Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2020 AĞUSTOS Cilt 63 Sayı 3
View as PDF
View as PDF
View as PDF
Evolving from Supra-Detachment to Rift Basin in Rolling Hinge Model of the Büyük Menderes Graben
Ökmen Sümer Hasan Sözbilir Bora Uzel
View as PDF

Abstract: Two types of basins developed in the Western Anatolian extensional tectonic system during the MioceneQuaternary interval, supra-detachment and rift basins, in the form of a rolling-hinge mechanism. In this study,stratigraphic and structural data on the presence of a rolling-hinge model in the area between Buharkent-Buldan onthe northern edge of the Büyük Menderes Graben are presented for the first time and the geological evolution of thegraben is discussed. In the light of obtained field data, the Miocene-Quaternary sequences deposited on the northernedge of the Büyük Menderes Graben were evaluated under 4 main sedimentary packages, which are separated fromeach other by angular and/or intrabasinal unconformities. These are the Lower-Middle Miocene (1st Package) and the Middle-Upper Miocene (2nd Package) which were deposited in the supra-detachment basin, and the PlioQuaternary 3rd and 4th packages formed in the rift basin. The structural elements that provide the basin formationand deformation of the region are the Miocene Büyük Menderes Detachment Fault, the Pio-Quaternary GökdereFault, and the Holocene Buharkent Fault Segment that cuts the youngest graben basin-fill located in the most easternpart of the Büyük Menderes Fault System.The main fault contacts of the supra-detachment basins characterizing the Miocene period are represented bya structural boundary of gneisses and schists belonging to the Menderes Massif, which is a relict of the effectivecompressional tectonic products of the Eocene–Oligocene interval.Due to the effectiveness of low-angle faults in the Menderes Massif until the end of Pliocene, a high rate ofextension occurred; because of this, the crust thickness was reduced. As a result of cooling of the crust duringQuaternary, the supra-detachment basin system was replaced by a rift system and the Menderes Massif was dividedinto blocks along the high-angle boundary faults of the rift basin. Field observations and kinematic analysis revealthat tectonic structures on the northern margin of the Büyük Menderes Graben evolved from low-angle to high-anglenormal faulting, and were rejuvenated southward parallel to the basin propagation in a rolling-hinge model. Thus,the basin formation also evolved from being supra-detachment to the rift type.

  • Supra-detachment basin

  • Rift basin

  • Rolling-hinge model

  • Büyük Menderes Graben

  • Western Anatolia


  • Akarsu, İ., 1969. Ege Bölgesinin (Babadağ ve civarı) jeolojisi. Türkiye Jeoloji Bülteni, 12 (1-2), 1-9.

  • Akartuna, M. 1962. İzmir-Torbalı-Seferihisar-Urla bölgesi jeolojisi hakkında. Maden Tetkik ve Arama Dergisi, 59, 1–18.

  • Akgün, F., Akyol, E., 1999. Palynostratigraphy of the coal-bearing Neogene deposits graben in Büyük Menderes Western Anatolia. Geobios, 32 (3), 367- 383.

  • Alçiçek, H., Varol, B., Özkul, M., 2007. Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia, Turkey. Sedimentary Geology, 202 (4), 596-637.

  • Allmendinger, R.W., Gephardt, J.W., Marrett, R.A., 1989. Notes on fault slip analysis. Notes to the Geological Society of America short course on “Quantitative interpretation of joints and faults”. Cornell University, Ithaca, New York, 56 s.

  • Allmendinger, R.W., Cardozo, N., Fisher, D., 2012. Structural geology algorithms: Vectors and tensors. Cambridge University Press, Cambridge, 302 s.

  • Ambraseys, N.N. 1988. Engineering seismology: Part I. Earthquake engineering & structural dynamics, 17 (1), 1-50.

  • Angelier, J., Dumont, J.F., Karamanderesi, H., Poisson, A., Şimşek, Ş. Uysal, Ş., 1981. Analyses of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. Tectonophysics, 75 (3-4), T1-T9.

  • Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., Huchon, P., 1982. The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics, 86 (1-3), 159-196.

  • Arpat, E., Bingöl, E., 1969. Ege Bölgesi graben sisteminin gelişimi üzerine düşünceler. Maden Tetkik ve Arama Dergisi, 73, 1-9.

  • Asti, R., Malusà, M.G., Faccenna, C., 2018. Supradetachment basin evolution unravelled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 30 (3), 502-521.

  • Asti, R., Faccenna, C., Rossetti, F., Malusà, M.G., Gliozzi, E., Faranda, C., Lirer, F., Cosentino, D. 2019. The Gediz supradetachment system (SW Turkey): magmatism, tectonics, and sedimentation during crustal extension. Tectonics, 38 (4), 1414- 1440

  • Berckhemer, H., 1977. Some aspects of the evolution of marginal seas deduced from observations in the Aegean region. In: Proceedings of the International Symposium on the Structural History of the Mediterranean Basins, Split, Yugoslavia, 303-314.

  • Bozcu, M., 2010. Geology of Neogene basins of Buldan-Sarıcaova region and their importance in Western Anatolia neotectonics. International Journal of Earth Sciences, 99 (4), 851-861.

  • Bozkurt, E., 2000. Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications, (Tectonics and Magmatism in Turkey and the Surrounding Area, Editörler: E. Bozkurt, E., Winchester, J.A., Piper, J.D.A.). Geological S

  • Bozkurt, E. 2001. Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14 (1-3), 3-30.

  • Bozkurt, E., Park, R.G., 1994. Southern Menderes Massif: an incipient metamorphic core complex in western Anatolia, Turkey. Journal of the Geological Society, 151 (2), 213-216.

  • Bozkurt, E., Park, R.G., 1999. The structure of the Palaeozoic schists in the southern Menderes Massif, western Turkey: a new approach to the origin of the Main Menderes Metamorphism and its relation to the Lycian Nappes. Geodinamica Acta, 12 (1), 25

  • Bozkurt, E., Satır, M., 2000. The southern Menderes Massif (western Turkey): geochronology and exhumation history. Geological Journal, 35 (3-4), 285-296.

  • Bozkurt, E., Sözbilir, H., 2004. Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geological Magazine, 141 (1), 63-79.

  • Bozkurt, E., Rojay, B., 2005. Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodinamica Acta, 18 (3-4), 299-316.

  • Bozkurt, E., Park, R.G., Winchester, J.A., 1993. Evidence against the core/cover interpretation of the southern sector of the Menderes Massif, west Turkey. Terra Nova, 5 (5), 445-451.

  • Bozkurt, E., Winchester, J.A., Ruffet, G., Rojay, B. 2008. Age and Chemistry of Miocene Volcanic. Rocks from the Kiraz Basin of the Küçük Menderes Graben: Its Significance for the Extensional Tectonics of Southwestern Anatolia, Turkey. Geodinamica Ac

  • Brun, J.P., Faccenna, C., Gueydan, F., Sokoutis, D., Philippon, M., Kydonakis, K., Gorini, C. 2016. The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Canadian Journal of Earth Sciences, 53 (11), 11

  • Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C., Rätz, M., 2013. Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. Jo

  • Candan, O., Dora, O.Ö., Kun, N., Akal, C., Koralay, E., 1992. Aydın Dağları (Menderes Masifi) güney kesimindeki allokton metamorfik birimler. Türkiye Petrol Jeologları Derneği Bülteni, 4 (1), 93-110.

  • Catlos, E.J., Çemen, İ., 2005. Monazite ages and the evolution of the Menderes Massif, western Turkey. International Journal of Earth Sciences, 94 (2), 204-217.

  • Catlos, E.J., Baker, C., Sorensen, S.S., Çemen, İ., Hançer, M., 2010. Geochemistry, geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites (central Menderes Massif, western Turkey): Implications for Aegean tectonics. Tect

  • Cohen, H.A., Dart, C.J., Akyüz, H.S., Barka, A., 1995. Syn-rift sedimentation and structural development of the Gediz and Büyük Menderes graben, western Turkey. Journal of the Geological Society, 152 (4), 629-638.

  • Çağlayan, M.A., Öztürk, E.M., Öztürk, Z., Sav, H., Akat, U., 1980. Menderes Masifi güneyine ait bulgular ve yapısal yorum. Jeoloji Mühendisliği Dergisi, 10, 9-17.

  • Çemen, İ., Catlos, E.J., Göğüş, O., Özerdem, C., Dilek, Y., Pavlides, S., 2006. Postcollisional extensional tectonics and exhumation of the Menderes massif in the Western Anatolia extended terrane, Turkey. Geological Society of America, Special Paper

  • Çifçi, G., Pamukçu, O., Çoruh, C., Çopur, S., Sözbilir, H., 2011. Shallow and deep structure of a supra-detachment basin based on geological, conventional deep seismic reflection sections and gravity data in the Buyuk Menderes Graben, western Anatoli

  • Çiftçi, N.B., Bozkurt, E., 2009. Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216 (3-4), 49-79.

  • Çiftçi, N.B., Bozkurt, E., 2010. Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Research, 22 (6), 846-873.

  • Delaloye, M., Bingöl, E., 2000. Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. International Geology Review, 42 (3), 241-268.

  • Demirel, V., Azıtepe A.M., Güven, A., 2011. DenizliBuharkent KB-1 Sıcak Su Sondajı Kuyu Bitirme Raporu, MTA Rapor, No: 11461, Ankara, Türkiye.

  • Dewey, J.F., Şengör, A.M.C., 1979. Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90 (1), 84-92.

  • Doblas, M., 1998. Slickenside kinematic indicators. Tectonophysics, 295, 187–197.

  • Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., Savascin, Y., 2002. On the extension in western Anatolia and the Aegean Sea. Journal of the Virtual Explorer, 8, 169-183.

  • Dora, Ö., 1976. Die Feldspäte als petrogenetischer indikator im Menderes Massiv/Westanatolien. Neues Jahrbuch für Mineralogie Abhandlungen, 127 (3), 289-310.

  • Duman, T.Y., Emre, Ö., Özalp, S., Elmacı, H., 2011. 1:250000 Ölçekli Türkiye Diri Fay Haritası, Aydın (NJ35-11) Paftası, Seri No:7, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.

  • Dumont, J.F., Uysal, Ş., Şi̇mşek, Ş., Karamanderesi̇, I.H., Letouzey, J., 1979. Güneybatı Anadolu’daki Grabenlerin Oluşumu. Maden Tetkik ve Arama Dergisi, 92, 7-17.

  • Dumont, J.F., Uysal, Ş., Şimşek, Ş., 1981. Superposition des jeux sur une faille et succession des événements néotectoniques. L’exemple d’Éphese (Turquie). C.R. somm. Soc. géol. Fr., 1, 22-24.

  • Emre, T., Sözbilir, H., 1997. Field evidence for metamorphic core complex, detachment faulting and accommodation faults in the Gediz and Büyük Menderes grabens, western Anatolia. In: Ö. Pişkin, M. Ergün, M.Y. Savaşcın, G. Tarcan, (eds.). Proceedings

  • Emre, T., Sözbilir, H., 2007. Tectonic evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift-related basin formation overprinted by extensional tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16 (4), 441-

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., 2011. 1:250000 Ölçekli Türkiye Diri Fay Haritası, Denizli (NJ35-12) Paftası, Seri No:12, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Active fault map of Turkey with explanatory text. Publications of the Mineral Research and Exploration, Special Publication Series 30, Ankara.

  • Erdoğan, B., Güngör, T., 2004. The problem of the core– cover boundary of the Menderes Masif and an emplacement mechanism for regionally extensive gneissic granite, Western Anatolia Turkey. Turkish Journal of Earth Science, 13, 15-36.

  • Erinç, S., 1955. Die morphologischen Entwicklungstadien der Küçük Menderes-Masse. Review of the Geographical Institute of the University of Istanbul, 2, 93-95.

  • Evirgen, M.M., Ataman, G., 1982. Étude du métamorphisme de la zone centrale du Massif du Menderes. Isogrades, pressions et température. Bulletin de la Société Géologique de France, 24 (7), 309-319.

  • Eyidoğan, H., Jackson, J., 1985. A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969–70 in western Turkey: Implications for the nature and geometry of deformation in the continental crust. Geophysical Journ

  • Gessner, K., Ring, U., Lackmann, W., Passchier, C.W., Güngor, T., 1998. Structure and crystal thickening of the Menderes massif, southwest Turkey, and consequences for large-scale correlations between Greece and Turkey. Bulletin of the Geological Soc

  • Gessner, K., Piazolo, S., Güngör, T., Ring, U., Kröner, A., Passchier, C.W., 2001a. Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. International Journal of Earth Sciences, 89

  • Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W., Güngör, T., 2001b. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology, 29 (7), 611-614.

  • Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N., 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research, 24 (1), 24

  • Glodny, J., Hetzel, R., 2007. Precise U–Pb ages of syn-extensional Miocene intrusions in the central Menderes Massif, western Turkey. Geological Magazine, 144 (2), 235-246.

  • Göğüş, O., 2004. Geometry and tectonic significance of the Büyük Menderes detachment in the Başçayır area, Büyük Menderes graben, western Turkey Oklahoma State University, Yüksek Lisans tezi, 81 s.

  • Gürer, Ö.F., Sarica-Filoreau, N., Özburan, M., Sangu, E., Doğan, B., 2009. Progressive development of the Büyük Menderes Graben based on new data, western Turkey. Geological Magazine, 146 (5), 652-673.

  • Hamilton, W.J., Strickland, H. E., 1841. On the Geology of the Western Part of Asia Minor. Transactions of the Geological Society of London, 6, Second series, 1-39.

  • Hancock, P.L., Barka, A., 1987. Kinematic indicators on active normal faults in western Turkey. Journal of Structural Geology, 9, 573–584.

  • Hanmer, S., Passchier, C.W., 1991. Shear-sense indicators: a review. Geological Survey of Canada Paper, 90-17, 70 s.

  • Hetzel, R., Ring, U., Akal, C., Troesch, M., 1995. Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society, 152 (4), 639- 654.

  • Hetzel, R., Reischmann, T., 1996. Intrusion age of PanAfrican augen gneisses in the southern Menderes Massif and the age of cooling after Alpine ductile extensional deformation. Geological Magazine, 133, 565-572.

  • Hetzel, R., Zwingmann, H., Mulch, A., Gessner, K., Akal, C., Hampel, A., Güngör, T., Petschick, R., Mikes, T., Wedin, F., 2013. Spatiotemporal evolution of brittle normal faulting and fluid infiltration in detachment fault systems: A case study from

  • Hilgen, F.J., Lourens, L.J., van Dam, J.A., 2012. The Neogene Period, (The Geologic Time Scale, Editörler: Gradstein, F.M. Ogg, J.G., Schmitz, M., Ogg, G.). Elsevier, Oxford, 923-978.

  • Hippolyte, J.C., Bergerat, F., Gordon, M.B., Bellier, O., Esput, N., 2012. Keys and pitfalls in mesoscale fault analysis and paleostress reconstructions, the use of Angelier’s methods. Tectonophysics, 581, 144–162.

  • İzdar, E., 1971. Introduction to geology and metamorphism of the Menderes massif of western Turkey. Geology and history of Turkey. The Petroleum Exploration Society of Libya, Tripoli, Libya, 495-500.

  • Jackson, J., McKenzie, D., 1988. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93 (1), 45-73.

  • Kaya, A., 2015. The effects of extensional structures on the heat transport mechanism: an example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey). Journal of African Earth Sciences, 108, 74-88.

  • Kaymakçı, N., 2006. Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): implications of spatial variation of relative paleostress magnitudes and orientations. Journal of Asian Earth Sciences, 27 (2), 207-222.

  • Kent, E., Boulton, S.J., Stewart, I.S., Whittaker, A.C., Alçiçek, M.C., 2016. Geomorphic and geological constraints on the active normal faulting of the Gediz (Alaşehir) Graben, Western Turkey. Journal of the Geological Society, 173 (4), 666-678.

  • Kissel, C., Laj, C., 1988. The Tertiary geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics, 146 (1-4), 183- 201.

  • Koçyiğit, A., Özacar, A., 2003. Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turkish Journal of Earth Sciences, 12, 67–90.

  • Koçyiğit, A., Yusufoğlu, H., Bozkurt, E., 1999. Evidence from the Gediz graben for episodic twostage extension in western Turkey. Journal of the Geological Society, 156 (3), 605-616.

  • Koçyiğit, A., 2015. An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben, SW Turkey. Geodinamica Acta, 27 (2-3), 85-109.

  • Konak, N. 2002. 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel, M., (ed.)) Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Konak, N., Şenel, M., 2002. 1/500.000 Türkiye Jeoloji Haritası Denizli Paftası, (Şenel, M., (ed.)) Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Koralay, O.E., Satir, M., Dora, O.Ö., 2001. Geochemical and geochronological evidence for Early Triassic calc-alkaline magmatism in the Menderes Massif, western Turkey. International Journal of Earth Sciences, 89 (4), 822-835.

  • Koralay, E., Dora, O.Ö., Chen, F., Satir, M., Candan, O., 2004. Geochemistry and geochronology of orthogneisses in the Derbent (Alaşehir) area, eastern part of the Ödemiş-Kiraz submassif, Menderes Massif: Pan-African magmatic activity. Turkish Journa

  • Lips, A.L., Cassard, D., Sözbilir, H., Yilmaz, H., Wijbrans, J.R., 2001. Multistage exhumation of the Menderes massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89 (4), 781-792.

  • Loos, S., Reischmann, T., 1999. The evolution of the southern Menderes Massif in SW Turkey as revealed by zircon dating. Journal of the Geological Society, 156 (5), 1021-1030.

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Kastens, K., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105

  • Nebert, K., 1958. Denizli Pliyosen teressübatı ve bunların Batı Anadolu tatlı su Neojen stratigrafisi için ehemmiyeti. Maden Tetkik ve Arama Dergisi, 51, 7–19.

  • Nilius, N.P., Glotzbach, C., Wölfler, A., Hampel, A., Dunkl, I., Akal, C., Heineke, C., Hetzel, R., 2019. Exhumation history of the Aydın range and the role of the Büyük Menderes detachment system during bivergent extension of the central Menderes Ma

  • Ocakoğlu, F., Acıkalın, S., Özsayın, E., Dirik, R.K., 2014. Tectonosedimentary evolution of the Karacasu and Bozdoğan basins in the Central Menderes Massif, W Anatolia. Turkish Journal of Earth Sciences, 23, 361-385.

  • Okay, A.I., 2001. Stratigraphic and metamorphic inversions in the central Menderes massif. A new structural model. International Journal of Earth Sciences, 91 (1), 173-178.

  • Oner, Z., Dilek, Y. 2011. Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. Geological Society of America Bulletin, 123 (11- 12), 2115-2141.

  • Oppenheim, P., 1918. Das Neogen in Kleinasien. Zeitschrift der Deutschen Geologischen Gesellschaft, 70, 1-210.

  • Oral, M.B, Reilinger, R.E., Toksöz, N.M., King, R.W., Barka, A., Kinik, İ., Lenk, O., 1995. Global positioning system offers evidence of plate motions in eastern Mediterranean. EOS, Transactions, American Geophysical Union, 76 (2), 9-11.

  • Özer, S., Sözbilir, S., 2003. Presence and tectonic significance of Cretaceous rudist species in the socalled Permo-Carboniferous Göktepe Formation, central Menderes metamorphic massif, western Turkey. International Journal of Earth Sciences, 92, 397

  • Özkaymak, Ç., Sözbilir, H., Uzel, B., 2013. Neogene– Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.

  • Passchier, C., Coelho, S., 2006. An outline of shearsense analysis in high-grade rocks. Gondwana Research, 10 (1-2), 66-76.

  • Petit, J.P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9 (5-6), 597-608.

  • Philippson, A., 1914. Reisen und Forschungen im Ewestlichen Kleinasien. Gotha: Justus Perthes, IV. Heft, Nr. 180, 107 s.

  • Purvis, M., Robertson, A., 2004. A pulsed extension model for the Neogene–Recent E–W-trending Alaşehir Graben and the NE–SW-trending Selendi and Gördes Basins, western Turkey. Tectonophysics, 391 (1), 171-201.

  • Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature, 359 (6391), 117- 122

  • Reilinger, R.E., McClusky, S.C., Oral, M.B., King, R.W., Toksoz, M.N., Barka, A.A., Kinik, I., Lenk, O., Sanli, I., 1997. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journ

  • Ring, U., Gessner, K., Güngör, T., Passchier, C.W., 1999. The Menderes Massif of western Turkey and the Cycladic Massif in the Aegean—do they really correlate?. Journal of the Geological Society, 156 (1), 3-6.

  • Ring, U., Johnson, C., Hetzel, R., Gessner, K., 2003. Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geologic

  • Rojay, B., Toprak, V., Demirci, C., Süzen, L., 2005. Plio-Quaternary evolution of the Küçük Menderes Graben Southwestern Anatolia, Turkey. Geodinamica Acta, 18 (3-4), 317-331.

  • Rossetti, F., Asti, R., Faccenna, C., Gerdes, A., Lucci, F., Theye, T., 2017. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos, 282, 145-162.

  • Rotstein, Y., 1984. Counterclockwise rotation of the Anatolian block. Tectonophysics, 108 (1-2), 71- 91.

  • Saraç, G., 2003. Türkiye Omurgalı Fosil Yatakları. Maden Tetkik Arama Müdürlüğü (MTA), Bilimsel Rapor 10609, 208 s.

  • Sarıca, N., 2000. The Plio-Pleistocene age of Büyük Menderes and Gediz Grabens and their tectonic significance on N-S extensional tectonics in West Anatolia: mammalian evidence from the continental deposits. Geological Journal, 35, 1-24.

  • Sarıca-Filoreau, N., 2002. Faunes de rongeurs néogènes et quaternaires des grabens d’Anatolie occidentale: Systematique, biochronologie et implications tectoniques. Doctoral dissertation, Paris, Muséum national d’histoire Naturelle. 346 s.

  • Satir, M., Friedrichsen, H., 1986. The origin and evolution of the Menderes Massif, W-Turkey: a rubidium/strontium and oxygen isotope study. Geologische Rundschau, 75 (3), 703-714.

  • Seyitoğlu, G., Scott, B., 1991. Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128 (2), 155-166.

  • Seyitoğlu, G., Scott, B., 1992. The age of the Büyük Menderes Graben (western Turkey) and its tectonic implications. Geological Magazine, 129 (2), 239-242.

  • Seyitoğlu, G., Scott, B.C., Rundle, C.C. 1992. Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149 (4), 533- 538.

  • Seyitoğlu, G., Çemen, İ., Tekeli, O., 2000. Extensional folding in the Alaşehir (Gediz) graben, western Turkey. Journal of the Geological Society, 157 (6), 1097-1100.

  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş., Işık, V., 2002. The role of the flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir graben, western Turkey. Geological Magazine, 139 (1), 15-26.

  • Seyitoǧlu, G., Işık, V., Çemen, İ., 2004. Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova, 16 (6), 358-364.

  • Seyitoğlu, G., Işık, V., Esat, K. 2014. A 3D model for the formation of turtleback surfaces: the Horzum Turtleback of western Turkey as a case study. Turkish Journal of Earth Sciences, 23 (5), 479- 494.

  • Seyitoğlu, G., Işık, V., 2015. Batı Anadolu’da Geç Senozoyik Genişleme Tektoniği: Menderes Çekirdek Kompleksinin Yüzeylemesi ve İlişkili Havza Oluşumu. Maden Tetkik ve Arama Dergisi, 151, 49-109.

  • Shackleton, N.J., Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of Deep Sea Drilling Project, 29, 743-755.

  • Sözbilir, H., 1986. Acıdere Mahallesi (Salihli-Manisa) çevresinin jeolojisi. Dokuz Eylül Üniversitesi, Lisans Bitirme Tezi, 35 s.

  • Sözbilir, H., 2001. Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Sciences, 10 (2), 51-67.

  • Sözbilir, H., 2002. Geometry and origin of folding in the Neogene sediments of the Gediz Graben, western Anatolia, Turkey. Geodinamica Acta, 15 (5-6), 277-288.

  • Sözbilir, H., 2005. Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey. Geodinamica Acta, 18 (3-4), 255-282.

  • Sözbilir, H., Emre, T., 1990. Neogene stratigraphy and structure of the northern rim of the Büyük Menderes graben. Proceedings of International Earth Science Colloquium on the Aegean Region, 2, 314-322.

  • Sözbilir, H., Sarι, B., Uzel, B., Sümer, Ö., Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research, 23 (4)

  • Spratt, T., 1845. Observations on the Geology of the Southern Part of the Gulf of Smyrna and the Promontory of Karabournou. Quarterly Journal of the Geological Society, 1 (1), 156-162.

  • Sümer, Ö., 2015. Evidence for the reactivation of a preexisting zone of weakness and its contributions to the evolution of the Küçük Menderes Graben: a study on the Ephesus Fault, Western Anatolia, Turkey. Geodinamica Acta, 27 (2-3), 130-154.

  • Sümer, Ö., İnci, U., Sözbilir, H., 2013. Tectonic evolution of the Söke Basin: extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.

  • Şen, S., Seyitoğlu, G., 2009. Magnetostratigraphy of early–middle Miocene deposits from east–west trending Alaşehir and Büyük Menderes grabens in western Turkey, and its tectonic implications. Geological Society, London, Special Publications, 311, 32

  • Sengör, A.M.C., 1979. The North Anatolian transform fault: its age, offset and tectonic significance. Journal of the Geological Society, 136 (3), 269- 282.

  • Şengör, A.M.C., 1987. Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society, London, Special Publications, 28 (1), 575-589.

  • Şengör, A.M.C., Satir, M., Akkök, R., 1984. Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics, 3 (7), 693-707.

  • Şimşek, Ş., 1982. Denizli-Sarayköy-Buldan alanının jeolojisi ve jeotermal enerji olanakları. İstanbul Üniversitesi Yer Bilimleri Fakültesi yayın organı, 3 (1-2), 145-162.

  • Taner, G., 1975. Denizli bölgesi Neojen’inin paleontolojik ve stratigrafik etüdü. Maden Tetkik ve Arama Dergisi, 85, 45–66.

  • Taner, G., 2001. Denizli bölgesi Neojen’ine ait katların stratigrafik konumlarında yeni düzenleme. 54. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, 21.

  • Taymaz, T., Jackson, J., McKenzie, D., 1991. Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106 (2), 433- 490.

  • Taymaz, T., Yılmaz, Y., Dilek, Y., 2007. The geodynamics of the Aegean and Anatolia: Introduction, (The geodynamics of the Aegean and Anatolia, Editörler: Taymaz, T., Yılmaz, Y. Dilek, Y.). Geological Society, London, Special Publications 291, 1-16.

  • Tchihatcheff, P. De., 1866-1869. Asie Mineure, Description Physique de cette contrée, Paléontologie, Librairie Théodore Morgand, Paris, 591 s.

  • Tchihatcheff, P. De., 1869. Asie Mineure, Description Physique de cette contrée, Géologie, Quatriéme partie, Librairie Théodore Morgand, Paris, 528 s.

  • Uysallı, H., Keskin, B., 1971. Denizli Sarayköy Kızıldere Jeotermal Sahası KD-1, KD-2, TH-1, KD-1/A, KD-3, KD-4, KD-111, KD-6, KD-9, KD-12, KD-8, KD-7, KD-14 ve KD-15 Derin Jeotermik Enerji Sondajları Bitirme Raporu. MTA Rapor No: 4441, Ankara, Türki

  • Uzel, B., 2016. Field evidence for normal fault linkage and relay ramp evolution: the Kırkağaç Fault Zone, western Anatolia (Turkey). Geodinamica Acta, 28 (4), 311-327.

  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N., Langereis, C.G., 2013. Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal o

  • Uzel, B., Sümer, Ö., Özkaptan, M., Özkaymak, Ç., Kuiper, K., Sözbilir, H., Kaymakci, N., İnci, U., Langereis, C.G., 2017. Palaeomagnetic and geochronological evidence for a major middle Miocene unconformity in Söke Basin (western Anatolia) and its te

  • Ünay, E., Göktaş, F., Hakyemez, H.Y., Avşar, M., Şan, Ö., 1995. Büyük Menderes Grabeni’nin kuzey kenarındaki çökellerin Arvicolidae (Rodentia, Mammalia) faunasına dayalı olarak yaşlandırılması. Türkiye Jeoloji Bülteni, 38, 75- 80.

  • Woodcock, N.H., 1987. Kinematics of strike-slip faulting, builth Inlier, mid-Wales. Journal of Structural Geology, 9, 353–363.

  • Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I., Christl, M., 2017. Late Cenozoic cooling history of the central Menderes Massif: Timing of the Büyük Menderes detachment and the relative contribution

  • Yılmaz, Y., Genç, Ş.C., Gürer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş., Elmas, A., 2000. When did the western Anatolian grabens begin to develop?, (Tectonics and Magmatism in Turkey and the Surrounding Area, Editörler: Bozkurt, E., Wi

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292 (5517), 686-693.

  • Zeschke, G., 1954. Der Simav-Graben und seine Gestein. Türkiye Jeoloji Bülteni, 5, 179-189.

  • Sümer, Ö , Sözbilir, H , Uzel, B . (2020). Büyük Menderes Grabeni`nin Rolling Hinge (Yuvarlanan Reze) Modelinde Supra-Detachment (Sıyrılma Üstü) Havzadan Rift Havzasına Evrimi . Türkiye Jeoloji Bülteni , 63 (3) , 241-276 . DOI: 10.25288/tjb.562552

  • Pre-Cambrian Metamorphic Rocks of the Sakarya Zone in the Biga Peninsula; Late Ediacaran Gondwanaland Active Continental Margin
    Erdinç Yiğitbaş İsmail Onur Tunç
    View as PDF

    Abstract: The pre-Jurassic metamorphic rocks of the Biga Peninsula can be evaluated as three maintectonostratigraphic units, which show significant differences from each other in terms of degree of metamorphism,deformation characteristics and tectonic settings. These are: 1) Kazdağ Unit, 2) Kalabak Unit, and 3) KarakayaUnit. The Kazdağ Unit forms the high-grade metamorphic core rocks of the Kazdağ Massif on the visible base of theBiga Peninsula. The Kalabak Unit and the Karakaya Unit are located on this high-grade metamorphic basement ascomposite tectonic slices and form the lower-grade metamorphic outer envelopes.The Kalabak Unit, which is the main subject of this paper, consists of the Dedetepe Formation, the SazakFormation, the Torasan Formation, and Devonian Çamlık metagranodiorite, which cuts all these units. In additionto lithological, stratigraphic and structural similarities of these metamorphic rocks, which are the outer envelopeof the metamorphic core in the Kazdağ Massif and also outcrop in other metamorphic massifs of the region suchas Çamlıca, Karabiga and Karadağ, their U-Pb zircon ages also show that they can be correlated with each other.According to the results obtained from U-Pb zircon dating, the maximum sedimentation ages of the protoliths for themetasedimentary rocks of the Kalabak Unit are in the range of 557-582 Ma. The crystallization age of the protolithfor the metabasites, which has primary relationship to these metasedimentary rocks, is 577 Ma. In addition, protolithcrystallization age of the eclogites, which are tectonic slices in these metasedimentary rocks, is 565 Ma. In additionto similar protolith ages, the fingerprint of a tectonothermal event at about 300-340 Ma is important in terms ofexpressing a common geological history for all samples.Formation environment and age of the metavolcanic rocks of the Kalabak Unit represent consistent andsignificant geotectonic environments. The Dedetepe Formation, which is at the bottom, represents a subductionmélange, the Sazak Formation represents an active continental margin and the Torasan Formation represents acoeval sedimentary sequence. These geotectonic environments developed during the late Precambrian-earlyPaleozoic period while the Proto-Tethys oceanic crust subducted to the south, under the Gondwanaland continent.These oldest rocks of the Sakarya Zone, together with the rocks they were spatially associated with during youngerperiods, were affected by repetitive deformations which resulted in their present position.

  • Biga Peninsula

  • Gondwanaland active continental margin

  • Pan-African Orogeny

  • Sakarya Zone

  • Akçay, A.E., Dönmez, M., Ilgar, A., Duru, M., Pehlivan, Ş., 2008. 1: 100.000 ölçekli Türkiye jeoloji haritaları, Bandırma H 19 paftası No 103, Maden Tetkik ve Arama Genel Müdürlüğü.

  • Aslaner, M., 1965. Etude Geologique et petrographique de la Region d‘Edremit-Havran, MTA Publication No:119.

  • Aygül, M., Topuz, G., Okay, A.I., Satır, M., Meyer, H.P., 2012. The Kemer Metamorphic Complex (NW Turkey), a subducted continental margin of the Sakarya zone. Turkish Journal of Earth Sciences, 21, 19-35.

  • Aysal, N., Ustaömer, T., Öngen, S., Keskin, M., Köksal, S., Peytcheva, I., Fanning, M., 2012a. Origin of the Early-Middle Devonian magmatism in the Sakarya Zone, NW Turkey: geochronology, geochemistry and isotope systematics. Journal of Asian Earth S

  • Aysal, N., Öngen, S., Peytcheva, I., Keskin, M., 2012b. Origin and evolution of the Havran Unit, Western Sakarya basement (NW Turkey): new LA-ICP-MS U-Pb dating of the metasedimentarymetagranitic rocks and possible affiliation to Avalonian microconti

  • Beccaletto, L., 2004. Geology, Correlations and Geodynamic Evolution of the Biga Peninsula, Northwest Turkey. PhD Dissertation, University of Lousanne, 140 s.

  • Beccaletto, L., Jenny, C., 2004. Geology and Correlation of the Ezine Zone: A Rhodope Fragment in NW Turkey?, Turkish Journal of Earth Sciences, 13, 145-176.

  • Bingöl, E., Akyürek, B., Kormazer, B., 1975. Geology of the Biga Peninsula and some characteristics of the Karakaya blocky series. In: Congress of Earth Sciences on the occasion of the 50th anniversary of the Turkish Republic, 71-77.

  • Dönmez, M., Akçay, A.E., Duru, M., Ilgar, A., Pehlivan, Ş., 2008. 1: 100.000 ölçekli Türkiye jeoloji haritaları, Çanakkale H17 Paftası No 101, Maden Tetkik ve Arama Genel Müdürlüğü.

  • Duru M., Pehlivan Ş., Aral İ. O., Şentürk Y., Yavaş F., Kar H., 2012. Biga Yarımadasının Tersiyer Öncesi Jeolojisi, Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Özel Yayınlar Serisi, No 28: 7-74.

  • Gill, R., 2010. Igneous Rocks and Processes: A Practical Guide. Wiley-Blackwell, Chichester, UK, 440 s.

  • Göncüoğlu, M.C., 2010. Introduction to the Geology of Turkey: Geodynamic Evolution of the Pre-Alpine and Alpine Terranes, Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, 1-69.

  • Gümüş, A., 1964. Contribution a l‘etude geologique de secteur serpentrional de Kalabak Köy-Eymür Köy region D‘Edremit, Turqie, MTA Enstitüsü Yayını, 117, 1-109.

  • Gürsu, S., Göncüoğlu, C., 2006. Petrogenesis and tectonic setting of Cadomian felsic igneous rocks, Sandıklı area of the Western Taurides, Turkey. International Journal of Earth Sciences, 95, 741- 757.

  • Gürsu, S., Möller, A., Göncüoğlu, C., Köksal, S., Demircan, H., Toksoy Köksal, F., Kozlu, H., Sunal, G., 2015. Neoproterozoic continental arc volcanism at the northern edge of the Arabian Plate, SE Turkey. Precambrian Research, 258, 208-233.

  • Haydoutov, I., Pin, C., 1993. Geochemical and Nd isotope characteristics of pre-Variscan ophiolites and meta-igneous rocks from the Struma Diorite Formation in SW Bulgaria. Geologica Balcanica, 23, 51-59.

  • Kesgin, Y., Varol, B., 2003. Gökçeada ve Bozcaada’nın Tersiyer Jeolojisi (Çanakkale), Türkiye. Maden Tetkik ve Arama Dergisi, 126, 49-68.

  • Kounov, A., Graf, J., Quadt, Av., Bernoullia, D., Burg, J.-P., Sewarde, D., Ivanov, Z., Fanning, M., 2012. Evidence for a “Cadomian” ophiolite and magmatic-arc complex in SW Bulgaria. Precambrian Research, 212-213, 275-295.

  • Kröner, A., 1984. Late Precambrian plate tectonics and orogeny: a need to redefine the term Pan-African, (African Geology, Editörler: Klerkx, J., Michot, J.). Tervuren: Musccc. R. I’Afrique Centrale, 23- 28.

  • Kröner, A., Stern, R.J., 2004. Pan-African Orogeny, (Encyclopedia of Geology, Editörler: Selley, R.C., Cocks, L.R.M, Plimer, I.R.). Elsevier Academic Press, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK, 1, 1-12.

  • Krushensky, R., Akçay, Y., Karaege, E., 1980. Geology of the Karalar-Yeşiller area, Northwest Anatolia; U.S. Geological Survey Bulletin, 1461, 72.

  • Kusky, T.M., Abdelsalam, M., Tucker, R.D., Stern, R.J., 2003. Evolution of the East African and related orogens, and the assembly of Gondwana. Precambrian Research, 123, 81-85.

  • Lilov, P., 1981. Potassium-argon dating of the Struma Diorite formation north of the town Stanke Dimitrov. Geologica Balcanica, 11, 27-31.

  • M.T.A., 2012. Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi, (Editörler: Erdoğan Yüzer, Gürkan Tunay). Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayın Serisi, 28, 326 s.

  • Murphy, J.B., Pisarevsky, S.A., Nance, R.D., Keppie, J.D., 2004a. Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. International Journal of Earth Sciences, 93, 659-682.

  • Nance, R., Murphy, J., Strachan, R., Keppie, J., GutiérrezAlonso, G., Fernandez-Suarez, J., Quesada, C., Linnemann, U., D’lemos, R., Pisarevsky, S., 2008. Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan t

  • Okay, A.İ., Siyako, M., Bürkan, K.A., 1990. Biga Yarımadası’nın Jeolojisi ve Tektonik Evrimi. Türkiye Petrol Jeologları Derneği Dergisi, 2 (1), 83-121.

  • Okay, A.İ., Siyako, M., Bürkan, K.A., 1991, Geology and tectonic evolution of the Biga Peninsula.Special Issue on Tectonics (ed. J.F. Dewey), Bulletin of the Technical University of Istanbul, 44, 191-255.

  • Okay, A.İ., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R., Akyüz, S., 1996. Paleoand Neotethyan Events in Northwest Turkey, (Tectonics of Asia, Editörler: Yin, A., Harrison, M.), Cambridge University Press, 420-441.

  • Okay, A.İ., Satır, M., Siebel, W., 2006. Pre-Alpide and Mesozoic orogenic events in the Eastern Mediterranean region. Memoirs of the Geological Society of London, 32, 389-405.

  • Okay, A.İ., Topuz, G., 2017, Variscan orogeny in the Black Sea region. International Journal of Earth Sciences, 106, 569-592.

  • Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, 525-548

  • Pearce, J.A., 1983. Role of sub-continental lithosphere in magma series at active continental margins, (Continental basalts and mantle xenolith, Editörler: Hawkesworth, C.J., Norry, M.J.). Shiva Publications, Cheshire, 230-249

  • Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Geochemistry Series, Harlow, 352 s.

  • Stern, R.J., 1994. Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland, Annual Review of Earth and Planetary Sciences, 22, 319-351.

  • Sunal, G., 2012. Devonian magmatism in the western Sakarya Zone, Karacabey region, NW Turkey, Geodinamica Acta, 25 (3-4), 183-201.

  • Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.

  • Şengör, A.M.C., Lom, N.,·Sunal, G., Zabcı, C., Sancar, T., 2019. The phanerozoic palaeotectonics of Turkey. Part I: an inventory. Mediterranean Geoscience Reviews, 1, 91-161.

  • Şengün, F., 2005. Salihler, Çamlıca ve Kuşçayırı Çevresinde Yeralan Metamorfik Birimlerin Jeolojisi ve Petrografisi, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 115 s., (yayımlanmamış).

  • Temel, R.Ö., Çiftçi, N.B., 2002. Stratigraphy and depositional environments of the Tertiary sedimentary units in Gelibolu peninsula and islands of Gökçeada and Bozcaada (Turkey). Turkish Association of Petroleum Geologists Bulletin, 14, 17-40.

  • Tunç, İ.O., Yiğitbaş, E., Şengün, F., Wazeck, J., Hofmann, M., Linnemann, U., 2012. U-Pb Zircon Geochronology of Northern Metamorphic Massifs in the Biga Peninsula (NW Anatolia-Turkey): New Data and a New Approach to Understand the Tectonostratigraph

  • Ustaömer, P.A., 1999. Pre-Early Ordovician Cadomian arc-type granitoids, the Bolu Massif, West Pontides, northern Turkey: geochemical evidence. International Journal of Earth Sciences, 88 (1), 2-12.

  • Ustaömer, P.A., Ustaömer, T., Collins, A.S., Robertson, A.H.F., 2009. Cadomian (Ediacaran-Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: magmatismalong the developing northern margin of Gondwana. Tectonophysics, 473, 99-112.

  • Wilson, M., 1989. Review Of Igneous Petrogenesis: Aglobal Tectonic Approach. Terra Nova, 1 (2), 218-222.

  • Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.

  • Wood, D.A., 1980. The application of a Th–Hf– Ta diagram to problems of tectonomagmatic classification and to establishing the natüre of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Le

  • Yaltırak, C., Okay, A. İ., 2004. Edremit Körfezi kuzeyinde Paleotetis birimlerinin jeolojisi. İTÜ Dergisi/d Mühendislik, 3 (1), 67-79.

  • Yiğitbaş, E., Kerrich, R., Yılmaz, Y., Elmas, A., Qianli, X., 2004. Characteristics and Geochemistry of Precambrian Ophiolites from the Western Pontides, Turkey: Following the Missing Chain of the Precambrian South European Suture Zone to the East. P

  • Yiğitbaş, E., Şengün, F., Tunç, İ.O., 2009a. Biga ve Gelibolu Yarımadaları’nda Yüzeyleyen Mesozoyik Yaşlı Kaya Topluluklarının Jeolojisi ve Stratigrafik Özellikleri. TÜBİTAK ÇAYDAG108Y232 Nolu Proje Raporu

  • Yiğitbaş E., Tunç, İ.O., Şengün F., 2009b. Biga Yarımadası’nda Bazı Temel Jeolojik Sorunlar. 62. Türkiye Jeoloji Kurultayı (13-17 Nisan 2009), Bildiri Özleri Kitabı, 458-459.

  • Yiğitbaş, E., Şengün, F., Tunç, İ.O., 2014. Biga Yarımadası’nda (KB Anadolu) Neojen Öncesi Tektonik Birlikler ve Bölgenin Jeodinamik Evrimine Yeni Bir Bakış, TÜBİTAK ÇAYDAG110Y281 Nolu Proje Raporu.

  • Yiğitbaş, E., Tunç, İ.O., Özkara, Ö., 2018a. Sakarya Zonunun Kuzeybatı Kesimlerinde Alt Karakaya Kompleksi ve Nilüfer Biriminin Yaşı, Stratigrafik ve Yapısal Nitelikleri ve Jeolojik Anlamı. TÜBİTAK ÇAYDAG-115Y214 Nolu Proje Raporu.

  • Yiğitbaş, E., Tunç, İ.O., Özkara, Ö., 2018b. Sakarya Zonunda Paleo-Tetis ile Karakaya Kompleksinin Zaman Mekan İlişkisi ve Bunun Tektonik Anlamı, 71. Türkiye Jeoloji Kurultayı, 23-27 Nisan 2018, Ankara, Türkiye, 42-44.

  • Yılmaz Şahin, S., Aysal, N., Güngör, Y., Peytcheva, I., Neubauer, F., 2014. Geochemistry and U– Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the geodynamic evolution of Cadomian orogeny. G


  • Yiğitbaş, E , Tunç, İ . (2020). Biga Yarımadası`nda Sakarya Zonunun Prekambriyen Metamorfik Kayaları; Geç Ediyakaran Gondwanaland Aktif Kıta Kenarı . Türkiye Jeoloji Bülteni , 63 (3) , 277-302 . DOI: 10.25288/tjb.589144

  • Depositional Environment and Organic Facies of Coal-Bituminous Marl Association in Seyitömer (Kütahya) Region
    Dila Dikmen Mehmet Namik Yalçin
    View as PDF

    Abstract: In Neogene basins in the Aegean region of Turkey, the association of coal seams with bituminous shalesand/or bituminous marls is common. The association of humic coals consisting of terrestrial organic matter withbituminous shales/marls rich in sapropelic organic material is rather unusual. In order to investigate the causes ofthis unusual association, a lithological section in Seyitömer-Kütahya region was studied for its different properties. Lithological, petrographic, mineralogical and geochemical composition of sediments, chemistry and redox potentialof water-column, amount, type and maturity of organic material in sediments, depositional environment and organicfacies were investigated. The evaluation and interpretation of the analytical data resulted in differentiation oftwo intervals along the coal-bituminous marl transition. The four-meter-thick interval at the base of the section represents a period when fine clastics rich in terrestrial organic matter and even humic coals were deposited in a lowenergy fresh water environment with high redox potential The following section is represented by carbonate-richfine clastics, which were deposited as a result of enhanced chemical sedimentation in brackish to saline water Theseunits are rich in sapropelic organic material, indicating that reducing conditions still continued. Sedimentological and organofacies properties of the coal-bituminous marl transition indicate a lacustrineenvironment with fluctuating water level in general At the beginning the depositional environment was a balancedfill fresh water lake where coal and fine clastics were deposited under temperate and humid conditions suitablefor flourishing flora. The lake was then converted from time to time in a lake  with brackish water due to climatechanging towards drier conditions. Thus, material transport in the lake was reduced and chemical deposition was dominant This paleoclimatic change at the end of the mid-Miocene was the main cause of the transition from humiccoals to bituminous marls in the Seyitömer region.

  • Neogene

  • Western Anatolia

  • Sediment Geochemistry

  • Paleoclimate

  • Akdeniz, N., Konak, N., 1979. Simav, Emet, Tavşanlı, Dursunbey, Demirci yörelerinin jeolojisi. Maden Tetkik ve Arama Enstitüsü, Raporu, No. 6547 (yayımlanmamış).

  • Akgün, F., Kayseri, M.S., Akkiraz, M.S., 2007. Paleoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeography Palaeoclimatology Palaeoecology, 253, 56–90.

  • Akkiraz, M.S., Akgün, F., Utescher, T., Wilde, V., Anneliese Bruch, A., Mosbrugger, V., Üçbaş, S.D., 2012. Palaeoflora and Climate of Lignitebearing Lower-Middle Miocene Sediments in the Seyitömer and Tunçbilek Sub-basins, Kütahya Province, Northwest

  • Baş, H., 1983. Domaniç-Tavşanlı-Kütahya-Gediz yöresinin Tersiyer jeolojisi. Jeoloji Mühendisliği, 27, 11–19.

  • Bernard, B.B., Bernard, H., Brooks, J.M., 1995. Determination of Total Carbon, Total Organic Carbon and Inorganic Carbon in Sediments. TDIBrooks International/B&B Laboratories Inc., College Station Texas,Vol. 1-5.

  • Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268, 1-23.

  • Berner, R.A., 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 51, 359-365.

  • Berner, R.A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282, 451-473.

  • Berner, R.A., Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica Cosmochimica Acta 47, 855–862.

  • Bohachs, K.M., Carrol, A.R., Neal, J.E., Mankiewicz, P.J., 2000. Lake-basin type, source potential and hydrocarbon character: an integratedsequence-stratigraphic-geochemical framework, (Lake basins through space and time, Editörler: Gierlowski-Kordes

  • Bulkan, Ö., 2003. Himmetoğlu (Göynük-Bolu) Yöresindeki Kömür-Bitümlü Şist Birlikteliğinin Paleoekolojik Nedenleri. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 132 s., (yayımlanmamış).

  • Bulkan-Yeşiladalı, Ö., Yalçın, M.N., Mann, U., 2005. Himmetoğlu Havzası’ndaki (Göynük-Bolu) Kömür-Bitümlü Şeyl Birlikteliğinin Paleo-Ortam Koşulları. İstanbul Üniversitesi Mühendislik Fakültesi Yerbilimleri Dergisi, 18, (1), 81-97.

  • Carrol, A.R., Bohacs, K. M., 1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27, 99-102.

  • Çelik, Y., Karayiğit, A.İ., 2004a. Chemical Properties and Petrographic Composition of the Lacustrine Seyitömer Lignites (Miocene), Kütahya, Turkey. Energy Sources, 26, (4), 339-352.

  • Çelik, Y., Karayiğit, A.İ., 2004b. Geological Setting and Quality of the Lignite Seams in the Seyitömer Basin, Kütahya, Turkey. Geologica Belgica, 7, (3- 4), 259-265.

  • Dikmen, D., 2005. Seyitömer (Kütahya) Yöresindeki Kömür-Bitümlü Marn Geçişinin Organik Fasiyes Özellikleri. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 128 s., (yayımlanmamış).

  • Emre, H., 1999. Seyitömer (Kütahya) kömür havzasının ısıl değerlerine göre rezerv hesabı. İstanbul Üniversitesi Mühendislik Fakültesi Yerbilimleri Dergisi, 12, 31–37.

  • Erkoyun, H., Kadir, S., Külah, T., Huggett, J., 2017. Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitömer coal deposit, Kütahya, western Turkey. International Journal of Coal Geology, 1

  • Espitalie, J., Madec, M., Tissot, B., Mennig, J. J., Leplat, P., 1977. Source rock characterization methods of petroleum exploration. Proc. Offshore Technology Conference, Paper 2935, 3, (9), 439–444.

  • Helvacı, C., İnci, U., Yağmurlu, F., Yılmaz, H., 1987. Batı Anadolu’nun Neojen stratigrafisi ve ekonomik potansiyeli. Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 3, 31-45.

  • Hufnagel, H., 1989, Investigation of oil shale deposits in western Turkey. Bundesanstalt für Geowissenschaften und Rohstoffe, Project no. 84.2127.3, Hannover, Germany, (yayımlanmamış).

  • Jacobson, S. R., 1991. Petroleum Source Rocks and Organic Facies. in: R. K. Merrill (Ed.) Source and Migration Processes and Evaluation Techniques, AAPG Treatise of Petroleum Geology, Handbook of Petroleum Geology, 3-11.

  • Jarvie, D. M., 1991. Total Organic Carbon (TOC) Analysis, (Source and Migration Processes and Evaluation Techniques, Ed.: Merrill, R.K.). AAPG Treatise of Petroleum Geology, Handbook of Petroleum Geology, 113-118.

  • Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

  • Jones, R.W., 1987. Organic Facies, (Advances in Petroleum Geochemistry Volume 2, Editörler: Brooks, J., Welte, D.). Academic Press, Londra, 1-91.

  • Kara-Gülbay, R., Korkmaz, S., 2008. Organic geochemistry, depostional environment and hydrocarbon potential of the Tertiary oil shale deposits in NW-Anatolia, Turkey. Oil Shale, 25, (4), 444-464.

  • Kaya, O., 1979. Ortadoğu Ege çöküntüsünün Neojen stratigrafisi ve tektoniği. Türkiye Jeoloji Kurumu Bülteni, 22, 35-58.

  • Kaya, T. 1993. First record of Moropus elatus (Chalicotheriidae-Perisscodatyla) in Turkey (Seyitömer–Kütahya). Turkish Journal of Earth Sciences, 2, 189–194.

  • Kök, M.V., 2001. Thermal investigation of Seyitömer oil shale. Thermochimica Acta, 369, 149-155.

  • Kök, M.V., Şengüler, İ., Hufnagel, H., Sonel, N., 2001. Thermal and geochemical investigation of Seyitömer oil shale. Thermochimica Acta, 371, 111-119.

  • Langmuir, D., 1978. Uranium solutionmineral equilibra at low temperatures with applications to sedimentary ore deposits. GeochimicaCosmochimica Acta, 42, 547-569.

  • Lebküchner, R.F., 1959. Seyitömer (Kütahya) Neojen sahasında jeoloji ve linyit ile ilgili olarak yapılan etüdler hakkında rapor. Maden Tetkik ve Arama Enstitüsü Raporu, No.2985, (yayımlanmamış).

  • Leventhal, J.S., 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochimica Cosmochimica Acta, 47 (1), 133-137.

  • Leventhal, J.S., 1987, Carbon and Sulfur relationship in Devonian shales from the Appalachian basins as indicator of environment of deposition. American Journal of Science, 287, 33-49.

  • Littke, R., Baker, D. R., Rullkötter, J., 1997, Deposition of petroleum source rocks, (Petroleum and Basin Evalution, Editörler: Welte, D.H., Horsfield, B., Baker, D.R.). Springer-Verlag, 271-333.

  • Maucher, A., 1936. Seyitömer linyit havzasının petrografik raporu. Maden Tetkik ve Arama Enstitüsü Raporu, No.108 (yayımlanmamış).

  • Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica Cosmochimica Acta, 63, (11-12), 1735-1750.

  • Mosbrugger, V., Utescher, T., 1997. The coexistence approach–a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using the plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61–86.

  • Müller, G., 1970. High magnesian calcite and protodolomite in Lake Balaton (Hungary) sediments. Nature, 226, 749-750.

  • Müller, G., Irion, G., Forstner, U., 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59, 158-164.

  • Nakoman, E., 1968. Contrubution a Letude de microflore Tertiare des lignites de Seyitömer (Turquie). Pollen et Spores, 10.

  • Nebert, K., 1960. Tavşanlı’nın batı ve kuzeyindeki linyit ihtiva eden Neojen sahasının mukayeseli stratigrafisi ve tektoniği. Maden Tetkik ve Arama Enstitüsü Dergisi, 54, 7–35.

  • Özcan, N., 1987. Seyitömer (Kütahya) Linyitlerinin Palinolojik Özellikleri, Dokuz Eylül Universitesi, Jeoloji Mühendisliği Bölümü, Yüksek Lisans Tezi, 70 s., (yayınlanmamış).

  • Philp, R.P., Galvez-Sinibaldi, A., 1991. Characterization of organic matter by various pyrolysis techniques, (Source and Migration Processes and Evaluation Techniques, Ed.: Merrill, R.K.) AAPG Treatise of Petroleum Geology, Handbook of Petroleum Geol

  • Pütün, E., Akar, A., Ekinci, E., Bartle, K. D., 1988. Chemistry and Geochemistry of Turkish Oil Shale Kerogens. Fuel, 67, 1106-1110.

  • Pütün, E., Akar, A., Ekinci, E. And Bartle, K. D., Frere, K. D., Snape, C., E., Ciritoğlu, M., 1991. Organic Geochemistry of the Göynük and Seyitömer Oil Shales of Turkey. Journal of Petroleum Geology, 14, (4), 459-464.

  • Raiswell, R., Berner, R. A., 1985. Pyrite formation in euxinic sediments and semi-euxinic sediments. American Journal of Science, 275, 636-652.

  • Reul, K., 1955. Seyitömer linyit yatakları hakkında jeolojik rapor. Maden Tetkik ve Arama Enstitüsü Raporu, No.2383 (yayımlanmamış).

  • Saraç, G., 2003. Türkiye Omurgalı Fosil Yatakları. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No. 10609, (yayımlanmamış).

  • Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D., Teichmüller, R., 1982. Stach’s Textbook of Coal Petrology, Berlin, Gebrüder Borntraeger, 535 s.

  • Şener, M., Şengüler, İ., Kök, M.V., 1995. Geological considerations for the economic evaluation of oil shale deposits in Turkey. Fuel, 74, (7), 999-1003.

  • Şengüler, İ., 1999. Seyitömer (Kütahya) yöresi petrollü şeyllerinin ekonomik kullanım olanaklarının araştırılması. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, (yayımlanmamış).

  • Taylor, J.C., 1991. Computer Programs for Standardless Quantitative Analysis of Minerals Using the Full Powder Diffraction Profile. Powder Diffraction, 6, 2-9.

  • Taylor, J.C., Clapp, R.A., 1991. New Features and Advanced Applications of SIROQUANT: a Personal Computer XRD Full Profile Quantitative Analysis Software Package. Advances in X-Ray Analysis, 35, 49-55.

  • Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurence. Springer-Verlag, Berlin, 699 s.

  • Tyson, R. V., Pearson, T. H. 1991. Modern and ancient continental shelf anoxia: an overview, (Modern and Ancient Continental Shelf Anoxia, Editörler: Tyson, R.V., Pearson, T.H.). Geological Society of London Special Publication, London, 58, 1-24.

  • Westrich, J. T., 1983. The consequences and controls of bacterial sulfate reduction in marine sediments. Doktora tezi, Yale University, 530 s., (yayımlanmamış).

  • Wignall, P., Myers, K.J. 1988. Interpreting benthic oxygen levels in mudrocks: A new approach. Geology, 16, 452-455.

  • Yalçın, M.N., Schaefer, R.G., Mann, U., 2007. Methane generation from Miocene lacustrine coals and organic-rich sedimentary rocks containing different types of organic matter. Fuel, 84, (4), 504-511.

  • Yavuz, N., 1999. Palynostratigraphy and coal petrography of the Seyitömer Basin (Kütahya) coals. Doktora tezi, Middle East Technical University, 190 s., (yayımlanmamış).

  • Yavuz, N., Ediger, V.S.¸ Erler, A., 1995. Palynology, organic petrography and geochemistry of the Lower-Middle Miocene coals of the Tavşanlı basin (Kütahya). Yerbilimleri, 17, 87-100.

  • Yavuz-Işık, N., 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia. Geobios, 40, 701–708.

  • Ziegler, J., 1936. Bericht über die montangeologischen Untersuchungen im Randgebiet des Kütahya Braunkohlenfeldes Seyitömer. Maden Tekik ve Arama Enstitüsü Raporu, No. 110, (yayımlanmamış).


  • Dikmen, D , Yalçın, M . (2020). Seyitömer (Kütahya) Yöresinde Kömür-Bitümlü Marn Birlikteliğinin Çökelme Ortamı ve Organik Fasiyes Özellikleri . Türkiye Jeoloji Bülteni , 63 (3) , 303-328 . DOI: 10.25288/tjb.669859

  • A New Contribution to the (IPC) Bouguer Map of a Gap Area in Mosul and Duhok Region (Iraq)
    Marwan Mutib Maan H. Al-Majid Fadhil A. Ghaib
    View as PDF

    Abstract: The purpose of the current study was to complete an important gap within the Bouguer map of Iraqimplemented by the Iraq Petroleum Company (IPC). In addition, the collected data were processed with recentgravity concepts and methods to establish a new regional geological image. A total of 868 gravity points weremeasured and corrected.The Bouguer anomaly map of the study area was initially drawn up with the parameters and equations used toconstruct the IPC map. The newly-produced map shows a very strong correlation with the old IPC results. A newBouguer map of the study area was then constructed using modern parameters and equations. A comparison betweenthe old and new maps illustrates the difference between recent and previous techniques.The isostatic residual map shows the presence of over-compensated areas close to Chia Gara and Mateen and spreadsto the Aqra zone with a negative value of up to -20 mGal. In contrast, there is under-compensation in the southernregions with positive isostatic anomalies of about 80 mGal. In the researched area there are zero compensation linesaround the larger structures (Chia Gara, Mateen, Mangesh, Aqra, Piris, and Perat). In order to draw up the crustalthickness map, the Moho discontinuity depth was determined using topographic and Bouguer anomaly grids of thestudy area. In addition, the upper mantle anomalies were calculated by continuing the isostatic residual anomaly to45 km upward and then removing the past isostatic residual anomaly, that was continued upward to 35 km. Severalqualitative approaches were used to isolate the regional and remaining anomalies to analyze the gravity data, with anoptimal upward continuation level of 14 kilometers generated for the large and small maps.

  • Gap area

  • Gravity exploration

  • Geosoft program

  • Northern Iraq

  • Abbas, M.J., Masin, J., 1975. New geophysical aspects of the basement structure in western Iraq. J. Geol. Soc. Iraq, Special Issue: 1-13.

  • Al-Shaikh, Z.D., Saleh, S.A., Abdo, H.F.,1975. Contribution to the geology of Shaqlawa - Harir area, Iraqi J. Geo. Soc., Special issue, 55-67.

  • Al-Shaikh, Z.D., Ahmad, M.M., 2005. New Contribution to the Geology of Mosul Area from Geoelectric Investigations. Rafidain Journal of Science, 16 (6), 132-147.

  • Amos, M.J., 2007. Quasigeoid Modeling in New Zealand to Unify Multiple Local Vertical Datums. Curtin University of Technology, Department of Spatial Sciences, New Zealand, PhD thesis, 238 p.

  • Asgari, M., Mehramuz, M., 2015. Estimate the Crust Thickness using the Gravity Data for the KopehtDagh Region. Indian Journal of Science and Technology, 8 (9), 513–517.

  • Chen K.H., 2009. An Improved Approach for Terrain Correction: Application to Northeast Asia’s Highest Peak (Mt. Jade, Taiwan). Sensors (Basel), 9 (9), 6604–6612.

  • Dobrin, M.B., Savit, C.H., 1988. Introduction to Geophysical Prospecting: McGraw-Hill Book Company, 867 p.

  • Geosoft Oasis Montaj (GOM) reference manual, 2008. Software for Earth Sciences, Geosoft INC, Toronto, Canada.

  • Ghaib, F.A., Mohammad, R.J., Khan, Z.A., 1998. A reconnaissance gravity survey in the Sulaivany plain, N-Iraq. The Journal of Duhok University (Scientific and Academic), 1 (1): 6-20.

  • Hafidh A.A., Matthew S., Youlin Chen, Robert B., Ghassan I., Hrvoje T., Bakir S., Borhan I., Dawood S., Robert A., Patrick J., Omar K., Aras M., Shaho A., Fadhil I., Rashid Z., Basoz A., Layla O., Nokhsha I., Nian H., Talal N., Ali A., Abdul-Karem A.

  • Hernandez, O., 2006. Tectonic analysis of northwestern South America from integrated satellite, airborne and surface potential field anomalies. Graduate School of Ohio State University, U.S.A, PhD thesis, 176 p.

  • Hinze W.J., Aiken C., Brozena J., Coakley B., Dater D., Flanagan G., Forsberg R., Hildenbrand T., Keller G.R., Kellogg J., Kucks R., Li X., Mainville A., Morin R., Pilkington M., Plouff D., Ravat D., Roman D., Urrutia-Fucugauchi J., V´eronneau M., We

  • Janák, J., Vanícek, P., 2005. Mean free-air gravity anomalies in the mountains. Studia Geophysia et Geodaetica, 49, 31-42.

  • Jassim, S.Z., Goff J.C., 2006. Phanerozoic development of the northern Arabian Plate, Geology of Iraq, 32- 44.

  • Leaman, D.E., 1998. The gravity terrain correction– practical considerations. Exploration Geophysics, 29, 476-471.

  • Li, X., Götze, H.J., 2001. Ellipsoid, geoid, gravity, geodesy, and geophysics, Geophysics, 66, 1660- 1668.

  • Lockwood, A., 2004. Isostatic and Decompensative Gravity Anomalies over Western Australia. Australian Society of Exploration Geophysicists, Preview, 108, 22-23.

  • Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK, 354 p.

  • Lynch, A. and King, R.A., 1983. A review of parameters affecting the accuracy and resolution of gravity surveys. Exploration Geophysics, 14: 131-142.

  • Lyngsie, S.B., Thybo, H., Rasmussen, T.M., 2006. Regional geological and tectonic structures of the North Sea area from potential field modeling. Tectonophysics 413, 147–170.

  • Mogren, S., Al-Amri, A.S., Al-Damegh, K., Fairhead, D., Jassim, S., Algamdi, A., 2007. Sub-surface geometry of Ar Rika and Ruwah faults from Gravity and Magnetic Surveys, King Saud University, College of Sciences, Geology & Geophysics Department, Riy

  • Mutib M., 1980. Geophysical investigation around Demir Dagh area. Mosul University, Iraq, MSc. thesis, (unpublished).

  • Nabighian, M.E., Ander, V.J., Graunch, R.O., Hansen, T.R., Lafehr, Y. Pearson, W.C., Peirce, J.W., Phillips, J.D., Ruder, M.E., 2005. Historical Development of the Gravity Method in Exploration. Geophysics, 70 (6), 63-89.

  • Roy, K.K., 2008. Potential Theory in Applied Geophysics. Springer-Verlag Berlin Heidelberg, 651 p.

  • Sayyab, A., Valek, R., 1968. Pattern and general properties of the gravity field of Iraq. 23rd International Geological Congress, Czechoslovakia, 5, 129-142.

  • Zeng, H., Xu, D., Tan, H., 2007. A model study for estimating optimum upward continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, Northeast China. Geophysics, 72, 145–150.


  • Ahmet, M , Abdullah, M , Ghaıb, F . (2020). A New Contribution to the (IPC) Bouguer Map of a Gap Area in Mosul and Duhok Region (Iraq) . Türkiye Jeoloji Bülteni , 63 (3) , 329-344 . DOI: 10.25288/tjb.638029

  • Investigation of Morphotectonic Evolution of Gölmarmara Fault Using GIS-Based Methods, Gediz Graben, Western Anatolia
    Semih Eski Hasan Sözbilir Bora Uzel Çağlar Özkaymak Ökmen Sümer
    View as PDF

    Abstract: The Gölmarmara Basin forms the northern branch of the Gediz Graben, which constitutes a series ofhorst-graben systems controlled by antithetic and synthetic normal fault steps in the Western Anatolia ExtensionalProvince. Although geology of this section is well known, it is not studied enough in terms of active tectonics andgeomorphology. The aim of this study is to reveal fault segments on the basis of Quaternary activity and structuralevolution of the Gölmarmara Fault forming the southern boundary of the basin.The NW-SE trending Gölmarmara Fault, which consists of the 7 km-long İsmetpaşa and 11 km-long Hacıbaştanlarsegments, has 26 drainage basins and 23 triangular facets in its footwall. Morphometric analyses (Smf, Vf, AF,HI, Shp, SL, Slip Rate) based on the digital elevation model were performed for these structures. According tocombined results of our morphometry and field studies, the İsmetpaşa Segment has higher uplift and activity thanthe Hacıbaştanlar Segment, and they are linked by a relay ramp developing during the evolution of a complete faultzone. It can be said that the Gölmarmara Fault, which was found to have passed through 3 phases from its formationto the present day, is an en-echelon fault similar to when it formed. Morphometric indices and field data indicatethat the Gölmarmara Fault is composed of medium-highly-active dip-slip normal fault segments and may causeearthquakes with a magnitude of Mw: 6.4. The Gölmarmara Fault, consisting of 2 geometric and 1 seismic segment,has uplift rate ranging from 0.179 to 0.518 mm/year (increasing at the center, and decreasing at the tips of the fault).These values are similar to uplift rates calculated for other active normal faults in the Gediz Graben.

  • Gediz Graben System

  • Gölmarmara Fault

  • Active tectonics

  • Tectonic geomorphology

  • Morphometry

  • Western Anatolia

  • Altunel, E., 1999. Geological and geomorphological observations in relation to the 20 September 1899 Menderes earthquake, western Turkey. Journal of the Geological Society, 156 (2), 241-246.

  • Bahadir, M., Özdemir, M.A., 2011. Acıgöl Havzası’nın Sayısal Topoğrafik Analiz Yöntemleri İle Morfometrik Jeomorfolojisi. Journal of International Social Research, 4 (18), 323-344.

  • Bozkurt, E., 2001. Neotectonics of Turkey–a synthesis. Geodinamica acta, 14 (1-3), 3-30.

  • Bozkurt, E., Sözbilir, H., 2006. Evolution of the largescale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics. Geodinamica Acta, 19 (6), 427-453.

  • Bull, W.B., 1977. Tectonic geomorphology of the Mojave Desert: US, Geological Survey Contract Report 14-08-001-G-394, Office of Earthquakes, Volcanoes, and Engineering, California: Menlo Park, 188.

  • Bull, W.B., 2007. Mountain Fronts. Tectonic Geomorphology of Mountains. Blackwell Publishing Ltd, 75-116.

  • Bull, W.B., 2008. Tectonic geomorphology of mountains: a new approach to paleoseismology. John Wiley and Sons, Oxford, 315 s.


  • Eski, S , Sözbilir, H , Uzel, B , Özkaymak, Ç , Sümer, Ö . (2020). Gölmarmara Fayı`nın Morfotektonik Evriminin CBS Tabanlı Yöntemlerle Araştırılması, Gediz Grabeni, Batı Anadolu . Türkiye Jeoloji Bülteni , 63 (3) , 345-372 . DOI: 10.25288/tjb.679584

  • Lithology and Field Boundaries in Cappadocia, Turkey
    Nizamettin Kazanci Yaşar Suludere
    View as PDF

    Abstract: “Cappadocia” is the informal geographic name of a region in central Anatolia, which is knowninternationally due to its cultural and historical past, attracting attention due to well-developed fairy chimneysand tourism activities in and around the towns of Aksaray, Nevşehir, Niğde, Kayseri, Yozgat and Kırşehir. Recently,the term Cappadocia was used in the formation of a new government agency which aims to manage the utilizationand protection of the region. However, there is still no consensus about the boundaries of this region which causesdisagreements, as the name Cappadocia can reflect either a narrow region or cover a very large area. Here wediscuss the Cappadocia region and suggest boundaries based on the distribution of volcanic rocks sourced fromNevşehir-Acıgöl calderas, and Erciyes and Hasandağı stratovolcanoes formed since late Neogene to Quaternary.We propose the name “central Cappadocia” for the area characterized by various erosional features including thefairy chimneys. 

  • Central Cappadocia

  • Fairy chimneys

  • Boundaries of Cappadocia

  • Volcanic province

  • Altuncan, M., 2019. Göllüdağ’ın esrarı. DB Yayıncılık, Atlas Dergisi 312, 48-60.

  • Atabey, E., 2017. Jeolojik, tarihi ve kültürel yönüyle Kapadokya. Popüler Bilim, 225, 19-21.

  • Aydın, F., 2009. Kapadokya volkanik kompleksinin gelişimi ve volkanizmanın bölge üzerindeki etkileri. 1.Tıbbi Jeoloji Çalıştayı Bildirileri, 30 Ekim–1 Kasım 2009, Ürgüp Bld., Kültür Merkezi, Ürgüp/ Nevşehir, 10-20.

  • Çiner, A., Aydar, E., 2019. A fascinating gift from volcanoes: the fairy chimneys and underground cities of Cappadocia. (Landscapes and Landforms of Turkey, Editörler: Kuzucuoğlu, C., Çiner, A., Kazancı, N.). World Geomorphological Landscapes Series,

  • Gürbüz, A., Saraç, G., Yavuz, N. 2019. Paleoenvironments of the Cappadocia region during the Neogene and Quaternary, central Turkey. Mediterranean Geoscience Reviews 1, 271-296.

  • Herodotos (MÖ 484-426). Tarih (Historiae; Çeviren Müntekim Ökmen). Türkiye İş Bankası Kültür Yayınları, Hasan Ali Yücel Klasikler Dizisi, 9. Baskı, 2013, İstanbul, 832 s.

  • Kazancı, N., Suludere, Y., Mülazımoğlu, N.S., Tuzcu, S., Mengi, H., Şaroğlu, Ş., Emre, Ö., Sayılı, İ.Ö., Hakyemez, Y., Sözeri, K., Boyraz, S., Gürler, G., Öztan, S., Daşdandır, A., Kuru, E., 2009. Milli Parklarda Jeolojik Miras-6: Göreme Tarihi Milli

  • Le Pennec, J-L., Temel, A., Froger, J.-L., Sen, S., Gourgaud, A., Bourdier, J.-L., 2005. Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paleontologic, radiochronologic, geochemical and paleomagnetic dat

  • Mouralis, D., Aydar, E., Türkecan, A., Kuzucuoğlu, C., 2019. Quaternary Volcanic Landscapes and Prehistoric Sites in Southern Cappadocia: Göllüdağ, Acıgöl and Hasandağ. (Landscapes and Landforms of Turkey, Editörler: Kuzucuoğlu, C., Çiner, A., Kazanc

  • MTA, 2002. 1/500.000 Ölçekli Türkiye Jeoloji Haritası Kayseri Paftası (Editör: Şenel, M.). Maden Arama Genel Müdürlüğü Yayını, Ankara.

  • Mues-Schumacher, U., Schumacher, R., ViereckGötte, L.G., Lepetit, P., 2004. Areal Distribution and Bulk Rock Density Variations of the Welded İncesu Ignimbrite, Central Anatolia, Turkey. Turkish Journal of Earth Sciences 13 (3), 249-267.

  • Sarıkaya, M.A., Çiner, A., Zreda, M., 2011. Fairy chimney erosion rates on Cappadocia ignimbtites, Turkey; insights from cosmogenic nuclides. Geomorphology, 284, 182-191.

  • Strabon (MÖ 64- MS 24). Geographika Antik Anadolu Coğrafyası, Kitap XII-XIII-XIV (Coğrafya, Çeviren: Adnan Pekman). Arkeoloji ve Sanat Yayınları, 5. Baskı, 2005, İstanbul.

  • Summers G. D., 2014. East of the Halys: thoughts on settlement patterns and historical geography in the late 2nd millennium and first half of the first millennium B.C. L’Anatolie des peuples, des cités et des cultures (IIe millénaire av. J.-C.-Ve siè

  • Şen, E., Kürkçüoğlu, B., Aydar, E., Gorgaud, A., Vincent, P.M., 2003. Volcanological evolution of Mount Erciyes stratovolcano and origin of Valibaba tepe ingnimbrites (Central Anatolia, Turkey). Journal of Volcanology and Geothermal Research 125, 225

  • Topal, T., Doyuran, V., 1998. Analyses of deterioration of Cappadocian tuffs, Turkey. Environmental Geology 34, 5-20.


  • Kazancı, N , Suludere, Y . (2020). Kapadokya`nın Litolojik Yapısı ve Sınırları, Türkiye . Türkiye Jeoloji Bülteni , 63 (3) , 373-380 . DOI: 10.25288/tjb.695327

  • ISSUE FULL FILE
    View as PDF