›Académie des Sciences, 309, 1729-1734.

  • Şen, Ş., Seyitoğlu, G. 2009. Magnetostratigraphy of early–middle Miocene deposits from east–west trending Alaşehir and Büyük Menderes grabens in western Turkey, and its tectonic implications. In: Van Hinsbergen, D. J. J., Edwards, M. A. & Govers, R. (eds) Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone. The Geological Society, London,Special Publications, 311, 321–342.

  • Taymaz, T., Demirbağ, E., Genç, T., Kurt, H., Tan, O., Ocakoğlu N., 2001. Ege Denizi ve çevresindeki yıkıcı depremler ile graben yapıları ve kıta şelfinin sismik özelliklerinin incelenmesi. TÜBİTAK Nihai Rapor, Proje No: YDABÇAG-198Y075.

  • Ünay, E., Göktaş, F., Hakyemez, H.Y., Avşar, M., Şan, Ö. 1995. Büyük Menderes Grabeni’nin kuzey kenarındaki çökellerin Arvicolidae (Rodentia, Mammalia) faunasına dayalı olarak yaşlandırılması. Türkiye Jeoloji Bülteni, 38/2, 75-80.

  • Ünay, E., 1997. Kişisel görüşme. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Ünay, E., De Bruijn, H., 1998. Plio-Pleistocene rodents and lagomorphs from Anatolia. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60, 431-465.

  • Ünay, E., Göktaş, F., 1999. Söke çevresi (Aydın) geç Erken Miyosen ve Kuvaterner yaşlı küçük memelileri: ön sonuçlar. Türkiye Jeoloji Bülteni, 42/2, 99-113.

  • Ünay, E., De Bruijn, H, Saraç, G., 2003. A preliminary zonation of the continental Neogene of Anatolia based on rodents. In: Reumer, J.W.F. & Wessels, W. (eds.). Distribution and migration of Neogene mammals in Eurasia. Deinsea, 10, 530–547.

  • Yalçınlar, İ., 1953/54. Manisa bölgesinin omurgalı Neojen faunası yatakları ve aşağı Gediz vadisinin menşei hakkında. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 5/6, 197-204.

  • Yılmaz, Y., 2000. Ege bölgesinin aktif tektoniği. Batı Anadolu’nun depremselliği Sempozyumu (BADSEM-2000), 24-27 Mayıs 2000, İzmir, Bildiriler, 3-14.

  • Yılmaz, Y., Genç, Ş. C., Gürer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş., Elmas, A., 2000. When did the western Anatolian grabens begin to develop?, In: Bozkurt, E., Winchester, J.A. ve Piper, J.A.D. (eds). Tectonic and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications, 173, 353-384.

  • Göktaş, F , Hakyemez, Y . (2015). Kemalpaşa (İzmir) Pliyo-Kuvaterner Havzasının Stratigrafik Evrimi . Türkiye Jeoloji Bülteni , 58 (2) , 1-28 . DOI: 10.25288/tjb.298498

  • Investigation of the hydrothermal alterations by using Landsat 7 ETM+ and ASTER images in Tekkale-Yusufeli (Artvin-NE Turkey) surroundings
    Önder Kayadibi
    View as PDF

    Abstract: The study area is located in the eastern part of Pontides metallogenic belt. The metallogenic belt of the easternPontides has a significant potential in terms of ore formations such as volcanic massive sulphide (VMS),porphyry Cu-Mo, epithermal, skarn, chromite. In this study, hydrothermal alteration features associated with VMS-type ore formations have investigated by using Landsat 7 ETM+, ASTER images and ASD Fieldspec Prospektrometer. To determine the hydrothermal alteration minerals, band ratio method have been applied to bothimages. Also, Landsat 7 ETM + and ASTER satellite images have been analyzed by using respectively CrostaTechnique and matched filtered (MF) methods, and the hydrothermal alteration zones associated with the oreformations such as argillic alteration, silicification, ironoxide in region have been mapped. The results obtainedthrough image analysis have been evaluated by using especially Geographic Information Systems (GIS)environment and at last, the potential target areas of hydrothermal alterations to be important in term of VMStype ore deposits have been determined. In particular, an extensive areas of argillic alteration have beendistinguished on Upper Cretaceous aged dacitic volcanic units. Also, the anomalies areas of alunite/kaoliniteand silicification have appeared as spatially associated with argillic alteration in some region. The direction ofapproximately NE-SW of determined hydrothermal alterations have been seen as a characteristic feature.

  • Landsat 7 ETM+

  • ASTER

  • band ratio

  • Crosta technique

  • Matched Filtering (MF)

  • mineral mapping

  • Geographic Information Systems (GIS)

  • Yusufeli-Tekkale (Artvin)

  • hydrothermal alterations

  • volcanic massive sulphide (VMS)


  • Abrams, M., Abbot, E. and Kahle, A.B., 1991. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows. Journal of Geophysical Research, 96 (B1), p. 475-484.

  • Abdioğlu, E. and Arslan, M., 2008. Alteration mineralogy and geochemistry of the Hydrothermally altered rocks of the kutlular (Sürmene) massive sulfide deposit, NE, Turkey. Turkish J. Earth Sci. 17, pp. 1–24.

  • Abrams, M. and Hook, S.J., 1995. Simulated ASTER data for geologic studies, Geoscience and Remote Sensing, IEEE Transactions on, vol.33, no.3, pp.692-699.

  • Adler-Golden, S.M., Berk, A., Bernstein, L.S., Richtsmeier, S., Acharya, P.K., Matthew, M.W., Anderson, G.P., Allred, C., Jeong, L. and Chetwynd, J. 1998. FLAASH, A MODTRAN4 Atmospheric Correction Package for Hyperspectral Data Retrievals and Simulations. Proc. 7th Ann. JPL Airborne Earth Science Workshop, Pasadena, Calif., JPL Publication, 97-21, pp. 9–14.

  • Akçay, M. and Gündüz, Ö., 2004. Porphyry Cu-Au Mineralisation Associated with a Multi Phase Intrusion, and Related Replacement Fronts in Limestones in an Island ArcSetting near the Gümüşhane Village (Artvin) in the Eastern Black Sea Province (Turkey), Chemie der Erde, 64, 359-383.

  • Akçay, M., Gündüz, Ö. and Çoban, H., 1998. A porphyry Cu_ Au mineralisationaround the Gümüşhane village (Artvin) and associated carbonate replacement type mineralisation: a geologic and geochemical approach. Third International TurkishGeology Symposium, METU, Ankara, 131

  • ASD, 2002. FieldSpec Pro User Guide, Analytical Spectral Devices, p. 136, USA. Web adresi: http://support.asdi.com/Document/FileGet.aspx?f=600000.pdf

  • Aslaner, M., Van, A. and Yalçınalp, B. 1995. General features of the Pontide Metallogenic Belt. In: Erler, A., Ercan, T., Bingöl, E. & Örçen, S. (eds), Geology of the Black Sea Region. General Directorate of Mineral Research and Exploration and Chamber of Geological Engineers, Ankara, 209–213.

  • Bedini, E. 2011. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data, Advances in Space Research, Volume 47, Issue 1, pp. 60-73.

  • Boardman, J. W., 1998. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: Mixture tuned matched filtering, in Summaries of the 7th Annu. JPL Airborne Geoscience Workshop.

  • Binelli-Chahine M., Vergely, P., Masson, Ph., 1990. Computer processing of Landsat and spot images for the morpho-structural analysis of the Wei He Graben (Shaanxi-China). Preliminary results, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 45, Issues 5–6, pp. 297-315.

  • Bishop, C. A., Liu, J.G. and Mason, P.J. 2011. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. International Journal of Remote Sensing, 32(9), pp. 2409-2426.

  • Boardman, J. W., 1998. Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: a lesson in accuracy versus precision, in Summaries of the Seventh JPL Airborne Earth Science Workshop, Vol. 1, pp. 53.

  • Bonham-Carter, G. F. 1994. Geographic Information Systems for Geoscientists: Modelling with GIS. Pergamon (Elsevier Science Ltd.) Press, New York. 398 pages.

  • Carranza, E. J. M. 2009. Exploratory analysis of geochemical anomalies. In M. Hale (Ed.) Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11, Elsevier BV. 351 p.

  • Clark, R. N., 1999. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3-58.

  • Crosta, A.P., Sabine, C. and Taranik, J.V., 1998. Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data, Remote Sensing of Environment, Vol. 65, Issue 3, pp. 309-319.

  • Crosta, A. P. and Moore, J.M., 1989. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. Proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Calgary (Ann Arbor, MI: Environmental Research Institute of Michigan), pp. 1173-1187.

  • Crosta, A.P. and Filho, C.R., 2003. Searching for gold with ASTER. Earth Observation Magazine, 12 (5), 38–41.

  • Çiftehan, H. and O’Brien, N.P., 1998. The Cerattepe Cu–Au–Ag deposit, Abstract 3rd Symposium Geology of Turkey, pp.153.

  • Ferrier, G., White, K., Griffiths, G., Bryant, R. and Stefouli, M., 2002. The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing, 23-2, pp. 341-356.

  • Fujisada, H., Sakuma, F., Ono, A., and Kudoh, M., 1998, Design and preflight per performance of ASTER instrument protoflight model. IEEE Transactions on Geoscience and Remote Sensing, 36, 1152-1160. GLCF, 2014. Global Land Cover Facility, Web adresi: http://www.landcover. org/data/landsat/

  • GLCF, 2014. Global Land Cover Facility, Web adresi: http://www. landcover.org/data/landsat/

  • Goodenough, D.G., Dyk, A., Niemann, K.O., Pearlman, J.S., Hao Chen, Han, T., Murdoch, M. and West, C., 2003, Processing Hyperion and ALI for forest classification, Geoscience and Remote Sensing, IEEE Transactions on, Vol. 41, Issue:6 , pp. 1321-1331.

  • Gökce, A. and Spiro, B., 2002. Fluid releated characteristics of the Çakmakkaya and Damarköy copper deposits, NE Turkey. Int. Geol. Review, 44/8, 744-754.

  • Hauff, P.L., 2002. Applied Reflectance Spectroscopy. Version 4.0, Spektral International Inc.

  • Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K. and Mauger, A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99, pp. 159-172.

  • Huang, S. and Siegert, F., 2006. Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery, Journal of Arid Environments, Vol. 67, Issue 2, pp. 308-327.

  • Hubbard, B.E. and Crowley, J.K., 2005. Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment, 99, pp. 173 – 186.

  • Hubbard, B.E., Crowley, J.K. and Zimbelman, D.R., 2003. Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4 μm) Hyperion, ALI, and ASTER imagery. IEEE Transactions on Geoscience and Remote Sensing, 41, pp. 1401-1410.

  • Hunt, G. R., 1977. Spectral signatures of particulate minerals in the visible and near- infrared. Geophysics, 42, No. 3, pp. 501-513.

  • Hunt, G.R. and Ashley, R.P. 1979. Spectra of altered rocks in the visible and near infrared. Economic Geology and the Bulletin of the Society of Economic Geologists, Vol. 74, pp. 1613-1629.

  • Hunt, G. R., 1979. Near-infrared (1.3-2.4µm) spectra of alteration minerals-potential for use in remote sensing. Geophysics, 44, No. 12, pp. 1974-1986.

  • Kolaylı, H., Arslan, M. and Çiftçi, E., 2007. Platinum Group Element contents of the Kop Chromitites and its possible sources, (NE Turkey). Goldschmidt Conference, Köln.

  • Kruse, F. A., Lefkoff, A. B., and Dietz, J. B., 1993. Expert systembased mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Remote Sensing of Environment, Vol. 44, Issues 2–3, pp. 309-336.

  • Kruse, F. A., Boardman, J. W. and Huntington, J. F., 2003. Evaluation and Validation of EO-1 Hyperion for Mineral Mapping. in Special Issue, Transactions on Geoscience and Remote Sensing (TGARS), IEEE, Vol. 41, no. 6, pp. 1388-1400.

  • Leitch, C.H.B., 1981. Mineralogy and textures of the Lahanos and Kızılkaya massive sulphide Deposits, northeastern Turkey, and their similarity to Kuroko ores. Mineral. Deposit. 16, pp. 241-257.

  • Liu, L., Zhuang, D.-F., Zhou, J. and Qiu, D.-S., 2011, Alteration mineral mapping using masking and Crosta technique for mineral exploration in mid-vegetated areas: a case study in Areletuobie, Xinjiang (China), International Journal of Remote Sensing, 32:7, pp. 1931-1944.

  • Loughlin, W., (1991), Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, vol. 57, (1163–1169).

  • Mars, J.C. and Rowan, L.C., 2006. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2, pp. 161-186.

  • Mars, J.C. and Rowan, L.C. 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114, pp. 2011-2025.

  • Moore, F., Rastmanesh, F., Asadi H., & Modabberi, S., 2008. Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data, International Journal of Remote Sensing, 29-10, pp. 2851-2867.

  • MTA, 2002. Maden Tetkik ve Arama Genel Müdürlüğü, 1:500 000 ölçekli Türkiye Jeoloji Haritası, Trabzon paftası.

  • Pirajno, F., 2009. Hydrothermal processes and mineral systems, Springer, 1250 p.

  • Podwysocki, M., Salisbury, J. and Vergo, N. 1985. Use of near-infrared spectra to distinguish between sedimentary cherts and hydrothermal silica associated with disseminated gold deposits. Geological Society of America, Abstract, Vol. 17, pp. 691.

  • Porwal, A., Carranza E.J.M. and Hale M. 2003. Knowledge-driven and Data-driven Fuzzy Models for Predictive Mineral Potantial Mapping. Natural Resources Research, Vol. 12, No. 1, pp. 1-25.

  • Rowan, L.C., Crowley, J.K., Schmidt, R.G., Ager, C.M. and Mars, J.C., 2000. Mapping hydrothermally altered rocks by analyzing hyperspectral image (AVIRIS) data of forested areas in the Southeastern United States, Journal of Geochemical Exploration, Vol. 68, Issue 3, pp. 145-166.

  • Rowan L.C. and Mars J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, pp. 350-366.

  • Rowan, L.C., Hook, S.J., Abrams, M.J. and Mars, J.C., 2003. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), A New Satellite-Imaging System. Economic Geology, Vol. 98, pp. 1019-1027.

  • Rowan, L.C., Schmidt, R.G. and Mars, J.C. 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104, pp. 74-87.

  • Ruiz-Armenta, J. R. and Prol-Ledesma, R. M., 1998. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico, International Journal of Remote Sensing, 19-10, pp. 1981-2000.

  • Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14, pp. 157-183.

  • Sadıklar, M.B., Sipahi, F., Bernhardt, H.J. and Uysal, İ., 2007. The formation of the Fe skarn deposit between Camiboğazı and Arnastal (Gümüşhane, NE Turkey): Evidence from mineral chemistry. Goldschmidt Conference, Geochimica et Cosmochimica Acta, Cologne, Goldschmidt Conference, Germany, 71 (15), A865.

  • Schneider, H.J., Özgür, N. & Palacios, M.C., 1988. Relationship between alteration, REE distribution, and mineralization of the Murgul Copper Deposit, Northeastern Turkey. Economic Geology, 83, 4612-4624.

  • Seedorf, E., Dilles, J.D., Proffett, J.M., Jr., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A. and Barton, M.D. 2005. Porphyry deposits: characteristics and origin of hypogene features. Economic Geology, 100th Anniversary, pp. 251-298.

  • Shippert, P., 2003, Introduction to Hyperspectral Image Analysis, Remote Sensing of Earth via Satellite Winter 2003 Issue 3: Research and Applications, Online Journal of Space Communication, Web adresi: http://spacejournal.ohio. edu/issue3/abst_shippert.html.

  • Sipahi, F. 2011. Formation of skarns at Gümüşhane (Northeastern Turkey). Neues Jahrbuch für Mineralogie-Abhandlungen, Vol. 188, Number 2, pp. 169-190.

  • Tangestani, M.H., and Moore. F., 2002. Porphyry copper alteration mapping at the Meiduk area, Iran, International Journal of Remote Sensing, 23-22, pp. 4815-4825.

  • Tangestani, M.H., Mazhari, N., Agar, B. and Moore, F., 2008. Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran, International Journal of Remote Sensing, 29-10, pp. 2833-2850.

  • Tommaso, I., and Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the infiernillo porphyry deposit, Argentina. Ore geology Reviews, 32, 275-290.

  • Tüysüz, N., 2000, Geology, Lithogeochemistry and Genesis of the Murgul Massive Sulfide Deposit, NE Turkey. Chemie der Erde, 60, 231-250.

  • Tüysüz, N. 1995. Lahanos (Espiye-Giresun) masif sülfit yatağına ait cevher mineralleri ve dokularının cevher oluşumu açısından incelenmesi. Yerbilimleri 26, 79–92.

  • Tüysüz, N. Er, M., Yılmaz, Z. and Akıncı, S. 1995. Geology, Mineralogy and Alteration of the Mastra Epithermal GoldSilver Deposit, Gümüşhane, NE-Turkey. Turkish Journal of Earth Sciences, Vol. 4, n.1, 1995, pp. 11-21.

  • Tüysüz, N. ve Akçay, M., 2000. Doğu Karadeniz Bölgesindeki Altın Yataklarının Karşılaştırmalı İncelenmesi. Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi, MTA, 2000, s.625-645.

  • USGS 2014, Frequently Asked Questions about the Landsat Missions, web adresi: http://landsat.usgs.gov/band_designations_landsat_satellites.php, Erişim Tarihi: 06.05.2014.

  • Uysal, İ., Tarkian, M., Sadıklar, M.B. and Şen, C. 2007. PlatinumGroup elements geochemistry and mineralogy in ophio litic chromitites from the Kop Mountains, NortheasternTurkey. The Canadian Mineralogist, 45 (2), pp. 355-377.

  • Van der Meer, F.D., Van der Werff, H. M.A., Van Ruitenbeek, F.J.A., Hecker, C.A.,

  • Bakker, W.H., Noomen, M.H., Van der Meijde, M., Carranza, E. J.M., de Smeth, J. B., Woldai, T. 2012. Multi- and hyperspectral geologic remote sensing. A review, International Journal of Applied Earth Observation and Geoinformation, Vol.14, Issue 1, pp. 112-128.

  • Vaudour, E., Gilliot, J.M., Bel, L., Bréchet, L., Hamiache, J., Hadjar, D. and Lemonnier, Y., 2014. Uncertainty of soil reflectance retrieval from SPOT and RapidEye multispectral satellite images using a per-pixel bootstrapped empirical line atmospheric correction over an agricultural region, International Journal of Applied Earth Observation and Geoinformation, Vol. 26, pp. 217-234.

  • Vincent, R.K. 1997. Fundamentals of Geological and Environmental Remote Sensing. Prentice-Hall, New Jersey. 366 p.

  • Wang, L., Sousa, W.P., Gong, P. and Biging, G.S., 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama, Remote Sensing of Environment, Vol. 91, Issues 3–4, pp. 432-440.

  • Yalçınalp, B., 1992. Güzelyayla (Maçka-Trabzon) Porfiri Cu-Mo Cevherleşmesinin Jeolojik Yerleşimi Ve Jeokimyası: Doktora Tezi, K.T.O. Jeol. Böl. Trabzon. 175 s. (Yayımlanmamış).

  • Yalçınalp, B. 1995. Doğu Pontidlerde porfiri Cu-Mo mineralleşmeleri içeren granitoyidlerin jeokimyasal özellikleri. Türkiye jeoloji Bülteni, C. 38, No. 1, s. 25-32.

  • Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T. and Pniel, M. 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens., Vol. 36, pp. 1062-1071.

  • Zadeh, M.H., Tangestani, M.H., Roldan, F.V. and Yusta, I., 2014. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data, Advances in Space Research, Vol. 53, Issue 3, pp. 440-451.

  • Zhang, X., Pazner, M. and Duke, N. 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry & Remote Sensing, 62, pp. 271-282.

  • Kayadibi, Ö . (2015). Landsat 7 ETM+ ve ASTER Görüntüleri ile Yusufeli-Tekkale (Artvin-KD Türkiye) Çevresindeki Hidrotermal Alterasyonların İncelenmesi . Türkiye Jeoloji Bülteni , 58 (2) , 29-54 . DOI: 10.25288/tjb.298558

  • Approaches to the Low-Grade Metamorphic History of the Karakaya Complex by Chlorite Mineralogy and Geochemistry
    Sema Tetiker Hüseyin Yalçin Ömer Bozkaya
    View as PDF

    Abstract: Chlorite minerals are commonly found in the units of Karakaya Complex that reflect different tectonicsettings and evolution. In this study, the availability of chlorites has been investigated as a parameteron the interpretation of the diagenetic-metamorphic evolution and revealing the geological history fromthe different units of the complex. Primary and secondary chlorite minerals in the low-very low-grademetamorphic rocks have interference colors of blue and brown and an optical isotropic appearance withvery low birefringence. Chlorites are seen in the matrix, pores and/or pods of rocks as platy/flaky andpartly radial forms. According to X-ray diffraction (XRD) data; Mg-Fe chlorites with entirely IIb polytype(trioctahedral) exhibit various compositions such as brunsvigite-diabantite-chamosite. Furthermore,chlorite minerals correspond to felsic and metabasic origins in terms of the rocks from which they derived.Similarly, geochemical data such as the major element contents and structural formulas of chlorites alsosuggest a different composition and origin. Trace and especially rare earth element (REE) concentrationsof chlorite minerals increase from schist towards slate depending on their degree of metamorphism andnature of the host rocks. This relationship can be significantly noticed in the chondrite-normalized REEand trace element patterns. These changes show that are they are related to the structures, formationmechanisms and tectonic environments of the chlorite minerals. In other words, they suggest that chloritesmay play a key role in distinguishing of units with different geological history.

  • Geological evolution

  • major and trace elements

  • Petrography

  • XRD


  • Ahn, J., Peacor, D.R., 1985. Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays and Clay Minerals, 33, 228-236.

  • Árkai, P., 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723-734.

  • Árkai, P., Tóth M., 1990. Illite and chlorite “crystallinity” indices, I: an attempted mineralogical interpretation. Abstract, Conference “Phyllosilicates as indicators of very lowgrade metamorphism and diagenesis” (IGCP 294), Manchester.

  • Árkai, P., Ghabrial, D.S., 1997. Chlorite crstallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study form the Bükk Mountains, Northeast Hungary. Clay Minerals, 32, 205-222.

  • Árkai, P., Sassi F.P., Sassi R., 1995. Simultaneous measurements of chlorite and illite crystallinity: a more reliable geothermometric tool for monitoring low- to very lowgrade metamorphisms in metapelites. A case study from the Southern Alps (NE Italy). European Journal of Mineralogy, 7, 1115-1128.

  • Bailey, S.W., 1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1-7.

  • Bailey, S.W., 1984. Classification and structures of the micas. In: Micas, S.W. Bailey (ed.), Mineralogical Society of America, Washington, DC, Reviews in Mineralogy, 13, 1-12.

  • Bailey, S.W., 1988. X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays and Clay Minerals, 36, 193-213.

  • Bailey, S.W., Brown B.E.,1962. Chlorite polytypism: I. Regular and semi-random one layer structures. American Mineralogist, 47, 819-850.

  • Bailey, S.W., McCallien, W.J., 1950. The Ankara melange and the Anatolian Thrust. Nature 166, 938-941.

  • Bailey, S.W., McCallien, W.J., 1953. Serpentinite lavas, the Ankara melange and the Anatolian Thrust. Transactions of the Royal Society of Edinburg, 62, 403-442.

  • Bingöl, E., Akyürek, B., Korkmazer, B., 1975. Biga Yarımadasının jeolojisi ve Karakaya Formasyonunun bazı özellikleri. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi Tebliğleri, Ankara, 70-77.

  • Bozkaya, Ö., Yalçın, H., 1996. Diyajenez-metamorfizma geçişinin belirlenmesinde kullanılan yöntemler. Jeoloji Mühendisliği Dergisi, 49, 1-22.

  • Bozkaya, Ö., Yalçın, H., 1999. Doğu Toros Otoktonunda diyajenezmetamorfizma derecesi ile fillosilikatların kimyası arasındaki ilişkiler. 9. Ulusal Kil Sempozyumu, İstanbul Üniversitesi, İstanbul, 15-18 Eylül, Bildiriler Kitabı, s. 21-30.

  • Bozkaya, Ö., Yalçın, H., Schroeder, P.A., Crowe, D., 2014. New insights in the definition of phyllosilicate stacks in diagenetic-metamorphic environments-examples from clastic to metaclastic rocks in Turkey. MECC14 7th MidEuropean Clay Conference 2014, 16-19 September 2014, Dresden, Germany, Programme and Abstract book, p. 117.

  • Brauckmann, F.J., 1984. Hochdiagenese im Muschelkalk der Massive von Bramsche und Vlotho. Bochumer Geologie Geotechnischen Arbeit, 14.

  • Brindley, G.W.,1961. Chlorite minerals. In: The X-ray Identification and crystal structures of Clay Minerals. G. Brown (ed.), Mineralogical Society, London, 242-296.

  • Brindley, G.W., Brown, G., 1980. X-ray diffraction procedures for clay mineral identification. In: Crystal Structures of Clay Minerals and their X-ray Identification, G.W. Brindley and G. Brown (eds.), Mineralogical Society, London, 305-360.

  • Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471-485.

  • Cathelineau, M., Nieva D., 1985. A chlorite solid solution geothermometer, the Los Azufres geothermal system (Mexico). Contributions to Mineralogy and Petrology, 91, 235-244.

  • Chagnon, A., Desjardins, M., 1991. Determination de la composition de la chlorite par difraction and microanalyse aux rayons X. Canadian Mineralogist, 29, 245-254.

  • Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Curtis, C. D., Hughes, C. R., Whiteman, J. A., Whittle, C.K., 1985. Compositional variations within some sedimentary chlorites and some comments on their origin. Mineralogical Magazine, 49, 375-386.

  • Dandois, Ph. 1981. Diagenèse et métamorphisme des domaines calédonien et hercynien de la vallée de la Meuse entre Charleville-Mezières et Namur (Ardennes francobelges). Annales de la Société Géologique de Belgique, 90, 299-316.

  • Deetioff, O., Teichmiffler, M., Telchmüller, R. Wolfy, M., 1980. Inkohlungs-zntersuchungen im Mesozoikum des Massivs von. Vlotho (Niedersadhsisches Tektogen). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1980, 321 - 341.

  • Duba, D., Williams-Jones, A.E., 1983. The application of illite crystallinity, organic matter reflectance, and isotopic techniques to mineral exploration: A case study in southwestern Gaspé, Quebec. Economic Geology, 78, 1350-1363.

  • Eckhardt, F.J., 1965. Über den Einfluss der Temperature auf den kristallographischen Ordnungsgrad von Kaolinit. Proceedings, International Clay Conference, Stockholm, 1963, 2, 137-145.

  • Erol, O., 1956. Ankara Güneydoğusundaki Elma Dağı ve çevresinin jeolojisi ve jeomorfolojisi üzerine bir araştırma. Maden Tetkik Arama Dergisi, Ankara, Seri D 9, 99 s.

  • Federici, F., Cavazza, W., Okay, A.I., Beyssac, O., Zattin, M., Corrado, S., Dellisanti, F., 2010. Thermal evolution of the PermoTriassic Karakaya subduction-accretion complex between the Biga peninsula and the Tokat Massif (Anatolia). Turkish Journal of Earth Sciences, 19, 409-429.

  • Foster, M.D., 1962. Interpretation of the composition and a classification of the chlorites, U.S. Geological Survey Professional Paper, 414-A, 1-33.

  • Gökçe, A., 1983. Turhal antimon yataklarının maden jeolojisi. Doktora Tezi, Hacettepe Üniversitesi Jeoloji Mühendisliği Bölümü, Fen Bilimleri, Ankara, 150 sayfa.

  • Göncüoğlu, M.C., Dirik, K., Kozlu, H., 1997. General chracteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique de Pays Hellenique, 37, 515-536.

  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Özcan, A., Uysal, Ş., 2000. A geotravers across NW Turkey: tectonic units of the central Sakarya region and their tectonic evolution. In: E. Bozkurt, J. Winchester, and J.A. Piper (eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications, 173, pp. 139-161.

  • Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.

  • Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, A., Eberl, D.D., Formoso, M.L.L., Galan, E., Merriman, R.J., Peacor, D.R., Stanjek, H., Watanabe, T., 2002. Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity Index”. Clay Minerals, 37, 389-393.

  • Haskin, L.A., Haskin, M.A., Frey, F.A., Wildeman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Origin and Distribution of the Elements, L.H. Ahrens (ed.), Pergamon Press, 889-912.

  • Hayes, J.B., 1970. Polytypism of chlorite in sedimentary rocks. Clays and Clay Minerals, 18, 285-306.

  • Hillier, S., Velde B., 1991. Octahedral occupancy and the chemical composition of diagenetic (low temperature) chlorites. Clay Minerals, 26, 149-168.

  • Jahren, J.S., Aagard, P., 1992. Diagenetic illite-chlorite assemblages in arenites. I. Chemical evolution. Clays and Clay Minerals, 40, 540-546.

  • Kisch, H.J., 1980. Illite crystallinity and coal rank associated with lowest-grade metamorphism of the Taveyanne greywacke in the Helvetic zone of the Swiss Alps. Eclogae Geologicae Helvetiae, 73, 753-777.

  • Kisch, H.J., 1990. Calibration of the anchizone: a critical comparison of illite “crystallinity” scales used for definition. Journal of Metamorphic Geology, 8, 31-46.

  • Krumm, S., 1996. WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of WINFIT 1.0 : a public domain program for interactive profile-analysis under WINDOWS. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Universitatis Carolinae Geologica, 38, 253-261.

  • Kübler, B., 1968. Evaluation quantitative du métamorphisme par la cristallinité de l’illite. Bulletin-Centre de Recherches Pau-SNPA, 2, 385-397.

  • Le Corre, C., 1975. Analyse comparée de la cristallinité dans le Briovérian et le Paléozoique centre-armoricans: zonéographie et structure d’un domaine épizonal. Bulletine de la Société Géologique de France, 17, 547-553.

  • Ludwig, V., 1973. Zum Übergang eines Tonschiefers in die Metamorphose: “Grieffelschiefer” des Ordoviziums in NE-Bayren (mit einem Beitrag zum Problem der Illit-Kristallinität). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 144, 50-103.

  • Millot, G., 1970. Geology of Clays. (trans. W.R.Farrand and H.Paquet). Springer Verlag, New York, Berlin, 429 p.

  • MTA., 2002. 1:500 000 Ölçekli Türkiye Jeoloji Haritaları. MTA Genel Müdürlüğü, Ankara.

  • Muravjev, W.I., Salyn, A.L., 1969. Epigenetische Umwandlungen der Schichtsilikate in einem Perm-Triasprofil in Mangyschlak (Kasachtan). Proceedings, International Clay Conference, 1969, Tokyo, 1. Israel University Press, Jerusalem, 325-333.

  • Okay, A.İ. Siyako, M., Bürkan, K.A., 1990. Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol jeologları Derneği Bülteni, 2, 83-121.

  • Okay, A.İ., Göncüoğlu, M.C., 2004. The Karakaya Complex: A Review of Data and Concepts. Turkish Journal of Earth Sciences, 13, 77-95.

  • Özcan, A., Erkan, A., Keskin, A., Keskin, E., Oral, A., Özer, S., Sümergen, M., Tekeli, O., 1980. Kuzey Anadolu fayı ile Kırşehir masifi arasının temel jeolojisi. Maden Tetkik ve Arama Enstitüsü, Rapor No: 6722 (yayınlanmamış), Ek (jeolojik harita ve kesitler), Ankara, 136 s.

  • Potel, S., Ferreiro Mählmann, R., Stern, W.B., Mullis, J., Frey, M., 2006. Very low-grade metamorphic evolution of pelitic rocks under high-pressure/low-temperature condition, NW New Caledonia (SW Pacific). Journal of Petrology, 47, 991-1015.

  • Robertson, A.H.F., Ustaömer, T., 2012. Testing alternative tectonostratigraphic interpretations of the Late Palaeozoic-Early Mesozoic Karakaya Complex in NW Turkey: Support for an accretionary origin related to northward subduction of Palaeotethys. Turkish Journal of Earth Sciences, 21, 961-1007.

  • Sayit, K., Göncüoğlu, M.C., 2009. Geochemical characteristics of the basic volcanic rocks within the Karakaya Complex: a review. Hacettepe Yerbilimleri 30, 181-191.

  • Sayit, K., Göncüoğlu, M.C., 2013. Geodynamic evolution of the Karakaya Mélange Complex, Turkey: a review of geological and petrological constraints. Journal of Geodynamics, 65, 56-65.

  • Sayit, K., Göncüoğlu, M.C., Furman, T., 2010. Petrological reconstruction of Triassic seamounts/oceanic islands within the Palaeotethys: geochemical implications from the Karakaya subduction/accretion Complex, Northern Turkey. Lithos, 119, 501-511.

  • Schaer, J.P., Persoz, F., 1.976. Aspects strutcruaox et petrographtqoes du Hant Atlas calcaire de Midelt (Maroc). Bulletine de la Société Géologique de France, 18, 1239-1250.

  • Schamel, S., 1973. Eocene subduction in central Liguria, Italy. Unpublished PhD, Thesis, Yale University

  • Shirozu, H., 1958. X-ray powder patterns and cell dimensions of some chlorites in Japan with a note on their interference colors. Mineralogical Journal, 2, 209-223.

  • Sun, S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Ocean Basins, A.D. Saunders and M.J. Norry (eds.), Geological Society of London, Special Publication, 42, 313-345.

  • Şengör, A.M.C., Yılmaz, Y., Sungurlu, O. 1984. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-Tethys. In: The Geological Evolution of the Eastern Mediterranean, J.E. Dixon and A.H.F. Robertson (eds), Geological Society, London, Special Publications, 17, 77-112.

  • Tekeli, O., 1981. Subduction complex of pre-Jurassic age, Northern Anatolia, Turkey. Geology, 9, 68-72.

  • Tetiker, S., Yalçın, H., Bozkaya, Ö. 2009a. KB Anadolu’daki Karakaya Karmaşığı birimlerinin diyajenezi-düşük dereceli metamorfizması. Hacettepe Üniversitesi, Yerbilimleri, 30, 193-212.

  • Tetiker, S., Yalçın, H., Bozkaya, Ö. 2009b. Karakaya Karmaşığı (Tokat yöresi) birimlerinin düşük dereceli metamorfizması. 14. Ulusal Kil Sempozyumu, Karadeniz Teknik Üniversitesi, Trabzon, 1-3 Ekim, Bildiriler Kitabı, s. 155-173.

  • Tetiker, S., Yalçın, H., Bozkaya, Ö., Göncüoğlu, M. C., 2015. Diagenetic to Low-Grade Metamorphic Evolution of the Karakaya Complex in northern Turkey based on phyllosilicate mineralogy. Mineralogy and Petrology, 109 (201-215).

  • Velde, B., Medhioub, M., 1988. Approach to chemical equilibrium in diagenetic chlorites. Contributions to Mineralogy and Petrology, 98, 122-127.

  • Walker, J.R., 1993. Chlorite polytype geothermometry. Clays and Clay Minerals, 41, 260-267.

  • Warr, L.N., Rice, A.H.N., 1994. Interlaboratory standartization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141-152.

  • Weaver, C.E., Pollard, L.D., 1973. The Chemistry of Clay Minerals. Developments in Sedimentology, 15, 272 p.

  • Weaver, C. E., Highsmith, P. B., Wampler, J. M., 1984. Chlorite: in Shale-slate Metamorphism in the Southern Appalachians, C.E. Weaver and associates (eds.), Elsevier, Amsterdam, 99-139.

  • Xie, X.G., Byerly. G.R., Ferrell, R.E., 1997. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contributions to Mineralogy and Petrology, 126, 275-291.

  • Yalçın, H., Bozkaya, Ö., 2002. Hekimhan (Malatya) çevresindeki Üst Kretase yaşlı volkaniklerin alterasyon mineralojisi ve jeokimyası: deniz suyu-kayaç etkileşimine bir örnek. Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi Seri A-Yerbilimleri, 19, 81-98.

  • Yalçın, H., Bozkaya, Ö., Tetiker, S., 2005. Kangal kömür yatağının kil mineralojisi ve jeokimyası. 12. Ulusal Kil Sempozyumu, Yüzüncüyıl Üniversitesi, Van, 5-9 Eylül, Bildiriler Kitabı, s. 16-31.

  • Zane, A., Sassi, R., Guidotti, C.V., 1998. New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. The Canadian Mineralogist, 36, 713-726.

  • Zane, A., Weiss, Z., 1998. A procedure for classification of rockforming chlorites based on microprobe data. Rendiconti Fisiche Accademia dei Lincei, 9, 51-56.

  • Tetiker, S , Yalçın, H , Bozkaya, Ö . (2015). Karakaya Karmaşığı’nın Düşük Dereceli Metamorfik Tarihçesine Klorit Mineralojisi ve Jeokimyası ile Yaklaşımlar . Türkiye Jeoloji Bülteni , 58 (2) , 55-83 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28111/298527

  • The Factors Affecting Grain Size of Coastal Sediments: Comparison between Konyaaltı and Lara Beaches (Antalya) in Gulf of Antalya
    Koray Koç Erdal Koşun Mehmet Erkan Karaman
    View as PDF

    Abstract: The Konyaaltı and Lara beaches are located in the center of Antalya, to the northeast and northwestparts of Gulf of Antalya, respectively. In this study, the grain size features of two beaches which controlunder the same hydrodynamic conditions were compared within detail. While the mean grain size in theKonyaaltı beach vary from -3,50 ϕ to 0,82 ϕ, in the Lara beach it ranges between -0,43 ϕ and 1,81 ϕ. Thereis increasing in the grain size depend on eastward transportation in the Konyaaltı beach, however similar changes cannot observe in the Lara beach. Sorting parameter that determined in the Konyaaltı and Larabeach represent well sorted and mostly poorly sorted, respectively. According to the results obtained fromthese two beaches, they were defined within coastal classification, and relationship between grain sizeparameters, longshore current and catchment area was discussed. 

  • Antalya

  • Konyaaltı beach

  • grain size

  • Lara beach

  • sedimentology


  • Alan, J.C., Hort, R. ve Tranquili, J.V. 2006. The use of Passive Integrated Transponder (PIT) tags to trace cobble transport in a mixed sand and gravel beach on the high energy Oregon coast, USA. Marine Geology, 232, 63-86.

  • Alpar, B., Doğan, E., Yüce, H. Ve Altıok, H. 2000. Seal level changes along the turkish coasts of the Black Sea, the Aegean Sea and the Eastern Mediterranean. Mediterranean Marine Science, 1, 141-156.

  • Bartholoma, A., Ibbeken, H. ve Schleyer, R. 1998. Modification of Gravel During Longshore Transport (Bianco Beach, Calabria, Southern Italy). Journal of Sedimentary Research, 68 (1), 138-147.

  • Blott, S. 2000. A grain size distribution and statistics package for the analysis of unconsolidated sediments by sieving or laser granulometer, GRADISTAT version 4.0.

  • Bluck, B.J. 1967. Sedimentation of Beach Gravels: Examples From South Wales. Journal of Sedimentary Petrology, 37 (1), 128-156.

  • Boggs, S. 2011. Principles of Sedimentology and Stratigraphy. Prentice Hall, 600 s. Berlin.

  • Buscombe, D. ve Masselink, G. 2006. Concepts in gravel beach dynamics. Earth Science Reviews, 79, 33-52.

  • Chatanantavet, P. ve Lamb, M.P., 2014.Sediment transport andtopographicevolution of a coupledriverandriverplumesystem: An experimentalandnumericalstudy, Journal of GeophysicalResearch - Earth Surface, 119, doi:10.1002/2013JF002810

  • Curtis, G.M., Osborne, P.D. ve Horner-Divine, A.R. 2009. Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents. Marine Geology, 259, 73-85.

  • Çiner, A., Karabıyıkoğlu, M., Monod, O., Deynoux, M. ve Tuzcu, S. 2008. Late Cenezoic sedimentary evolution of the Antalya Basin, Southern Turkey. Turkish Journal of Earth Science, 17, 1-41.

  • Dickson, E. M., Kench, S.P., ve Kantor, M.S. 2011. Longshore transport of cobbles on a mixed sand and gravel beach, southern Hawke Bay, New Zealand. Marine Geology, 287, 31-42.

  • Ergin, M., Keskin, Ş., Doğan, U., Kadıoğlu, Y.K. ve Karakaş, Z. 2007. Grain size and heavy mineral distribution as related to hinterland and environmental conditions for modern beach sediments from the Gulfs of Antalya and Finike, eastern Mediterranean. Marine Geology, 240, 185-196

  • Ergin, M., Okyar, M., Ediger, V., Keskin, Ş., Günel, H., Tezcan, D. ve Salihoğlu, İ. 2004. Antalya Körfezi kıta sahanlığının Geç Kuvaterner jeolojisi: sedimantolojik, mineralojik, jeokimyasal ve sismik araştırmalar. Proje No: YDABÇAG-199Y074, 132, Erdemli, İçel.

  • Folk, R. ve Ward, W. 1957. Brazos River Bar: A study in the significance of grain size prameters. Journal of Sedimentary Petrology, 27(1), 3-26.

  • Friedman, G.M. 1967. Dynamic Process and Statical Parameters Compared For Size Frequency Distribution of Beach and River Sands. Journal of Sedimentary Petrology, 37 (2), 327-354.

  • Horn, D.P. ve Walton, S.M. 2007. Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sedimentary Geology, 202, 509-528

  • Ivamy, C.M. ve Kench, P.S. 2006. Hydrodynamics and morphological adjustment of a mixed sand and gravel beach, Torere, Bay of Plenty, New Zealand. Marine Geology, 228, 137-152.

  • Jennings, R. ve Shulmeister, J. 2002. A field based classification scheme for gravel beaches. Marine Geology, 186, 221- 228.

  • Kansun, G. ve Baş, H. 2002. Alanya (Antalya) doğusunda Alanya Birliği’nin metamorfik özellikleri. 55. Türkiye Jeoloji Kurultayı Bildiri Özleri, Ankara, 137-138.

  • Koşun, E. 2012. Facies characteristics and depositional environments of Quaternary tufa deposits, Antalya, SW Turkey. Carbonates and Evaporites, 27 (3-4), 269-289.

  • Lefevre, R. 1967. Novvel element de la geologie du Taurus Lyccien Les nappes d’Antalya (Turquie). C.R.A.S., 263, 1365- 1368.

  • Miller, I.M., Warwick, J.A. ve Morgan, C. 2011. Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington. Marine Geology, 282, 201- 214.

  • Muzuka, A.N. ve Shaghude, Y.W. 2000. Grain size distribution along the Msasani Beach, North of Dar es Salaam Harbour. Journal of African Earth Sciences, 30 (2), 417-426

  • Nicholls, R.J. ve Wright, P. 1991. Longshore transport of pebbles: experimental estimates of K. Proceedings of Coastal Sediments ’91, ASCE, 920-933.

  • Orford, J.D. 1975. Discrimination of particle zonation on a pebble beach. Sedimentology, 22, 441-463.

  • Osborne, P.D. 2005. Transport of gravel and cobble on a mixed sediment inner bank shoreline of a large inlet, Grays Harbor, Washington. Marine Geology, 224, 145-156.

  • Özhan, E. ve Abdalla, S. 2002. Türkiye Kıyıları Rüzgar ve Derin Deniz Dalga Atlası. Kıyı Alanları Yönetimi Türk Milli Komitesi/MEDCOAST, 445 s

  • Poisson, A., Yağmurlu, F., Bozcu, M. ve Şentürk, M. 2003. New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal, 38, 257-282.

  • Reineck, H.E. ve Singh, I.B. 1980. Depositional Environments. Springer, 551 s. Berlin.

  • Robinson, A.,R. vd. 1992. General circulation of the Eastern Mediterranean. Earth Science Reviews, 32, 285-309.

  • Sneed, E.D. ve Folk, R.L. 1958. Pebbles in Lower Colarado River, Texas. A study in particle morphogenesis. Journal of Geology, 27, 140-150.

  • Şenel, M. 1997. Türkiye Jeoloji Haritaları Antalya L-11 Paftası. 1:100000 ölçekli, No: 8, MTA, Ankara.

  • Tziperman, E. ve Malonette-Rizzoli, P. 1991. The climatological seasonal circulation of the Mediterranean Sea. Journal of Marine Research, 49, 411-434.

  • Visher, G.S. 1969.Grain size distributions and depositional processes. Journal of Sedimentary Petrology, 39, 1077-1106.

  • Koç, K , Koşun, E , Karaman, M . (2015). Kıyı Sedimentlerinde Tane Boyunu Etkileyen Faktörler: Antalya Körfezi’nde Konyaaltı ve Lara Plajlarının (Antalya) Karşılaştırılması . Türkiye Jeoloji Bülteni , 58 (2) , 85-102 . DOI: 10.25288/tjb.298589

  • ISSUE FULL FILE
    View as PDF