Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2020 NİSAN Cilt 63 Sayı 2
View as PDF
View as PDF
View as PDF
An Extensional Fracture Acting as Hot Water Source for Travertine Deposition on the North Anatolian Fault Zone, Turkey: the Reşadiye Fissure-Ridge
Bekir Levent Mesci Halil Gürsoy Bassam Ghaleb Orhan Tatar
View as PDF

Abstract: The Reşadiye (Tokat) geothermal field is located in the northern part of the right-lateral North AnatolianFault Zone. Geothermal waters at temperatures between 48-52°C from this geothermal field are currently usedmostly in hotels, pools and bathrooms and provide significant tourism potential for the region. The area where thegeothermal sites are located includes a ~NW-SE trending fissure-ridge type travertine with a length of about 600meters. Approximately 500 meters south of the geothermal field and parallel to the Kelkit River, the active segmentof the North Anatolian Fault Zone comprises the Kelkit Valley fault segment extending N72°W. The average strikedirection of Reşadiye fissure-ridge type travertine is around N33°W. There is an angle of 39° between the mastertrend of NAFZ and the direction of the Reşadiye fissure-ridge travertine. This 39° angle between the extensionalcracks in the fissure-ridge travertine and the NAFZ is compatible with extensional fractures developing in wellformed strike-slip faults at an angle of ~45° with the master fault. U/Th determination of two samples from bandedtravertines from the travertine deposits yielded ages of 7,563 and 12,529 years. Combined with other evidence, thesamples indicate an opening rate of 0.093 mm/year for the Reşadiye geothermal travertine field.

  • Active tectonics

  • North Anatolian Fault Zone

  • Resadiye

  • Travertine tectonics

  • Travitonics

  • U/Th age dating

  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F. and Piper, J.D.A., 2016. Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin. Journal of A

  • Altunel, E., 1994. Active tectonics and the evolution of Quaternary travertines at Pamukkale, Western Turkey. Bristol University, UK, PhD Thesis, 236p (unpublished).

  • Altunel, E., 1996. Pamukkale Travertenlerinin Morfolojik Özellikleri, Yaşları ve Neotektonik Önemleri. Maden Tetkik ve Arama Dergisi, 118, 47-64

  • Altunel, E. and Hancock, P.L., 1993a. Morphological features and tectonic setting of Quaternary travertines at Pamukkale, western Turkey. Geological Journal, 28, 335-346.

  • Altunel, E. and Hancock, P.L., 1993b. Active fissuring and faulting in Quaternary travertines at Pamukkale, western Turkey. Zeitschrift Geomorphologie Supplementary, 94, 285- 302.

  • Altunel, E. and Karabacak, V. 2005. Determination of horizontal extension from fissure-ridge travertines: a case study from the Denizli Basin, Southwestern Turkey. Geodinamica Acta 18, 333–342

  • Altunel, E. and Hancock, P.L., 1996. Structural attributes of travertine filled extensional fissures in the Pamukkale plateau, western Turkey. International Geology Review 38, 768-777.

  • Ambraseys, N.N., and Finkel, C.F ., 1995. The Seismicity of Turkey and Adjacent Areas: A Historical Review, 1500–1800. Eren Publishing House, İstanbul, 240 p.

  • Barka, A.A., 1996. Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939- to 1967. Bulletin of the Seismological Society of America, 86 (5), 1238-1254.

  • Benjelloun, Y., de Sigoyer, J., Dessales, H., Garambois, S. and Şahin, M., 2018. Construction history of the aqueduct of Nicaea (Iznik, NW Turkey) and its on-fault deformation viewed from archaeological and geophysical investigations. Journal of Arch

  • Brogi, A., Capezzuoli, E., Alçiçek, M.C. and Gandin, A., 2014. Evolution of a fault- controlled fissureridge type travertine deposit in the western Anatolia extensional province: the Çukurbağ fissure-ridge (Pamukkale, Turkey). Journal of the Geologic

  • Brogi, A., Alçiçek, M.C., Yalçıner, C.Ç., Capezzuoli, E., Liotta, D., Meccheri, M., Rimondi, V., Ruggieri, G., Gandin, A., Boschi, C., Büyüksaraç, A., Alçiçek, H., Bülbül, A., Baykara, M.O. and Shen, C.C., 2016. Hydrothermal fluids circulation and tr

  • Brogi, A. and Capezzuoli, E., 2009. Travertine deposition and faulting: the fault- related travertine fissure ridge at Terme S. Giovanni, Rapolano Terme (Italy). International Journal of Earth Science (Geologische Rundschau), 98 (4), 931-947.

  • Chafetz, H.S. and Folk, R.L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Research, 54 (1), 289-316.

  • Çakır, Z., 1998. Along-strike discontinuity of active normal faults and its influence on Quaternary travertine deposition: examples from Western Turkey, Turkish Journal of Earth Sciences, 8, 67- 80.

  • Çolak, E.S., Özkul, M., Aksoy, E., Kele, S. and Ghaleb, B., 2015. Travertine occurrences along major strike-slip fault zones: Structural, depositional and geochemical constraints from the Eastern Anatolian Fault System (EAFS), Turkey. Geodinamica Act

  • De Filippis, L. and Billi, A. (2012). Morphotectonics of fissure ridge travertines from geothermal areas of Mammoth Hot Springs (Wyoming) and Bridgeport (California). Tectonophysics, 548–549, 34–48.

  • Demirtaş, R., 2000. Kuzey Anadolu Fay Zonu’nun Abant ve Gerede Arasında Kalan Bölümünün Neotektonik Özellikleri ve Paleosismisitesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 191 s.

  • Eikenberg, J., Vezzu, G., Zumsteg, I., Bajo, S., Ruethi, M. and Wyssling, G., 2001. Precise two chronometer dating of Pleistocene travertine: The 230Th/234U and 226Raex/ 226Ra(0) approach. Quaternary Science Reviews, 20 (18), 1935-1953

  • Engin, B., Güven, O. and Köksal, F., 1999a. Electron spin resonance age determination of a travertine sample from the southwestern part of Turkey. Applied Radiation and Isotopes, 51 (6), 689-699.

  • Engin, B., Güven, O. and Köksal, F., 1999b. Thermoluminescence and electron spin resonance properties of some travertines from Turkey. Applied Radiation and Isotopes, 51 (6), 729-746.

  • Grün, R., 1989. Electron spin resonance (ESR) dating. Quaternary International, 1, 65-109.

  • Gürsoy, H., Tatar, O., Akpınar, Z., Polat, A., Mesci, B.L. and Tuncer, D., 2013. New observations on the 1939 Erzincan Earthquake surface rupture on the Kelkit Valley segment of the North Anatolian Fault Zone, Turkey Journal of Geodynamics, 65, 259-2

  • Hakyemez, Y.H. and Papak, İ., 2002. 1/500000 Ölçekli Türkiye Jeoloji Haritası, Samsun Paftası. Editör: Mustafa Şenel. Maden Tetkik Arama Genel Müdürlüğü, Ankara.

  • Hancock, P.L., Chalmers, R.M.L., Altunel, E. and Çakır, Z., 1999. Travitonics: Using Travertines in Active Fault Studies. Journal of Structural Geology, 21, 903-916.

  • Heimann, A. and Sass, E., 1989. Travertines in the northern Hulla Valley, Israel. Sedimentology, 36, 95-108.

  • Herece, E. and Akay, E., 2003. Atlas of North Anatolian Fault (NAF). General Directorate of Mineral Research and Exploration, Special Publication series-2, Ankara, 61 p+13 appendices as separate maps

  • Karabacak, V., Uysal, T., Mutlu, H., İmer, E.Ü., Dirik, K., Feng, Y., Akıska, S., Aydoğdu, İ. and Zhao, J., 2019. Are U-Th dates correlated with historical records of earthquakes? Constraints from coseismic carbonate veins within the North Anatolian

  • Ludwig, K.R. and Paces, J.B., 2002. Uranium-Series Dating of Pedogenic Silica and Carbonate, Crater Flat, Nevada. Geochimica Et Cosmochimica Acta, 66, (3),487–506.

  • Mallick, R. and Frank, N., 2002. A new technique for precise uranium-series dating of travertine microsamples. Geochimica et Cosmochimica Acta, 66 (24), 4261-4272.

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gürkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradis

  • Mesci, B.L., 2004. Sıcak Çermik ve Yakın Yöresindeki (Sivas) Travertenlerin Gelişimi ve Aktif Tektonikle İlişkisi. Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 245 s (unpublished).

  • Mesci, B.L., 2012. Active Tectonics Properties and significance within Central Anatolian Neotectonic Structures of the Ortaköy Fissure Ridge Travertines. Geodinamica Acta, 25 (1-2), 12-25.

  • Mesci, B. L, Erkman, A. C., Gürsoy, H and Tatar, O., 2018. Fossil findings from the Sıcak Çermik fissure ridge type travertines and possible hominid tracks, Sivas, Central Turkey. Geodinamica Acta, 30 (1), 15–30.

  • Mesci, B.L., Gürsoy H., and Tatar, O., 2008. The evolution of travertine masses in the Sivas area (central Turkey) and their relationships to active tectonics. Turkish Journal of Earth Sciences, 7 (2), 219-240.

  • Noten, K.V., Topal, S., Baykara, M.O., Özkul, M., Claes, H., Aratman, C. and Swennen, R., 2019. Pleistocene-Holocene tectonic reconstruction of the Ballık travertine (Denizli Graben, SW Turkey): (De)formation of large travertine geobodies at intersec

  • Oral, M.B., 1994. Global Positioning System (GPS) Measurements in Turkey (1988- 1992): Kinematics of the Africa-Arabia-Eurasia Plate Collision Zone. Massachusetts Institute of Technology, Cambridge, MA, United States, PhD thesis, 344 p.

  • Polat. S., 2011. Türkiye’de Traverten Oluşumu, Yayılış Alanı ve Korunması. Marmara Coğrafya Dergisi, 23, 389-428.

  • Pons-Branchu, E., Hillaire-Marcel C., Deschamps, P., Ghaleb B, and Sinclair, D.J., 2005. Early Diagenesis Impact On Precise U-Series Dating Of Deep-Sea Corals: Example Of A 100–200-Year Old Lophelia Pertusa Sample From The Northeast Atlantic, Geochim

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T.,

  • Riedel, W., 1929. Zur Mechanik Geologischer Brucherscheinungen. Zentral-Blatt für Mineralogie, Geologie und Paleontologie B, 354- 368.

  • Rink, W.J., Schwarcz, H.P., Lee, H.K., Valdés, V.C., Quirós, F.B. and Hoyos, M., 1997. ESR dating of Mousterian levels at El Castillo Cave, Cantabria, Spain. Journal of Archaeological Science, 24 (7), 593-600.

  • Semghouli, S., Choukri, A., Cherkaoui El Moursli, R., Jahjouh, E., Chouak, A., Ben Mohammadi, A., Latiris, M., Reyss J. -L. and Plaziat J. L., 2001. Th/U dating of marine and continental mollusk shell, and travertine samples in Quaternary deposits in

  • Seymen, İ., 1975. Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği. İstanbul Teknik Üniversitesi Maden Fakültesi, İstanbul, PhD Thesis, XIX+192 pp. +2 foldout maps.

  • Shen, C.C., Lin, K., Duan, W., Jiang, X., Partin, J.W., Edwards, R.L., Cheng, H. and Tan, M., 2013. Testing the annual nature of speleothem banding. Nature, Scientific Reports, 3, Article no: 2633 (2013).

  • Soligo, M., Tuccimei, P., Barberi, R., Delitala, M.C., Miccadei, E., and Taddeucci, A., 2002. U/Th dating of freshwater travertine from Middle Velino Vadisi (Central Italy): paleoclimatic and geological implications. Palaeogeography, Palaeoclimatolog

  • Sturchio, N.C., Kenneth, L.P., Michael T.M. and Michael L.S., 1994. Uranium-Series Ages of Travertines and Timing of the Last Glaciation in the Northern Yellowstone Area, WyomingMontana. Quaternary Research, 41 (3), 265-277.

  • Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Pichon, X.L. and Rangin, C., 2005. The North Anatolian Fault: A new look. Annual Review of Earth and Planetary Sciences, 33, 37-112.

  • Şimşek, Ş. 2003. Türkiye’de Jeotermal Enerji Potansiyeli. Mavi Gezegen, TMMOB Jeoloji Mühendisleri. Odası Yayını, 7, 48-53.

  • Tatar, O., Poyraz, F., Gürsoy, H., Cakir, Z., Ergintav, S., Akpınar, Z., Koçbulut, F., Sezen, F., Türk, T., Hastaoğlu, K.Ö., Polat, A., Mesci, B.L., Gürsoy, Ö., Ayazlı, E., Çakmak, R., Belgen, A. and Yavaşoğlu, H., 2012. Crustal deformation and kinem

  • Temiz U. and Eikenberg J., 2011. U/Th dating of the travertine deposited at transfer zone between two normal faults and their neotectonic significance: Cambazli fissure ridge travertines (the Gediz Graben-Turkey). Geodinamica Acta, 24 (2), 95- 105.

  • Temiz, U., Gökten, E. and Eikenberg, J., 2013. Strikeslip deformation and U/Th dating of travertine deposition: Examples from North Anatolian Fault Zone, Bolu and Yeniçağ Basins, Turkey. Quaternary International, 312, 132–140.

  • Wilcox R.E., Harding T.P. and Seely D.R., 1973. Basic Wrench Tectonics. AAPG, 57 (1), 74-96.

  • Zabcı, C., Akyüz, H.S., Karabacak, V., Sançar. T., Altunel, E., Gürsoy, H. and Tatar, O., 2011. Palaeoearthquakes on the Kelkit Vadisi segment of the North Anatolian Fault, Turkey: Implications for the surface rupture of the historical 17 August 1668


  • Mesci, B , Gürsoy, H , Ghaleb, B , Tatar, O . (2019). An Extensional Fracture Acting as Hot Water Source for Travertine Deposition on the North Anatolian Fault Zone, Turkey: The Reşadiye Fissure-Ridge . Türkiye Jeoloji Bülteni , 63 (2) , 145-160 . DOI: 10.25288/tjb.623535

  • Recent Deformation of the Western Anatolia Tectonic Wedge:Block Motions Caused by Escape to the West
    Fuat Şaroğlu Bahadir Güler
    View as PDF

    Abstract: All research on neotectonics in Turkey accepts Western Anatolia as a distinct, separate region in which theneotectonic period began in Upper Oligocene, according to some researchers, and in Upper Miocene according toothers, and has continued up to the present day. The region expanded in a north-south direction during this processgrabens were formed, generally with an east-west orientation. In this interpretation, the normal faults causing a north-south oriented extension are proposed to have detachmentfault characteristics. As observed in field studies, fold and strike-slip faults developed during this period but thesedimentary basin geometry and dimensions cannot be explained by a simple graben system. There are outliers interms of the chemistry of volcanism in outcropping areas. Explanations for these inconsistencies have yet to be foundand those based on time-space-causal relationships related to evolution in the neotectonic period do not go beyondabstract modelling. In this presentation, a different model is suggested with the aim of solving controversies in the models proposed todate. The recommended method is based on the neotectonic evolution explanatory principle of revealing the currentdeformation form in a region in order to understand its neotectonics, and then working backwards from today. Currently, the tectonic region defined as Western Anatolia encompasses an area between the northwest-southeastoriented Bursa-Eskişehir-Afyon Fault Zone and the northeast-southwest oriented Muğla-Afyon Fault Zone in the east,extending in a sideways V shape towards the west. Moving toward the west, the region is separated in intraplateblocks due to the lithological differences, paleotectonic structures and volcanism, etc. present in the region. Thedifferent movement velocities of these separate blocks cause deformation in the region. Significant factors affectingthese motions are the dimensions, velocity and direction of the blocks. With the varying motion of the blocks, normal,reverse and strike-slip faults along with extensional fractures occur along the block boundaries. In this model,different movements may be observed in different locations on the same fault plane. Again, there are parallel, coevalstructures found in the region, although they move in different directions. On the whole, block movements progresstoward the west-southwest of the region. Extensions occurring between blocks occasionally form graben geometry. According to this proposed model, the east-west oriented grabens currently observed in Western Anatolia areconcluded not to be products of north-south oriented extensions. Currently, the greatest extension is on the easternboundaries of the V-shaped block. Intensive thermal manifestations are observed north of this boundary in the KulaVolcanics and to the south in the Pamukkale region. The 10-km long fracture caused by the 1995 Dinar Earthquakeand the aseismic deformation motion at Sarıgöl both have extensional fracture characteristics.Paleomagnetism, crustal thickness, GPS data and the fault-plane solutions of earthquakes in the region supportthis model. This proposed kinematic model is thought to have been in operation about 3-4 million years before thepresent.

  • Western Anatolia

  • active tectonics

  • deformation

  • Akçığ, Z.,1988. Batı Anadolu’nun yapısal sorunlarının gravite verileri ile irdelenmesi. Türkiye Jeoloji Bülteni, 31 (2), 63-70.

  • Aktug, B., Nocquet, J.M., Cingöz, A. Parsons, B., Erkan, Y., England, P., Lenk, O., Gürdal, M.A., Kılıçoğlu, A., Akdeniz, H., Tekgül A., 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like b

  • Altunel, E., Hancock, P.L., 1993. Active fissuring and faulting in Quaternary travertines at Pamukkale, western Turkey. Zeitschrift Geomorphologie Supplementary, 94, 285- 302.

  • Altunel, E., D’Andria, F. 2019. Pamukkale Travertines: A Natural and Cultural Monument in the World Heritage List, (Landscapes and Landforms of Turkey, Editörler: Kuzucuoğlu, C., Çiner A., Kazancı N.). Springer Nature Switzerland AG, Cham, Switzerlan

  • Aksu, A.E., Hall, J., Yaltırak, C., 2009. Miocene–Recent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, 258 (1- 4), 24–47.

  • Alçiçek M.C., Ten Veen J.H., Özkul M., 2006. Neotectonic development of the Çameli Basin, southwestern Anatolia, Turkey, (Tectonic Development of the Eastern Mediterranean Region, Editörler: Robertson A.H.F., Mountrakis D.). The Geological Society Pu

  • Arpat, E., Bingöl, E. 1969. The rift system of the Western Turkey; thoughts on its development. Maden Tetkik ve Arama Dergisi, 73, 1-9.

  • Arslan, S., Akın, U., Alaca, A., 2010. Gravite Verileri ile Türkiye’nin Kabuk Yapısının İncelenmesi. Maden Tetkik ve Arama Dergisi, 140, 57-73.

  • Arslan, S. 2012. Türkiye 1/1.500.000 Ölçekli Gravite Kabuk Kalınlığı Haritası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Barka, A.A. 1992. The North Anatolian Fault Zone. Annales Tectonicae, 6 (special issue), 164-195.

  • Bingöl, E., Akyürek, B., Korkmazer, B. 1975. Biga Yarımadası’nın Jeolojisi ve Karakaya Formasyonunun Bazı Özellikleri. Cumhuriyetin 50. Yılı Yerbilimleri Kongresi Tebliğler, Maden Tetkik ve Arama Enstitüsü, Ankara, 70-76

  • Bingöl, E., 1976. Batı Anadolu’nun Jeotektonik Evrimi. Maden Tetkik ve Arama Dergisi, 86, 14-34.

  • Boray, A., Akat, U., Akdeniz, N., Akçaören, A., Çağlayan, A., Günay, E., Korkmazer, B., Öztürk, E.M., Sal H., 1975. Menderes Masifinin Güney Sınırı Boyunca Bazı Önemli Sorunlar ve Bunların Muhtemel Çözümleri. Cumhuriyetin 50. Yılı Yerbilimleri Kongre

  • Boray, A., Şaroğlu, F., Emre, Ö., 1985. Isparta Büklümünün Kuzey Kesiminde doğu-batı Daralma için Bazı Veriler. Jeoloji Mühendisliği, 23, 9-20

  • Boray, A., Şaroğlu, F., Emre, Ö., 1985. Isparta Büklümünün Kuzey Kesiminde doğu-batı Daralma için Bazı Veriler. Jeoloji Mühendisliği, 23, 9-20

  • Bozkurt, E. 2019. Batı Anadolu Grabenlerinin Bölümlenmesinin Yapısal Kontrolleri: DoğrultuAtımlı Faylanmanın Graben Oluşumu Üzerindeki Yeri ve Önemi. 72. Türkiye Jeoloji Kurultayı Bildiri Özleri, Sözbilir, H., Özkaymak, Ç., Uzel, B., Sümer, Ö., Softa

  • Candan, O., Dora O.Ö., Kun, N., Akal, C., Koralay, E., 1992. Aydın Dağları (Menderes Masifi) Güney Kesimindeki Allokton Metamorfik Birimler, Türkiye Petrol Jeologları Derneği Bülteni, 4 (1), 93-110.

  • Dewey, J.F., Sengör, A.M.C., 1979. Aegean and surrounding regions: complex multiple and continuum tectonics in a convergent zone, Geological Society of America Bulletin, 90 (1), 84–92.

  • Dora, O.Ö., Kun, N, Candan, O, 1992. Menderes Masifi’nin Metamorfik Tarihçesi ve Jeotektonik Konumu. 35 (1), 1-14.

  • Duman, T.Y., Emre, Ö., Doğan, A., Özalp, S., 2005. Step-over and bend structures along the 1999 Düzce Earthquake surface rupture. North Anatolian Fault, Turkey. Bulletin of Seismological Society of America, 95 (4), 1250-1262.

  • Emre, Ö., Erkal, T., Tchepalyga, A., Kazancı, N., Keçer, M., Ünay, E., 1998. Doğu Marmara Bölgesinin Neojen-Kuvaternerdeki Evrimi. Maden Tetkik ve Arama Dergisi, 120, 289-314.

  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C., Göktaş, F., 2005. İzmir Yakın Çevresinin Diri Fayları ve Deprem Potansiyelleri. Maden Tetkik ve Arama Genel Müdürlüğü Jeoloji Etütleri Dairesi, Rapor No: 10754, 80 s., (yayımlanmış).

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, VI+89s.+bir pafta, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara, 89 s.

  • Emre, Ö., Duman, T.Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., Çan, T., 2018. Active fault databese of Turkey. Bulletin of Earthquake Engineering, 16 (8), 3229-3275.

  • Ercan, T., 1981. Kula Yöresinin Jeolojisi ve Volkanitlerin Petrolojisi. İstanbul Üniversitesi, Yerbilimleri Fakültesi, Doktora Tezi, 165 s. (yayımlanmamış).

  • Erdoğan, B., 1990. İzmir-Ankara Zonu ile Karaburun Kuşağının Tektonik İlişkisi, Maden Tetkik ve Arama Dergisi, 110, 1-15.

  • Erdoğan, B., Güngör, T. 1992. Menderes Masifinin Kuzey Kanadının Stratigrafisi ve Tektonik Evrimi, Türkiye Petrol Jeologları Derneği Bülteni, 4 (1), 9-34.

  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Uysal, Ş., Özcan, A., Işık, A. 1996. Nallıhan-Sarıcakaya Arasında Orta Sakarya’daki Yapısal Birimlerin Jeolojik Özellikleri. Maden Tetkik ve Arama Raporu No: 10094, (yayımlanmamış).

  • Gözler, M.Z., Cevher, F., Küçükayman, A. 1984-1985. Eskişehir civarının jeolojisi ve sıcak su kaynakları. Maden Tetkik ve Arama Dergisi, 103-104, 40-54.

  • Gürsoy H, Temiz H., Tatar O, 1997. Gediz grabeni GD kenarındaki güncel deformasyon verileri. Aktif Tektonik Araştırma Grubu 1. Çalıştayı, (ATAG-1), 08-09 Aralık 1997, İstanbul Teknik Üniversitesi, İstanbul, 103-112

  • Hakyemez, H.Y., Göktaş, F., Erkal, T., 2013. Gediz Grabeni’nin Kuvaterner Jeolojisi ve Evrimi. Türkiye Jeoloji Bülteni, 56 (2), 1-26.

  • Helvacı, C., Yağmurlu, F., 1995. Geological setting and economic potential of the lignite and evaporitebearing Neogene basins of Western Anatolia, Turkey. Israel Journal of Earth Sciences, 44, 91- 105.

  • Helvacı, C., 1995. Stratigraphy, mineralogy, and genesis of the Bigadiç borate deposits, Western Turkey. Economic Geology, 90, 1237-1260.

  • Helvacı, C., Orti, F., 1998. Sedimentology and diagenesis of Miocene colemanite-ulexite deposits (western Anatolia, Turkey). Journal of Sedimentary Research, 68 (5), 1021-1033.

  • Helvacı, C, 2015. Geological features of Neogene basins hosting borate deposits: An overview of deposits and future forecast. Turkey. Bulletin of the Mineral Research and Exploration. 151, 169- 215.

  • Helvacı, C., 2019. Turkish Borate Deposits: Geological Setting, Genesis and Overview of the Deposits, (Mineral Resources of Turkey, Modern Approaches in Solid Earth Sciences 16, Editörler: Pirajno, F., Ünlü, T., Dönmez, C., Şahin, M.B.). Springer Int

  • Kaya, A., 2015. The effects of extensional structures on the heat transport mechanism: an example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey). Journal of African Earth Sciences. 108, 74–88.

  • Kaymakcı, N., Özkaptan, M., Özacar, A.A., Langereis, C., Gülyüz, E., Koç, A., Uzel, B., Sözbilir, H. 2017. GB Anadolu’nun Kinematiği ve Rotasyonal Deformasyonu: Aktif Fethiye-Burdur Fay Zonu Efsanesi. Aktif Tektonik Araştırma Grubu 21. Çalıştayı, (AT

  • Kılıç, T., Kartal, R.F., Kadirioğlu, F.T., Duman, T.Y., Özalp, S. 2017. Türkiye ve yakın çevresi için düzenlenmiş moment tensor (1906-2012) kataloğu (MW ≥ 4,0), (Türkiye Sismotektonik Haritası, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınl

  • Koca, M.Y., Sözbilir, H., Uzel, B., 2011, Sarıgöl Fay Zonu Boyunca Meydana Gelen Deformasyonların Nedenleri Üzerine Bir Araştırma. Jeoloji Mühendisliği Dergisi, 35 (2), 151-174.

  • Koçyiğit, A, Yusufoğlu H., Bozkurt E., 1999. Evidence from the Gediz graben for episodic two-stage extension in western Turkey. Journal of Geological Society London 156, 605-616.

  • Komut, T., Gray, R. Pysklywec, R., Göğüş, O.H., 2012. Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling. Journal of Geophysical Research, 117 (B11412), 1-14.

  • Konak, N. Akdeniz, N., Öztürk, E.M. 1987. Geology of The South of Menderes Massif. Guide Book for the Field Excursion Along Western Anatolia, Turkey. IGCP Project No:5, Correlations of Variscan and Pre-Variscan events of the Alpine-Mediterranean moun

  • Konak, N. 2002. 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel, M., (ed.)) Maden Tetkik ve Arama Genel Müdürlüğü.

  • Konak, N., Şenel M. 2002. 1/500.000 Türkiye Jeoloji Haritası Denizli Paftası, (Şenel, M., (ed.)) Maden Tetkik ve Arama Genel Müdürlüğü.

  • Kuşçu, İ., Okamura, M., Matsuoka, H., Yamamori, K., Awata, Y., Özalp, S., 2009. Recognition of Active Faults and Stepover Geometry in Gemlik Bay, Sea of Marmara, NW Turkey. Marine Geology, 260, 90-101.

  • Kürçer, A., Özdemir, E., Uygun Güldoğan, Ç., Duman, T., 2016. The First Paleoseismic Trench Data from Acıpayam Fault, Fethiye Burdur Fault Zone, SW Turkey. Bulletin of the Geological Society of Greece, 50 (1), 75-84.

  • Nebert, K. 1978. Linyit içeren Soma Neojen bölgesi, Batı Anadolu. Maden Tetkik ve Arama Dergisi, 90, 20-69.

  • Okay A.I., Siyako, M., Bürkan, K.A., 1991. Geology and Tectonic Evoluation of the Biga Peninsula, NW Turkey. Bulletin of the Technical University of Istanbul, 44 (1-2), 191-256.

  • Okay, A.I., Siyako, M., 1993. İzmir Balıkesir Arasında İzmir Ankara Neo-Tetis Kenedinin Yeni Konumu. Ozan Sungurlu Sempozyumu Bildirileri, Kasım 1991, Turgut, S., (ed), Türkiye Petrol Jeologları Derneği, Ankara, 333-355.

  • Okay, A.I., Satır, M., 2000. Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137, 495-516.

  • Özalp, S., Emre, Ö., Doğan, A., 2013, Kuzey Anadolu Fayı Güney Kolu’nun segment yapısı ve Gemlik Fayı’nın paleosismik davranışı, KB Anadolu. Maden Tetkik ve Arama Dergisi, 147, 1-17, Ankara.

  • Özalp, S., Emre Ö., Şaroğlu F., Özaksoy V., Elmacı, H., Duman T.Y., 2018. Active fault segmentation of the Çivril Graben System and surface rupture of the 1 October 1995 Dinar earthquake (Mw 6.2), Southwestern Anatolia, Turkey. Journal of Asian Earth

  • Özer, S., Sözbilir, H., Özkar, İ., Toker, V., Sarı B., 2001. Stratigraphy of Upper Cretaceous–Palaeogene sequences in the southern and eastern Menderes Massif (western Turkey). International Journal of Earth Sciences, 89 (4), 852-866.

  • Özkaymak, Ç., Sözbilir, H., ve Üzel, B. 2013. NeogeneQuaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the Izmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117–135.

  • Özkaymak, Ç, Sözbilir, H., Tiryakioğlu, İ. 2017, AfyonAkşehir Grabeni Kenar Fayları Üzerine Saha Gözlemleri ve Teknik İnceleme. Aktif Tektonik Araştırma Grubu 21. Çalıştayı, (ATAG-21), 26-28 Ekim 2017, Özkaymak, Ç. (ed.), Afyon Kocatepe Üniversitesi,

  • Pavlides, S., Mountrakis, D., Kilias, A., Tranos, M. 1990. The role of strike-slip movements in the extensional area of Northern Aegean (Greece). A case of transtensional tectonics. Annales Tectonicae, 4 (2 Special Issue), 196-211.

  • Perinçek, D., 1980. Arabistan Kıtası Kuzeyindeki Tektonik Evrimin, Kıta Üzerinde Çökelen İstifteki Etkileri. Türkiye 5. Petrol Kongresi, Nisan 1980, Saner, S., Perinçek, D., (editörler), Ankara, 77-93

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva,

  • Rojay, B., Toprak, V., Demirci, C., Süzen, L., 2005. Plio-Quaternary evolution of the Küçük Menderes Graben southwestern Anatolia, Turkey. Geodinamica Acta, 18 (3-4), 317–331.

  • Seyitoğlu G., Işık V., 2015. Late cenozoic extensional tectonics in western anatolia: Exhumation of the menderes core complex and formation of related basins. Bulletin of the Mineral Research and Exploration, 151, 47-106.

  • Seyitoğlu, G., Kaypak, B., Aktuğ, B., Gürbüz, E., Esat, K, Gürbüz, A., 2016. KB Türkiye’de Kuzey Anadolu Fay Zonu’nun alternatif Güney kolu için bir hipotez. Türkiye Jeoloji Bülteni, 59 (2), 115- 130.

  • Sözbilir, H., Sümer, Ö., Özkaymak, Ç., Uzel, B., Güler, T., Eski, S., 2016. Kinematic analysis and palaeoseismology of the Edremit Fault Zone: evidence for past earthquakes in the southern branch of the North Anatolian Fault Zone, Biga Peninsula, NW

  • Şaroğlu F. 1985. Doğu Anadolu’nun neotektonik dönemde jeolojik ve yapısal evrimi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, 240 s., (yayımlanmamış).

  • Şaroğlu, F., Yılmaz, Y., 1984. Doğu Anadolu’nun Neotektoniği ve ilgili Magmatizması. İhsan Ketin Simpozyumu, 149-162.

  • Şaroğlu, F., Emre, Ö., Boray, A., 1987. Türkiye’nin Diri Fayları ve Depremsellikleri, Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No:8174, 394 s.

  • Şaroğlu, F., Yılmaz, Y., 1990. Batı Anadolu’da Neojen Deformasyonunu Tipleri ve Havza Gelişimi Üzerine Bazı Görüşler. Türkiye 8. Petrol Kongresi, Ankara, Özler Kitabı, 16-20 Nisan, 1990.

  • Şaroğlu, F., Emre, Ö., Kuşçu, İ., 1992. Türkiye Diri Fay Haritası, MTA Genel Müdürlüğü, Ankara.

  • Şaroğlu, F., Emre, Ö., Doğan, A., Yıldırım, C., 2005. Eskişehir Fay Zonu ve Deprem Potansiyeli. Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Çalıştayı, Genişletilmiş Bildiri Özleri Kitabı, Eskişehir, 11-11.

  • Şaroğlu, F., Özgür R., Aydoğdu, Ö., Sarp, S., 2015. Soma Bölgesi Kömür Yataklarının Çökel Havza Modeli. 68. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, Sayıt, K. (ed.), TMMOB Jeoloji Mühendisleri Odası Yayın No: 119, 6-10 Nisan 2015, MTA Kültür

  • Şengör, A. M. C., Kidd, W. S. F., 1979. The postcollisional tectonics of the Turkish-Iranian Plateau and a comparison with Tibet. Tectonophysics, 55, 361-376.

  • Şengör, A.M.C., 1980. Türkiye’nin neotektoniğinin esasları. Türkiye Jeoloji Kurumu, Konferans Serisi 2, Ankara, 40 s.

  • Şengör A.M.C., Yılmaz Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

  • Şengör, A.M.C., 1982. Ege’nin neotektonik evrimini yöneten etkenler. Batı Anadolu’nun Genç Tektoniği ve Volkanizması Paneli, Türkiye Jeoloji Kurultayı, 59-71.

  • Şengör A.M.C., Yılmaz Y., 1983. Türkiye›de Tetis›in Evrimi; Levha Tektoniği Açısından Bir Yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi No:1, 73 s.

  • Şengör, A. M. C., Görür, N., Şaroğlu, F., 1985. Strikeslip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. (Strike-slip Deformation, Basin Formation, and Sedimentation, Editörler: Biddle, K.T., ChrisiteBlick,

  • Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., Rangin, C., 2005. The North Anatolian Fault: A new look. Annual Reviews, Annual Review of Earth and Planetary Sciences, 33, 37-112.

  • Şimşek, Ş., 1982. Denizli Sarayköy-Buldan alaninin jeolojisi ve jeotermal enerji olanakları. İstanbul Yerbilimleri Dergisi, 3 (1–2), 145-162.

  • Tapırdamaz, M. C., Alparslan, E., Yüce, H., 2006. CBS ortamında Türkiye paleomanyetizma veri kataloğu. 4. Coğrafi Bilgi Sistemleri Bilişim Günleri Bildiriler Kitabı, Demirci, A., Karakuyu, M., McAdams, M.A. (editörler), 13-16 Eylül, Fatih Üniversites

  • Tapırdamaz, M. C., Türkiye Paleomanyetizma Kataloğunun GIS Kullanılarak Hazırlanması. Uluslarası Katılımlı Paleomanyetizma Çalıştayı, Cumhuriyet Üniversitesi Konferans Salonu Sivas, 15-17 Mayıs, 2008.

  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakçı, N., Langereis, G.C., 2013. Structural evidence for strike-slip deformation in the Izmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geod

  • Ünay, E., Göktaş, F., Hakyemez, H.Y., Avşar, M., Şan, Ö.M., 1995. Büyük Menderes Grabeni’nin kuzey kenarındaki çökellerin Arvicolidae (Rodentia, Mammalia) faunasına dayalı olarak yaşlandırılması. Türkiye Jeoloji Bülteni 38 (2), 63–68.

  • Yazman, M. 1995. Geology of the Alaşehir Graben and petroleum potential, Turkish Petroleum Corporation (TPAO) research group progress report no. 3496, (yayımlanmamış).

  • Yılmaz, Y., Genç, S.C., Gürer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, S., Elmas, A., 2000. When did the western Anatolian grabens begin to develop?, (Tectonics and Magmatism in Turkey and the Surrounding area, Editörler: Bozkurt, E., Wi

  • Yılmaz, Y., 2017. Major Problems of Western Anatolian Geology, (Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region, Editörler: I. Çemen, Y. Yılmaz). American Geophysical Union, John Wiley & Sons, Inc.,

  • Yılmazer, S., Şaroğlu, F., Özgür, R., Açıkgöz, S., Ercan, T., Gevrek, A.İ., Yıldırım, N., Aydoğdu, Ö., 1994, Kuşadası-Davutlar (Aydın) arasının jeolojisi ve jeotermal olanaklarının değerlendirilmesi, Türkiye 6. Enerji Kongresi, 17-22 Ekim 1994 İzmir,


  • Şaroğlu, F , Güler, B . (2020). Batı Anadolu Tektonik Kaması`nın Güncel Deformasyonu: Batıya Doğru Kaçıştan Kaynaklanan Blok Hareketleri . Türkiye Jeoloji Bülteni , 63 (2) , 161-194 . DOI: 10.25288/tjb.593423

  • Geochemical Features and Magma Source Regional Characteristics of the Post-Collisional Plio-Quaternary Gözucu (Taşlıçay-Ağrı) Volcanics, Eastern Anatolia, Turkey
    Mustafa Açlan Yusuf Altun
    View as PDF

    Abstract: This study aimed to determine the petrographic and geochemical features of the Plio-Quaternary Gözucu(Taşlıçay-Ağrı) volcanics. These volcanics have subalkaline, calc-alkaline, high-K-series and shoshonitic featuresand are composed of basalt, andesite, trachyandesite, trachydacite and dacites. The Gözucu volcanics exhibitenrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE) while showing depletionin heavy rare earth elements (HREE) and high field strength elements (HFSE). The average Sr and Ba values ofGözucu volcanics are close to continental crust values (Sr-379 ppm Ba-639 ppm), which means that these rockswere contaminated by the continental crust during formation. Low Nb/La (5.13 ppm) and high Ba/Rb (16.75 ppm)ratios indicate that the contribution of sediments was more than that of fluids during the contamination process ofthe Gözucu volcanics. Positive and negative trends of major and trace elements in the variation diagrams indicatefractional crystallization and a single mantle source. The Gözucu volcanics occurred with a partial melting of thespinel-rich lithospheric mantle source with 0.1-3% partial melting in the continental arc environment after thecollision. 

  • Continental collision

  • Basalt

  • Eastern Anatolia

  • Taslıcay

  • Crustal contamination

  • Adam, J., Green, T. 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contributions to Mineralogy and

  • Açlan, M., Turgut, İ.K. 2017. Şekerbulak (DiyadinAğrı) Dolaylarında Yüzeyleyen Volkanik Kayaçların Mineralojik-Petrografik ve Jeokimyasal Özellikleri Çukurova Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 32 (4), 163-174.

  • Açlan, M., Altun, Y. 2018. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates. Journal of African Earth Sciences, 142, 1-11.

  • Açlan, M., Duruk, H.İ. 2018. Geochemistry, zircon U-Pb geochronology and tectonic setting of the Taşlıçay Granitoids, Eastern Anatolia, Turkey. Arabian Journal of Geosciences, 11 (336), 1-19.

  • Açlan, M., Davran, N. 2019. Karlıca Volkanitlerinin (Hamur-Ağrı) Petrografik ve Jeokimyasal Özellikleri. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 40 (1), 72-91.

  • Al-Lazki, A., Seber, D., Sandvol, E., Türkelli, N., Mohamad, R., Barazangi, M. 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (Eastern Turkey) and the surrounding regions. Geophysical Research Letters, 30, 8043.

  • Altun, Y. 2016. Oğlaklı-Gözucu (Taşlıçay-Ağrı) Dolaylarında Yüzeyleyen Kayaçların MineralojikPetrografik İncelenmesi. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 141 s., (yayınlanmamış).

  • Alvarado, A., Audin, L., Nocquet, J.M., Lagreulet, S., Segovia Font, Y., Lamarque, G., Yepes, H., Mothes, P., Rolandone, F., Jarrin, P., Quidelleur, X. 2014. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crus

  • Arndt N. T., Czamanske G. K., Wooden J. L., and Fedorenko V. A. 1993. Mantle and crustal contributions to continental flood basalt volcanism. Tectonophysics (1-2), 223, 39-52.

  • Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G., Pik, R. 2002. Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochimica Cosmochimica Acta, 66 (8), 1429–1448

  • Ayalew, D., Gibson, S.A. 2009. Head-to-tail transition of the Afar mantle plume: geochemical evidence from a Miocene bimodal basalt–rhyolite succession in the Ethiopian Large Igneous Province. Lithos, 112 (3), 461–476.

  • Azzone, R.G., Munoz, P.M., Enrich, G.E., Alves, A., Ruberti, E., Gomes, C.B., 2016. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil. Lithos, 260, 58–75.

  • Barazangi, M., Sandvol, E., Seber, D. 2006. Structure and tectonic evolution of the Anatolian Plateau in eastern Turkey, (Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, Editörler: Dilek, Y., Pavlides, S.). Geological So

  • Beard, J.S., Ragland, P.C., Crawford, M.L. 2005. Reactive bulk assimilation: A model for crustmantle mixing in silicic magmas. Geology, 33 (8), 681–684.

  • Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies (Rare Earth Element Geochemistry, Editör: Henderson, P.). Elsevier, Amsterdam, 63–114.

  • Bozkurt, E. 2001. Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14 (1-3), 3-30.

  • Class, C., Miller, D.M., Goldstein, S.L., Langmuir, C.H. 2000. Distinguishing melt and fluid subduction components in Umnak volcanics: Aleutian arc. Geochemistry, Geophysics, Geosystems, (3G) 1 (6), 1-34.

  • Cox, K.G., Bell, J.D., Pankhurst, R.J. 1979. The interpretation of igneous rocks. Boston, George Allen and Unwin.

  • Cribb, J.W., Barton, M. 1996. Geochemical effects of decoupled fractional crystallization and crustal assimilation; Lithos, 37 (4) 293–307.

  • Çakır, Y., 1994. Ağrı Diyadin ve Iğdır Dolayının Jeoloji Etüdü. Maden Tetkik ve Arama Genel Müdürlüğü (MTA) Raporu, (yayınlanmamış).

  • De Paolo, D.J., 1982. Sm-Nd, Rb-Sr and U-Th_Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antartica. Nature, 298, 614- 618.

  • Dessai, A.G., Downes, H., Lopez-Moro, F.J., LopezPlaza, M., 2008. Lower crustal contamination of Deccan Traps magmas: Evidence from tholeiitic dykes and granulite xenoliths from western India. Mineralogy and Petrology, 93 (3–4), 243–272.

  • Ekici, T., Colin, M.G., Otlu, N. 2012. Polybaric melting of a single mantle source during the Neogene Siverek phase of the Karacadağ Volcanic Complex SE Turkey. Lithos, 146, 152-163

  • Elburg, M.A., Bergen, M.V., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I., Nasution, A., 2002. Geochemical trends across an arc– continent collision zone: magma sources and slab–wedge transfer processes below the Pantar Strait volcanoes, Indon

  • Ercan, T., Fujitani, T., Madsuda, J.I., Notsu, K., Tokel, S., Tadahide, U.I. 1990. Doğu ve güneydoğu Anadolu Neojen–Kuvaterner volkanitlerine ilişkin yeni jeokimyasal, radyometrik ve izotopik verilerin yorumu. Maden Tetkik Arama Dergisi, 110, 143–164

  • Foley, S.F., Tiepolo, M., Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837–840.

  • Freund, S., Beier, C., Krumm, S., Haase, K.M. 2013. Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation-fractional crystallization. Chemical Geology, 347, 271-283.

  • Fumagalli, P., Klemme, S. 2015. Mineralogy of the Earth. Phase transitions and mineralogy of the upper mantle, (Treatise on Geophysics Volume 2, Mineral Physics, 2nd ed., Editör Gerald, S.). Elsevier, Oxford, 7–31.

  • Genske, F.S., Beier, C., Haase, K.M., Turner, S.P., Krumm, S., Brandl, P.A., 2013. Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine. Geology, 41 (4) 491–494.

  • Guo, Z., Hertogen, J., Liu, J., Pasteels, P., Boven, A., Punzalan, L., He, H., Luo, X., Zhang, W. 2005. Potassic magmatism in western Sichun and Yunnan provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. Journal of P

  • Hart, S.R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letter, 90, 273-296.

  • Hawkesworth, C.J., Rogers, N.W., Vancalsteren, P.W.C. 1984. Mantle enrichment processes. Nature, 311, 331-335.

  • Hutchison, W., Mather, T.A., Pyle, D.M., Boyce, A.J., Gleeson, M.L., Yirgu, G., Blundy, J.D., Ferguson, J.D., Vye-Brown, C., Millar, L.I., Sims, K.W., Finch, A.A. 2018. The evolution of magma during continental rifting: new constraints from the isoto

  • Innocenti, F., Mazzuoli, R., Pasquare, G., Radicati di Brozolo, F., Villari, L. 1976. Evolution of volcanism in the area of interaction between the Arabian, Anatolian and Iranian plates Lake Van, Eastern Turkey. Journal of Volcanology and Geothermal

  • Innocenti, F., Mazzuoli, R., Pasquare, G., Serri, G., Villari, L. 1980. Geology of the volcanic area north of Lake Van, Turkey. Geologischen Rundschau, 69, 292–322.

  • Irvine, T.N., Baragar, W.R.A. 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal Earth Sciences, 8, 523-548.

  • Karaoğlan, F., Parlak, O., Thöni, M., Klötzli, U., Koller, F. 2016. The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U-Pb, Ar-Ar and fission track chronology. Gondwana Research, 33, 19

  • Keskin, M. 2003. Magma generation by slab steepening and breakoff beneath a subduction accretion complex: an alternative model for collisionrelated volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30, 8046-8050.

  • Keskin, M., Pearce, J.A., Kempton, P.D., Greenwood, P. 2006. Magma–crust interactions and magma plumbing in a post-collision setting: geochemical evidence from the Erzurum–Kars Volcanic Plateau, Eastern Turkey, (Postcollisional Tectonics and Magmatis

  • Keskin, M. 2007. Eastern Anatolia: a hot spot in a collision zone without a mantle pluma, (Plates, Plumes and Planetary Processes, Editörler: Foulger, G.R., Jurdy, D.). Geological Society of America Special papers, 430, 693–722.

  • Kessel, R., Schmidt, M., Ulmer, P., Pettke, T. 2005. Trace element signature of subductionzone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437, 724–727.

  • Ketin, İ. 1977. Türkiye’nin başlıca orojenik olayları ve paleocoğrafik evrimi. Maden Tetkik Arama Dergisi, 88, 1-4.

  • Koçyiğit, A. 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences, 62, 586-605.

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750.

  • Lebedev, V.A., Sharkov, E.V., Keskin, M., Oyan, V., 2010. Geochronology of the Late Cenozoic volcanism in the area of Van Lake (Turkey): an example of the developmental dynamics for magmatic processes. Doklady Earth Sciences, 433, 1031–1037.

  • Lightfoot, P., Hawkesworth, C., 1988. Origin of Deccan Trap lavas: Evidence from combined trace element and Sr-, Nd and Pb-isotope studies. Earth Planetary Science Letter, 91 (1–2) 89–104.

  • McKenzie, D., O’Nions, R.K. 1991. Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology, 32, 1021- 1091.

  • Michael, P.J., Cheadle, M.J. 2009. Making a Crust; Science, 323 (5917) 1017–1018.

  • Muller, D., Rock, N.M.S., Groves, D.I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineralogy and Petrology, 46, 259-289.

  • Naemura, K., Hırajima, T., Svojtka, M. 2009. The pressure-temperature path and the origin of phlogopite in spinel-garnet peridotites from the Blansky les massif of the Moldanubian Zone, Czech Republic. Journal of Petrology, 50, 1795– 1827.

  • Okay, A.I., Zattin, M., Cavazza, W. 2010. Apatite fission-track data for the Miocene Arabian-Eurasia collision. Geology, 38, 35-38.

  • Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., Sharkov, E.V. 2016. Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, Eastern Anatolian Collision Zone, Turkey. Lithos, 256- 257, 88-108.

  • Oyan, V. 2017. Petrogenesis and Ar-Ar dating of Early Miocene Mecitli granitoid in Eastern Anatolian Region, Turkey: evidence for lower crust-mantle interaction and fractionation from MMEs to host rocks on the basis of petrological modelling. World M

  • Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., Sharkov, E.V., Ünal, E. 2017. Petrology and Geochemistry of the Quaternary Mafic Volcanism in the northeast of Lake Van, Eastern Anatolian Collision Zone, Turkey. Journal of Petrology, 58, 1701-1728

  • Oyan, V. 2018. Geochemical and petrologic evolution of Otlakbaşı basaltic volcanism to the east of Lake Van. Bulletin of the Mineral Research and Exploration, 157, 1-21.

  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü., Güleç, N. 2006. Volcano stratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey. Chemical Geology, 226 (3- 4), 189-211.

  • Özdemir, Y., Güleç, N. 2014. Geological and geochemical evolution of Suphan stratovolcano Eastern Anatolia, Turkey: evidence for the lithosphere-asthenosphere interaction on post collisional volcanism. Journal of Petrology, 55, 37-62.

  • Özdemir, Y., Mercan, Ç., Oyan, V., Özdemir, A.A. 2019. Composition, pressure, and temperature of the mantle source region of quaternary nephelinebasanitic lavas in Bitlis Massif, Eastern Anatolia, Turkey: A consequence of melts from Arabian lithosphe

  • Pearce, J.A., Harris, N.B.W., Tindle, A.G.W. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.

  • Peccerillo, A., Taylor, S.P. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contribution Mineralogy and Petrology, 58, 63-81.

  • Perinçek D, 1980. Bitlis metamorfitlerinde volkanitli Triyas. Türkiye Jeoloji Kurumu Bülteni, 23 (2), 201–211.

  • Plank, T., Langmuir, C.H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325–394.

  • Ryan, J.G., Morris, J., Tera, F., Leeman, W.P., Tsvetskov, A. 1995. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science, 270, 625-627.

  • Sandvol, E., Türkelli, N., Barazangi, M. 2003. The Eastern Turkey Seismic Experiment: the study of a young continent-continent collision. Geophysical Research Letter, 24, 8038–8041.

  • Seghedi, I., Downes, H., Pécskay, Z., Thirwall, M.F., Szakács, A., Prychodko, M., Mattey, D. 2001. Magma genesis in a subduction-related postcollisional volcanic arc segment: the Ukrainian Carpathians. Lithos, 57, 237–262.

  • Seghedi, I., Downes, H., Szakács, A., Mason, P.R.D., Thirwall, M.F., Rosu, E., Pécskay, Z., Márton, E., Panaiotu, C. 2004. Neogene–Quaternary magmatism and geodynamics in the Carpathian– Pannonian region: a synthesis. Lithos, 72, 117– 146.

  • Sun, S.S., Bailey, D.K., Tarney, J., Dunham, K., 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society A, 297, 409–445.

  • Sun, S.S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, (Magmatism in Ocean Basins, Editörler: Saunders, A.D., Norry M.J.). Geological Society of London Special Publica

  • Şengör, A.M.C., Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241.

  • Şengör, A.M.C., Özeren, S., Genc, T., Zor, E. 2003. East Anatolian high plateau as a mantlesupported, north-south shortened domal structure. Geophysical Research Letter, 30 (24, 8045), 1-4.

  • Şengör, A.M.C., Özeren, M.S., Keskin, M., Sakınç, M., Özbakır, A.D., Kayan, I. 2008. Eastern Turkish high plateau as a small Turkic-type orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth Sciences Review,

  • Takahashi, E., Kushiro, I. 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist, 68, 859–879.

  • Tatsumi, Y., Hamilton, D.J., Nesbitt, R.W. 1986. Chemical characterization of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal

  • Taylor, S.R., McLennan, S.M. 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publication, Oxford.

  • Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., van Calsteren, P., Deng, W. 1996. Post-collisional, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the so

  • Turner, S.P., 2002. On the time-scales of magmatism at island-arc volcanoes. Philosophical Transactions of the Royal Society of London, Mathematical, Physical and Engineering Sciences, 360, 2853– 2871.

  • Wang, K.L., Chung, S., O’Reilly, S.Y., Sun, S., Shinjo, R., Chen, C. 2004. Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the Northern Taiwan region. Journal of Petrology, 45, 975-1011.

  • Weaver, B.L., Tarney, J., 1984. Empirical approach to estimating the composition of the continental crust. Nature 310, 575-577

  • Yılmaz, Y., Şaroğlu, F., Güner, Y. 1987. Initiation of the neomagmatism in East Anatolia. Tectonophysics, 134, 177–199.

  • Yılmaz, Y., Güner, Y., Şaroğlu, F. 1998. Geology of the Quaternary volcanic centers of the east Anatolia. Journal of Volcanology and Geothermal Research, 85, 173–210.


  • çlan, M , Altun, Y . (2020). Çarpışma Sonrası Pliyosen Gözucu (Taşlıçay-Ağrı) Volkaniklerinin Jeokimyasal Özellikleri ve Magma Kaynak Bölge Karakteristikleri, Doğu Anadolu, Türkiye . Türkiye Jeoloji Bülteni , 63 (2) , 195-214. DOI:10.25288/tjb.569247

  • Porosity and Density Evaluation of Fatha-Hartha Interval in East Baghdad Oil Field Using Well Log Data
    Maan H. Abdullah Al-Majid
    View as PDF

    Abstract: The present study deals with experimental mathematical equations that link density and porosity withdepth. After obtaining density and porosity information from three well logs scattered in the East Baghdad oil field,new empirical polynomial equations (porosity-depth, density-depth) were produced for all the geological formationsbetween the Fatha and Hartha formations. The coefficient of determination (R2) of the equations derived for eachformation ranged from 0.11 to 0.93, which was attributed to variable lithological and compaction effects. The depthinformation of (131) velocity analyses situated on the seismic lines grid covering the field was used for applying thenew equations. After the new empirical polynomial equations were applied to the whole field, porosity and densitycontour maps for the Fatha-Hartha interval were produced. The location of high porosity zones was identified andrelated to the compaction and petroleum distribution in the field.

  • East Baghdad oil field

  • Empirical equations

  • Petrophysical parameters

  • Seismic velocity analyses

  • Al-Ameri, T.K. and Al-Obaydi, 2011. Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Journal of Marine and Petroleum Geology, Elsevier, 28, 880-894.

  • Alrazzaq, A.A., 2019. Development of East Baghdad Oil Field by Clusters of Horizontal Wells. Iraqi Journal of Chemical and Petroleum Engineering, 20 (3), 75-79.

  • Al-majid, M., 1992. The study of compaction in the east Baghdad oil field by using seismic velocity analyses. MSc thesis, University of Mosul, Iraq, (unpublished).

  • Darweesh, H.A., Obed, A.M., Albadran, B.N., 2017. Structural study of east Baghdad oil field, central Iraq. World Journal of Engineering Research and Technology, 3 (6), 56-66.

  • El-Shari, S.M., 2017. Normal and abnormal porositydepth relationship of tertiary rocks in Soluq depression, NE-Libya. Journal of Science and its Applications, 5 (1), 1-7.

  • Midfield Oil Company (MFOC), 2005. “Final Well Reports”, Iraq.

  • Ojha, M., and Sain, K., 2014. Velocity-Porosity and Velocity-Density Relationship for Shallow Sediments in the Kerala-Konkan Basin of Western Indian Margin. Journal of Geological Society of India, 84, 187-191.

  • Tamunosiki, D, Ming, G.H., Uko, E.,D., Ari, I.T., Emudianughe, J.E., 2014. Porosity modeling of the south-east Niger delta basin, Nigeria. International Journal of Geology, Earth and Environmental Sciences, 4 (1), 49-60.


  • Abdullah, M . (2020). Porosity and Density Evaluation of Fatha-Hartha interval in East Baghdad Oil Field using Well Log Data . Türkiye Jeoloji Bülteni , 63 (2) , 215-224 . DOI: 10.25288/tjb.653217

  • Mapping of Volcanic Rocks Around Susuzdağ and Tekkedağ (Cappadocia-Turkey) Using ASTER image
    Aziz Özyavaş
    View as PDF

    Abstract: The study area, located in the Cappadocia Volcanic Terrain between the dextral Tuz Gölü fault and sinistralEcemiş fault, was affected by neotectonic forces and accordingly underwent volcanic activity that developed fromlate Miocene until recent years. Extrusive igneous rocks outcropping in central Anatolia around Susuzdağ (Hamurcutown, Kayseri) and Tekkedağ (Başdere town, Niğde) were mapped using an Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER) multispectral satellite image. Band ratio images of 9/8, (1+4)/(2+3), 6 and(1+4)/(2+3), 8, 4/6 (RGB) were constructed by taking in account ASTER bands corresponding to the characteristicFe, Al-OH and Fe/Mg-OH absorption features of rocks in the region, and the boundaries of basalt, basaltic andesite/andesite, dacite and pyroclastic rocks in the region were delineated. It was demonstrated that a band ratio of 9/8 isparticularly effective in differentiating basalt and andesite from the surrounding extrusive igneous rocks. In addition,the ferrous iron index, (1+4)/(2+3), clearly indicates dacite domes as bright pixels around Hamurcu town. Incesuignimbrite covering large areas in the region appears in darker tones than the surrounding rocks in the 4/6 bandratio image due to the fact that it has a relatively shallow absorption feature in ASTER band6. The accuracy of the resultant lithological maps generated from the first-time used band ratio images was verified by comparing the fieldsurvey and geological maps. Although there is some uncertainty in discriminating between basalt and andesite, theresultant ASTER images enable us to map extrusive igneous rocks in a cost-effective, reliable and fast manner. Themethodology used in this study can be applied for mapping igneous rocks in similar geographic locations in Turkeyand around the world.

  • ASTER

  • Band ratio

  • Extrusive igneous rocks

  • Central Anatolia

  • Cappadocia

  • Remote sensing

  • Ak, S., Yumuk, O., Yıldız, H., Mengeloğlu, M., 2015. Hamurcu-(İncesu-Kayseri ve Başdere (Yeşilhisar-Kayseri) Au-Ag-Cu-Mo-Pb-ZnAs Cevherleşmesi. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 20, 85-95.

  • Akçay, A.E., Dönmez, M., Türkecan, A., 2017. Sultan sazlığı havzasının (Kayseri) açılım yaşına ilişkin jeolojik veriler. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 22, 57-62.

  • Amer, R., Kusky, T., Ghulam, A., 2010. Lithological mapping in the central eastern desert of Egypt using ASTER data. Journal of African Earth Sciences, 56 (2), 75-82.

  • Batum, I., 1978. Nevşehir güneybatısındaki Göllüdağ ve Acıgöl yöresi volkanitlerinin jeoloji ve petrografisi. Hacettepe Universitesi YerbilimleriBulletin for Earth Sciences, (3) 50–69.

  • Chabrillat, S., Goetz, A.F.H., Krosley, L., Olsen, H.W., 2002. Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sensing of Environment, 82, 431-445.

  • Clark, R.N., 1999. Spectroscopy of rocks and minerals and principles of spectroscopy (Remote sensing for the earth sciences, manual of remote sensing, Ed.: Rencz, A.N.). John Wiley and Sons, New York, 3–58.

  • Delibaş, O., Genç, Y., 2012. Late Cretaceous coeval acidic and basic magmatism, Karacaali magmatic complex, central Anatolia, Turkey. International Geology Review, 54 (14), 1697-1720.

  • Dhont, D., Chorowicz J., Yürür T., Froger J.-L., Köse O., Gündoğdu N., 1998. Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 33-54.

  • Dönmez, M., Türkecan, A., Akçay, A.E., 2003. Kayseri - Niğde - Nevşehir yöresi Tersiyer volkanitleri. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor No:10575 Ankara, (yayımlanmamış).

  • Dönmez, M., Akçay, A.E., Türkecan, A., 2005. 1/100.000 ölçekli Türkiye Jeoloji Haritaları serisi. Kayseri - K34 paftası: No: 49, Maden Tetkik ve Arama Genel Müdürlüğü Yayını.

  • Drury, S., 2001. Image interpretation in geology. Blackwell Science, Malden, MA, 304 s.

  • Ercan, T., 1986. Orta, Anadolu’daki Senozoyik volkanizması. Bulletin of the Mineral Research and Exploration, 107, 119-140.

  • Fujisada, H., 1995. Design and performance of ASTER instrument. Proceedings of SPIE, the International Society for Optical Engineering, 2583, 16–25.

  • Genç, Y., Yürür, T., 2010. Coeval extension and compression in Late Mesozoic-Recent thinskinned extensional tectonics in central Anatolia, Turkey. Journal of Structural Geology, 32, 623–640.

  • Göncüoğlu, M., 2010. Türkiye Jeolojisine Giriş: Alpin ve Alpin Öncesi Tektonik Birliklerin Jeodinamik Evrimi. Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Monografi Serisi: 5, Ankara, 69 s.

  • Haselwimmer, C.E., Riley, T.R., Liu, J.G., 2010. Assessing the potential of multispectral remote sensing forlithological mapping on the Antarctic Peninsula: case study from eastern Adelaide Island, Graham Land, Antarctic Science, 22, (3), 299–318

  • Hunt, G.R., Salisbury, J.W., Lenhoff, C.J., 1974. Visible and near infrared spectra of minerals and rocks: IX. Basic and ultrabasic igneous rocks. Modern Geology, 5, 15–22.

  • Idleman, L., Cosca, M.A., Heizler, M.T., Thomson, S.N., Teyssier, C., Whitney, D.L., 2014. Tectonic burial and exhumation cycles tracked by muscovite and K-feldspar 40Ar/39Ar thermochronology in a strike-slip fault zone. Tectonophysics, 612-613, 134-

  • Innocenti, F., Mazzudi, R., Pasquare, G., Radicati, Brozolo F., Villari, L., 1975. The Neogene calc-alkaline volcanism of Central Anatolia: Geochronological data on Kayseri-Niğde area: Geological Magazine, 112, 349-360.

  • Keskin, H., Dönmez, M., Akçay, A.E., 2010. 1/100.000 ölçekli Türkiye Jeoloji haritaları, Kayseri L34 paftası, No: 141 Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.

  • Koçyiğit, A., Erol, O., 2001. A tectonic escape structure: Erciyes pull-apart basin, Kayseri, central Anatolia, Turkey. Geodinamica Acta, 14, 133–145.

  • Koralay, T., Kadıoğlu, Y.K., 2003. İgnimbiritlerin tavan ve taban ilişkilerini belirleyen petrografik veriler: İncesu (Kayseri) ignimbiriti. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 18 (1), 43-54.

  • Koralay, T., 2006. İncesu ignimbiritinin (Kayseri) Jeolojisi, Petrolojisi ve Ayırtman Özellikleri. Ankara Üniversitesi, Doktora Tezi., 302 s., (yayımlanmamış).

  • Le Pennec, J.L., Bourdier, J.L., Froger, J.L., Temel, A., Camus, G., Gourgaud, A., 1994. Neogene Ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research,

  • Le Pennec, J.L., Temel, A., Froger, J.L., Şen, Ş., Gourgaud, A., Bourdier, J.L., 2005. Stratigraphy and age of the Cappadocia ignimbrites, Turkey reconciling field constraints with paleontologic, radiochronologic, geochemical and paleomagnetic data.

  • Lillesand, T., Kiefer, R.W., Chipman, J., 2004. Remote Sensing and Image Interpretation, 5. ed. Wiley India Pvt. Limited, 763 s.

  • Mars, J.C., 2010. VINR-SWIR and TIR remote sensing of porphyry copper deposits, (Porphyry Copper Deposit Model, Ed.: John, D.A.). Scientific Investigations Report, 5070-B, 38–50.

  • Mars, J.C., Rowan, L.C., 2010. Spectral Assessment of New ASTER SWIR Surface Reflectance Data Products for Spectroscopic Mapping of Rocks and Minerals. Remote Sensing of Environment, 114, 2011–2025.

  • Pasquare, G., 1968. Geology of the Cenozoic volcanic area of Central Anatolia. Accademia nazionale dei Lincei, 8 (9), 53–204.

  • Pasquare, G., Poli, S., Vezzoli, L., Zanchi, A., 1988. Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysics, 146, 217–230.

  • Pour A.M., Hashim M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposit. Ore Geology Reviews, 44, 1-9.

  • Rajendran, S., Nasir, S., 2017. Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews, 88, 317–335.

  • Rockwell, B.W., 2012. Description and Validation of an Automated Methodology for Mapping Mineralogy, Vegetation, and Hydrothermal Alteration Type from ASTER Satellite Imagery with Examples from the San Juan Mountains, Colorado: Scientific Investigati

  • Rotstein Y., Kafka A.L., 1982. Seismotectonics of the southern boundary of Anatolia, Eastern Mediterranean region: subduction, collision and arc jumping Journal of Geophysical Research: Solid Earth, 87 (B9), 7694–7706.

  • Rowan, L.C., Mars, J.C., 2003. Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Remote Sensing of Environment, 84, 350–366.

  • Schumacher, R., Keller, J., Bayhan, H., 1990. Depositional characteristics of ignimbrites in Cappadocia, Central Anatolia, Turkey. Proceedings of IESCA Congress. (Ed. Savaşcın, Y., Eronat, H.A.,), 2, 435-449.

  • Schumacher, U.M., Schumacher, R., Götte-Viereck, G.L., Lepetit, P., 2004. Areal Distribution and Bulk Rock Density Variations of the Welded İncesu Ignimbrite, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 13 (3), 249-267.

  • Seyitoğlu, G., Scott, B.C., 1996. The cause of N–S extensional tectonics in western Turkey: tectonic escape vs back-arc spreading vs orogenic collapse. Journal of Geodynamics, 22, 145-153.

  • Tommaso, I.M., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290.

  • Toprak, V., 1998. Vent distribution and its relation to regional tectonics, Cappadocia Volcanics, Turkey. Journal of Volcanology and Geothermal Research, 85 (1-4), 55-67.

  • Toprak, V., Keller, J., Schumacher, R., 1994. Volcano tectonic features of the Cappadocian volcanic province. International Volcanological Congress, IAVCEI’94, Excursion Guide. Ankara.

  • Türkecan, A., Dönmez, M., Akçay, A., 2003. KayseriNiğde-Nevşehir Yöresi Tersiyer Volkanitleri. Maden Tetkik ve Arama Genel Müdürlüğü, Rapor no: 10575. (yayımlanmamış).

  • Yamaguchi, Y., Naito, C., 2003. Spectral Indices for Lithologic Discrimination and Mapping by Using the ASTER SWIR Bands. International Journal of Remote Sensing, 24, 4311–4323.

  • Zhou, K., Wang, S., 2017. Spectral properties of weathered and fresh rock surfaces in the Xiemisitai metallogenic belt, NW Xinjiang, China. Open Geosciences, 9, 322–339.


  • Özyavaş, A . (2020). Susuzdağ ve Tekkedağ (Kapadokya-Türkiye) Çevresindeki Volkanik Kayaçların ASTER Görüntüsü Kullanılarak Haritalanması . Türkiye Jeoloji Bülteni , 63 (2) , 225-240 . DOI: 10.25288/tjb.612106

  • ISSUE FULL FILE
    View as PDF