Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2019 NİSAN Cilt 62 Sayı 2
View as PDF
View as PDF
View as PDF
Locating Karstic Features and Fault Characterization Using Integrated Geophysical Methods in the Edwards Aquifer, Central Texas, USA
Mustafa Saribudak
View as PDF

Abstract: Geophysical methods have been an important component of effective hydrogeologic investigations overthe Edwards aquifer in central Texas. A variety of electrical and electromagnetic methods have been used to mapstratigraphy and geologic structure and to locate buried sinkholes and caves. Geophysical methods can alsocharacterize faults and fractures in the Balcones Fault Zone (BFZ). Six exemplary case studies across the Edwardsaquifer in the Austin area show that the location of buried caves and sinkholes, and fault characterization are bestaccomplished by using a combination of 2-D and 3-D resistivity imaging and self-potential methods. Additionalgeophysical methods, such as ground penetrating radar, induced polarization, and seismic refraction tomographycan be also used to characterize faults and karstic features. It is noted, however, that successful application of themethods is site dependent; applications in other karstic regions could respond differently to different geophysicalmethods and select  different primary geophysical methods.

  • Caves

  • Edwards aquifer

  • faults

  • geophysics

  • sinkholes

  • Texas

  • Balkaya, Ç., Göktürkler, G., Erhan, Z., Ekinci, Y. L., 2012. Exploration for a cave by magnetic and electrical resistivity surveys: Ayvacık Sinkhole example, Bozdağ İzmir (Western Turkey). Geophysics, 77 (3), 135-146.

  • Blome, C.D., Smith, B.D., Smith, D.V., Faith, J R., Hunt, A.G., Moore, D.W. , Miggins, D.P., Ozuna, G.B. and Landis, G.P., 2008. Multidisciplinary Studies of the Edwards Aquifer and Adjacent Trinity Aquifer of South-Central Texas, Search and Discover

  • Chen, J. and Zelt, C. A., 2016. Application of Frequency-dependent Traveltime Tomography and Full Waveform Inversion to Realistic Nearsurface Seismic Refraction Data. Journal of Environmental and Engineering Geophysics, 21:1-12.

  • Clark, A.K., Golab, J.A. and Morris, R.R., 2016. Geologic Framework and Hydrostratigraphy of the Edwards and Trinity Aquifers within Northern Bexar and Comal Counties, Texas. USGS Scientific Investigations Map 3366.

  • Connor, C.B. and Sandberg, S.K., 2001. Application of Integrated Geophysical Techniques to Characterize the Edwards Aquifer, Texas, STGS Bulletin, March issue, p. 11-25.

  • Elliott, W. R., 1997. The caves of the Balcones Canyonlands Conservation Plan,Travis County, Texas, Unpublished report to Travis County, 156 p.

  • EarthImager 2D Manual, 2002-2014. Resistivity and IP Inversion Software, Version 2.4.2., by Advanced Geosciences, Inc.

  • Ferrill, D. A., Morris, A. P. and Waiting, D. J., 2005. Structure of the Balcones Fault System and Architecture of the Edwards and Trinity Aquifers, South-Central, Texas. A field trip guide for the South-Central Geological Society of America Meeting.

  • Ferrill, D.A. and Morris, A.P., 2008. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones Fault System, Texas, AAPG Bulletin, 92, 359-380.

  • Fitterman, D.V. and Stewart, M.T., 1986. Transient electromagnetic sounding for groundwater, Geophysics, v. 51, p. 995-1005.

  • Freeland, R. S., 2015. Imaging the Lateral Roots of the Orange Tree using Three-dimensional GPR. Journal of Environmental and Engineering Geophysics, 20:235-244.

  • Freeland, R. S., Allred, B. J., Martinez, L. R., Gamble, D. L., Jones, B. R. and McCoy, E. L., 2016. Performance of Hybrid and Single-frequency Impulse GPR Antennas on USGA Sporting Greens. Journal of Environmental and Engineering Geophysics, 21:57-6

  • Garner, L. E., Young, K. P., Rodda, P. U., Dawe, G. L. and Rogers, M. A., 1974. Geologic map of the Austin area, Texas, in Garner: an aid to urban planning, The University of Texas at Austin,Bureau of Economic Geology, scale 1:65,500.

  • Gary, M.O., Rucker, D.F., Smith, B.D., Smith, D.V. and Befus, K., 2013. Geophysical investigations of Edwards-Trinity Aquifer System at Multiple Scales: Interpreting Airborne and Direct-Current Resistivity in Karst, 13th Sinkhole Conference, NCKRI Sy

  • Hauwert, N. M., 2009. Groundwater flow and recharge within the Barton Springs Segment of the Edwards Aquifer, Southern Travis and northern Hays Counties, Texas. A Ph.D. Dissertation; The University of Texas at Austin.

  • Hauwert, N. M., 2010. Hydrogeologic Study of Fossil Garden, No Rent, Weldon, and McNeil Bat Caves. City of Austin short report SR-11-21. 81 p

  • Lachhab, A., Booterbaugh, A. and Beren, M., 2015. Bathymetry and Sediment Accumulation of Walker Lake, PA Using Two GPR Antennas in a New Integrated Method. Journal of Environmental and Engineering Geophysics, 20:245-255.

  • Lange, A. L., 1999. Geophysical studies at Kartchner Caverns State Park, Arizona, Journal of Cave and Karst Studies, 61:68-72.

  • Lange, A. L. and Kilty, K. T., 1991. Natural potential responses of karst systems at the ground surface. Proceedings of the third Conference on Geohydrology, Ecology and Monitoring and Management of Ground water in karst terranes: National Groundwate

  • Musgrove, M. and Banner, J. L., 2004. Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards Aquifer, central Texas, Geochimica et Cosmochimica Acta, 68(5):1007–1020.

  • Parasnis, D.S., 1996. Principles of Applied Geophysics, Springer, 5th Edition.

  • Revil, A. and Jardani., A., 2013. The Self-Potential Method: Theory and Applications in Environmental Geosciences, Cambridge University Press.

  • Rose, P. R., 1972. Edwards group, surface and subsurface, Central Texas; Report of Investigations 74, Bureau of Economic Geology: Austin, Texas.

  • Rucker, D. F. and Ferré, T. P. A., 2004. Automated Water Content Reconstruction of Zero-Offset Borehole Ground Penetrating Radar Data Using Simulated Annealing.Journal of Hydrology, 309 (1-4):1-16.

  • Saribudak, M., 2011. Urban geophysics: Geophysical signature of Mt. Bonnell Fault and its karstic features in Austin, Texas, Houston Geological Society Bulletin, October issue, p.49-54.

  • Saribudak, M., Hawkins, A. and Stoker, K., 2012a. Geophysical signature of Haby Crossing Fault and its implication on the Edwards Recharge Zone, Medina County, Texas: Houston Geophysical Society, 2:9-14.

  • Saribudak, M., Hunt, S. and Smith, B., 2012b. Resistivity imaging and natural potential applications to the Antioch Fault Zone in the Onion Creek / Barton Springs segment of the Edwards Aquifer, Buda, Texas: Gulf Coast Association of Geological Socie

  • Saribudak, M., Hauwert, N. and Hawkins, A., 2013. Geophysical signatures of Barton Springs (Parthenia, Zenobia and Eliza) of the Edwards Aquifer, Austin, Texas, Sinkhole Conference 14 proceedings, Carbonite and Evaporites, Springer, ISSN 0891-2556.

  • Saribudak, M., 2016. Geophysical mapping of Mount Bonnell fault of Balcones Fault zone and its implications on Trinity-Edwards Aquifer interconnection, central Texas, USA, The Leading Edge, p. 936-941.

  • Saribudak, M. and Hauwert, N.W., 2017. Integrated geophysical investigations of Main Barton Springs, Austin, Texas, USA, Journal of Applied Geophysics, 138, 114–126.

  • Shah, S.D., Smith, B.D., Clark, A.K. and Payne, J.D., 2008. An Integrated Hydrogeologic and Geophysical Investigation to Characterize the Hydrostratigraphy of the Edwards Aquifer in an Area of Northeastern Bexar County, Texas, USGS Scientific Investi

  • Small, T. A., Hanson, J. A. and Hauwert, N. M., 1996. Geologic framework and hydrogeologic characteristics of the Edwards Aquifer outcrop (Barton Springs Segment), northeastern Hays and southwestern Travis Counties, Texas: U.S. Geological Survey Wate

  • Smith, B. D., Cain, M.J., Clark, A.K., Moore, D.W., Faith J.R., and Hill. P.L., 2005. Helicopter electromagnetic and magnetic survey data and maps, northern Bexar County: U.S. Geological Survey Open-file Report 2005–1158.

  • Uçar, F. ve Aktürk Ö., 2015. İki Boyutlu Elektrik Özdirenç Görüntüleme Yöntemi Kullanılarak Karstik Boşlukların Belirlenmesi, 68. Türkiye Jeoloji Kurultayı, Ankara, Türkiye, 6-10 Nisan 2015, 222-223.

  • Veni, G., 2000. Hydrogeologic assessment of Flint Ridge Cave, Travis County, Texas. Report for the City of Austin, George Veni and Associates, San Antonio, Texas, 56 p.

  • Vichabian, Y. and Morgan, F. D., 2002. Self potentials in cave detection: The Leading Edge, 23, 866–871.

  • Wong, C, J.B. Kromann, B. Hunt, B. Smith and Banner, J., 2014. Investigating groundwater flow between Edwards and Trinity Aquifers in central Texas. Groundwater, 52, 624-639.

  • Sarıbudak, M . (2019). Amerika, Orta Teksas’ta Yer Alan Edwards Akiferi’nde Karstik Yapıların ve Fay Karakterizasyonunun Bütünleşik Jeofizik Yöntemler Kullanılarak Araştırılması . Türkiye Jeoloji Bülteni , 62 (2) , 113-140 . DOI: 10.25288/tjb.545084

  • Modeling of Central Anatolian (Ankara and vicinity) Basins with Gravity and Magnetic Methods
    Murat Özkaptan
    View as PDF

    Abstract: Central Anatolian basins, which are boundend by the Pontides in the north and the Kırşehir and Torostectonic blocks to the south-southeast, geologically important structures in the region with sediment accumulationsup to the present day to comprises subduction to collusion process (Senezoyik) in northern segment of the NeotethysOceanic litosphere beneath to the Pontides. Within the scope of this study, these depositional structures, which aregeographically located in Ankara and in the vicinity and classifield as the Kırıkkale-Bala, Alcı-Orhaniye, Haymanaand Tüzgölü basins in litreture. Although sedimentary deposition stages, lithological properties and sourcecharacteristics show great similarities, they are considered as different basins in terms of their today’s geographicalpositions. In this study, these basins were examined with gravity and magnetic methods and information abouttheir structures in the depths of the earth were obtained. Especially, the Haymana and Kırıkkale-Bala basins werefound to have the thickest sediment depositions in the region (about 8-9 km). The deep structures of the basins weremodeled by gravity method and their possible connections with each other were determined. In particular, it has beentried to explain the ongoing debates in the literature that Tuzgölü and Haymana basins were the same sedimentarybasin in the past. Within the basin areas, no clear change in gravity data but high positive magnetic anomalies can be associated with the presence of volcanic units (Neogene) near beneath the surface. In addition, important datarelated to the evolution of tectonic deformation of the İAESZ on these basins have been revealed. The information ofthe basins with this depth provides new perspective related with the geodynamic evolution of the region, especiallyconsidering the tectonic blocks they surround

  • 2.5D Modeling

  • Basin evolution

  • Cenral Anatolian basins

  • Gravity

  • Magnetic

  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F., Piper, J.D.A., 2016. Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin. Journal of Asia

  • Alp, H., Vardar, D., Alpar, B., Ustaömer, T., 2018. Seismic evidence for change of the tectonic regime in Messinian, northern Marmara Sea, Turkey. Journal of Asian Earth Sciences 151, 40–53.

  • Altıner, D., Koçyiğit, A., Farinacci, A., Nicosia, U., Conti, M.A., 1991. Jurassic-lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of north-western Anatolia (Turkey). Geologica Romana 27, 13–80.

  • Aydemir, A., Ates, A., 2008. Determination of hydrocarbon prospective areas in the Tuzgolu (Saltlake) Basin, central Anatolia, by using geophysical data. Journal of Petroleum Science and Engineering 62, 36–44.

  • Bozkurt, E., 2001. Neotectonics of Turkey - a synthesis. Geodinamica Acta 14, 3–30.

  • Çemen, I., Göncüoğlu, M.C., Dirik, K., 1999. Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of Geology 107, 693–706.

  • Çukur, D., Krastel, S., Schmincke, H.-U., Sumita, M., Çağatay, M.N., Meydan, A.F., Damcı, E., Stockhecke, M., 2014. Seismic stratigraphy of Lake Van, eastern Turkey. Quaternary Science Reviews 104, 63–84.

  • Demir, D., Bilim, F., Aydemir, A., Ates, A., 2012. Modelling of Thrace Basin, NW Turkey using gravity and magnetic anomalies with control of seismic and borehole data. Journal of Petroleum Science and Engineering 86–87, 44–53.

  • Dirik, K., Erol, 0., 2003. Tuzgölü ve civarının tektonomorfolojik evrimi Orta Anadolu, Türkiye, Haymana-Tuzgölü-Ulukışla Basenleri Uygulamalı Çalışma (Workshop). T.P.J.D. Bülteni özel sayı, 27–46.

  • Dobrin, M.B., Savit, C.H., 1988. Introduction to Geophysical Prospecting, 4th Editio. ed. McGraw Hill Book Co., New York.

  • Erler, A., Akıman, O., Unan, C., Dalkılıc, F., Geven, A., Önen, P., 1991. Petrology and geochemistry of the magmatic rocks of the Kırşehir Massif at Kaman (Kırşehir) and Yozgat. Doğa, Turkish Journal of Engineering and Environmental Sciences 15, 76–

  • Erler, A., Göncüoğlu, M.C., 1996. Geologic and tectonic setting of the Yozgat Batolith, Northern Central Anatolian Crystalline Complex, Turkey. International Geology Review 38, 714–726.

  • Göncüoğlu, M.C., 1986. Orta Anadolu Masifinin güney ucundan jeokronolojik yaş bulguları. MTA Bülteni 105/106, 111–124.

  • Görür, N., Oktay, F.Y., Seymen, İ., Şengör, A.M.C., 1984. Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. Geological Society, London, Special Publications 17, 467– 482.

  • Gülyüz, E., 2015. Tectone-Stratigraphic and Thermal Evolution of the Haymana Basin, Central Anatolia, Turkey. Middle East Technical University

  • Gülyüz, E., Özkaptan, M., Lefebvre, C., Kaymakci, N., Persano, C., Stuart, F.M., 2014. Tectonostratigraphic evolution and exhumation of the Haymana basin: Unravelling the subduction and collision history of Neotethys in Turkey, in: EGU General Assemb

  • Kadıoğlu, Y.K., Dilek, Y., Foland, K. a., 2006. Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex, Turkey, in: Special Paper 409: Postcollisional Tectonics and Magmatism in the Medi

  • Kaymakcı, N., Özçelik, Y., White, S.H., Van Dijk, P.M., 2009. Tectono-stratigraphy of the Çankırı Basin: late Cretaceous to early Miocene evolution of the Neotethyan suture zone in Turkey. Geological Society, London, Special Publications 311, 67– 106

  • Kearey, P., Brooks, M., Hill, I., 2013. An introduction to geophysical exploration. John Wiley & Sons.

  • Ketin, I., 1966. Tectonic units of Anatolia (Asia Minor). Mineral Research Exploration Bulletin 66, 23–34.

  • Koçyiğit, A., 1991. An example of an accretionary forearc basin from northern Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geological Society of America Bulletin 103, 22–36.

  • Köksal, S., Göncüoğlu, M.C., 1997. Geology of the Idiş Dağı - Avanos area (Nevşehir - Central Anatolia). Mineral Research Exploration Bulletin 119, 41– 58.

  • Kosaroglu, S., Buyuksarac, A., Aydemir, A., 2016. Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies. Journal of Asian Earth Sciences 124, 214–226.

  • Lefebvre, C., Meijers, M.J.M., Kaymakcı, N., Peynircioğlu, A., Langereis, C.G., Van Hinsbergen, D.J.J., 2013. Reconstructing the geometry of central Anatolia during the late Cretaceous: Largescale Cenozoic rotations and deformation between the Pontid

  • Licht, A., Coster, P., Ocakoğlu, F., Campbell, C., Métais, G., Mulch, A., Taylor, M., Kappelman, J., Christopher Beard, K., 2017. Tectono-stratigraphy of the Orhaniye Basin, Turkey: Implications for collision chronology and Paleogene biogeography of

  • Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., Mogren, S., Müller, R.D., Olesen, O., Pilkingto

  • Nairn, S.P., Robertson, A.H.F., Ünlügenç, U.C., Tasli, K., İnan, N., 2013. Tectonostratigraphic evolution of the Upper Cretaceous–Cenozoic central Anatolian basins: an integrated study of diachronous ocean basin closure and continental collision. Geo

  • Norman, T., 1973. Late Cretaceous-Early Tertiary sedimentation in Ankara Yahşihan Region. Türkiye Jeoloji Bülteni 16, 42–66.

  • Okay, A.I., 2008. Geology of Turkey: a synopsis. Anschnitt 21, 19–42.

  • Okay, A.I., 1984. Distribution and characteristics of the northwest Turkish blueschists. , Geological Society Special Publication No. 17. In: J.E. Dixon & A.H.F. Robertson (eds.) The Geological Evolution of the Eastern Mediterranean 455–466.

  • Okay, A.I., Tüysüz, O., 1999. Tethyan sutures of northern Turkey, in: Durand, B., Jolivet, L., Horvath, F., Séranne, M. (Eds.), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen: Special Publication of the Geological Society of Lo

  • Oruç, B., Sertçelik, İ., Kafadar, Ö., Selim, H.H., 2013. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics 88, 105–113.

  • Özsayin, E., Dirik, K., 2007. Quaternary Activity of the Cihanbeyli and Yeniceoba Fault Zones: InonuEskiflehir Fault System, Central Anatolia. Turkish Journal of Earth Sciences 16, 471–492.

  • Pourteau, A., Candan, O., Oberhnsli, R., 2010. Highpressure metasediments in central Turkey: Constraints on the Neotethyan closure history. Tectonics 29.

  • Rasmussen, R., Pedersen, L.B., 1979. End Corrections in Potential Field Modeling. Geophysical Prospecting.

  • Sandwell, D.T., Smith, W.H.F., 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth 114.

  • Şengor, A.M.C., Yilmaz, Y., 1981. Tethyan Evolution of Turkey - a Plate Tectonic Approach. Tectonophysics 75, 181–241.

  • Talwani, M., Worzel, J.L., Landisman, M., 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research.

  • Ulamiş, K., Kaçka, N.B., Kiliç, R., 2018. Estimation of seismic slope displacements in North Anatolian Fault Zone, Karamürsel (Kocaeli,Turkey). Journal of African Earth Sciences 138, 258–263.

  • Ünalan, G., Yüksel, V., Tekeli, T., Gönenç, O., Seyirt, Z., Hüseyin, S., 1976. The stratigraphy and palaeogeographical evolution of the Upper Cretaceous–Lower Tertiary sediments in the Haymana-Polatlı region (SW of Ankara). Türkiye Jeoloji Kurumu Bül

  • Van Hinsbergen, D.J.J., Maffione, M., Plunder, A., Kaymakcı, N., Ganerød, M., Hendriks, B.W.H., Corfu, F., Gürer, D., Gelder, G.I.N.O., Peters, K., 2016. Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites

  • Özkaptan, M . (2019). Orta Anadolu (Ankara ve civarı) Havzalarının Gravite & Manyetik Yöntemler ile Modellenmesi . Türkiye Jeoloji Bülteni , 62 (2) , 141-166 . DOI: 10.25288/tjb.546581

  • 02.03.2017 and 24.04.2018 Samsat (Adıyaman) Earthquakes and Their Importance in Regional Seismotectonics
    Orhan Tatar Fikret Koçbulut Ali Polat Mehmet Demirel
    View as PDF

    Abstract: In this study, Synthetic Aperture Radar Interferometry (InSAR) method is used together with fieldobservations to determine whether surface deformations occur in the region after the 5,5 Mw (AFAD) SamsatEarthquake occurred at a distance of 2.5 km from the Samsat district of Adıyaman province on 2 March 2017. Weattempted to determine the deformation of the interferogram created by analyzing two Synthetic Aperture Radar(SAR) images of the Sentinel-1A fit before and after the earthquake. As a result of the evaluation of the interferogram,a surface deformation of about 2.5 cm in the satellite view direction/Line of Sight (LoS) was observed in the region.This deformation is mostly concentrated in the northeast of Samsat town. As a result of the detailed field investigationsmade immediately after the earthquake in the region, no surface rupture occurred but surface deformations in theform of local and discontinous fissures developed in some areas. It is understood that the Earthquake developed ona fault passing through about 5 Km North of Samsat and named as Samsat Fault by TPAO. It appears that morethan 400 aftershocks following the main shock in the region concentrate roughly on a N40-50W lineament. It isnoteworthy that in the observations made in the field, the distribution of the damage has also developed along thisline in particular.

  • Adıyaman

  • active fault

  • Samsat earthquake

  • surface deformation

  • Ambraseys, N.N. (1988). Engineering seismology. Earthquake Engineering and Structural Dynamics 17, 1-105.

  • Ambraseys, N.N. ve Jackson, J.A. (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International, 133, 390–406.

  • Arpat, E. (1977). 1975 Lice Depremi. Yeryuvarı ve İnsan. S. 15-27.

  • Bakırcı, M. (1997). Türkiye’de yer değiştiren şehirlere yeni bir örnek: Samsat. Türk Coğrafya Dergisi, Sayı 32, s.365-391.

  • Duman, T.Y., Emre, Ö., Özalp, S., Olgun, Ş. ve Elmacı, H. (2012). 1:250.000 ölçekli Türkiye Diri Fay Haritası Serisi, Şanlıurfa (NJ 37-10) ve Suruç (NJ 37-14) Paftaları. Seri No 43, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara

  • Duman, T.Y. ve Emre, Ö. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society of London, Special Publications No 372. In: Robertson, A.H.F., Parlak, O. ve Ünlügenç, U.C. (eds) Geological Development of A

  • Duman, T.Y., Emre, Ö., Özalp, S., Çan, T., Olgun, Ş., Elmacı, H. ve Şaroğlu, F. (2017). Türkiye ve Yakın Çevresindeki Diri Faylar ve Özellikleri. Türkiye Sismotektonik Haritası Açıklama Kitabı, (Ed. T.Y. Duman). Maden Tetkik ve Arama Genel Müdürlüğü

  • Emre, Ö., Duman, T.Y., Elmacı, H., Özalp, S. ve Olgun, Ş. (2012). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Malatya (NJ 37-6) Paftası, Seri No: 45, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Eyidoğan, H. ve Geçgel, V. 2010. Atatürk Barajı Su Düzeyi ve Tetiklenmiş Depremsellik İlişkileri. 1992-2009. Aktif Tektonik Araştırma Grubu 14. Çalıştayı, Bildiri Özleri Kitapçığı, s.31, Adıyaman Üniversitesi.

  • Eyidoğan, H., Geçgel, V. ve Pabuçcu, Z. (2010). 3 Eylül 2008 Atatürk Barajı Depremi: Tetiklenmiş Depremsellik ve Bozova Fayı. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitapçığı

  • Gökçe, O., Tüfekçi, M.K. ve Gürboğa, Ş. (2014). Yüzey Faylanması Tehlikesinin Değerlendirilmesi ve Fay Sakınım Bantlarının Oluşturulması. Afet ve Acil Durum Yönetimi Başkanlığı Yayınları, 387 s., Ankara.

  • Gülkan, P. Yücemen, M.S., Başöz, N. Koçyiğit, A. ve Doyuran, V. (1993). En Son Verilere Göre Hazırlanan Türkiye Deprem Bölgeleri Haritası. Orta Doğu Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, Deprem Mühendisliği Araştırma Merkezi, Rapor No. 93-

  • Herece, E. (2008). Doğu Anadolu Fayı (DAF) Atlası. General Directorate of Mineral Research and Exploration. Special Publications, Ankara, Serial Number, 13, 359.

  • İmamoğlu, M. Ş. ve Çetin, E. (2007). Güneydoğu Anadolu Bölgesi ve yakın yöresinin depremselliği. D.Ü. Ziya Gökalp Eğitim Fakültesi Dergisi, 9, 93- 103.

  • Jackson, J. and McKenzie, D. (1984). Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophys J R Astr Soc Lond 77: 185-264.

  • Ketin, İ. (1966). Anadolu’nun tektonik birlikleri. Maden Tetkik Arama Ens. Dergisi, 66, 20-34.

  • Perinçek, D. (1978). Çelikhan-Sincik-Koçali (Adıyaman İli) alanının jeolojik incelenmesi ve petrol olanaklarının araştırılması. İÜFF Tatbiki Jeoloji Kürsüsü, Doktora tezi, TPAO Arama Grubu, Rapor no. 1250, 212 s., Ankara.

  • Sbeinati, M.R., Darawcheh, R. ve Mouty, M. (2005). The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D. Annals of Geophysics, Vol. 48, N 3, pp. 347-435.

  • Seyitoğlu, G., Esat, K. ve Kaypak, B. 2017. The neotectonics of southeast Turkey, northern Syria and Iraq: the internal structure of the Southeast Anatolian Wedge and its relationship with recent earthquakes. Turkish J Earth Sci, 26: 105-126.

  • Şengör, A.M.C. ve Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.

  • Yıldırım, N. (2012). Havza-Kuşak madenciliği kapsamında keşfedilen Güneydoğu Anadolu Kıbrıs tipi VMS metalojenik kuşağı: Koçali Karmaşığı, Adıyaman Bölgesi, Türkiye. MTA Doğal Kaynaklar ve Ekonomi Bülteni, Sayı 14, s.47-55.

  • Yılmaz, Y. (1990). Comparison of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review. Journal of Volcanology and Geothermal Research, 44 (1-2), 69-87.

  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Bull. Geol. Soc. Am., 105.

  • Yılmaz, Y., Yiğitbaş, E., Yıldırım, M. ve Genç, Ş.C. (1992). Güneydoğu Anadolu metamorfik masiflerinin kökeni. Türkiye 9. Petrol Kongresi Bildirileri, 296-306, Ankara.

  • Yılmaz, Y., Yiğitbaş, E. ve Genç, Ş.C. (1993). Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics, 12, p. 1280–1297.

  • Zahradnik, J. and Sokos, E. (2011). Multiple-point source solution of the Mw 7.2 Van earthquake, October 23, 2011, Eastern Turkey. Report submitted to EMSC on November 1, 2011.

  • Tatar, O , Koçbulut, F , Polat, A , Demirel, M . (2019). 02.03.2017 ve 24.04.2018 Samsat (Adıyaman) Depremleri ve Bölgesel Sismotektonik İçindeki Önemi . Türkiye Jeoloji Bülteni , 62 (2) , 167-180 . DOI: 10.25288/tjb.559947

  • Petroleum Reservoir Properties of Mollaresul Formation (Haymana-Ankara)
    Ayfer Özdemir
    View as PDF

    Abstract: Detailed research on the quality of the reservoir for oil research and production is very important to reducecosts because of the high cost of oil exploration and evaluation. The aim of this study is to determine petroleumreservoir rock quality of the Mollaresul formation which is composed of Jurassic-Lower Cretaceous aged limestoneswithin the Haymana-Polatlı basin. The reservoir quality of the limestones was determined by standard field studiesand laboratory analyzes, porosity-permeability analyzes and petrographic studies. In the field studies, the formationis observed as massive and stratified, and it is deposited from a shallow to deeper marine environment. According toporosity-permeability analyses, the porosity values of the formation are between 30% and 45%, and the permeabilityvalues are between 5.2 and 7.7 md. Layered, abundant cracked and karstic cavities of the formation formed a goodporosity in the formation. Although fractures and cracks in the formation greatly increased porosity, secondarycalcite, ferrous (Fe) and manganese (Mn) cement filling the fractures and cracks did not make the permeabilityas high as the porosity. In conclusion, according to the field and laboratory studies, Mollaresul formation shows amoderate reservoir rock quality.

  • Haymana

  • limestone

  • Mollaresul

  • petroleum

  • reservoir

  • Acar, A., ve Sonel, N., 1998. Haymana formasyonunun (Tuz Gölü Havzası kuzeyi, Orta Anadolu) organik fasiyes ve jeokimyası. Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi Bildiri Özleri Kitabı, 127-129.

  • Acar, A., 1993. Haymana Formasyonunun (Tuz Gölü Havzası Kuzeyi) Organik Fasiyes ve Diyajenetik Özelliklerinin İncelenmesi. Ankara Üniv. Fen Bil. Enst., Doktora Tezi,194 sayfa.

  • Akarsu, İ., 1971. II. Bölge AR/TPAO/747 nolu sahanın terk raporu. Petrol İşleri Genel Müdürlüğü, Ankara 4s (yayımlanmamış).

  • Arıkan, Y., 1975. Tuzgölü havzasının jeolojisi ve petrol imkanları. MTA Dergisi, 85, 17-38.

  • Ayyıldız, T., ve Sonel, N., 2000. Kırkkavak ve Kartal formasyonları bitümlü seviyelerinin jeokimyasal değerlendirilmesi, Orta Anadolu, Türkiye. Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi Bildiriler Kitabı-I, 229 - 243.

  • Ayyıldız, T., and Ergene, Ş.K., 2016. Facies characteristics and reservoir properties of the Paleocene carbonates (Çaldağ Formation) in the Tuz Gölü Basin, Central Anatolia, Turkey. Journal of Petroleum Science and Engineering, 142, 186- 198

  • Aydemir, A., 2011. An integrated geophysical investigation of Haymana Basin and hydrocarbon prospective Kirkkavak Formation in Central Anatolia, Turkey. Petroleum Geoscience, 17, 91- 100

  • Capraru, C., 1991. Hydrocarbon trap types in the structural units of the Tuzgolu Basin, Ozan Sungurlu Sempozyumu, Proceedings, 156-173.

  • Dellaloğlu, A.A., 1991. Ankara-Temelli-HaymanaKulu-Kırıkkale arasındaki alanın jeolojisi ve petrol olanakları. TPAO Rap no:3006.

  • Demirel, H., ve Şahbaz, A., 1994. Haymana-Paşadağ Aladağ havzalarının petrofasiyes ve provenans karakteristikleri ile petrol potansiyeli, 10. Petrol Kongresi Bildiriler Kitabı, 5-19

  • Derman, A.S., 1980. Tuzgolu doğu ve kuzeyinin jeolojisi. TPAO Raporu, No. 1512, 41s (yayımlanmamış).

  • Dinçer, A., 1978. Haymana-Kulu yöresinin jeolojisi ve petrol olanakları. TPAO Rapor no:1314, Ankara.

  • Dunham, R.J., 1962. Classification of carbonate rock according to depositional texture. In: Classification of carbonate Rocks. W.G.Ham(ed.), Member of American Associated of Petro-leum Geologists., 1, 108-121.

  • Erentöz, C., 1975. 1/500000 ölçekli Türkiye Jeoloji haritası ve İzahnamesi. Ankara Paftası. MTA yay., Ankara.

  • Erentöz, C., 1963. 1/500000 ölçekli Türkiye Jeoloji Haritası, Ankara Paftası. MTA yay., Ankara.

  • Folk, R.L., 1959. Practical petrographic classification of limestone. Amer. Assoc. Petr. Geol. Bull., 43, 1-38.

  • Folk, R.L., 1966. A review of grain-size parameters. Sedimentology, 6, 73-93.

  • Gökçen, S.L., 1976. Haymana Güneyinin sedimantolojik incelenmesi (GB ANKARA). H.Ü., Doçentlik Tezi, 192s.

  • Gökçen, S.L., 1977 a. Haymana (GB ANKARA) güneyindeki tortul istifin sedimanter petrolojik incelenmesi. MTA Dergi no:89, 99-117.

  • Gönenç, O., 1978. Haymana-Polatlı havzasının batı kesiminin jeolojisi ve petrol olanakları. MTA rapor no:6396.

  • Görür, N., 1981. Tuzgölü-Haymana Havzasının stratigrafik analizi. Anadolunun Jeolojisi Sempozyumu, TJK 35. Bilimsel ve Teknik Kurultay Bildiriler Kitabı, 60-65.

  • Görür, N., ve Derman, A.S., 1978. Tuzgölü-Haymana Havzasının stratigrafik ve tektonik analizi. TPAO Raporu, No. 1514, 60s (yayımlanmamış).

  • Loverson, A.I., 1967. Geologie of Petroleum. W.H. Free and Comp., San Fransisco, 703 pp.

  • Norman, T., 1972. Ankara Yahşihan bölgesinde Üst Kretase-Alt Tersiyer istifinin stratigrafisi. TJK Bülteni, XV (2), 180-277.

  • Oktay, F. Y., ve Dellalolu A. A., 1987. Tuz Gölü havzası (Orta Anadolu) stratigrafisi üzerine yeni görüşler. 7. Petrol Kongresi Bildiriler Kitabı, 312-321.

  • Okay, A.I., and Altıner, D., 2016. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides. International Journal of Earth Sciences, 105(7), 2013–2030

  • Rigo de Righi, M., and Cortesini, A., 1960. Regional studies, Central Anatolian basin, Progres Report, I. Turkish Gulf Oil Co., 14s (yayımlanmamış).

  • Roth, P.H., 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the N. Western Atlantic Ocean (DSDP Leg 44). Initial Reports of the Deep Sea Drilling Project, 44, 731- 759.

  • Sirel, E., 1975. Polatlı (GB Ankara) güneyinin stratigrafisi. TJK Bülteni, 18 (2), 181-192

  • Sonel, N., Kulke, H., Sarı, A., Acar, A., Ayyıldız, T., Kadıoğlu, Y., Özkul, M., Yıldız, A., Doğan, A.u., Habo, M., Paeghe, W. ve Doğan, M., 1996. Tuz Gölü Havzasının Jeolojisi ve Hidrokarbon Potansiyelinin Değerlendirilmesi Projesi Ara Raporu. TPAO

  • Sonel, N., 2001. Petrol ve Yeraltı Jeolojisi kitabı. Ankara Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü, Ankara, 312 s.

  • Toker, V., 1979. Haymana yöresi (GB Ankara) Nannoplankton biyostratigrafisi. TJK Bült., 23, 165-177.

  • Sengor, A.M.C. and Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75: 181-241.

  • Toker, V., 1979a. Haymana ve Kavaklı formasyonları Üst Kretase planktonik foraminifer ve nannoplanktonlar. TÜBTAK Araştırma Kurulu VI. Bilim Kongresi Bildiriler Kitabı, 57-70.

  • Toker, V., 1979b. Haymana yöresi Üst Kretase planktonik foraminiferleri ve biyostratigrafi incelemesi. TJK Bülteni, 22, 12-132.

  • Turgut, S., 1978. Tuzgölü Havzasının stratigrafik ve çökelsel gelişmesi. Türkiye 4. Petrol Kongresi Bildirileri, 115-126

  • Turkish Gulf Oil Company, 1961. Orta Anadolu da Tuz Gölü Baseninin bölgesel jeolojisi ve yapılan petrol aramalar. Petrol faaliyeti 6, Ankara, 31-34.

  • Uğurtaş, G., 1975. Geophysical interpretation of part of the Tuzgolu basin. MTA Bülteni, 38-44.

  • Ünalan, G., Yüksel, V., Tekeli, T., Gönenç, O., Seyirt, Z., ve Hüseyin, S., 1985. Haymana-Polatlı havzasının jeolojisi ve prospeksiyon raporu. MTA Derleme no: 7665.

  • Ünalan, G., ve Yüksel, V., 1985. Haymana-Polatlı havzasının jeolojisi ve petrol olanaklar. MTA Raporu, No. 7665, 59s (yayımlanmamış).

  • Ünalan, G., Yüksel, V., Tekeli, T., Gönen, O., Seyirt, Z., ve Hüseyin, S., 1976. Haymana-Polatlı yöresinin (GB Ankara) Üst Kretase-Alt Tersiyer stratigrafisi ve paleocografik evrimi. TJK Bülteni, 19, 159-176

  • Üşenmez, Ş., 1996. Karbonat Kayaçların Sınıflandırılması.Yozgat Mühendislik-Mimarlık Fakültesi, Yozgat, 435 s.

  • Yüksel, S., 1970. Etude geologique de la region de Haymana (Turquie Centrale) These. Faculte des Sciences de Lunversite de Nancy, France, 77p.

  • Yüksel, S., 1973. Haymana yöresi tortul dizisinin düşey yönde gelişimi ve yanal fasiyes dağılımı. MTA Dergisi, 80, 50-53.

  • Yüksel, V., 1978. Haymana-Polatlı havzasının Jeolojisi ve Petrol Olanakları. MTA rapor no:7665.

  • Özdemir, A . (2019). Mollaresul Formasyonunun (Haymana-Ankara) Petrol Hazne Kaya Özellikleri . Türkiye Jeoloji Bülteni , 62 (2) , 181-198 . DOI: 10.25288/tjb.567893

    View as PDF