Abstract: The Turkish geological community has experienced profound sorrow over the loss of one of its greatest values, our dear friend and teacher, Prof. Dr. Namık Aysal, a faculty member of the Department of Geological Engineering at Istanbul University-Cerrahpaşa, on October 6, 2025. Atonly 52 years of age, during the most productive years of his life, Prof. Dr. Aysal`s untimely passinghas left an irreplaceable void not only in the academic community but also among his student sand friends. Mr. Aysal dedicated his short life to science, his students, the Geochronology and Geochemistry Laboratorywhich he establishedwith great effort alongside his colleagues and remains unique in our countryhis colleagues through out Türkiye, and the mountains he loved so much. His multi-faceted personality, inexhaustible energy, and the "guiding driving force" heradiated to his surroundings are felt even more profoundly in his absence and are deeply missed.
Namık Aysal
Geochronology and Geochemistry Laboratory
Istanbul University
Aysal, N., Ustaömer, T., Öngen, S., Keskin, M., Köksal,S., Peytcheva, I. & Fanning, M. (2012). Originof the Early-Middle Devonian magmatism inthe Sakarya Zone, NW Turkey: geochronology,geochemistry and isotope systematics. Journal ofAsian Earth Sciences, 45, 201-222.https://doi.org/10.1016/j.jseaes.2011.10.011
Aysal, N., Öngen, S., Doksanaltı, E. M., Şahin, O.,Çağıran, E., Şahin, D., Eruş, M., Baykır, M.ve Kocaışık, F. (2016). Knidos Antik KentindeKullanılan Yapıtaşları, Harç ve SıvalarınMineralojisi, Petrografisi ve Yer Seçiminde RolOynayan Jeolojik Faktörler. Restorasyon veKonservasyon Çalışmaları Dergisi, 19, 46-62.
Aysal, N., Guillong, M., Bayanova, T., Fukuyama, M.,Leonard, N., Yılmaz, İ., Varol, E., Tükel, F. Ş.,Kadıoğlu, Y. K., Hanilçi, N. & Uzun, F. (2023).A new natural secondary reference material forgarnet U-Pb dating by TIMS and LA-ICP-MS.Geostandards and Geoanalytical Research, 47(2),297-310. https://doi.org/10.1111/ggr.12493
Aysal, N., Karslıoğlu, Ö., Erdem, E., Guillong, M.,Öngen, S., Uysal, I. T., Kaygısız, E. & Yıldırım,I. D. (2025a). U-Pb calcite geochronology, EPR,geochemistry, and CO-Sr isotopes of ancientmarbles in the İznik Region (Bursa-Türkiye).Turkish Journal of Earth Sciences, 34(5), 650-668. https://doi.org/10.55730/1300-0985.1981
Aysal, N., Erdem, E., Hanilçi, N., Güngör, T., Öngen,S., Yılmaz, I., Uzun, F., Laçin, D. & Yıldırım, I.D. (2025b). Petrography, electron paramagneticresonance, geochemistry, and Sr-CO isotope datafor provenance studies of the ancient MarmorIassense in Kıyıkışlacık (Muğla region), Türkiye.Turkish Journal of Earth Sciences, 34(2), 176-189. https://doi.org/10.55730/1300-0985.1952
Bozkaya, Ö., Bozkaya, G., Aysal, N., Hanilçi, N. &Yılmaz, H. (2024). Mineral chemistry and garnetU-Pb dating in the Bizmişen iron skarn deposit,Erzincan, East-Central Türkiye. Geochemistry,84(4), 126163.https://doi.org/10.1016/j.chemer.2024.126163
Göçmengil, G., Tükel, F. Ş., Uzun, F., Guillong, M.,Yılmaz, İ., Aysal, N. & Hanilçi, N. (2022).Accurate whole-rock geochemistry analysis bycombined ICP-OES and LA-ICP-MS instruments.Bulletin of the Mineral Research and Exploration,168, 157-165.https://doi.org/10.19111/bulletinofmre.947703
Göçmengil, G., Müntener, O., Karacık, Z., Genç, Ş.C.,Ulianov, A. & Aysal, N. (2025). Petrogenesis of apost-collisional, shallow crustal mafic complex: Acase study of the Yıldız Dağı gabbroic intrusion(Northern Türkiye). Lithos, 516-517, Article108260.https://doi.org/10.1016/j.lithos.2025.108260
Kaygısız, E., Aysal, N. & Yağcıoğlu, K.D. (2024).Detrital zircon and rutile UPb dating of garnetmica schist in the Istranca (Strandja) Massif (NWTürkiye): Mineral chemistry and metamorphicconditions. Geochemistry, 84(4), Article 126172.https://doi.org/10.1016/j.chemer.2024.126172
Öngen, S., Aysal, N., Baykır, M. ve Şahin, M.O. (2012).Tarihi Aydos Kalesi yapı taşları, harç ve sıvalarınınpetrografisi ve kaynak alanları. Restorasyon veKonservasyon Çalışmaları Dergisi, 8, 30-36.
Öngen, S. ve Aysal, N., (Basım Aşamasında). İstanbulu Süsleyen Dekor Taşları - Roma, Bizans, Osmanlı Medeniyetleri Mirası. (Kitap).
Özbaş, F. & Hanilçi, N. (2025). Quartz textures, mineral chemistry and fluid inclusion features of Tuztaşı low-sulphidation Au mineralization: Implication to its formation. Geochemistry, 85(1), Article 126220. https://doi.org/10.1016/j.chemer.2024.126220
Özbey, Z., Aysal, N., Caran, Ş., Tükel, F.Ş., Yağcıoğlu, K. D., Yeşiltaş, M. & Yılmaz, İ. (2024). Mineral chemistry and PT conditions of the winchitebearing metabasic rocks in the NE edge of the Menderes Massif (Western Türkiye). Geochemistry, 84(4), Article 126126. https://doi.org/10.1016/j.chemer.2024.126126
Sönmez, T. & Aysal, N. (2025). Crystal morphology of Antarctic micrometeorites based on melting cooling processes during atmospheric entry. Crystals, 15(2). https://doi.org/10.3390/cryst15020179
Şahin, S. Y., Aysal, N., Güngör, Y., Peytcheva, I. & Neubauer, F. (2014). Geochemistry and UPb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the geodynamic evolution of Cadomian orogeny. Gondwana Research, 26(2), 755-771. https://doi.org/10.1016/j.gr.2013.07.011
Şahin, S. Y., Naycı, Ö., Aysal, N., Cansu, Z. & Tükel, F. Ş. (2024). Geochemical and geochronological evidences from Cambrian to Ordovician protracted magmatism in the Istranca Massif, NW Türkiye. Geochemistry, 84(4), Article 126196. https://doi.org/10.1016/j.chemer.2024.126196
Tükel, F. Ş., Tiringa, D., Hanilçi, N., Ateşçi, B., Aysal, N. & Alan, İ. (2025a). Geochemistry and U-Pb dating of the Yahyalı pluton and associated skarn occurrences, SW Kayseri (Central Türkiye): Geodynamic significance and relation to mineralization. Journal of Geochemical Exploration, 274, Article 107756. https://doi.org/10.1016/j.gexplo.2025.107756
Tükel, F. Ş., Aysal, N., Yıldırım, İ. D., Guillong, M., Uysal, T., Öngen, S. & Erdem, E. (2025b). U-Pb calcite geochronology, EPR, geochemistry, and CO-Sr isotopes of Africano marbles in the Seferihisar (İzmir, Türkiye). Turkish Journal of Earth Sciences, 34(4), 590-609. https://doi.org/10.55730/1300-0985.1977
Uzun, F., Aysal, N., Guillong, M. ve Allaz, J.M. (2024). Mineral chemistry and geothermobarometry of metasedimentary rocks of Central Menderes Massif, Western Türkiye: Metamorphic evolution and source of metapelitic rocks. Geochemistry, 84(4), Article 126199. https://doi.org/10.1016/j.chemer.2024.126199
Ündül, Ö., Erözmen, T., Aysal, N. ve Güleç, A. (2025). Alternative stones and cleaning efficiencies for historical building stones used in İstanbul (Türkiye). Turkish Journal of Earth Sciences, 34(3), 455-478. https://doi.org/10.55730/1300-0985.1969
Yılmaz, İ., Şahin, S.Y., Aysal, N., Güngör, Y., Akgündüz,
A. ve Bayhan, U. C. (2022). Geochronology,
geochemistry and tectonic setting of the Cadomian
(EdiacaranCambrian) magmatism in the Istranca
(Strandja) Massif: new insights in to magmatism
along the northern margin of Gondwana in NW
Turkey. International Geology Review, 64(17),
2456-2477.
https://doi.org/10.1080/00206814.2021.1901249
Abstract: In this study, the Mollusca fauna (Gastropoda and Bivalvia) from two drilling cores, each 12 meters deepand obtained in Taşköprü village (located between Lake Akşehir and Lake Eber), was systematically examined for the first time, and the paleobiogeographic distribution of the fauna was documented. From the systematically collected samples obtained from the drilling cores, eight genera and eight species belonging to the class Gastropodaof the phylum Mollusca were identified, including Valvata piscinalis (O. F. Müller, 1774), Valvata sp., Bithyniapseudemmericia Schütt, 1964, Bithynia pseudemmericia operculum, Graecoanatolica lacustristurca Radoman, 1973,Laevicaspia caspia (Eichwald, 1838), Laevicaspia kolesnikoviana (Logvinenko & Starobogatov, 1966), Laevicaspia lincta (Milaschewitsch, 1908), Laevicaspia sp., Lymnaea sp., Stagnicola sp., Radix auricularia (Linnaeus, 1758),Radix sp., Gyraulus parvus (Say, 1817), and Gyraulus sp. Additionally, three genera and six species belongingto the class Bivalvia were identified, including Euglesa casertana (Poli, 1791), Euglesa personata (Malm, 1855),Pisidium amnicum (O. F. Müller, 1774), Pisidium jassiensis Cobălcescu, 1883, Pisidium sp., Dreissena iconicaSchütt, 1991, Dreissena polymorpha (Pallas, 1771), and Dreissena sp. Comparison with previous studies from theLakes Region shows that the occurrence of V. piscinalis, B. pseudemmericia, G. lacustristurca, R. auricularia, G.parvus, E. casertana, E. personata, P. amnicum, P. jassiensis, and D. iconica species previously reported from sediments of the Konya Closed Basin and Lakes Eğirdir, Beyşehir, Burdur, and Suğla suggests that during the LatePleistocene there may have been a physical connection among these basins, that these lakes developed under similar paleoenvironmental conditions.
GastropodaBivalvia
Late Pleistocene
SW Anatolia
Paleogeography
Taşköprü
Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., Balcı,V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T.,Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez,H. Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin,M., Şenel, M., Tarhan, N., Turhan, N., Türkecan,A., Ulu, Ü., Uğuz, M. F. ve Yurtsever, A. (2011).1:1.250.000 ölçekli Türkiye Jeoloji Haritası.Maden Tetkik ve Arama Genel Müdürlüğü Yayını.Ankara, Türkiye.
Akbulut, M., Öztürk, M. & Öztürk, M. (2002). TheBenthic Macroinvertebrate Fauna of SarıkumLake and Spring Waters (Sinop). Turkish Journalof Marine Sciences, 8, 103-119. https://dergipark.org.tr/en/pub/jbme/issue/9866/121993
Aktürk, K. & Kapan, S. (2025). The Quaternaryfluvial-lacustrine system in the Akarçay Basin(SW Anatolia): depositional environments andpaleoclimatic interpretation. Turkish Journalof Earth Sciences, 34(4), 562-581. https://doi.org/10.55730/1300-0985.1975
Alçiçek, H., Gross, M., Bouchal, J. M., Wesselingh,F. P., Neubauer, T. A., Meijer, T., van den HoekOstende, L. W., Tesakov, A., Murray, A. M., Mayda,S. & Alçiçek, M. C. (2023). Paleobiodiversityand paleoenvironments of the eastern Paratethys Pleistocene lacustrine-palustrine sequence in the Baklan Basin (SW Anatolia, Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 626, Article 111649. https://doi. org/10.1016/j.palaeo.2023.111649
Alçiçek, M. C. (2007). Tectonic development of
an orogen-top rift recorded by its terrestrial
sedimentation pattern: the Neogene Eşen Basin
of southwestern Anatolia, Turkey. Sedimentary
Geology, 200(1-2), 117-140.
Alçiçek, M. C., Mayda, S., ten Veen, J. H., Boulton,
S. J., Neubauer, T. A., Alçiçek, H., ... & Van
Den Hoek Ostende, L. W. (2019). Reconciling
the stratigraphy and depositional history of
the Lycian orogen-top basins, SW Anatolia.
Palaeobiodiversity and Palaeoenvironments, 99,
551-570.
Altınsaçlı, S., Kılıç, M. & Altınsaçlı, S. (2000). A
Preliminary study on the Ostracoda (Crustacea)
fauna of Lake Akşehir. Turkish Journal of Zoology,
24, 9-16.
Anderson, R. (2005). An annotated list of the nonmarine Mollusca of Britain and Ireland. Journal
of Conchology, 38(6), 607-638.
Atalay, İ. (1977). Sultandağları ile Akşehir ve Eber
Gölleri havzalarının strüktüral, jeomorfolojik ve
toprak erozyonu etüdü. Atatürk Üniversitesi Yay.
No.500, Erzurum.
Bering, D. (1971). The development of the Neogene
and Quaternary intramontane basins within the
Pisidic lake district in S. Anatolia. Newsletters on
Stratigraphy, 1, 2732.
Bespalaya, Y. V., Aksenova, O. V., Sokolova, S. E.,
Shevchenko, A. R., Tomilova, A. A. & Zubrii,
N. A. (2021). Biodiversity and distributions of
freshwater mollusks in relation to chemical and
physical factors in the thermokarst lakes of the
Gydan Peninsula, Russia. Hydrobiologia, 848,
3031-3044. https://doi.org/10.1007/s10750-020-
04227-9
Bilgin, F. H. (1973). Batı Anadolu İç Sularında Tespit
Edilen Mollusk Türlerinin Tanıtılması Ekolojisi
ve Dağılışları ile Bazı Prosobranchların
Anatomilerinde Görülen Özellikler [Doçentlik
Tezi]. EÜ FF Genel Zooloji Kürsüsü Bornovaİzmir.
Bilgin, F. H. (1980). Batı Anadolunun bazı önemli
tatlı sularından toplanan Mollusca türlerinin sistematiği ve dağılışı. Diyarbakır Üniversitesi
Tıp Fakültesi Dergisi, 8(2), 1-64.
Bizzarri, R., Corrado, P., Magri, D., Martinetto, E.,
Esu, D., Caprai, V., Colacicchi, R., Napoleone,
G., Albianelli, A. & Baldanza, A. (2018).
Palaeoenvironmental and climatic inferences from
the late early Pleistocene lacustrine deposits in the
eastern Tiberino Basin (central Italy). Quaternary
Research, 90(1), 201-221. https://doi.org/10.1017/
qua.2018.41
Büyükmeriç, Y. & Wesselingh, F. P. (2018). New
cockles (Bivalvia: Cardiidae: Lymnocardiinae)
from Late Pleistocene Lake Karapınar
(Turkey): Discovery of a Pontocaspian refuge?.
Quaternary International, 465, 37-45. https://doi.
org/10.1016/j.quaint.2016.03.018
Coşkun, S. (2024). Akarçay Kapalı Havzasının yaz
mevsiminde buharlaşma ve akım verilerinin trend
analizi. The Journal Of Social Sciences, (47), 162-
177. https://doi.org/10.29228/SOBIDER.45362
Çetinkaya, O. (1991). Akşehir Gölü su Kalitesi,
plankton ve bentik faunası üzerine bir araştırma.
Göller Bölgesi Tatlı Su Kaynaklarının Korunması
ve Çevre Sorunları Sempoyumu, Bildiriler Kitabı
(s. 413-429), Isparta.
Çolakoğlu, G. (2006). Karacaören (Çanakkale)
Civarının Neojen Stratigrafisi ve Mollusk Faunası
[Yayımlanmamış Yüksek Lisans Tezi]. Çanakkale
Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü.
Danukalova, G., Yakovlev, A., Osipova, E., Kurmanov,
R. & van Kolfschoten, T. (2016). Biostratigraphy
of the early Middle Pleistocene of the Southern
Fore-Urals. Quaternary International, 420, 115-
135. https://doi.org/10.1016/j.quaint.2015.09.087
Demir, A. ve Kapan, S. (2025). Beyşehir Göl
Havzası Çevresindeki Çökellerin Kuvaterner
Stratigrafisi, Gastropoda Faunası ile Paleoiklimi
ve Paleoekolojisi/Quaternary Stratigraphy,
Gastropoda Fauna, Palaeoclimate and
Palaeoecology of the sediments around Beyşehir
Lake Basin. Türkiye Jeoloji Bülteni, 68(1), 1-22.
https://doi.org/10.25288/tjb.1570701
Demirtaş, R., Kuru, T. ve Mirzaoğlu, M. (2019).
Sultandağı (Afyon) Yenikarabağ Köyü civarında
2018 yılında oluşmuş yüzey yarıkları-çökmelerin
oluşum mekanizması. Afet ve Acil Durum
Yönetim Başkanlığı, Deprem Dairesi Başkanlığı
Teknik raporu (Yayımlanmış), Ankara. https://doi.
org/10.13140/RG.2.2.32663.42406
Dönmez, S. (2018). Akşehir Gölü su seviyesinin
çekilmesinin meteorolojik ve uydu verileri ile
incelenmesi. Gazi Üniversitesi Mühendislik
Mimarlık Fakültesi Dergisi, 33(1). https://doi.
org/10.17341/gazimmfd.406790
Eichwald, E. (1838). Faunae Caspii Maris
primitiae. Bulletin de la Société Impériale des
Naturalistes de Moscou, 11(2), 125174. https://
biodiversitylibrary.org/page/41342125
Elmacı, A. ve Obalı, O. (1998). Akşehir Gölü kıyı
bölgesi alg florası. Turkish Journal of Biology, 22,
81-98.
Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun,
Ş., Şaroğlu, F. (2013). 1:1.250.000 Ölçekli
Açıklamalı Türkiye Diri Fay Haritası. Maden
Tetkik ve Arama Genel Müdürlüğü, Özel Yayın
Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-
56-1.
Eren, Y. & Nalbantçılar, T. (2021). Akşehir-Eber
gölleri su seviye değişimini etkileyebilecek yüzey
kırıklarının belirlenmesi projesi. Akşehir ve Eber
Çevre Koruma Birliği Raporu (yayımlanmamış).
Ergun, Z. (2020). Suğla Gölü (Seydişehir, Konya)
Çökellerinin Sedimantolojik ve Palinolojik
İncelemesi; Göller Bölgesi Kuvaterner
Paleocoğrafyasının Gelişimi [Yayımlanmış
Doktor Tezi]. Ankara Üniversitesi.
Erol, O. (1969). Geology and geomorphology of
Tuzgölü (Salt Lake) basin (Report No. 4220).
Mineral Research and Exploration Institute
Reports, Turkey [in Turkish].
Erol, O. (1971). Konya, Tuz Gölü, Burdur havzalarındaki
pluvial göllerin çekilme safhalarının jeomorfolojik
delilleri. Coğrafya Araştırmaları Dergisi, 3-4,
1352.
Erol, O. (1978). The Quaternary history of the Lake
Basins of central and southern Anatolia. In Brice,
W.C. (Ed.), The Environmental History of the
Near and Middle East since the Last Ice Age (pp.
111139.). Academic Press, London.
Geze Kalanyuva, Y. (2021). Tarsus-Seyhan-Ceyhan
nehirleri delta kompleksinin Kuvaterner jeolojisi,
Adana, GD Türkiye [Yayımlanmış Doktor Tezi].
Ankara Üniversitesi.
Girod, A. (2013). Recent and Ancient Deathassemblages
of Molluscs in Lakes Eğirdir and Beyşehir
(SW Anatolia, Turkey). Natural History
Sciences, 154(1), 41-56. https://doi.org/10.4081/
nhs.2013.41
Glöer, P. & Meier-Brook, C. (2003).
Süßwassermollusken. Ein Bestimmungsschlüssel
für die Bundesrepublik Deutschland [Freshwater
molluscs. Identification keys for the FRG].
Deutscher Jugendbund für Naturbeobachtung,
Hamburg. ISBN 3-923376-02-2.
Glöer, P., Meier-Brook, C. & Ostermann, O. (1992).
Süßwassermollusken: Ein Bestimmungsschlüssel
für die Bundesrepublik Deutschland (10th rev. and
expanded ed.). Hamburg: Deutscher Jugendbund
für Naturbeobachtung, 111 pp.
Glöer, P. & Yıldırım, Z. M. (2006). Some records of
Bithyniidae from Turkey with the description of
Bithynia pesicii n.sp. (Gastropoda: Bithyniidae).
Malakologische Abhandlungen. Dresden. 24, 37-
42.
Gözler, A. M. & Baytaşoğlu, H. (2020). Mollusca
fauna of the Çoruh River and its tributaries.
Journal of Anatolian Environmental and Animal
Sciences, 5(2), 185-190. https://doi.org/10.35229/
jaes.678664
Grigorovich, I. A., Mills, E. L., Richards, C. B.,
Breneman, D., Ciborowski, J. J. H. (2005).
European Valve Snail Valvata piscinalis (Müller)
in the Laurentian Great Lakes Basin. Journal of
Great Lakes Research, 31, 135-143.
Gümüş, B. A. Gürbüzer, P. & Altındağ, A. (2022).
Towards a sustainable world: diversity of
freshwater gastropods in relation to environmental
factorsA case in the Konya Closed Basin,
Türkiye. Diversity, 14(11), 934. https://doi.
org/10.3390/d14110934
Gürbüz, A. & Kazancı, N. (2014). Facies characteristics
and control mechanisms of Quaternary deposits
in the Tuz Gölü basin. Bulletin of the Mineral
Research and Exploration, 149, 1-18. https://doi.
org/10.19111/bmre.63616
Gürbüz, A., Kazancı, N., Hakyemez, H. Y., Leroy, S. A.,
Roberts, N., Saraç, G., Ergun, Z., Boyraz-Arslan,
S., Gürbüz, E., Koç, K., Yedek, Ö. & Yücel, T.
O. (2021). Geological evolution of a tectonic and
climatic transition zone: the Beyşehir-Suğla basin,
lake district of Turkey. International Journal
of Earth Sciences, 110, 1077-1107. https://doi.
org/10.1007/s00531-021-02007-x
Gürbüz, E. (2023). Monitoring spatio-temporal
changes in wetlands with harmonized image
series in Google Earth Engine. Environmental
Monitoring and Assessment, 195(6), 770. https://
doi.org/10.1007/s10661-023-11400-9
Gürlek, M. E. (2009). Kahramanmaraş bölgesi
tatlısularındaki Mollusca türleri üzerine faunistik
bir araştırma [Yayımlanmış Yüksek Lisans
Tezi]. Kahramanmaraş Sütçü İmam Üniversitesi,
Kahramanmaraş.
Horsák, M. Juřičková, L. Beran, L. Čejka, T. & Dvořák,
L. (2010). Komentovaný seznam měkkýů
zjitěných ve volné přírodě České a Slovenské
republiky. [Annotated list of mollusc species
recorded outdoors in the Czech and Slovak
Republics]. Malacologica Bohemoslovaca, Suppl.
1, 1-37.
İleri, Ö. (2002). Eber Gölü (İç Batı Anadolu) Geç
Kuvaterner Tortullarının Sedimantolojik
İncelemesi [Yayımlanmamış Doktora Tezi].
Ankara Üniversitesi.
Jokinen, E. (1992). The Freshwater Snails (Mollusca:
Gastropoda) of New York State. The University
of the State of New York, The State Education
Department, The New York State Museum,
Albany, New York 12230.
Kabasakal, S. (2005). Lapseki (Çanakkale) Yöresi
Neojen Stratigrafisi ve Gastropod-Pelecypod
Faunası [Yayımlanmamış Yüksek Lisans Tezi].
Çanakkale Onsekiz Mart Üniversitesi Fen
Bilimleri Enstitüsü.
Kala, H. (2006). Akarçay ve çevresinin (Afyonkarahisar)
florası. [Yayımlanmamış Yüksek Lisans Tezi].
Afyon Kocatepe Üniversitesi, 133 s.
Kale, M. M. (2021). Akarçay Kapalı Havzası için
hidrolojik kuraklık analizi. Coğrafya Dergisi,
(42), 165-180. https://doi.org/10.26650/
JGEOG2021-892360
Kapan, S., Delikan, A., Sayın, Ü., Gürsoy, B., Demir,
A., Bakkal, G., Orhan, H., Engin, B. ve Özmen,
A., (2018). Geç Pleyistosen Molluskları ile Eski
Konya Gölünün Paleoekolojisi ve OksijenKarbon İzotopları ile Paleoiklimsel Yorumu.
Avcıoğlu, M., Kurttaş, M., Toksoy, Köksal., F,
Eyüboğlu., Y, Baba, A., Yiğitbaş, E. (Ed. ler),
71. Türkiye Jeoloji Kurultayı Bildiri Özleri
Kitabı, (s. 803-806). Jeoloji Mühendisleri Odası
Yayınları. https://www.jmo.org.tr/resimler/
ekler/9ee599173fc3528_ek.pdf
Karabıyıkoğlu, M. (2003). Konya Havzasının Geç
Kuvaterner Evrimi. [Yayımlanmış Doktor Tezi].
İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü,
Coğrafya Anabilim Dalı. İstanbul.
Karayiğit, A. I., Oskay, R. G., Tuncer, A., Mastalerz,
M., Gümüş, B. A., Şengüler, I., Yaradılmış, H.
& Tunoğlu, C. (2016). A multidisciplinary study
of the Gölbaşı-Harmanlı coal seam, SE Turkey.
International Journal of Coal Geology, 167, 31-
47. https://doi.org/10.1016/j.coal.2022.104149
Kazancı, N. & Roberts, N. (2019). The lake basins of
South-west Anatolia. In Kuzucuoğlu, C., Çiner, A.
& Kazancı, N. (Eds.) Landscapes and Landforms
of Turkey (pp. 325-337). Springer International
Publishing.
Kazancı, N., Nemec, W., İleri, Ö. ve Kavuşan, G.
(1994). Islah ve kurtarma çalışmaları için Akşehir
ve Eber göllerinin sedimantolojik incelenmesi
(Proje No: YBAG, 19). TÜBİTAK.
Kebapçı, Ü., Koca, S. B. & Yıldırım, M. Z. (2012).
Revision of Graecoanatolica (Gastropoda:
Hydrobiidae) species in Turkey. Turkish Journal
of Zoology, 36(4), 399-411. https://doi:10.3906/
zoo-1011-10
Kebapçı, Ü. & Yıldırım, M. Z. (2010). Freshwater
snails fauna of lakes region (Göller Bölgesi),
Turkey. Muzeul Olteniei Craiova. Oltenia. Studii
şi comunicari. Ştiintele Naturii, 26(2), 75-83.
Kempf, E.K. (1968). Mollusken aus dem HolsteinIntergiazial des Niederrheingebietes. Arch.
Molluskenkunde, 98(1/2): 1-21.
Kılıçaslan, I. & Özbek, M. (2010). Contributions to
the knowledge on the distribution of freshwater
Mollusca species of Turkey. Review of
Hydrobiology, 3(2).
Klinkenbuß, D., Metz, O., Reichert, J., Hauffe, T.,
Neubauer, T. A., Wesselingh, F. P. & Wilke, T.
(2020). Performance of 3D morphological methods
in the machine learning assisted classification of
closely related fossil bivalve species of the genus
Dreissena. Malacologia, 63(1), 95-105. https://
doi.org/10.4002/040.063.0109
Koçyiğit, A. & Özacar, A. (2003). Extensional
Neotectonic Regime through the NE Edge of the
Outer Isparta Angle, SW Turkey: New Field and
Seismic Data, Turkish Journal of Earth Science,
12, 67-90. https://journals.tubitak.gov.tr/earth/
vol12/iss1/5
Kuiper, J. G. J., Økland, K. A., Knudsen, J., Koli,
L., von Proschwitz, T. & Valovirta, I. (1989).
Geographical distribution of the small mussels
(Sphaeriidae) in North Europe (Denmark, Faroes,Finland, Iceland, Norway and Sweden). Annales
Zoologici Fennici, 26(2), 73101.
Kuzucuoğlu, C., Bertaux, J., Black, S., Denefle, M.,
Fontugne, M., Karabıyıkoğlu M., Kashima, K.,
Limondin-Lozouet, N., Mouralis, D. & Orth, P.
(1999). Reconstruction of climatic changes during
the late Pleistocene, based on sediment records
from the Konya basin (Central Anatolia, Turkey),
Geological Journal, Special Issue on Turkish
Geology, 34, 175-198.
Lorencová, E., Beran, L., Nováková, M., Horsáková,
V., Rowson, B., Hlaváč, J. Č., Nekola J. C. &
Horsák, M. (2021). Invasion at the population
level: a story of the freshwater snails Gyraulus
parvus and G. laevis. Hydrobiologia, 848(19),
4661-4671. https://doi.org/10.1007/s10750-021-
04668-w
Marmara, H., Kapan, S. & Aktürk, K., (2024).
Paleoenvironmental Characteristics of Quaternary
Sediments Around Taşköprü (Afyonkarahisar/
Sultandağı, SW Turkey) with Distribution of
Molluscan Fauna. Çan, T., Tekin, S., Pınarcı, E.,
Kadakçı, T., Koca, M., Koçkar, K., Olgun, Ş.,
Güler, C., Sarı, E., Tiringa, D. E. (Ed. ler), 76.
Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, (s.
307). Jeoloji Mühendisleri Odası Yayınları. https://
www.jmo.org.tr/resimler/ekler/4ce6ecf6eff3fd0_
ek.pdf
Meriç, E., Meriç, İ. E., Avşar, N., Tunoğlu, C., Güler,
T., Yeşilyurt, S. K., Ünsal. İ. ve Rosso, A. (2000).
Geç Kuvaterner (Holosen)de İstanbul Boğazı
Yolu ile Marmara Denizi-Karadeniz Bağlantısı
Hakkında Yeni Bulgular. Türkiye Jeoloji Bülteni,
43(1), 73-118. https://www.jmo.org.tr/resimler/
ekler/ff8424b526eadce_ek.pdf
Milaschewitsch, K. O. (1908). Molluscs collected
during the excursion of S.A. Zernov on the
torpedo-boat No. 264 on the Danube River from
June 28 to July 3, 1907. [Моллюски, собранные
во время экскурсии С.А. Зернова на миноносце
№ 264 на р. Дунай с 28 июня по 3 июля 1907 г.].
Bulletin de lAcadémie Impériale des Sciences de
St.-Pétersbourg. ser. 6, 2(12): 991-996.
Minchin, D., Maguire, C. & Rosell, R. (2003). The
zebra mussel (Dreissena polymorpha Pallas)
invades Ireland: human mediated vectors and
the potential for rapid intranational dispersal. In
Biology and Environment: Proceedings of the
Royal Irish Academy (Vol. 103, No. 1, pp. 23-30).
Royal Irish Academy. https://doi.org/10.1353/
bae.2003.0017
Mouthon, J., Forcellini. M. & Le Goff, G. (2017).
Reconnaître Euglesa (Cyclocalyx) compressa
Prime, 1852, (Bivalvia, Sphaeriidae), une
nouvelle espèce pour la faune de France. Folia
conchyliologica, 38, 6-p.
Nemec & Kazancı. (1999). Quaternary colluvium in
west-central Anatolia: sedimentary facies and
palaeoclimatic significance. Sedimentology,
46(1), 139-170. https://doi.org/10.1046/j.1365-
3091.1999.00210.x
Neubauer, T. & Wesselingh, F. (2023). The Early
Pleistocene freshwater mollusks of the Denizli
Basin (Turkey): a new long-lived lake fauna
at the crossroads of Pontocaspian and AegeanAnatolian realms. Zitteliana, 97, 53-88. https://
doi.org/10.3897/zitteliana.97.115682
Neubauer, T.A., van de Velde, S., Yanina, T. &
Wesselingh, F. P. (2018). A late Pleistocene
gastropod fauna from the northern Caspian Sea
with implications for Pontocaspian gastropod
taxonomy. ZooKeys, 770, 43. https://doi.
org/10.3897/zookeys.770.25365
Nordsieck, F. (1982). Die Europäischen MeeresGehäuseschnecken 2. Auflage. Gustav Fischer,
Stuttgart, pp. 539.
Odabaşı, D. A., Glöer, P. & Yıldırım, M. Z. (2015).
The Valvata species of Turkey with a description
of Valvata kebapcii n. sp. (Mollusca: Valvatidae).
Ecologica Montenegrina, 2(2), 135-142. https://
doi.org/10.37828/em.2015.2.16
Okay, A. I., Zattin, M., Özcan, E., Sunal, G. (2020).
Uplift of Anatolia. Turkish Journal of Earth
Sciences, 29(5), 696-713. https://doi.org/10.3906/
yer-2003-10
Orhan, H., Delikan, A., Demir, A., Kapan, S., Olgun,
K., Özmen, A., Sayın, Ü., Ekici, G., Aydın, H.,
Engin, B. & Tapramaz, R. (2021). Late Quaternary
paleoclimatic and paleoenvironmental changes in
the Konya Closed Basin (Konya, Turkey) recorded
by geochemical proxies from lacustrine sediments.
Arabian Journal of Geosciences, 14, 1-14. https://
doi.org/10.1007/s12517-021-07030-5
Orlova, M. I. (2002). Dreissena (D.) polymorpha:
evolutionary origin and biological peculiarities
as prerequisites of invasion success. In: Invasive
aquatic species of Europe. Distribution, impacts
and management (pp. 127-134). Dordrecht:
Springer Netherlands.
Öktener, A. (2004). A preliminary research on Mollusca
species of some freshwaters of Sinop and Bafra.Gazi University Journal of Science, 17(2), 21-
31. https://dergipark.org.tr/en/download/articlefile/83210
Özmen, A., Orhan, H., Engin, B., Sayın, Ü., Kapan,
S., Delikan, A., Tapramaz, R., Ekici, G., Aydın,
H., Demir, A., Işık, M. (2018). ESR Tekniği ile
Konya Havzasındaki Kuvaterner Birimlerin
Tarihlendirilmesi ve Jeolojik Değerlendirilmesi
(Rapor no: 114Y237). Türkiye Bilimsel ve Teknik
Araştırma Kurumu Yerbilimleri Araştırma Grubu
Araştırma Projesi Kesin Raporu.
Öztürk, M. O. (2005). Eber Gölü (Afyon)ndeki sazan
(Cyprinus carpio L.)ların metazoon parazitleri
üzerine bir araştırma. Türkiye Parazitoloji Dergisi,
29(3), 204-210.
Özsayın, E., Gürbüz, A., Kuzucuoğlu, C., Erdoğu, B.
(2019). Salted landscapes in the Tuz Gölü (Central
Anatolia): the end stage of a Tertiary Basin. In
Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (Eds.),
Landscapes and landforms of Turkey, (pp. 339-
351). Springer International Publishing. https://
doi.org/10.1007/978-3-030-03515-0_16
Pallas, P.S. (1771). Reise durch verschiedene Provinzen
des Rußischen Reichs, Erster Theil. Kayserliche
Academie der Wissenschaften, St. Petersburg,
pp. 504. http://resolver.sub.uni-goettingen.de/
purl?PPN329913735
Reeves, C. C. (Ed.). (1968). Introduction to
Paleolimnology (Developments in sedimentology;
11). Elsevier Science Limited, Amsterdam.
Ring, U. W. E., Johnson, C., Hetzel, R. & Gessner, K.
(2003). Tectonic denudation of a Late Cretaceous
Tertiary collisional belt: regionally symmetric
cooling patterns and their relation to extensional
faults in the Anatolide belt of western Turkey.
Geological Magazine, 140(4), 421-441. https://
doi.org/10.1017/S0016756803007878
Roberts, N. (1983). Age, palaeoenvironments, and
climatic significance of Late Pleistocene Konya
Lake, Turkey. Quaternary Research, 19, 154-171.
Roberts, N., Karabıyıklıoğlu, M., Jones, M., Mather, A.,
Jones, G., Rodenberg, I., Eastwood, W.J., KapanYeşilyurt, S., Yiğitbaşıoğlu, H. & Watkinson, M.
(2003). Climatic and tectonic controls over late
quaternary sedimantation in the Burdur Lake
Basin, Southwest Turkey. 3 rd International
Limnogeology Congress, USA.
Schultheiß, R., Albrecht, C., Bößneck, U., Wilke, T.
(2009). The neglected side of speciation in ancient
lakes: phylogeography of an inconspicuous
mollusc taxon in lakes Ohrid and Prespa. In
Patterns and Processes of Speciation in Ancient
Lakes: Proceedings of the Fourth Symposium
on Speciation in Ancient Lakes (pp. 141-156),
Berlin, Germany, September 48, 2006. Springer
Netherlands. https://doi.org/10.1007/s10750-008-
9553-3
Schütt H. (1964). Die Molluskenfauna eines reliktaren
Quellsees der südlichen Türkei. Archiv für
Molluskenkunde, 93, 173-180. Frankfurt a. Main.
Schütt, H. (1990). Die pleistozinen Mollusken dreier
pisidischer Salzseen. Mitteilungen der Deutschen
malakozoologischen Gesellschaft, 46, 15-24.
Schütt, H. (1991). Fossile mollusken dreier
anatolischer Ovas. Archiv für Molluskenkunde,
120, (4-6), 131-147. https://doi.org/10.1127/arch.
moll/120/1991/131
Seyitoǧlu, G., Işık, V. & Cemen, I. (2004). Complete
Tertiary exhumation history of the Menderes
massif, western Turkey: an alternative working
hypothesis. Terra Nova, 16(6), 358-364. https://
doi.org/10.1111/j.1365-3121.2004.00574.x
Son, M.O. (2007). Native range of the zebra mussel and
quagga mussel and new data on their invasions
within the Ponto-Caspian Region. Aquatic
Invasions, 2(3), 174-184. http://aquaticinvasions.
net/2007/AI_2007_2_3_Son.pdf
Sözen, M. & Yiğit, S. (1999). The benthic fauna and
some limnological aspects of Lake Akşehir
(Konya). Turkish Journal of Zoology, 23(7), 829-
848.
Steininger, F. F. & Rögl, F. (1984). Paleogeography and
palinspastic reconstruction of the Neogene of the
Mediterranean and Paratethys. Geological Society,
London, Special Publications, 17(1), 659-668.
https://doi.org/10.1144/GSL.SP.1984.017.01.52
Stefanescu, S. (1896). Études sur les terrains tertiaires
de Roumanie. Contribution à Létude des Faunes
Sarmatique, Pontique et Levantine. Mem Soc. 15,
147s., Paris.
Tagliasacchi, E. & Yağmurlu, F. (2019). Acıgöl Grabeni
Kuzeyindeki Pliyo-Kuvaterner Yaşlı Karasal
Çökellerin Fasiyes Özellikleri ve Bölgenin
Paleoortamsal Gelişimi, GB-Türkiye. Süleyman
Demirel Üniversitesi Fen Bilimleri Enstitüsü
Dergisi, 23(2), 440-451. https://doi.org/10.19113/
sdufenbed.462302
Taner, G. (1977). Gelibolu Yarımadası Neojen
Formasyonları ile Baküniyen Molluska Faunasının İncelenmesi [Doçentlik Tezi]. Ankara
Üniversitesi.
Taner, G. (1983). Hamzaköy Formasyonunun
Çavda (Baküniyen) Bivalvleri, Gelibolu
Yarımadası. Türkiye Jeoloji Kurumu Bülteni,
26(1), 59-64. https://www.jmo.org.tr/resimler/
ekler/5a61717dddc3501_ek.pdf
Tuncer, A., Karayiğit, A. I., Oskay, R. G., Tunoğlu,
C., Kayseri-Özer, M. S., Gümüş, B. A., Bulut, Y.
& Akbulut, A. (2023). A multi-proxy record of
palaeoenvironmental and palaeoclimatic conditions
during Plio-Pleistocene peat accumulation in
the eastern flank of the Isparta Angle: A case
study from the Şarkikaraağaç coalfield (Isparta,
SW Central Anatolia). International Journal of
Coal Geology, 265, Article 104149. https://doi.
org/10.1016/j.coal.2022.104149
Umut, M., Karabıyıkoğlu, M., Saraç, G., Bulut, V.,
Demirci, A.R., Erkan, M., Kurt, Z., Metin, S. ve
Özgönül, E. (1987). Tuzlukçu-Ilgın-DoğanhisarDoğanbey (Konya ili) ve dolayının jeolojisi
(Rapor no: 8246). Maden Tetkik ve Arama Genel
Müdürlüğü.
van de Velde, S., Wesselingh, F. P., Yanina, T. A.,
Anistratenko, V. V., Neubauer, T. A., ter Poorten,
J. J., Vonfolf, H. B. & Kroonenberg, S. B. (2019).
Mollusc biodiversity in late Holocene nearshore
environments of the Caspian Sea: A baseline for
the current biodiversity crisis. Palaeogeography,
Palaeoclimatology, Palaeoecology, 535,
Article 109364. https://doi.org/10.1016/j.
palaeo.2019.109364
Vinarski, M. V. & Kantor, YuI. (2016). Analytical
catalogue of fresh and brackish water molluscs
of Russia and adjacent countries. A.N. Severtsov
Institute of Ecology and Evolution of RAS,
Moscow, 544 pp.
Wenz, W. (1938-44). Gasteropoda. In Handbuch der
Palaozoologie, herasgeg. v. Schindewolf, Bd. 6,
Teil I: 1-240. Verl. G. Borntraeger, Berlin.
Wenz, W. (1942). Die Mollusken des Pliozäns
der rumänischen Erdöl-Gebiete als
Leitversteinerungen für die Aufschluss-Arbeiten.
Senckenbergiana, 24, 1-293.
Wesselingh, F. P., Neubauer, T. A., Anistratenko, V.
V., Vinarski, M.V., Yanina, T., Ter Poorten, J.
J., Kijashko, W., Albrecht, C., Anistratenko,O. Y., DHont, A., Frolov, P., Ándara, A. M.,
Gittenberger, A., Gogaladze, A., Karpinsky,
M., Lattuda, M., Popa, L., Sands, A.F., van de
Velde, S., Vandendorpe, J. & Wilke, T. (2019).
Mollusc species from the Pontocaspian regionan
expert opinion list. ZooKeys, 827, 31. https://doi.
org/10.3897/zookeys.827.31365
Yıldırım, M. (1999). The Prosobranchia (Gastropoda:
Mollusca) species of Turkey and their
zoogeographic distribution 1. Fresh and brackish
water. Turkish Journal of Zoology, 23(7), 877-900.
Yıldırım, M. Z. (2004). The Gastropods of Lake Eğirdir.
Turkish Journal of Zoology, 28(1), 97-102. https://
journals.tubitak.gov.tr/cgi/viewcontent.cgi?article
=2508&context=zoology
Yıldırım, M. Z. & Kebapçı, Ü. (2009). Endemism
of land and freshwater gastropods in the Lakes
region (Turkey). Oltenia. Studii şi comunicări.
Ştiinţele Naturii, 55-59.
Yıldırım, M. Z., Gülle, I., Kebabçı, Ü. & Küçük, F.
(2007). Faunal Diversity of Lake Burdur and its
Vulnerability. Natura Montenegrina, 7(2), 393-
400.
Yıldırım, M.Z., Kebabçı, Ü., Şereflişan, H.,
Gürlek, M.E., Şereflişan, M. (2023). Türkiye
Yumuşakçaları Tatlısu Çiftçenetlileri (Bivalvia) 1.
Cilt. Yıldırım. M. Z. (Eds.) s. 196. Ankara, İksad.
Yıldız, H. F. (2016). Burdur Gölü Kuvaterner
Tortullarının Paleontolojisi ve GastropodaBivalvia Faunası ile Paleoekolojik Özellikleri
(Burdur Güneybatı Türkiye) [Yayımlanmış
Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart
Üniversitesi Fen Bilimleri Enstitüsü.
Zhadin, V. I. (1965). Mollusks of Fresh and Brackish
Water of The U.S.S.R. Zoological Institute of
The Academy Sciences of The Union of Soviet
Socialist Republics. Israel Program for Scientific
Translations Jerusalem, 46, 1-368.
URL 1: WoRMS, (2025, 07 Temmuz). World Register
of Marine Species. http://www.marinespecies.org
Nuray Şahbaz
Esra Tunçel
Bülent Kaypak
Gürol Seyitoğlu
View as PDF
Abstract: The Anatolian Diagonal is a prominent left-lateral shear zone that plays a key role in the neotectonic framework of Türkiye, spanning 170 km between the Central Anatolian and East Anatolian fault zones and extending approximately 850 km from Erzincan to the Cyprus Arc. Its southwestern onshore termination is represented by theEcemiş-Deliler Fault, while its offshore continuation, the Biruni Fault, trends toward the Cyprus Arc. This studyaims to characterise the southwestern end of the Ecemiş-Deliler Fault through geomorphic markers, and to identifythe Biruni Fault using key offshore seismic reflection profiles and geological cross-sections provided by Turkish Petroleum. Focal mechanism solutions for offshore seismic events are also examined to assess fault kinematics.Based on onshore observations, a left-lateral offset of 18 km along the Göksu River indicates a long-term slip rate ofapproximately 2.25 mm/year at the southwestern end of the Ecemiş-Deliler Fault. Offshore, detailed definition andmapping of the Biruni Fault revealed that it comprises a zone of closely spaced, parallel strike-slip segments in itsnortheastern sector, transitioning in a single linear fault trace that extends south westward toward the Aegean Arc. Despite its clear morphological expression, the southwest end of Ecemiş-Deliler fault and the Biruni Fault of theAnatolian Diagonal have low seismic activity, likely because most regional deformation is accommodated furtherwest along the Antalya-Kekova Fault Zone and the PtolemyPlinyStrabo Fault Zone. The restraining stepovers ofthe Antalya Thrust and Fethiye Thrust between these structures provide new insight in a slip partitioning in the eastern Mediterranean.
Anatolian Diagonal
Biruni Fault
Eastern Mediterranean
Ecemiş-Deliler Fault Zone
morphotectonics
neotectonics
Acarel, D., Cambaz M. D., Turhan, F., Kömeç Mutlu
A. & Polat, R. (2019). Seismotectonics of Malatya
Fault, Eastern Turkey. Open Geosciences, 11(1),
1098-11111. https://doi.org/10.1515/geo-2019-
0085
Aksu, A. E., Calon, T. J., Hall, J., Mansfield, S. & Yaşar,
D. (2005). The CiliciaAdana basin complex,
Eastern Mediterranean: Neogene evolution of an
active fore-arc basin in an obliquely convergent
margin. Marine Geology, 221, 121-159. https://
doi.org/10.1016/j.margeo.2005.03.011
Aksu, A. E., Calon, T., Hall, J., Kurtboğan, B., Gürçay,
S. & Çiftçi, G. (2014a). Complex interactions
fault fans developed in a strike-slip system: Kozan
Fault Zone, Eastern Mediterranean Sea. Marine
Geology, 351, 91-107. https://doi.org/10.1016/j.
margeo.2014.03.009
Aksu, A.E., Walsh-Kennedy, S., Hall, J., Hiscott, R. N.,
Yaltırak, C., Coşkun, S. D. & Çiftçi, G. (2014b).
The Pliocene-Quaternary tectonic evolution of the
Cilicia and Adana basins, eastern Mediterranean:
Special reference to the development of the Kozan
Fault zone. Tectonophysics, 622, 22-43. https://
doi.org/10.1016/j.tecto.2014.03.025
Aksu, A. E., Hall, J. & Yaltırak, C. (2022). The
uppermost Messinian-Quaternary evolution of the
Anamur-Kormakiti zone: The transition between
the outer Cilicia and Antalya basins, northeastern
Mediterranean. Marine and Petroleum Geology,
136, Article 105451. https://doi.org/10.1016/j.
marpetgeo.2021.105451
Aktaş, G. & Robertson, A. H. F. (1984). The Maden
complex, SE Turkey: evolution of a Neotethyan
active margin. Geological Society, London,
Special Publications, 17, 375-402. https://doi.
org/10.1144/GSL.SP.1984.017.01
Akyüz, H. S., Uçarkuş, G., Altunel, E., Doğan,
B. & Dikbaş, A. (2012). Paleoseismological
investigations on slow-moving active fault in
central Anatolia, Tecer Fault, Sivas. Annals of
Geophysics, 55, 847-857. https://doi.org/10.4401/
ag-5444
Alan, İ., Balcı, V. & Elibol, H. (2014). Geological map
of the Silifke-P31 and P32 Quadrangles. MTA
Ankara, Türkiye.
Anastasakis, G. & Kelling, G. (1991). Tectonic
connection of the Hellenic and Cyprus arcs and related geotectonic elements. Marine Geology,
97, 261-277. https://doi.org/10.1016/0025-
3227(91)90120-S
Arvidsson, R., Avraham, Z. B., Ekström, G. &
Wdowinski, S. (1998). Plate tectonic framework
for the October 9, 1996, Cyprus earthquake.
Geophysical Research Letters, 25, 2241-2244.
https://doi.org/10.1029/98GL01547
Barrier, E., Chamot-Rooke, N. & Giordano, G. (2004).
Geodynamic Maps of the Mediterranean-sheet
1: Tectonics and Kinematics. Commission for
the Geological map of the World (CGMW) and
UNESCO.
Blumental, M. M. (1941). Niğde ve Adana Vilayetleri
dolayındaki Torosların Jeolojisine umumi bir
bakış. General Directorate for Mineral Research
and Exploration (MTA), Publication Series B, no
6, Ankara.
Blumental, M. M. (1952). Torosların yüksek Aladağ
silsilesinin coğrafyası, stratigrafisi ve tektoniği
hakkında yeni etüdler. General Directorate
for Mineral Research and Exploration (MTA),
Publication Series D, no 6, Ankara.
Burton-Ferguson, R., Aksu, A. E., Calon, T. J.
& Hall, J. (2005). Seismic stratigraphy and
structural evolution of the Adana basin, eastern
Mediterranean. Marine Geology, 221, 189-222.
https://doi.org/10.1016/j.margeo.2005.03.009
Calon, T. J., Aksu, A. E. & Hall J. (2005). The
Oligocene-Recent evolution of the Mesaria Basin
(Cyprus) and its western marine extension, Eastern
Mediterranean. Marine Geology, 221, 95-120.
https://doi.org/10.1016/j.margeo.2005.03.012
Cosentino, D., Schildgen, T. F., Cipollari, P., Faranda,
C., Gliozzi, E., Hudackova, N., Lucifora, S. &
Strecker, M. R. (2012). Late Miocene surface
uplift of the southern margin of the Central
Anatolian Plateau, Central Taurides, Turkey.
Geological Society of America Bulletin, 124(1-2),
133-145. https://doi.org/10.1130/B30466.1
Darin, M. & Umhoefer, P. (2019). Structure and
kinematic evolution of the southern Sivas foldthrust belt, Sivas Basin, Central Anatolia, Turkey.
Turkish Journal of Earth Sciences, 28(6), 834-
859. https://doi.org/10.3906/yer-1907-29
Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Şaroğlu,
F. & Şengör, A. M. C. (1986). Shortening of
continental lithosphere: the neotectonics of
Eastern Anatolia a young collision zone. In: Coward MP, Ries AC, (ed). Collision Tectonics.
Geological Society London Special Publications,
19, 3-36 (Robert M. Shackleton volume). https://
doi.org/10.1144/gsl.sp.1986.019.01.01
Dirik, K. (2001). Neotectonic evolution of the
northwestward arched segment of the Central
Anatolian Fault Zone, Central Anatolia, Turkey.
Geodinamica Acta, 14, 147-158. https://doi.
org/10.1016/S0985-3111(00)01056-1
Dirik, K. & Göncüoğlu, M. C. (1996). Neotectonic
Characteristics of Central Anatolia. International
Geology Review, 38, 807-817. https://doi.
org/10.1080/00206819709465363
Duman, T. & Emre, Ö. (2013). The East Anatolian Fault:
geometry, segmentation and jog characteristics.
Geological Society, London, Special Publications,
372, 495-529. https://doi.org/10.1144/SP372.14
Elmacı, H., Gürboğa, Ş., Özalp, S., Avcı, H. O.,
Aydoğan, H., Yavuzoğlu, A., Yüce, A. A., Kara,
M. & Öztürker, A. R. (2025). Active tectonic
characteristics of the Turkish Republic of
Northern Cyprus in light of paleoseismological
data. Şen, C. & Bak, T. (Eds.), 77th Geological
Congress of Türkiye, Abstract Book (p.: 343).
Chamber of Geological Engineers of Türkiye
Publications. https://www.jmo.org.tr/resimler/
ekler/662575e8a4e2055_ek.pdf
Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş. &
Şaroğlu, F. (2013). Active fault map of Turkey with
and explanatory text. Special Publication Series
30. General Directorate of Mineral Research and
Exploration (MTA). ISBN: 978-605-5310-56-1
Esat, K. & Seyitoğlu, G. (2023). Surface rupture map
of the 2023.02.06 Kahramanmaraş Earthquakes
based on high-resolution satellite and aerial
imagery. ResearchGate Technical Report. https://
doi.org/10.13140/RG.2.2.36259.32808
Evans, G., Morgan, P., Evans, W. E., Evans, T. R. &
Woodside, J. M. (1978). Faulting and halokinetics
in the northeastern Mediterranean between
Cyprus and Turkey. Geology, 6, 392-396. https://
doi.org/10.1130/0091-7613(1978)6<392:FAHIT
N>2.0.CO;2
Güneş, P., Aksu, A. E. & Hall, J. (2018). Structural
framework and deformation history of the western
Cyprus Arc. Tectonophysics, 744, 438-457. https://
doi.org/10.1016/j.tecto.2018.07.023
Güvercin, S.E. (2023). A local earthquake tomography
on the EAFZ shows dipping fault structure.
Turkish Journal of Earth Sciences, 32(3): 294-
305. https://doi.org/10.55730/1300-0985.1845
Hall, R. (1976). Ophiolite emplacement and the
evolution of the Taurus suture zone, southeast
Turkey. Geological Society of America, 87, 1078-
1088.
Herrmann, R. B. (2013). Computer programs in
seismology: An evolving tool for instruction and
research. Seismological Research Letters, 84,
1081-1088. https://doi.org/10.1785/0220110096
Higgins, M., Schoenbohm, L. M., Brocard, G.,
Kaymakçı, N., Gosse, J. C. & Cosca, M. A. (2015).
New kinematic and geochronologic evidence for
the Quaternary evolution of the Central Anatolian
fault zone (CAFZ). Tectonics, 34, 2118-2141.
https://doi.org/10.1002/2015TC003864
Huguen, C., Mascle, J., Chaumillon, E., Woodside,
J. M., Benkhelil, J. Kopf, A. & Volkonskaia,
A. (2001). Deformational styles of the eastern
Mediterranean Ridge and surroundings from
combined swath mapping and seismic reflection
profiling. Tectonophysics, 343, 21-47. https://doi.
org/10.1016/S0040-1951(01)00185-8
İnan, S. ve Ekingen, S. (2007). Namrun Fay Zonunun
jeolojik morfotektonik özellikleri: Orta Anadolu
Fay Sisteminin güneybatı bölümü (Orta Toroslar
Türkiye). Yerbilimleri, 28, 147-158.
Jaffey, N. & Robertson, A. H. F. (2001). New
sedimentological and structural data from the
Ecemiş Fault Zone, southern Turkey: implications
for its timing and offset and the Cenozoic tectonic
escape of Anatolia. Journal of the Geological
Society, London, 158, 367-378. https://doi.
org/10.1144/jgs.158.2.367
Kaymakçı, N., İnceöz, M. & Ertepınar, P. (2006).
3d-Architecture and Neogene evolution of the
Malatya basin: Inferences for the kinematics of the
Malatya and Ovacık fault zones. Turkish Journal
of Earth Sciences, 15, 123-154.
Ketin, İ. (1960). Tectonic units of Anatolia. Bulletin of
the Mineral Research and Exploration (MTA), 54,
20-34.
Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental
transcurrent structure: The Central Anatolian Fault
Zone, Turkey. Tectonophysics, 284, 317-336.
https://doi.org/10.1016/S0040-1951(97)00176-5
Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019).
The geomorphological regions of Turkey. In Kuzucuoğlu, C., Çiner, A. & Kazancı, N (Eds.),
Landscapes and Landforms of Turkey, (p.: 41-
178). World Geomorphological Landscapes.
Springer, Cham. https://doi.org/10.1007/978-3-
030-03515-0_4
Mansfield, S. L. (2005). Neogene Tectonic and
Sedimentary Evolution of the Outer Cilicia
Basin, Eastern Mediterranean Sea [MSc Thesis].
Memorial University of Newfoundland and
Labrador. ISBN: 978-0-494-19380-8.
McKenzie, D. P. (1972). Active tectonics of the
Mediterranean region. Geophysical Journal
International, 30, 109-185. https://doi.
org/10.1111/j.1365-246X.1972.tb02351.x
Metz, K. (1956). Aladağ ve Karanfil Dağının yapısı
ve bunların Kilikya Torosu tesmiye edilen batı
kenarları hakkında malümat husulü için yapılan
jeolojik etüt. Bulletin of Mineral Research and
Exploration (MTA), 48, 63-76.
Özel, E., Uluğ, A. & Pekçetinöz, B. (2007). Neotectonic
aspects of the northern margin of the Adana-Cilicia
submarine basin, NE Mediterranean. Journal of
Earth System Science, 116(2), 113-124. https://
doi.org/10.1007/s12040-007-0011-9
Özkan, A., Yavaşoğlu, H. H. & Masson, F. (2023).
Present-day strain accumulations and fault
kinematics at the Hatay Triple Junction using
new geodetic constraints. Tectonophysics,
854, Article 229819. https://doi.org/10.1016/j.
tecto.2023.229819
Pavoni, N. (1961). Die Nordanatolische
Horizontalverschiebung. Geologische Rundschau,
51, 122-139.
Pilidou, S., Priestley, K., Jackson, J. & Maggi, A.
(2004). The 1996 Cyprus earthquake: a large, deep
event in the Cyprean Arc. Geophysical Journal
International, 158, 85-97. https://doi.org/10.1111/
j.1365-246X.2004.02248.x
Reilinger, R., McClusky, S., Vernant, P., Lawrence,
S., Ergintav, S., & Karam, G. (2006). GPS
constraints on continental deformation in the
Africa - Arabia-Eurasia continental collision
zone and implications for the dynamics of plate
interactions. Journal of Geophysical Research,
111, Article B05411. https://doi.org/10.1029 /
2005JB004051
Sançar, T., Zabcı, C., Akçar, N., Karabacak, V.,
Yeşilyurt, S., Yazıcı, M., Akyüz, H.S., Öztüfekçi
Önal, A., Ivy-Ochs, S., Christl, M. & Vockenhuber, C. (2020). Geodynamic importance of the strikeslip faults at the eastern part of the Anatolian
Scholle: Inferences from the uplift ond slip rate
of the Malatya Fault (Malatya-Ovacık Fault Zone,
eastern Turkey). Journal of Asian Earth Sciences,
188, Article 104091. https://doi.org/10.1016/j.
jseaes.2019.104091
Sarıkaya, M. A., Yıldırım, C. & Çiner, A. (2015a).
No surface breaking on the Ecemiş Fault,
central Turkey, since Late Pleistocene (~64.5ka);
new geomorphic and geochronologic data
from cosmogenic dating of offset alluvial
fans. Tectonophysics, 649, 33-46. https://doi.
org/10.1016/j.tecto.2015.02.022
Sarıkaya, M.A., Yıldırım, C. & Çiner, A. (2015b). Late
Quaternary alluvial fans of Emli Valley in the
Ecemiş Fault Zone, south central Turkey: Insights
from cosmogenic nuclides. Geomorphology,
228, 512-525. https://doi.org/10.1016/j.
geomorph.2014.10.008
Schildgen, T. F., Cosentino, D., Bookhagen, B.,
Niedermann, S., Yıldırım, C., Echtler, H.,
Wittmann, H. & Strecker, M.R. (2012). Multiphased uplift of the southern margin of the Central
Anatolian plateau, Turkey: A record of tectonic
and upper mantle processes. Earth and Planetary
Science Letters, 317-318, 85-95. https://doi.
org/10.1016/j.epsl.2011.12.003
Scott, B. (1981). The Eurasian-Arabian and African
continental margin from Iran to Greece. Journal
of Geological Society, London, 138, 7694-7706.
Seyitoğlu, G., Esat, K. & Kaypak, B. (2017). The
neotectonics of southeast Turkey, northern Syria
and Iraq: the internal structure of the South East
Anatolian Wedge and its relationship with the
recent earthquakes. Turkish Journal of Earth
Sciences, 26, 105-126. https://doi.org/10.3906/
yer-1605-21
Seyitoğlu, G., Esat, K., Kaypak, B., Toori, M. &
Aktuğ, B. (2018). Internal deformation of the
Turkish-Iranian Plateau in the hinterland of BitlisZagros Suture Zone. In Farzipour Saein A. (Ed),
Tectonic and Structural Framework of the Zagros
Fold-Thrust Belt (pp.: 161-244). Developments
in Structural Geology and Tectonics Volume 3.
Elsevier. https://doi.org/10.1016/B978-0-12-
815048-1.00010-X
Seyitoğlu, G., Tunçel, E., Kaypak, B., Esat, K. &
Gökkaya, E. (2022a). The Anatolian Diagonal: A left lateral shear zone between East and Central
Anatolia and its relationship with both North
Anatolian Fault Zone and Aegean Cyprus Arcs.
Geological Bulletin of Turkey, 65(2), 93-116.
https://doi.org/10.25288/tjb.1015537
Seyitoğlu, G., Aktuğ, B., Esat, K. & Kaypak, B.
(2022b). Neotectonics of Turkey (Türkiye) and
surrounding regions: a new perspective with block
modelling. Geologica Acta, 20, 1-21. https://orcid.
org/0000-0001-7993-898X
Seyitoğlu, G., Esat, K., Kaypak, B. & Koca, B.
(2022c). Seismotectonics of the southern branch
of North Anatolian Fault Zone along Bolu,
Bursa, and İzmir cities and Değirmenlik (Milos)
island in the Aegean Sea. Yerbilimleri-Bulletin
for Earth Sciences, 43(2), 138-159. https://doi.
org/10.17824/yerbilimleri.948130
Seyitoğlu, G. & Esat, K. (2023). Structural relationship
between the Dead Sea Fault Zone and East
Anatolian Fault Zone: The cross-basin Kadıncık
Fault emerged by the 2023.02.06 Kahramanmaraş
(M=7.8) earthquakes surface rupture. In Bozkurt,
E., Dumanlılar, Ö., Akyıldız, M., Yılmaz, K. K.,
Coşkun Tunaboylu, B., Cihan, Z. Ö., Yağbasan,
Ö. & Şükran Açıkel (Eds.), 75th Geological
Congress of Türkiye, Abstract Book (p.: 94).
Chamber of Geological Engineers of Türkiye
Publications. https://www.jmo.org.tr/resimler/
ekler/24f25904af8a59f_ek.pdf
Symeou, V., Homberg, C., Nader, F.H., Darnault,
R., Lecomte, J-C., & Papadimitriou, N. (2018).
Longitudinal and temporal evolution of the
tectonic style along the Cyprus Arc system,
assessed through 2-D reflection seismic
interpretation. Tectonics, 37, 30-47. https://doi.
org/10.1002/2017TC004667
Şaroğlu, F., Emre, Ö. & Kuşçu, İ. (1992). Active
Fault Map of Turkey. Ankara, Turkey. General
Directorate of Mineral Research and Exploration
(MTA).
Şengör, A. M. C. (1979). The North Anatolian transform
fault: its age, offset and tectonic significance.
Journal of the Geological Society, 136, 269-282.
https://doi.org/10.1144/gsjgs.136.3.0269
Şengör, A. M. C. & Kidd, W. S. F. (1979). Postcollisional tectonics of the Turkish-Iranian Plateau
and a comparison with Tibet. Tectonophysics,
55, 361-376. https://doi.org/10.1016/0040-
1951(79)90184-7
Şengör, A. M. C. (1980). Türkiyenin Neotektoniğinin
Esasları [Fundamentals of the Neotectonics of
Turkey]. Publication of Geological Society of
Turkey, 1-40.
Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan
evolution of Turkey: A plate tectonic approach.
Tectonophysics, 75, 181-241. https://doi.
org/10.1016/0040-1951(81)90275-4
Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985).
Strike-slip deformation basin formation and
sedimentation: Strike-slip faulting and related
basin formation in zones of tectonic escape:
Turkey as a case study. In Biddle, K.T., ChristieBlick, N., (Eds.), Strike-slip faulting and basin
formation. Society of Economic Paleontologists
and Mineralogists, 37, 227-264. https://doi.
org/10.2110/pec.85.37
Şengör, A. M. C., Özeren, S., Genç, T. & Zor, E.
(2003). East Anatolian high plateau as a mantlesupported, north-south shortened domal structure.
Geophysical Research Letters, 30(24) Article
8045. https://doi.org/10.1029/2003GL017858
Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakınç,
M., Özbakır, A. D. & Kayan, İ. (2008). Eastern
Turkish high plateau as a small Turkic-type orogen:
Implications for post-collisional crust-forming
processes in Turkic-type orogens. Earth-Science
Reviews, 90(1), 1-48. https://doi.org/10.1016/j.
earscirev.2008.05.002
Şengör, A. M. C. (2017). Diversion of River Courses
Across Major Strike-Slip Faults and Keirogens.
In Çemen, İ. & Yılmaz, Y. (Eds.), Active Global
Seismology: Neotectonics and Earthquake
Potential of the Eastern Mediterranean Region
(pp.: 93-101). Geophysical Monograph Series,
225. https://doi.org/10.1002/9781118944998.ch3
Şengör, A. M. C., Zabcı, C. & Natalin, B. A. (2019).
Continental Transform Faults: Congruence and
Incongruence with normal plate kinematics. In
Duarte, J. C, (Ed.), Transform Plate Boundaries
and Fracture Zones (pp.: 169-247) Elsevier.
https://doi.org/10.1016/B978-0-12-812064-
4.00009-8
Tatar, O., Piper, J. D. A. & Gürsoy, H. (2000).
Palaeomagnetic study of the Erciyes sector of
the Ecemiş Fault Zone: neotectonic deformation
in the southeastern part of the Anatolian Block.
In: Tectonics and Magmatism in Turkey and the
Surrounding Area. Geological Society, London,Special Publications, 173, 423-440. https://doi.
org/10.1144/gsl.sp.2000.173.01.20
Woodside, J.M., Mascle, J., Zitter, T.A.C., Limonov,
A.F., Ergün, M., Volkonskaia, A. & shipboard
scientist of the PRISMED II Expedition. (2002).
The Florence Rise, the western bend of the Cyprus
Arc. Marine Geology, 185, 177-194. https://doi.
org/10.1016/S0025-3227(02)00194-9
Yetiş, C. (1978). Çamardı (Niğde ili) yakın ve uzak
dolayının jeoloji incelemesi ve Ecemiş yarılım
kuşağının Maden Boğazı Kamışlı arasındaki
özellikleri [Doktora Tezi]. İstanbul Üniversitesi
Fen Fakültesi, 151s.
Yıldırım, C., Sarıkaya, M. A. & Çiner, A. (2016).
Late Pleistocene intraplate extension of the
Central Anatolian Plateau, Turkey: Inferences
from cosmogenic exposure dating of alluvial fan,
landslide, and moraine surfaces along the Ecemiş
Fault Zone. Tectonics, 35, 1446-1464. https://doi.
org/10.1002/2015TC004038
Yılmaz, Y. (1993). New evidence and model on the
evolution of the southeast Anatolian orogen.
Geological Society of America Bulletin,
105(2), 251-271. https://doi.org/10.1130/0016-
7606(1993)105<0251:NEAMOT>2.3.CO;2
Yusufoğlu, H. (2013). An intramontane pull-apart
basin in tectonic escape deformation: Elbistan
Basin, Eastern Taurides, Turkey. Journal
of Geodynamics, 65, 308-329, https://doi.
org/10.1016/j.jog.2012.05.012
Buse Öğreten
Ahmet Evren Erginal
Şakir Fural
Serkan Kükrer
Erdal Öztura
View as PDF
Abstract: Degradational changes caused by rapidly increasing anthropogenic activities in recent years inlake ecosystems, which are crucial for biodiversity, have attracted attention. Potentially toxic element (PTE)contamination plays a significant role in environmental degradation in lake ecosystems. This study focused on the ecological risk along the tombolo shores of Lake Uluabat (Apolyont), one of Turkey`s important wetlands, where Gölyazı settlement is located. Sediment samples taken from the lake bottom along the tombolo shore were analysedfor organic carbon and chlorophyll degradation products. Furthermore, the enrichment factor (EF), contaminationfactor (CF), modified contamination factor (mCD), toxic risk index (TRI), pollution load index (PLI), ecological risk index (mER), and potential ecological risk index (PER) were calculated using PTE values determined by ICPMS. Based on the obtained data, the PTE concentration in lake sediments is in the following order: Fe (29200) >Al (21500) > Mn (962) > Ni (256) > Cr (101) > Zn (90)> As (39) > Pb (37) > Cu (31) > Co (20). According to EFdata, the enrichment level of PTEs is Ni (10.31) > As (8.24) > Pb (5.05) > Mn (3.12) > Cr (3.08) > Co (2.81) > Zn(2.58) > Fe (2.30) > Cu (1.88). The ecological risk level from PTEs is Ni (51), Co (41), Pb (25), As (24), Cu (10) and the average potential ecological risk level is 161. In the littoral zone around Gölyazı settlement, all PTEs except Cuare enriched to a certain extent. Ni was identified as the ecological risk source with highest risk in the lake. The mainanthropogenic risk sources in the lake, where a moderate ecological risk was identified, are agricultural, industrial,and settlement wastes.
Ecological risk
lake ecology
potential toxic element contamination
sedimentology
limnology
Uluabat Lake
Abrahim, G. & Parker, R. (2008). Assessment of Heavy
Metal Enrichment Factors and the Degree of
Contamination in Marine Sediments from Tamaki
Estuary, Auckland, New Zealand. Environmental
Monitoring and Assessment, 136, 227-238. https://
doi.org/10.1007/s10661-007-9678-2
Arslan, N., Koç, B. & Çiçek, A. (2010). Metal
Contents in Water, Sediment, andOligochaetaChironomidae of Lake Uluabat,a Ramsar Site of
Turkey. The Scientific World Journal, 10, 1269
1281. https://doi.org/10.1100/tsw.2010.117
Aykır, D, Fural, Ş., Kükrer, S., Mutlu, Y. E. (2023).
Elementbased ecological and human health
risk assessment in a lagoon system in a
densely populated basin. Oceanological and
Hydrobiological Studies, 52(1), 119. https://doi.
org/10.26881/oahs-2023.1.01
Aykol, A., Budakoglu, M., Kumral, M., Gultekin, A.
H., Turhan, M., Esenli, V., Yavuz, F. & Örgün, Y.
(2003). Heavy metal pollution and acid drainage
from the abandoned Balya Pb-Zn sulfide Mine,
NW Anatolia. Environmental Geology, 45, 198
208. https://doi.org/10.1007/s00254-003-0866-2
Barlas, N., Ahbab, M. A. & Aydoğan, M. (2005).
Assessment of Heavy Metal Residues in the
Sediment and Water Samples of Uluabat Lake,
Turkey. Bulletin of Environmental Contamination
and Toxicology, 74, 286-293. https://doi.
org/10.1007/s00128-004-0582-y
Bowen, H. J. M. (1979). Environmental chemistry of
the elements. Academic, London NY-Toronto.
Çelenli, A. (2000). Uluabat Gölü Çevre Jeokimyası.
[Yayımlanmamış Doktora Tezi]. İstanbul Teknik
Üniversitesi, Fen Bilimleri Enstitüsü.
Çelik, G. (2000). Çevre Yönetiminde Ekolojik Risk
Değerlendirmesi ve Uluabat Ramsar Alanı İçin
Problem Formülasyonu [Yayımlanmamış Yüksek Lisans Tezi]. Uludağ Üniversitesi, Fen Bilimleri
Enstitüsü.
Fural, Ş., Kükrer, S. & Cürebal, İ. (2020). Geographical
information systems based ecological risk
analysis of metal accumulation in sediments of
İkizcetepeler Dam Lake (Turkey). Ecological
Indicators, 119, Article 106784. https://doi.
org/10.1016/j.ecolind.2020.106784
Fural, Ş., Kükrer, S., Cürebal, İ. & Aykır, D.
(2021). Spatial distribution, environmental
risk assessment, and source identification of
potentially toxic metals in Atikhisar dam, Turkey.
Environmental Monitoring and Assessment, 193,
Article 268. https://doi.org/10.1007/s10661-021-
09062-6 PMID:33860380 .
Gaudette, H. E., Flight, W. R., Toner, L. & Folger,
W. (1974). An inexpensive titration method for
the determination of organic carbon in recent
sediments. Journal of Sedimentory Petrology,
44, 249253. https://doi.org/10.1306/74D729D7-
2B21-11D7-8648000102C1865D
Hacısalihoğlu, S. & Karaer, F. (2004). Ecological Risk
Assessment and Problem Formulation for Lake
Uluabat, a Ramsar State in Turkey. Environmental
Management, 33, 899910.
Hacısalihoğlu, S. & Karaer, F. (2020). Uluabat Gölü
Noktasal Kirletici Kaynaklar ve Kirlilik Yükleri.
Doğal Afetler ve Çevre Dergisi, 2, 258-267.
Hakanson, L. (1980). An Ecological Risk Index for
Aquatic Pollution Control: A Sedimentological
Approach. Water Research, 14, 975-1001. https://
doi.org/10.1016/0043-1354(80)90143-8
Hoşgören, M. Y. (1994). Türkiyenin Gölleri. Türk
Coğrafya Dergisi, 29, 19-51.
Kandemir, Ö., Pehlivan Ş., Kanar, F.,Tok, T. (2013).
1/100.000 ölçekli Türkiye Jeoloji Haritaları
serisi, Bursa-H21 paftası. No:191. Maden Tetkik
ve Arama Genel Müdürlüğü, Ankara-Türkiye.
Kazancı, N., Leroy, S., İleri, Ö., Emre, Ö., Kibar, M. &
Öncel, S. (2004). Late Holocene erosion in NW
Anatolia from sediments of Lake Manyas, Lake
Ulubat and the southern shelf of the Marmara
Sea, Turkey. Catena, 57(3), 277-308. https://doi.
org/10.1016/j.catena.2003.11.004
Kuşçu, İ. (2024). Uluabat Gölü (Bursa) alansal
değişim analizi (1987-2023). Anadolu Orman
Araştırmaları Dergisi, 10(2), 87-93.
Kükrer, S., Erginal, A. E., Şeker, S. & Karabıyıkoğlu,
M. (2015). Distribution and Environmental Risk
Evaluation of Heavy Metal in Core Sediments
from Lake Çıldır (NE Turkey). Environmental
MonitoringnAssessment, 180, Article 453. https://
doi.org/10.1007/s10661-015-4685-1
Kükrer, S., Çakır, Ç., Kaya, H., & Erginal, A. E. (2019).
Historical record of metals in Lake Küçükçekmece
and Lake Terkos (Istanbul, Turkey) based on
anthropogenic impacts and ecological risk
assessment. Environmental Forensics, 20(4),
385401. https://doi.org/10.1080/15275922.2019
.1657985
Lorenzen, C. J. (1971). Chlorophyll-degradation
products in sediments of Black Sea. Degens, E.
T. & Ross, D. A. (Eds.), The Black SeaGeology,
Chemistry, and Biology, (426428). American
Association of Petroleum Geologists, Volume 20.
https://doi.org/10.1306/M20377C9
Macdonald, D., Carr, R., Calder, F. & Long, E.
(1996). Development and Evaluation of
Sediment Quality Guidelines for Florida Coastal
Waters. Ecotoxicology, 5, 253-278. https://doi.
org/10.1007/BF00118995
Özmen, H., Kulahcı, F., Cukurovalı, A. & Dogru
M. (2004). Concentrations of heavy metal and
radioactivity in surface water and sediment of
Hazar Lake (Elazığ, Turkey). Chemosphere,
55, 401408. https://doi.org/10.1016/j.
chemosphere.2003.11.003
Sanei, H., Outridge, P. M., Oguri, K., Stern, G. A.,
Thamdrup, B., Wenzhöfer, F., Wang, F., & Glud,
R. N. (2021). High mercury accumulation in deepocean hadal sediments. Scientific Reports, 11(1),
Article 10970. https://doi.org/10.1038/s41598-
021-90459-1 PMID:34040077.
Sarı, E. (2008) Sources and distribution of heavy metals
in river sediments from the southern drainage
basin of the sea of Marmara, Turkey. Fresenius
Environmental Bulletin, 17, 2007-2019.
Sutherland, R. A. (2000). Bed Sediment-Associated
Trace Metals in an Urban Stream, Oahu, Hawaii.
Environmental Geology, 39, 611- 627. https://doi.
org/10.1007/s002540050473
Taylor, S. R. & McLennan, S. M. (1995). The
geochemical Evolution of the Continental Crust.
Reviews of Geophysic, 33(2), 241-265. https://doi.
org/10.1029/95RG00262
Tekiner, M., Tunçay, T. & Parlak, M. (2025).
Environmental and Ecological Risks Posed
by Sediment Heavy Metals in Reservoirs: A
Preliminary Study from Northwest Türkiye.
Journal of Agricultural Sciences, 31(1), 59 70.
https://doi.org/10.15832/ankutbd.1486524
Tomlinson, D. L., Wilson, J. G., Harris, C. R. &
Jeffery, D. W. (1980). Problems in the Assessment
of Heavy-Metal Levels in Estuaries and the
Formation of a Pollution Index. Helgoländer
Meeresuntersuchungen, 33, 566-575. https://doi.
org/10.1007/BF02414780
Turekian, K. & Wedepohl, K. (1961). Distribution of
the Elements in Some Major Units of the Earths
Crust. GSA Bulletin, 72, 175-192. https://doi.
org/10.1130/0016-7606(1961)72[175:DOTEIS]2.
0.CO;2
Uludağ, M., Kükrer, S. & Erginal, G. (2018).
Anthropogenically-induced ecological risks in
Lake Erikli, NW Turkey. International Journal of
Environment and Geoinformatics, 5(3), 273-283.
https://doi.org/10.30897/ijegeo.459496
USEPA, (2007). Method 3051a: Microwave Assisted
Acid Dissolution of Sediments, Sludges, Soils, and
Oils, Revision 1. United States Environmental
Protection Agency, Washington, DC.
Ustaoğlu, F., Islam, M. S. & Tokatli, C. (2022).
Ecological and probabilistic human health hazard
assessment of heavy metals in Sera Lake Nature
Park sediments (Trabzon, Turkey). Arabian
Journal of Geosciences, 15(7), 1-15. https://doi.
org/10.1007/s12517-022-09838-1
Walkley, A. & Black, I. (1934). An Examination of
the Degthareff Method far Determining Soil
Organic Matter and a Proposed Modification of
the Chromic Acid Titration Method. Soil Science,
37(1), 29-38. https://doi.org/10.1097/00010694-
193401000-00003
Wedepohl, K. H. (1979). Handbook of geochemistry.
Springer Verlag, Berlin, Heidelberg, NY.
Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J. & Wen, X.
(2016). Heavy Metals in Wetland Soils Along a
Wetland-Forming Chronose Quence in the Yellow
River Delta of China: Levels, Sources and Toxic
Risks. Ecol Indicator, 69, 331340. https://doi.
org/10.1016/j.ecolind.2016.04.042
Abstract: Microplastics have increasingly been recognized as a global pollutant due to their pervasive distribution and potential adverse impacts on marine ecosystems. Microplastics (MPs) were collected from surface sediments at five sites in the Gulf of Gemlik using density separation. The isolated MPs were subsequently identified and characterized with a stereomicroscope and fluore scence microscope. This study provides the first comprehensiveassessment of microplastic pollution in the sediments of the Gulf of Gemlik, focusing on their abundance, spatial distribution, and potential ecological risks. The concentration of the MPs ranged from 2,200 to 6,400 items per kilogram of dry weight across the study sites. Fibers were the dominant shape type (58.4%), while black was the mostprevalent color (26%). According to the ecological risk assessment, the sediments were classified as moderately to considerably contaminated with MPs. These findings contribute new insights in the occurrence and characteristics of microplastics in the surface sediments of the Gulf of Gemlik and establish a foundation for future research and management strategies aimed at mitigating microplastic pollution.
Ecological risk
Gulf of gemlik
microplastic
microscope examination
Nile Red
Ahmed, Q., Öztekin, A., Ali, Q. M. & Bat, L. (2025).
Microplastic Contamination of Holothuria
(Thymiosycia) arenicola Semper, 1868,
Holothuria pardalis Selenka, 1867, Sediments and
Seawater From Karachi Coast, Northern Arabian
Sea, Pakistan. Marine Science and Technology
Bulletin, 14(1), 10-19. https://doi.org/10.33714/
masteb.1641715
Alomar, C., Estarellas, F. & Deudero, S. (2016).
Microplastics in the Mediterranean Sea: deposition
in coastal shallow sediments, spatial variation and
preferential grain size. Marine Environmental
Research, 115, 1-10. https://doi.org/10.1016/j.
marenvres.2016.01.005
Arslan Kaya, T. N., Sari, E. & Kurt, M. A. (2022).
Sedimentary records of trace elements
contamination in sediment core from the Gulf
of Gemlik, Marmara Sea, Turkey: history,
contamination degree, and sources. Turkish
Journal of Earth Sciences, 31(5), 452-466. https://
doi.org/10.55730/1300-0985.1813
Arslan Kaya, T. N., Sarı, E., Çağatay, M. N., Kurt, M.
A., Kösesakal, T., Kılıç, Ö. & Acar, D. (2023). The
effects of the 1999 Gölcük earthquake (Mw 7.4)
on trace element contamination of core sediments
from İzmit Gulf, Turkey. Natural Hazards, 116(1),
1189-1208. https://doi.org/10.1007/s11069-022-
05717-w
Baysal, A., Saygin, H. & Ustabasi, G. S. (2020).
Microplastic occurrences in sediments collected
from Marmara Sea-Istanbul, Turkey. Bulletin of
Environmental Contamination and Toxicology,
105(4), 522-529. https://doi.org/10.1007/s00128-
020-02993-9
Belivermiş, M., Kılıç, Ö., Sezer, N., Sıkdokur, E.,
Güngör, N. D. & Altuğ, G. (2021). Microplastic
inventory in sediment profile: A case study of
Golden Horn Estuary, Sea of Marmara. Marine
pollution bulletin, 173 Part B, Article 113117.
https://doi.org/10.1016/j.marpolbul.2021.113117
Besiktepe, S. T., Sur, H. I., Ozsoy, E., Latif, M. A.,
Oguz, T. & Unluata, U. (1994). The circulation
and hydrography of the Marmara Sea. Progress
in Oceanography, 34(4), 285-334. https://doi.
org/10.1016/0079-6611(94)90018-3
Besley, A., Vijver, M. G., Behrens, P. & Bosker, T.
(2017). A standardized method for sampling
and extraction methods for quantifying
microplastics in beach sand. Marine Pollution
Bulletin, 114(1), 77-83. https://doi.org/10.1016/j.
marpolbul.2016.08.055
Blaković, A., Fastelli, P., Čižmek, H., Guerranti, C. &
Renzi, M. (2017). Plastic litter in sediments from
the Croatian marine protected area of the natural
park of Telačica bay (Adriatic Sea). Marine
Pollution Bulletin, 114(1), 583-586. https://doi.
org/10.1016/j.marpolbul.2016.09.018
Browne, M. A., Crump, P., Niven, S. J., Teuten, E.,
Tonkin, A., Galloway, T. & Thompson, R. (2011).
Accumulation of microplastic on shorelines
woldwide: sources and sinks. Environmental
Science & Technology, 45(21), 9175-9179. https://
dx.doi.org/10.1021/es201811s
Claessens, M., De Meester, S., Van Landuyt, L., De
Clerck, K. & Janssen, C. R. (2011). Occurrence
and distribution of microplastics in marine
sediments along the Belgian coast. Marine
Pollution Bulletin, 62(10), 2199-2204. https://doi.
org/10.1016/j.marpolbul.2011.06.030
Çağatay, M. N., Görür, N., Polonia, A., Demirbağ, E.,
Sakınç, M., Cormier, M. H., ... & Eriş, K. (2003). Sea-level changes and depositional environments
in the Izmit Gulf, eastern Marmara Sea, during the
late glacialHolocene period. Marine Geology,
202(3-4), 159-173. https://doi.org/10.1016/
S0025-3227(03)00259-7
Doğruyol, P., Şener, M. & Balkaya, N. (2019).
Determination of microplastics and large plastics
in the sediments of the Golden Horn Estuary
(Halic), Istanbul, Turkey. Desalination and Water
Treatment, 172, 344-350. https://doi.org/10.5004/
dwt.2019.25067
Enders, K., Käppler, A., Biniasch, O., Feldens, P.,
Stollberg, N., Lange, X., ... & Labrenz, M. (2019).
Tracing microplastics in aquatic environments
based on sediment analogies. Scientific Reports,
9(1), Article 15207. https://doi.org/10.1038/
s41598-019-50508-2
Ergin, M., Bodur, M. N. & Ediger, V. (1991).
Distribution of surficial shelf sediments in the
northeastern and southwestern parts of the Sea
of Marmara: strait and canyon regimes of the
Dardanelles and Bosporus. Marine Geology,
96(3-4), 313-340. https://doi.org/10.1016/0025-
3227(91)90154-V
Erkan, H. S., Turan, N. B., Albay, M. & Engin, G.
O. (2021). Microplastic pollution in seabed
sediments at different sites on the shores of
Istanbul-Turkey: Preliminary results. Journal of
Cleaner Production, 328, Article 129539. https://
doi.org/10.1016/j.jclepro.2021.129539
Erni-Cassola, G., Gibson, M. I., Thompson, R. C. &
Christie-Oleza, J. A. (2017). Lost, but found
with Nile red: a novel method for detecting and
quantifying small microplastics (1 mm to 20 μm)
in environmental samples. Environmental Science
& Technology, 51(23), 13641-13648. https://doi.
org/10.1021/acs.est.7b04512
Hartmann, N. B., Huffer, T., Thompson, R. C.,
Hassellov, M., Verschoor, A., Daugaard, A. E., ...
& Wagner, M. (2019). Are we speaking the same
language? Recommendations for a definition
and categorization framework for plastic debris.
Environmental Science & Technology 53(3), 1039-
1047. http://dx.doi.org/10.1021/acs.est.8b05297
Horton, A. A. & Dixon, S. J. (2018). Microplastics: An
introduction to environmental transport processes.
Wiley Interdisciplinary Reviews: Water, 5(2),
Article e1268. https://doi.org/10.1002/wat2.1268
Jafarabadi, A. R., Bakhtiyari, A. R., Toosi, A. S. &
Jadot, C. (2017). Spatial distribution, ecological
and health risk assessment of heavy metals in
marine surface sediments and coastal seawaters
of fringing coral reefs of the Persian Gulf, Iran.
Chemosphere, 185, 1090-1111. https://doi.
org/10.1016/j.chemosphere.2017.07.110
Kershaw, P. J. (2016). Marine plastic debris and
microplasticsGlobal lessons and research to
inspire action and guide policy change. United
Nations Environment Programme, Nairobi.
Kershaw, P. J., Turra, A. & Galgani, F. (2019). Guidelines
for the monitoring and assessment of plastic litter
and microplastics in the ocean. London, UK,
GESAMP Joint Group of Experts on the Scientific
Aspects of Marine Environmental Protection,
130pp. (GESAMP Reports and Studies, No. 99).
http://dx.doi.org/10.25607/OBP-435
Loring, D. H. & Rantala, R. T. (1992). Manual for
the geochemical analyses of marine sediments
and suspended particulate matter. EarthScience Reviews, 32(4), 235-283. https://doi.
org/10.1016/0012-8252(92)90001-A
Martins, J. & Sobral, P. (2011). Plastic marine debris on
the Portuguese coastline: a matter of size?. Marine
Pollution Bulletin, 62(12), 2649-2653. https://doi.
org/10.1016/j.marpolbul.2011.09.028
Matsuguma, Y., Takada, H., Kumata, H., Kanke,
H., Sakurai, S., Suzuki, T., ... & Newman, B.
(2017). Microplastics in sediment cores from
Asia and Africa as indicators of temporal trends
in plastic pollution. Archives of Environmental
Contamination and Toxicology, 73(2), 230-239.
https://doi.org/10.1007/s00244-017-0414-9
McManus, J. (1988). Grain size determination and
interpretation. In M. Tucker (Ed.), Techniques in
Sedimentology (pp. 63-85). Blackwell Scientific
Publ.
Mendes, A. M., Golden, N., Bermejo, R. & Morrison,
L. (2021). Distribution and abundance of
microplastics in coastal sediments depends on
grain size and distance from sources. Marine
Pollution Bulletin, 172, Article 112802. https://
doi.org/10.1016/j.marpolbul.2021.112802
Mutlu, T., Minaz, M., Baytaşoğlu, H. & Gedik, K.
(2024). Microplastic pollution in stream sediments
discharging from Türkiyes eastern Black sea basin. Chemosphere, 352, Article 141496. https://
doi.org/10.1016/j.chemosphere.2024.141496
Niu, L., Li, Y., Li, Y., Hu, Q., Wang, C., Hu, J., ...
& Zhang, H. (2021). New insights in the
vertical distribution and microbial degradation
of microplastics in urban river sediments. Water
Research, 188, Article 116449. https://doi.
org/10.1016/j.watres.2020.116449
Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of
northern Turkey. Geological Society, London,
Special Publications, 156(1), 475-515. https://doi.
org/10.1144/GSL.SP.1999.156.01.22
Okay, A. I., Satir, M., Maluski, H., Siyako, M., Monié,
P., Metzger, R. & Akyüz, S. (1996). Paleo-and NeoTethyan events in northwestern Turkey: Geologic
and geochronologic constraints. 420-441. In A. Yin
& T.M. Harrison (Eds.), The Tectonic Evolution of
Asia, (pp.: 420-441). Cambridge University Press
Sarı, E. (2008). Source and distribution of heavy metals
in river sediments from the southern drainage
basin of the sea of Marmara, Turkey. Fresenius
Environmental Bulletin, 17(12), 2007-2019.
Sayed, A. E. D. H., Hamed, M., Badrey, A. E., Ismail, R.
F., Osman, Y. A., Osman, A. G. & Soliman, H. A.
(2021). Microplastic distribution, abundance, and
composition in the sediments, water, and fishes of
the Red and Mediterranean seas, Egypt. Marine
Pollution Bulletin, 173 Part A, Article 112966.
https://doi.org/10.1016/j.marpolbul.2021.112966
Sönmez, V. Z., Akarsu, C. & Sivri, N. (2023).
Impact of coastal wastewater treatment plants
on microplastic pollution in surface seawater
and ecological risk assessment. Environmental
Pollution, 318, Article 120922. https://doi.
org/10.1016/j.envpol.2022.120922
Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985).
Strike-slip faulting and related basin formation
in zones of tectonic escape: Turkey as a case
study. In Biddle, K. & Christie-Blick, N. (Eds.),
Strike-Slip Deformation, Basin Formation and
Sedimentation, Special Publications, SEPM
Society for Sedimentary Geology, Tulsa, 37, 227-
264.
Tomlinson, D. L., Wilson, J. G., Harris, C. R. &
Jeffrey, D. W. (1980). Problems in the assessment
of heavy-metal levels in estuaries and the
formation of a pollution index. Helgoländer
Meeresuntersuchungen, 33(1), 566-575.
Uddin, S., Fowler, S. W., Uddin, M. F., Behbehani,
M. & Naji, A. (2021). A review of microplastic
distribution in sediment profiles. Marine Pollution
Bulletin, 163, Article 111973. https://doi.
org/10.1016/j.marpolbul.2021.111973
Vardar, D., Öztürk, K., Yaltırak, C., Alpar, B. & Tur, H.
(2014). Late PleistoceneHolocene evolution of
the southern Marmara shelf and sub-basins: middle
strand of the North Anatolian fault, southern
Marmara Sea, Turkey. Marine Geophysical
Research, 35(1), 69-85. https://doi.org/10.1007/
s11001-013-9210-8
Wang, T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., ... &
Yu, W. (2019). Emission of primary microplastics
in mainland China: invisible but not negligible.
Water Research, 162, 214-224. https://doi.
org/10.1016/j.watres.2019.06.042
Xu, P., Peng, G., Su, L., Gao, Y., Gao, L. & Li, D.
(2018). Microplastic risk assessment in surface
waters: A case study in the Changjiang Estuary,
China. Marine Pollution Bulletin, 133, 647-654.
https://doi.org/10.1016/j.marpolbul.2018.06.020
Xue, B., Zhang, L., Li, R., Wang, Y., Guo, J., Yu, K.
& Wang, S. (2020). Underestimated microplastic
pollution derived from fishery activities and
hidden in deep sediment. Environmental
Science & Technology, 54(4), 2210-2217. https://
doi.org/10.1021/acs.est.9b04850
Yaltırak, C. & Alpar, B. (2002). Evolution of the
middle strand of North Anatolian Fault and
shallow seismic investigation of the southeastern
Marmara Sea (Gemlik Bay). Marine Geology,
190(1-2), 307-327. https://doi.org/10.1016/
S0025-3227(02)00352-3
Yaltirak, C., Yalcin, T., Bozkurtoğlu, E. & Yüce, G.
(2005). Water-level changes in shallow wells
before and after the 1999 Izmit and Düzce
earthquakes and comparison with long-term
water-level observations (19992004), NW
Turkey. Turkish Journal of Earth Sciences, 14(3),
281-309.
Yilmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. &
Şengör, A. M. C. (1997). Geology and tectonic
evolution of the Pontides. In A. G. Robinson (Ed.),
Regional and Petroleum Geology of the Black Sea
and Surrounding Region, American Association of
Petroleum Geologists Studies in Geology. https://
doi.org/10.1306/M68612C11
Yin, Z. (2023). The pollution of microplastics in
sediments: The ecological risk assessment and
pollution source analysis. Science of The Total
Environment, 859 Part 2, Article 160323. https://
doi.org/10.1016/j.scitotenv.2022.160323
Yücedağ, E., Mülayim, A. & Gündüz, S. K. (2022).
Investigation of Microplastic Pollution in the
Sediment and Commercial Fish Species of
Gemlik Bay (Marmara Sea) by Microscopic and
Spectroscopic Methods. Research Square. https://
doi.org/10.21203/rs.3.rs-1802703/v1
Abstract: The Isparta Basin is a tectonically complex depression situated at the junction between the WesternAnatolian extensional province and the Tauride orogenic belt. It lies near the intersection of the Hellenic and Cyprusarcs, forming the Isparta Angle. This transitional zone is characterised by intense crustal deformation, complex fault systems, and active seismicity, making it a key area for geophysical investigation. Microgravity anomalies were analysed to assess the thickness of the basin`s sedimentary deposits. A 2-D Fourier transformation-based procedure was used to decompose the gravity data in regional and residual components. This spectral filtering step isolated shallow subsurface signals from broader tectonic influences, thereby providing a robust foundation for depth modelling by enhancing the resolution of near-surface features that are often masked by deeper structuraltrends. Residual gravity anomalies were further examined using both 2-D and 3-D local optimisation-based inversion techniques. These complementary methods allowed for cross-validation of results mathematically and improved confidence in the derived structural interpretations. The resulting basement depth estimates demonstrate consistencyand align well with the established geological framework of the Isparta Basin, including known fault geometries and stratigraphic boundaries, with the inversion results indicating maximum sedimentary fill thickness of approximately0.53 km. This result has practical implications for disaster management, particularly in assessing the potential forseismic amplification. Thick sedimentary sequences can substantially affect ground-motion characteristics during earthquakes, especially within basin environments. Therefore, mapping the spatial distribution of sedimentary accumulation contributes to more informed regional risk assessments and supports the development of target edmitigation strategies. These findings are expected to provide valuable input for land-use planning and infrastructureresilience in the Isparta Basin, offering essential baseline information for authorities and engineers involved inseismic hazard mitigation.
Basement relief
inversion
Isparta basin
microgravity
spectral filtering
Allen, P. A. & Allen, J. R. (2005). Basin analysis:
principles and applications. 2nd edition.
Blackwell, Oxford, 549 pp.
Barka, A. & Reilinger, R. (1997). Active tectonics
of the Eastern Mediterranean region: deduced
from GPS, neotectonic and seismicity data.
Annals of Geophysics, 40(3), 587610.
https://doi.org/10.4401/ag-3892
Bektaş, Ö., Büyüksaraç, A., Sarıtepe, H. E., Önal,
K. M., Canbaz, O., Eyisüren, O., Pamuk, E.,
Akın, Ö., Akar, F. & Koşaroğlu, S. (2025).
Shear-wave velocity model of the Sivas
City (inner eastern, Türkiye) using Rayleigh
wave ellipticity inversion controlled by 2D
microgravity modeling. Acta Geophysica, 1-19.
https://doi.org/10.1007/s11600-025-01682-7
Beyhan, G., Kanbur, M.Z., Selim H.H., Utkucu, M.,
Silahtar, A. & Budakoğlu, E. (2017). Isparta havza
yapısının jeofizik yöntemler ile modellenmesi
ve senaryo deprem sismik tehlike haritalarının
hazırlanması (Proje No: 114Y836). Project
Report, TÜBİTAK.
Blakely, R.J. (1996). Potential theory in gravity and
magnetic applications. Cambridge University
press.
Borcherdt, R.D. (1970). Effects of local geology on
ground motion near San Francisco Bay. Bulletin of
the Seismological Society of America, 60, 2961.
https://doi.org/10.1785/BSSA0600010029
Bozkurt, E. (2001). Neotectonics of Turkey - a
synthesis. Geodinamica Acta, 14(13), 330.
https://doi.org/10.1016/S0985-3111(01)01066-X
Buttkus, B. (2000). Spectral Analysis and Filter
Theory in Applied Geophysics. Springer, Berlin,
Heidelberg.
Büyüksaraç, A., Eyisüren, O., Bektaş, Ö.
& Karaca, Ö. (2023). Bedrock depth
calculation of Çanakkale (Turkey) basin
using Rayleigh ellipticity and microgravity
survey. Geofísica Internacional, 62, 387401.
https://doi.org/10.22201/igeof.2954436xe.2023.62.1.1447
Catuneanu, O. (2006). Principles of Sequence
Stratigraphy. Elsevier, Amsterdam, 375 pp.
Demer, S.A. (2008). Isparta ve yakın çevresi
yeraltısularının hidrojeolojik, hidrojeokimyasal
ve izotop jeokimyasal incelenmesi ve içme suyu
kalitesinin izlenmesi [PhD Thesis]. Süleyman
Demirel Üniversitesi.
Dolmaz, M. N. (2007). An aspect of the subsurface
structure of the Burdur-Isparta area, SW Anatolia,
based on gravity and aeromagnetic data, and some
tectonic implications. Earth, Planets and Space,
59, 512. https://doi.org/10.1186/BF03352016
Ekinci, Y. L. & Yiğitbaş, E. (2012). Geophysical
approach to the igneous rocks in the
Biga Peninsula (NW Turkey) based on
airborne magnetic anomalies: geological
implications. Geodinamica Acta, 25, 267285.
https://doi.org/10.1080/09853111.2013.858945
Ekinci, Y.L., Ertekin, C. & Yiğitbaş, E. (2013). On
the effectiveness of directional derivative based
filters on gravity anomalies for source edge
approximation: synthetic simulations and a case
study from the Aegean Graben System (Western
Anatolia, Turkey). Journal of Geophysics
and Engineering, 10(3), Article 035005.
https://doi.org/10.1088/1742-2132/10/3/035005
Ekinci, Y. L. & Yiğitbaş, E. (2015). Interpretation
of gravity anomalies to delineate some
structural features of Biga and Gelibolu
peninsulas, and their surroundings (northwest
Turkey). Geodinamica Acta, 27, 300319.
https://doi.org/10.1080/09853111.2015.1046354
Ekinci, Y. L., Büyüksaraç, A., Bektaş, Ö. & Ertekin,
C. (2020). Geophysical investigation of Mount
Nemrut Stratovolcano (Bitlis, Eastern Turkey)
through aeromagnetic anomaly analyses. Pure
and Applied Geophysics, 172, 32433264.
https://doi.org/10.1007/s00024-020-02432-0
Ekinci, Y. L., Balkaya, Ç., Göktürkler, G. & Ai, H.
(2023). 3-D gravity inversion for the basement
relief reconstruction through modified successhistory-based adaptive differential evolution.
Geophysical Journal International, 235(1), 377
400. https://doi.org/10.1093/gji/ggad222
Ekinci, Y. L., Balkaya, Ç., Göktürkler, G. & Özyalın,
Ş. (2021). Gravity data inversion for the basement
relief delineation through global optimization:
a case study from the Aegean Graben System,
western Anatolia, Turkey. Geophysical
Journal International, 224(2), 923944.
https://doi.org/10.1093/gji/ggaa492
Emre, O., Duman, T. Y., Doğan, A., Özalp, S.,
Tokay, F. & Kuşçu, I. (2003). Surface faulting
associated with the Sultandağı earthquake (Mw
6.5) of 3 February 2002, Southwestern Turkey.
Seismological Research Letters, 74(4), 382392.
https://doi.org/10.1785/gssrl.74.4.382
Ghose, R., Persaud, P. & Clayton, R.W. (2023).
Basin structure for earthquake ground motion
estimates in urban Los Angeles mapped with
nodal receiver functions. Geosciences, 13, 320.
https://doi.org/10.3390/geosciences13110320
Görmüş, M. & Özkul, M. (1995). Gönen-Atabey
(Isparta) ve Ağlasun (Burdur) Arasındaki Bölgenin Stratigrafisi. Süleyman Demirel Üniversitesi Fen
Bilimleri Enstitüsü Dergisi, 1, 4364.
Hunt, J. D., Nascimento, A., Guzman, O. J. R., Furtado,
G. C. d. A., ten Caten, C. S., Tomé, F. M. C., Leal
Filho, W., Durin, B., Lopes, M. & Wada, Y. (2022).
Sedimentary basin water and energy storage: a
low environmental impact option for the Bananal
Basin. Energies, 15, Article 4498.
https://doi.org/10.3390/en15124498
Işık, M. & Şenel, H. (2009). 3D gravity modeling of
Büyük Menderes basin in Western Anatolia using
parabolic density function. Journal of Asian Earth
Sciences, 34(3), 317325.
https://doi.org/10.1016/j.jseaes.2008.05.013
Karaman, M. E., Meriç, E. & Tansel, İ. (1988).
Çünür (Isparta) dolaylarında Kretase-Tersiyer
geçişi. Akdeniz Üniversitesi Isparta Mühendislik
Fakültesi Dergisi, 4, 80100.
Kissel, C. & Poisson, A. (1986). Etude paléomagnétique
préliminaire des formations néogènes du bassin
dAntalya (Taurides occidentales, Turquie).
Comptes Rendus de lAcadémie des Sciences
Paris, 302, 711716.
Koçyiğit, A. & Özacar, A. (2003). Extensional
neotectonic regime through the NE edge of the
outer Isparta Angle, SW Turkey: new field and
seismic data. Turkish Journal of Earth Sciences,
12(1), 6790.
Lima, W.A. & Silva, J.B. (2014). Combined modeling
and smooth inversion of gravity data from a
faulted basement relief. Geophysics, 79(6), F1
F10. https://doi.org/10.1190/geo2013-0357.1
McKenzie, D.P. (1972). Active tectonics of
the Mediterranean region. Geophysical
Journal International, 30(2), 109185.
https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
Murthy, I. R. & Rao, S. J. (1989). A Fortran 77
program for inverting gravity anomalies of twodimensional basement structures. Computers &
Geosciences, 15(7), 1149-1156.
https://doi.org/10.1016/0098-3004(89)90126-X
Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of
northern Turkey, in The Mediterranean Basins:
Tertiary extension within the Alpine Orogen. In
Durand, B., Jolivet, L., Horvath, F. & Seranne,
M.(Eds.), Geological Society of London, Special
Publications, 156, pp. 475515.
Onajite, E. (2014). Understanding seismic interpretation
methodology. In Seismic Data Analysis Techniques
in Hydrocarbon Exploration, pp. 177211, Elsevier.
https://doi.org/10.1016/B978-0-12-420023-4.00013-7
Pamuk, E., Akgün, M., Özdağ, Ö. C. & Gönenç, T.
(2017). 2D soil and engineering-seismic bedrock
modeling of eastern part of Izmir inner bay/Turkey.
Journal of Applied Geophysics, 137, 104117.
https://doi.org/10.1016/j.jappgeo.2016.12.016
Piper, J. D. A., Gürsoy, H. & Tatar, O. (2002).
Palaeomagnetic evidence for the Gondwanian
origin of the Taurides and rotation of the Isparta
Angle, southern Turkey. Geological Journal,
37(4), 317336. https://doi.org/10.1002/gj.920
Rao, B. S. R. & Murthy. I. V. R. (1978). Gravity
and magnetic methods of prospecting: ArnoldHeinemann (India) Pvt. Ltd., AB, 9 Safdar jang
Enclave. New Delhi, 390 p.
Rao, D. B., Prakash, M. J. & Babu, N. R.
(1990). 3D and 2½ D modelling of gravity
anomalies with variable density contrast.
Geophysical Prospecting, 38(4), 411422.
https://doi.org/10.1111/j.1365-2478.1990.tb01854.x
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S.,
Ergintav, S., Cakmak, R. & Karam, G. (2006).
GPS constraints on continental deformation in
the AfricaArabiaEurasia continental collision
zone and implications for the dynamics of
plate interactions. Journal of Geophysical
Research: Solid Earth, 111(B5), Article B05411.
https://doi.org/10.1029/2005JB004051
Robertson, F., Poisson A. H. A. & Akinci, Ö. (2003).
Developments in research concerning Mesozoic
Tertiary Tethys and neotectonics in the Isparta
Angle, SW Turkey. Geological Journal, 38(3-4),
195234. https://doi.org/10.1002/gj.953
Roy, A., Ekinci, Y. L., Balkaya, Ç. & Ai, H. (2025).
Deep learning-based inversion with discrete cosine
transform discretization for two-dimensional
basement relief imaging of sedimentary
basins from observed gravity anomalies.
Geophysical Prospecting, 73(1), 113129.
https://doi.org/10.1111/1365-2478.13647
Sari, C. & Şalk, M. (2006). Sediment thicknesses of
the western Anatolia graben structures determined
by 2D and 3D analysis using gravity data.
Journal of Asian Earth Sciences, 26(1), 3948.
https://doi.org/10.1016/j.jseaes.2004.09.011
Seed, H. B. & Idriss, I. M. (1982). Ground motions and
soil liquefaction during earthquakes. Earthquake
Engineering Research Institute, Berkeley,
California, 243 pp.
Silahtar, A., Kanbur, M. Z. & Beyhan, G. (2020).
Investigation of a sedimentary basin by using
gravity and seismic reflection data in the Isparta
basin, southwestern Turkey. Bulletin of Engineering
Geology and the Environment, 79(8), 39713988.
https://doi.org/10.1007/s10064-020-01804-z
Şenel, M. (2007a). 1:100.000 ölçekli Türkiye Jeoloji
Haritası, Isparta M24 (J10). Maden Tetkik ve
Arama Genel Müdürlüğü Yayını, Ankara.
Şenel, M. (2007b). 1:100.000 ölçekli Türkiye Jeoloji
Haritası, Isparta M25 (J11). Maden Tetkik ve
Arama Genel Müdürlüğü Yayını, Ankara.
Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan
evolution of Turkey: a plate tectonic
approach. Tectonophysics, 75(34), 181241.
https://doi.org/10.1016/0040-1951(81)90275-4
Taymaz, T. & Price, S. (1992). The 1971 May
12 Burdur earthquake sequence, SW
Turkey: a synthesis of seismological and
geological observations. Geophysical
Journal International, 108(2), 589603.
https://doi.org/10.1111/j.1365-246X.1992.tb04638.x
Timur, E., Kaftan, I., Sari, C. & Şalk, M. (2019).
Structure of the Büyük Menderes Graben
systems from gravity anomalies. Turkish
Journal of Earth Sciences, 28(4), 544557.
https://doi.org/10.3906/yer-1809-31
Todd, D. K. & Mays, L. W. (2004). Groundwater
hydrology, third edition. Wiley, New York, 656 pp.
Weissmann, G. S., Hartley, A. J., Scuderi, L. A.,
Nichols, G. J., Owen, A., Wright, S., Felicia A.L.,
Holland, F. & Anaya, F. M. L. (2015). Fluvial
geomorphic elements in modern sedimentary
basins and their potential preservation in the rock
record: a review. Geomorphology, 250, 187219.
https://doi.org/10.1016/j.geomorph.2015.09.005
Wessel, P. & Smith, W. H. (1995). New version of
the generic mapping tools. Eos, Transactions
American Geophysical Union, 76(33), 329329.
Wright, T. J., Parsons, B. E., Jackson, J. A., Haynes, M.,
Fielding, E. J., England, P. C. & Clarke, P. J. (1999).
Source parameters of the 1 October 1995 Dinar
(Turkey) earthquake from SAR interferometry
and seismic bodywave modelling. Earth and
Planetary Science Letters, 172(1-2), 2337.
https://doi.org/10.1016/S0012-821X(99)00186-7
Wu, M., Liu, Z., Qin, Y., Su, K. & Yu, Z. (2025). Thermal
property of reservoir rocks at thermal-mechanical
coupled conditions and resultant impact on
performance of geothermal systems. Rock
Mechanics and Rock Engineering, 58, 87738798.
https://doi.org/10.1007/s00603-025-04587-5
Yalçınkaya, S. (1989). Isparta-Ağlasun (Burdur)
Dolaylarının Jeolojisi [PhD Thesis]. İstanbul
Üniversitesi.
Yıldız, A. & Toker, V. (1991). Çünür Köyü yöresindeki
(Isparta kuzeyi) Üst Kretase-Eosen yaşlı birimlerin
planktik foraminiferler ile biyostratigrafik
incelemesi. Türkiye Jeoloji Bülteni, 34(2), 4358.
https://www.jmo.org.tr/resimler/ekler/5409b2c82d5925a_ek.pdf
Yiğitbaş, E., Elmas, A., Sefunç, A. & Özer, N.
(2004). Major neotectonic features of eastern
Marmara region, Turkey: development of the
AdapazariKarasu corridor and its tectonic
significance. Geological Journal, 39, 179198.
https://doi.org/10.1002/gj.962
Abstract: The Çakrazboz Formation, located in the AmasraKastamonu region of the Western Pontides (NWTürkiye), represents the only known Triassic continental sedimentary succession in Türkiye. This study integrates sedimentological, petrographic, and stratigraphic data from six measured sections to reconstruct depositional environments and evaluate paleoclimatic controls. Field and thin-section analyses reveal a complex facies mosaiccomprising three major lithofacies groups: lacustrine, palustrine, and fluvial. Lacustrine facies are represented by carbonate-rich successions, including micrite, wackestone, and packstone, indicating low-energy profundal tosublittoral settings. Palustrine facies, occurring predominantly in marginal lake environments, are characterized by pedogenic overprinting, fenestral fabrics, root traces, and desiccation features, with the Bozköy and Başköy-1sections showing more pronounced development of these features. Başköy-2 and Başköy-3 exhibit fluvial pointbar deposits with upward-fining successions and pedogenically modified mudstones, representing meanderingriver systems deposited during overfilled lake stages. Stratigraphic and sedimentological evidence indicates that the basin experienced repeated shifts between underfilled, balanced-fill, and overfilled lake stages. Carbonate-richsuccessions in the Çakrazboz and lower İncigez sections represent low-energy profundal lacustrine conditionstypical of underfilled stages. The upper İncigez and Başköy-1 sections preserve features of balanced-fill conditions,with fining-upward transgressive intervals overlain by progradational littoral facies. Overfilled conditions are locallyrecorded in Bozköy and in the upper parts of Başköy-1, as evidenced by laterally extensive successions that thicken and coarsen upward, reflecting sustained freshwater inflow. These vertical facies transitions, stacking patterns, anddiagenetic overprints are indicative of orbitally forced lake-level fluctuations under subhumid to semi-arid climateregimes, contributing to a broader understanding of Late Triassic continental basin evolution, facies architecture, and climate-controlled sedimentation.
Çakrazboz Formation
facies evolution
lake-type variability
orbital cycles
oaleoclimate
Western Pontides
Adrian, R., OReilly, C. M., Zagarese, H., Baines, S. B.,Hessen, D. O., Keller, W., ... & Winder, M. (2009).Lakes as sentinels of climate change. Limnologyand oceanography, 54(6 part 2), 2283-2297.https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Akbaş, B., Altun, İ. T. & Bilgin, A. Z. (2002). 1:100,000scale geological map of Turkey, Zonguldak E28sheet. General Directorate of Mineral Researchand Exploration.
Akdoğan, R., Hu, X., Okay, A. I., Topuz, G. & Xue,W. (2021). Provenance of the Paleozoic toMesozoic siliciclastic rocks of the İstanbulZone constrains the timing of the RheicOcean closure in the Eastern Mediterraneanregion. Tectonics, 40(12), e2021TC006824.https://doi.org/10.1029/2021TC006824
Akman, Ü. (1992). Amasra-Arıt arasının jeolojisi[Yayımlanmamış Doktora Tezi]. PhD, AnkaraUniversity, Ankara, Turkey (in Turkish).
Alişan, C., Derman, A. S. (1995). The first palynologicalage, sedimentological and stratigraphic data forthe Çakraz Group (Triassic), Western Black Sea.Erler, In A., Ercan, T., Bingöl, E., & Örçen, S.(Eds.), Geology of the Black Sea region, 93-98.
Alonso-Zarza, A. M. (2003). Palaeoenvironmentalsignificance of palustrine carbonates andcalcretes in the geological record. EarthScience Reviews, 60(3-4), 261298.https://doi.org/10.1016/S0012-8252(02)00106-X
Alonso-Zarza, A. M. & Tanner, L. H. (2009).Carbonates in continental settings: facies,environments, and processes. Developments inSedimentology, Volume 61. Elsevier.
Alonso-Zarza, A. M. & Wright, V. P. (2010).Palustrine carbonates. In A. M. Alonso-Zarza& L. H. Tanner (Eds.), Developments inSedimentology, 61, (pp. 103131). Elsevier.https://doi.org/10.1016/S0070-4571(09)06102-0
Argyilan, E. P. & Forman, S. L. (2003). Lake levelresponse to seasonal climatic variability in the Lake Michigan-Huron system from 1920 to 1995.Journal of Great Lakes Research, 29(3), 488-500.https://doi.org/10.1016/S0380-1330(03)70453-5
Armenteros, I. (2010). Diagenesis of carbonatesin continental settings. In AlonsoZarza, A.M. & Tanner, L.H. (Eds.),Developments in Sedimentology, 62, 61-151.https://doi.org/10.1016/S0070-4571(09)06202-5
Bathurst, R. G. (1987). Diagenetically enhancedbedding in argillaceous platform limestones:stratified cementation and selective compaction.Sedimentology, 34(5), 749-778.https://doi.org/10.1111/j.1365-3091.1987.tb00801.x
Boggs Jr, S. (2014). Principles of Sedimentology andStratigraphy. Pearson Education.
Boggs, S. (2006). Principles of Sedimentology andStratigraphy (4th ed.). Pearson Prentice Hall.
Bohacs, K. M., Carroll, A. R., Neal, J. E., &Mankiewicz, P. J. (2000). Lake-basin type,source potential, and hydrocarbon character: Anintegrated sequence-stratigraphicgeochemicalframework. In E. H. Gierlowski-Kordesch & K.R. Kelts (Eds.), Lake Basins Through Space andTime. (Vol. 3, pp. 334). AAPG Studies in Geology.https://doi.org/10.1306/St46706C1
Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R.J. (2013). Phanerozoic Paleoclimate: an Atlasof Lithologic Indicators of Climate (vol. 11, pp.1-30). SEPM (Society for Sedimentary Geology).
Bustillo, M. A., Armenteros, I., & Huerta, P. (2017).Dolomitization, gypsum calcitization andsilicification in carbonateevaporite shallowlacustrine deposits. Sedimentology, 64(4), 1147-1172. https://doi.org/10.1111/sed.12345
Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphicclassification of ancient lakes: Balancing tectonicand climatic controls. Geology, 27(2), 99102.https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2
Cecil, C. B. (1990). Paleoclimate controls onstratigraphic repetition of chemical and siliciclastic rocks. Geology, 18(6), 533536.https://doi.org/10.1130/0091-7613(1990)018%3C0533:PCOSRO%3E2.3.CO;2
De Wet, C. B., Yocum, D. A. & Mora, C. I. (1998).Carbonate lakes in closed basins: sensitiveindicators of climate and tectonics: anexample from the Gettysburg Basin (Triassic),Pennsylvania, USA. In G. Kocurek (Ed.), RelativeRole of Eustacy, Climate, and Tectonism inContinental Rocks. SEPM Society for SedimentaryGeology. https://doi.org/10.2110/pec.98.59.0191
Dickinson, W. R. (1985). Interpreting provenancerelations from detrital modes of sandstones.In: Zuffa, G. G. (Eds.), Provenance ofArenites, (Series C, 148, pp. 333-361).North Atlantic Treaty Organization -Advanced Study Institutes (NATO-ASI).https://doi.org/10.1007/978-94-017-2809-6_15
Dobkins, J. E. & Folk, R. L. (1970). Shapedevelopment on Tahiti-nui. Journal ofSedimentary Research, 40(4), 1167-1203.https://doi.org/10.1306/74D72162-2B21-11D7-8648000102C1865D
Dunham, R. J. (1962). Classification of carbonate rocksaccording to depositional texture. In W. E. Ham(Ed.), Classification of Carbonate Rocks, (pp.108121). AAPG Memoir 1.
Fijałkowska-Mader, A., Heunisch, C. & Szulc, J.(2015). Palynostratigraphy and palynofacies ofthe Upper Silesian Keuper (southern Poland).Annales Societatis Geologorum Poloniae, 85(4),637-661. https://doi.org/10.14241/asgp.2015.025
Flügel, E. (2010). Microfacies of Carbonate Rocks:Analysis, Interpretation and Application (2nd ed.).Springer.
Folk, R. L. (1959). Practical petrographic classificationof limestones. AAPG Bulletin, 43(1), 138.https://doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D
Folk, R. L. & Ward, W. C. (1957). Brazos River bar[Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research,27(1), 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
Franke, W., Paul, J. (1980). Pelagic redbeds inthe Devonian of Germany deposition anddiagenesis. Sedimentary Geology, 25(3), 231256.https://doi.org/10.1016/0037-0738(80)90043-3
Freytet, P. (1973). Petrography and paleo-environmentof continental carbonate deposits withparticular reference to the Upper Cretaceousand Lower Eocene of Languedoc (SouthernFrance). Sedimentary Geology, 10(1), 25-60.https://doi.org/10.1016/0037-0738(73)90009-2
Freytet, P. & Verrecchia, E.P. (2002). Lacustrine andpalustrine carbonate petrography: an overview.Journal of Paleolimnology, 27, 221237.https://doi.org/10.1023/A:1014263722766
Friedman, G. M. (1961). Distinction between dune, beachand river sands from their textural characteristics.Journal of Sedimentary Petrology, 31(4), 514-529. https://doi.org/10.1306/74D70BCD-2B21-11D7-8648000102C1865D
Gamero-Diaz, H., Miller, C. & Lewis, R. (2012). sCore:a classification scheme for organic mudstonesbased on bulk mineralogy. Search and Discovery,Article 40951.
Gand, G., Tüysüz, O., Steyer, J. S., Allain, R., Sakınç,M., Sanchez, S., Şengör, A. M. C, & Sen, S.(2011). New Permian tetrapod footprints andmacroflora from Turkey (Çakraz Formation,northwestern Anatolia): Biostratigraphicand palaeoenvironmental implications.Comptes Rendus Palevol, 10(8), 617-625.https://doi.org/10.1016/j.crpv.2011.09.002
Gedik, I. & Aksay, A. (2002). 1:100,000 scalegeological map of Turkey, Zonguldak E29 sheet.General Directorate of Mineral Research andExploration
Geological Society of America (GSA). (2009). RockColor Chart. Geological Society of America.
Gierlowski-Kordesch, E. H. (2010). Lacustrinecarbonates. In A. M. Alonso-Zarza & L. H.Tanner (Eds.), Carbonates in ContinentalSettings: Facies, Environments andProcesses, (Vol. 61, pp. 1101). Elsevier.https://doi.org/10.1016/S0070-4571(09)06101-9
Glenn, C. R. & Kelts, K. (1991). Sedimentary rhythmsin lake deposits. Cycles and Events in Stratigraphy,(pp. 188221). Springer.
Golonka, J. (2007). Late Triassic and Early Jurassicpalaeogeography of the world. Palaeogeography,Palaeoclimatology, Palaeoecology, 244(1-4), 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041
Gvirtzman, G. (2006). Groundwater hydrology andpaleohydrology of the Dead Sea rift valley,In Y. Enzel, A. Agnon, M. Stein (Eds.), NewFrontiers in Dead Sea PaleoenvironmentalResearch. Geological Society of America.https://doi.org/10.1130/2006.2401(06)
Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987).Chronology of fluctuating sea levels sincethe Triassic. Science, 235(4793), 1156-1167.https://doi.org/10.1126/science.235.4793.1156
Hedges, J. I., & Stern, J. H. (1984). Carbon and nitrogendeterminations of carbonate-containing solids.Limnology and Oceanography, 29(3), 657-663.https://doi.org/10.4319/lo.1984.29.3.0657
Immenhauser, A. (2022). On the delimitation of thecarbonate burial realm. The Depositional Record,8(2), 524-574. https://doi.org/10.1002/dep2.173
Kürschner, W. M. & Herngreen, G. W. (2010).Triassic palynology of central and northwesternEurope: a review of palynofloral diversitypatterns and biostratigraphic subdivisions. InS.G. Lucas (Ed.), The Triassic Timescale, (pp.263-283). The Geological Society of London.https://doi.org/10.1144/SP334.11
Kutzbach, J. E. (1994). Idealized Pangean climates:sensitivity to orbital change. In G. O. Klein(Ed.), Pangea: Paleoclimate, Tectonics, andSedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Societyof America. https://doi.org/10.1130/SPE288-p41
Mattes, B. W., & Mountjoy, E. W. (1980). Burialdolomitization of the Upper Devonian Miettebuildup, Jasper National Park, Alberta.The Society of Economic Paleontologistsand Mineralogists, 28, 259-297.https://archives.datapages.com/data/sepm_sp/SP28/Burial_Dolomitization.htm
Miall, A. D. (1996). The Geology of FluvialDeposits: Sedimentary Facies, Basin Analysis,and Petroleum Geology. Springer-Verlag.https://doi.org/10.1007/978-3-662-03237-4
Moiola, R. J. & Weiser, D. (1968). Textural parameters:An evaluation. Journal of Sedimentary Petrology,38, 45-53. https://doi.org/10.1306/74D718C5-2B21-11D7-8648000102C1865D
Montañez, I. P. & Crossey, L. J. (1998). Diagenesisof sedimentary rocks. In G. N. Hanson (Ed.),Encyclopedia of Earth Sciences, (pp. 145160).Springer.
Moore, C. H. (1989). Carbonate Diagenesis andPorosity. Elsevier.
Moore, C. H. & Wade, W. J. (2013). CarbonateReservoirs: Porosity and Diagenesis in a SequenceStratigraphic Framework (2nd ed.). Elsevier.
Nikishin, A. M., Okay, A. I., Tüysüz, O., Demirer,A., Amelin, N. & Petrov, E. (2015a). TheBlack Sea basins structure and history: Newmodel based on new deep penetration regionalseismic data. Part 1: Basins structure and fill.Marine and Petroleum Geology, 59, 638-655.https://doi.org/10.1016/j.marpetgeo.2014.08.017
Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A.,Wannier, M., Amelin, N. & Petrov, E. (2015b). TheBlack Sea basins structure and history: New modelbased on new deep penetration regional seismicdata. Part 2: Tectonic history and paleogeography.Marine and Petroleum Geology, 59, 656-670.https://doi.org/10.1016/j.marpetgeo.2014.08.018
Okay, A. I. & Nikishin, A. M. (2015). Tectonicevolution of the southern margin of Laurasia k Sea region. InternationalGeology Review, 57(5-8), 1051-1076.https://doi.org/10.1080/00206814.2015.1010609
Okay, A. I. & Tüysüz, O. (1999). Tethyan suturesof northern Turkey. In B. Durand et al.(Eds.), The Mediterranean Basins: TertiaryExtension within the Alpine Orogen (pp.475515). Geological Society of London.https://doi.org/10.1144/GSL.SP.1999.156.01.22
Passega, R. (1964). Grain size characteristicsby C-M pattern as a tool. Journal ofSedimentary Petrology, 34, 233-847.https://doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D
Pettijohn, F. J., Potter, P. E. & Siever, R. (1973). Sandand Sandstone. Springer.
Pettijohn, F. J., Potter, P. E. & Siever, R. (2012). Sandand Sandstone. Springer Science & BusinessMedia.
Pettijohn, F.J., Potter, P. E. & Siever, R. (1987). Sandand Sandstone (2nd ed.). Springer-Verlag.
Philcox, M. E. (1963). Banded calcite mudstonein the lower Carboniferous reef knollsof the Dublin Basin, Ireland. Journal ofSedimentary Research, 33(4), 904-913.https://doi.org/10.1306/74D70F6F-2B21-11D7-8648000102C1865D
Platt, N. H., & Wright, V. P. (1992). Palustrine carbonatesand the Florida Everglades; towards an exposureindex for the fresh-water environment?. Journalof Sedimentary Research, 62(6), 1058-1071.https://doi.org/10.1306/D4267A4B-2B26-11D7-8648000102C1865D
Powers, M. C. (1953). A new roundness scalefor sedimentary particles. Journal ofSedimentary Research, 23(2), 117-119.https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
Rafferty, J. P. (Ed.). (2010). Climate and ClimateChange. Britannica Educational Publishing.
Raynaud, D., Jouzel, J., Barnola, J. M., Chappellaz,J., Delmas, R. J., & Lorius, C. (1993). The icerecord of greenhouse gases. Science, 926-934.https://doi.org/10.1126/science.259.5097.926
Reading, H. G. & Levell, B. K. (1996). Controls on thesedimentary rock record. In H. G. Reading (Ed.),Sedimentary Environments: Processes, Faciesand Stratigraphy, (3rd ed.). Blackwell Science.
Rech-Frollo, M. (1971). Les calcaires des couchesrouges des alpes: Leur composition et leur origine.Sedimentary Geology, 6(1), 53-72.https://doi.org/10.1016/0037-0738(71)90026-1
Reineck, H. E. & Singh, I. B., (1980). DepositionalSedimentary Environments. Springer.https://doi.org/10.1007/978-3-642-81498-3
Robertson, A. H. F., Parlak, O. & Ustaömer, T. (2016).PermianRecent palaeogeographical and tectonicdevelopment of Anatolia: Some recent contributions.International Journal of Earth Sciences, 105, 15.https://doi.org/10.1007/s00531-015-1247-2
Robinson, A. G. (Ed.). (1997). Regional andPetroleum Geology of the Black Sea andSurrounding Region. AAPG Memoir, 68.https://doi.org/10.1306/M68612
Rutherford, M. M., Banks, C., Hirst, P. P. & Robinson,A. G. (1992). The Mesozoic biostratigraphy ofthe Pontides. Unpublished Internal Report, BPExploration, Middlesex, UK., 9 p.
Sames, B., Wagreich, M., Conrad, C. P. & Iqbal,S. (2020). Aquifer-eustasy as the main driverof short-term sea-level fluctuations duringCretaceous hothouse climate phases. GeologicalSociety of London Special Publications 498, 9-38.https://doi.org/10.1144/SP498-2019-105
Schettino, A., & Turco, E. (2011). Tectonichistory of the western Tethys since the LateTriassic. GSA Bulletin, 123(12), 89105.https://doi.org/10.1130/B30064.1
Scotese, C. R. & Schettino, A. (2017). Late PermianEarly Jurassic paleogeography of western Tethysand the world. Permo-Triassic Salt Provinces ofEurope, North Africa and the Atlantic Margins,Tectonics and Hydrocarbon Potential. Elsevier.https://doi.org/10.1016/B978-0-12-809417-4.00004-5
Scotese, C. R. (2021). An atlas of Phanerozoicpaleogeographic maps: the seas come in and theseas go out. Annual Review of Earth and PlanetarySciences, 49(1), 679-728.https://doi.org/10.1146/annurev-earth-081320-064052
Scotese, C. R., Bambach, R. K., Barton, C., Van derVoo, R. & Ziegler, A. M. (1979). Paleozoic basemaps The Journal of Geology 87(3), 217-277.
Şen, G. (2021). Sedimentological and cyclostratigraphicanalysis of the Çakrazboz Formation (Triassic)in Amasra-Kastamonu Region [Published PhDDissertation]. Middle East Technical UniversityGraduate School of Natural and Applied Sciences.
Şengör, A. M. C. (1979). Mid-Mesozoicclosure of PermoTriassic Tethys and itsimplications. Nature, 279(14), 590-593.https://doi.org/10.1038/279590a0
Şengör, A. M. C. (Ed.) (1989). Tectonic evolution of theTethyan region. Nato Science Series C, Springer.https://doi.org/10.1007/978-94-009-2253-2
Şengör, A. M. C. (1990). Plate tectonics and orogenicresearch after 25 years: A Tethyan perspective.Earth-Science Reviews, 27(1-2), 1-201.https://doi.org/10.1016/0012-8252(90)90002-D
Simmons, M. D., Tari, G. C. & Okay, A. I. (2018).Petroleum geology of the Black Sea: introduction.Geological Society, London, Special Publications,464(1), 1-18. https://doi.org/10.1144/SP464.15
Sneed, E. D. & Folk, R. L. (1958). Pebbles in thelower Colorado River, Texas a study in particlemorphogenesis. The Journal of Geology, 66(2),114-150. https://www.jstor.org/stable/30058239
Stewart, H. B. Jr. (1958). Sedimentary reflectionson depositional environments in SanMigue Lagoon, Baja California, Mexico.Bulletin of the American Association ofPetroleum Geologists, (42) 2567-2618.https://doi.org/10.1306/0BDA5BFA-16BD-11D7-8645000102C1865D
Stolle, E. (2016). Çakraz Formation, Çamdağ area,NW Turkey: Early/mid-Permian age, Rotliegend(Germany) and Southern Alps (Italy) equivalent- a stratigraphic re-assessment via palynological long-distance correlation. Geological Journal,51(2), 223-235. https://doi.org/10.1002/gj.2620
Stow, D. A. (2005). Sedimentary Rocks in the Field: Acolor guide. Gulf Professional Publishing.
Swart, P. K. (2015). The geochemistry ofcarbonate diagenesis: The past andfuture. Sedimentology, 62(6), 12331304.https://doi.org/10.1111/sed.12205
Tucker, M. E. (1990). Diagenetic processes, productsand environments. In M. E. Tucker & V. P.Wright (Eds.), Carbonate Sedimentology,(pp. 314364). John Wiley & Sons.https://doi.org/10.1002/9781444314175.ch7
Tucker, M. E. & Bathurst, R. G. (Eds.). (1990).Carbonate Diagenesis. John Wiley & Sons.https://doi.org/10.1002/9781444304510
Tucker, M. E. & Sparks, R. S. J. (2024). Fluviallacustrine interactions in the MarginalTriassic, Clevedon, Bristol Channel Basin,UK: Deposition, dolomitization andsilicification. Geological Magazine, 161(e18).https://doi.org/10.1017/S0016756824000396
Tucker, M. E. & Wright, V. P. (1990).Carbonate Sedimentology. Blackwell.https://doi.org/10.1002/9781444314175
Tüysüz, O. (2022). Geology of the Kurucaşile-Cideregion, NW Türkiye. Bulletin of the MineralResearch and Exploration, 167(167), 149-178.
Van Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M.,Maţenco, L. C., Maffione, M., Vissers, R. L., ...& Spakman, W. (2020). Orogenic architectureof the Mediterranean region and kinematicreconstruction of its tectonic evolution sincethe Triassic. Gondwana Research, 81, 79-229.https://doi.org/10.1016/j.gr.2019.07.009
Varol, B. & Akman, N. (1988). Geological map of theAmasraÇakraz area, (No. 42). MTA.
Verardo, D. J., Froelich, P. N. & McIntyre, A., (1990).Determination of organic carbon and nitrogenin marine sediments using the Carlo Erba NA1500 Analyzer. Deep Sea Research Part A. Oceanographic Research Papers, 37(1), 157-165.https://doi.org/10.1016/0198-0149(90)90034-S
Verrecchia, E. P. (2000). Fungi and sediments.In Riding, R. E. & Awramik, S.M. (Eds.)Microbial sediments. Springer Berlin Heidelberg.https://doi.org/10.1007/978-3-662-04036-2_9
Verrecchia, E. P. (2007). Lacustrine andpalustrine geochemical sediments. InGeochemical Sediments and Landscapes(pp. 298-329). Blackwell Publishing Oxford.https://doi.org/10.1002/9780470712917.ch9
Vollmer, T., Werner, R., Weber, M., Tougiannidis, N.,Röhling, H. G. & Hambach, U. (2008). Orbitalcontrol on Upper Triassic Playa cycles of theSteinmergel-Keuper (Norian): A new conceptfor ancient playa cycles. Palaeogeography,Palaeoclimatology, Palaeoecology, 267(1-2), 1-16.https://doi.org/10.1016/j.palaeo.2007.12.017
Wagreich, M., Lein, R. & Sames, B. (2014). Eustasy,its controlling factors, and the limno-eustatichypothesisconcepts inspired by Eduard Suess.Austrian Journal of Earth Sciences, 107(1), 115-131.
Wang, Y., Sheng, H. F., He, Y., Wu, J. Y., Jiang, Y. X.,Tam, N. F. Y. & Zhou, H. W. (2012). Comparisonof the levels of bacterial diversity in freshwater,intertidal wetland, and marine sediments byusing millions of illumina tags. Applied andEnvironmental Microbiology, 78(23), 8264-8271.https://doi.org/10.1128/aem.01821-12
Wright, V. P. (2009). Meteoric diagenesis. In M.E. Tucker & V. P. Wright (Eds.), CarbonateSedimentology, (pp. 336348). John Wiley &Sons.
Wright, V. P., & Tucker, M. E. (1991). Calcretes.Blackwell Scientific Publications.https://doi.org/10.1002/9781444304497
Yilmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. &Şengor, A. M. C. (1997). Geology and tectonicevolution of the Pontides. In A. G. Robinson(Ed.), Regional and Petroleum Geologyof the Black Sea and Surrounding Region.American Association of Petroleum Geologists.https://doi.org/10.1306/M68612C11
Yılmazer, S., Topuz, G., Guillong, M., Okay, A. I.,Demirkaya, İ. & Uzun, F. (2025). Revealing theearly geological history of the İstanbul Zone (FarEast Avalonia) through zircon U-Pb-Hf isotopicdata. Precambrian Research, 427, Article107855.https://doi.org/10.1016/j.precamres.2025.107855
Zavala, C., Liu, H.-Q., Li, X.-B., Trobbiani, V., Li,Y., Arcuri, M. & Zorzano, A. (2024). Highfrequency lacustrine sequence stratigraphy ofclastic lakes: Lessons from ancient successions.Journal of Palaeogeography, 13(4), 621645.https://doi.org/10.1016/j.jop.2024.08.004.
Zielinski, G. A., Germani, M. S., Larsen, G., Baillie,M. G., Whitlow, S., Twickler, M. S. & Taylor, K.(1995). Evidence of the Eldgjá (Iceland) eruptionin the GISP2 Greenland ice core: relationship toeruption processes and climatic conditions inthe tenth century. The Holocene, 5(2), 129-140.https://doi.org/10.1177/095968369500500201