Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2015 AĞUSTOS Cilt 58 Sayı 3
View as PDF
View as PDF
View as PDF
Petrography and Petrology of the Calc-alkaline Şapçı (Balıkesir) Volcanics: Volcanism Related to Collision in the Biga Peninsula (NW Turkey)
Dilber Erdem Zafer Aslan
View as PDF

Abstract: In this study, it is aimed to determine petrographical and petrological and sources characteristics of theŞapçı volcanics. The Biga Peninsula (NW Turkey) located in Sakarya Zone is an important belt where collisional magmatism is common and magmatic-tectonic events are seen together. The geology of theBiga Peninsula is so complex that there are various metamorphic, sedimentary, and magmatic rocks fromPalaezoic to Pliocene. The oldest unit in the study area is Late Cretaceous aged Bornova Flysch. LateCretaceous aged Yayla Melange overlies tectonically this unit. These units are cut by Hallaçlar volcanics.Hallaçlar volcanics are also cut by Early Miocene aged Şapçı volcanics.The Şapçı volcanics are composed of andesite and pyroclastics with microlitic, microlitic porphyric,hyalomicrolitic, fluidal, and sieve textures. The volcanics contain mainly plagioclase, amphibole,biotite, and opaque oxides, and accessory apatite and zircon. Petrochemically, the Şapçı volcanics havemedium-K, calc-alkaline in character, and show large ion lithophile elements (LILE) enrichment onN-MORB normalized spider diagrams. On chondrite-normalized rare earth element plots, the volcanicrocks show a concave upward shape with LaCN/LuCN=7.16-21.84. These patterns and Harker variationplots suggest that amphibole and plagioclase fractional crystallization were played a signicant role inthe evolution of the studied volcanics. The studied Şapçı volcanics represent post-collisional setting, andtheir parent magma has derived from enriched mantle.  

  • Calk-alkaline rocks

  • enriched mantle

  • genesis

  • geochemistry

  • tectonic environment


  • Akay, E., 2009. Geology and petrology of the Simav Magmatic Complex (NW Anatolia) and its comparison with the Oligo–Miocene granitoids in NW Anatolia: implications on Tertiary tectonic evolution of the region. International Journal of Earth Sciences, (GeolRundsch) 98, 1655–1675.

  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. ve Mitchell, J.G., 2000. Petrogenetic Evolution of late Cenozoic, Post-collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95.

  • Altunkaynak, Ş., 2007. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. Journal of Geology, 115, 63–82.

  • Altunkaynak, Ş. ve Yılmaz, Y., 1998. The mount Kozak magmatic complex, Western Anatolia. Journal of Volcanology and Geothermal Research 85, 211– 231.

  • Altunkaynak, Ş. ve Yılmaz, Y., 1999. The Kozak Pluton and its emplacement. Geological Journal 34, 257–274.

  • Altunkaynak, Ş. ve Dilek, Y., 2006. Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. Dilek, Y., Pavlides, S. (Ed.), Post collisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Paper, 409, 321–351.

  • Altunkaynak, Ş. ve Genç, Ş.C., 2008. Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos, 102, 316-340.

  • Baier, J., Audetat, A. ve Kepler, H., 2008. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 267, 290–300.

  • Bingöl, E., 1976. Biga yarımadasının jeolojisi ve Karakaya formasyonunun bazı özellikleri. Cumhuriyetin 50. yılı Yerbilimleri kongresi, Tebliğler kitabı, Maden Tetkik ve Arama, Ankara 70–75.

  • Bingöl, E., Delaloye, M. ve Ataman, G., 1982. Granitic intrusions in Western Anatolia: A contribution of the geodynamic study of this area. Eclogae Geologisch Helvetica 75, 437–446.

  • Bradshaw, T.K. ve Smith, E.I. 1994. Polygenetic Quaternary volcanism at Crater Flat, Nevada. Journal of Volcanology and Geothermal Research, 63, 165–182.

  • Delaloye, M. ve Bingöl, E., 2000. Granitoids from western and North-western Anatolia: geochemistry and modeling of geodynamic evolution. International Geology Review, 42:241–268.

  • Dönmez, M., Akçay, A. E., Genç, Ş. C. ve Acar, Ş., 2005. Biga Yarımadasında Orta-Üst Eosen volkanizması ve denizel ignimbiritler. Maden Tetkik ve Arama Dergisi, 131,49-61.

  • Duru, M., Pehlivan, Ş., Şentürk, Y.,Yavaş F. ve Kar, H., 2004. New Results on the lithostratigraphy of the Kazdağ Massif in Northwest Turkey. Turkish Journal of Earth Sciences, 13, 177-186.

  • Elburg, M.A., Bergen, M.V., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I. ve Nasution, A. 2002. Geochemical trends across an arccontinent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta 66, 2771–2789.

  • Ercan, T., 1979. Batı Anadolu, Trakya ve Ege adalarındaki Senozoyik volkanizması. Jeoloji Mühendisliği Dergisi 9, 23-46.

  • Ercan, T. ve Günay, E., 1984. Kuzeybatı Anadolu, Trakya ve Ege adalarındaki Oligo-Miyosen yaşlı volkanizmanın gözden geçirilişi. Türkiye Jeoloji Kurultayı Bülteni, 5, 119-139.

  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E.,Adis,C.,Walter, H.J. ve Yıldırım, T., 1995. Biga Yarımadası ile Gökçeada Bozcaada ve Tavşan adalarındaki (KB Anadolu) Tersiyer Volkanizmasmın özellikleri. Maden Tetkik ve Arama Dergisi, 117, 55-86.

  • Erdem, D., 2015. Şapçı (İbirler-Balıkesir) Volkaniti’nin Petrografisi, Jeokimyası ve Petrolojisi. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü., Balıkesir, Yüksek Lisans Tezi, 63s (yayınlanmamış).

  • Genç, Ş.C.,1998. Evolution of the Bayramiç magmatic complex, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85, 233- 249.

  • Genç, Ş.C. ve Yılmaz, Y., 1997. An example of postcollisional magmatism in northwestern Anatolia: the Kizderbent Volcanics (Armutlu Peninsula, Turkey). Turkish Journal of Earth Sciences, 6, 33–42.

  • Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin. 390s.

  • Güleç, N., 1991. Crust–mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geological Magazine, 23, 417–435.

  • Harris, N.B.W., Kelley, S. ve Okay, A.I., 1994. Postcollisional magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology, 117, 241–252.

  • Irvine, T.N. ve Baragar W.R.A., 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Science, 8, 523–548.

  • Jahn, B.M., Wu, F., Lo, C.H. ve Tsai, C.H., 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional maficultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157, 119–146.

  • Kaplan, D., Aslan Z. ve Chen B., 2013. SHRIMP U– Pb zircon dating, geochemical and petrographical characteristics of calc-alkaline Early Miocene Şapçı volcanics around Balıkesir (W Turkey). Mineralogical Magazine, 77(5), 1430.

  • Krushensky, R. D., 1976. Neogene calc-alkalene extrusive and intrusive rocks of the KaralarYeşiller area, Northwest Anatolia, Turkey. Bulletin Volcanologique, 40, 336-360.

  • Köprübaşı, N. ve Aldanmaz, E., 2004. Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in Northwest Anatolia, Turkey: Evidence for magma generation by lithospheric delamination in a post-collisional setting. International Geology Review, 46, 705–729.

  • Lambert, R.J. ve Holland, J.G., 1974. Yttrium geochemistry applied to petrogenesis utilizing calcium-yttrium relationships in minerals and rocks. Geochima Cosmochima Acta, 38, 1393– 1414.

  • Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lamere, J., Sabine, P.A., Schmid, R., Sorensen, H. ve Woolley, A.R., 2002. Igneous rocks: A classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press, Cambridge.

  • Okay, A.I., 2008. Geology of Turkey: a synopsis. Anschnitt, 21, 19–42.

  • Okay, A.I. ve Tüysüz, O., 1999. Tethyan sutures of northern Turkey. Durant, B., Jolivet, F., Horvath, F. ve Seranne, M., (ed) The Mediterranean basin: Tertiary extension within the Alpine orogen. Geological Society Special Publication, 156, 475– 515.

  • Okay, A.I. ve Satır, M., 2006. Geochronology of Eocene plutonism and metamorphism in northeast Turkey: evidence for a possible magmatic arc. Geodinamica Acta, 19, 251–266.

  • Okay, A.I., Tansel, I. ve Tüysüz, O., 2001. Obduction, subduction and colision as reflected in the Upper Cretaceous–Lower Eocene sedimantary record of western Turkey. Geological Magazine, 138, 117– 42.

  • Okay, A.I., Satır, M., Maluski, H., Siyako, M., Metzger, R. ve Akyüz, S., 1996. Paleo-and Neo-Tethyan events in Northwest Turkey: geological and geochronological constrains. Yin, A. ve Harrison, T.M., (ed) The tectonic evolution of Asia. Cambridge University Press, Cambridge, pp 420– 44.

  • Özgenç, İ. ve İlbeyli, N., 2008. Petrogenesis of the Late Cenozoic Eğrigöz Pluton in Western Anatolia, Turkey: Implications for magma genesis and crustal processes. International Geology Review, 50, 375–391.

  • Pearce, J.A., 1982. Trace element charesteristics of lavaş from destructive plate margins. Thorpe, R.S., (ed) Andasites: Orogenic Andesites and Related Rocks. John Wiley, New York, pp. 525- 548.

  • Pearce, J.A., 1983, The role of sub-continental lithosphere in magma genesis at destructive plate margins. Hawksworth, C.J. ve Norry, M.J., (ed) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp. 230–249.

  • Pearce, J.A. ve Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review Earth Planet Sciences Letter, 23, 251–285.

  • Pearce, T.H., Gorman, B.E. ve Birkett, T.C., 1977. The relationship between majör element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth Planet Sciences Letter, 36, 121-132.

  • Pearce, J.A., Bender, J.F., De Long, S.E., Kidd, W.S.F., Low, P.J., Güner, Y., Şaroğlu, F., Yılmaz, Y, Moorbath, S. ve Mitchell, J.J., 1990. Genesis of collision volcanism in eastern Anatolia Turkey. Journal Volcanology Geotherm Research, 44, 189–229.

  • Pehlivan, Ş., Duru. M., Dönmez, M., Ilgar, A., Akçay, A.E., Erdoğan, K. ve Özer, D., 2007. Türkiye Jeolojisi Haritaları No:96, Balıkesir-İ 19 Paftası. Maden Tetkik Arama, 40s, Ankara.

  • Seyitoğlu, G. ve Scott, B., 1996. The cause of N–S extensional tectonics in western Turkey: Tectonic escape vs. backarc spreading vs. orogenic collapse. Journal of Geodynamics 22, 145–153.

  • Shand, S. J., 1943. The Eruptive Rocks, John Wiley, 2nd edn, New York, 444 pp.

  • Smith, E.I., Sanchez, A., Walker, J.D. ve Wang, K. 1999. Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. Journal of Geology, 107, 433–448.

  • Sun, S.S. ve Mcdonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Saunders, A.D. ve Norry, M.J., (eds) Magmatism in the ocean basins. Geology Society London Special Publication, 42, 313–345.

  • Şengör, A.M.C. ve Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

  • Şengör, A. M. C., Natalin, B. A. ve Burtman, V. S., 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 299–307.

  • Taylor, S.R. ve Mc Lenan, S.M., 1985. The Continental Crust, Its Composition and Evolution. Blackwell, Oxford, 312 pp.

  • Thirlwall, M.F., Smith, T.E., Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P. ve Arculus, R.J., 1994. High field strength element anomalies in arc lavas; source or process? Journal Petrogly, 35, 819–838.

  • Thompson, R.N., Morrison, M.A., Hendry, G.L. ve Parry, S.J., 1984. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philos Translate Society London, A310, 549–590.

  • Yılmaz, Y., 1989. An approach to the origin of young volcanic rocks of western Turkey. Şengör, A.M.C., (ed) Tectonic evolution of the Tethyan region. Kluwer Academics, Hague, The Netherlands, pp. 159–189.

  • Yılmaz, Y., 1990. Comparison of young volcanic associations of western and eastern Anatolia under compressional regime; a review. Journal of Volcanology and Geothermal Research 44, 69–87.

  • Yılmaz, Y., Genç, S.C., Karacik, Z. ve Altunkaynak, Ş., 2001. Two contrasting magmatic associations of NW Anatolia and their tectonic significance. Journal of Geodynamics 31, 243–271.

  • Yılmaz, Y., Genç, Ş. C., Yiğitbaş¸ E., Bozcu, M. ve Yılmaz, K., 1995. Geological evolution of the late Mesozioc continenetal margin of northwestern Anatolia. Tectonophysics, 243, 155–171.

  • White, W.M. ve Patchett, J. 1984. Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crustmantle evolution. Earth and Planetary Science Letters, 67, 167–185.

  • Wilson, F. H., 1989. Geologic setting, petrology anda ge of Plicene to Holocene volcanoes of the stepovak Bay area,western Alaska Peninsula. Dover, J.H. ve Galloway, J. P. (eds) Geological studies in Alaska by the U.S. Geological Survey. United State Geological Survey Bulletin, 1903, 84-95.

  • Winchester, J.A. ve Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.

  • Wood, D.A., 1980. The aplication of a Th-Hf-Ta diagram to problems of tectonomagmatic classifation and to establishing the natüre of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sciences Letter, 50, 11-30.

  • Wood, D.A. ve Joron, J.L., 1979. Elemental and Sr izotopic variations in basic lava from Iceland and surrounding ocean floor: the nature of the mantle sources inhomogenities. Contribition and Mineralogy Petrology, 70, 319-339.

  • Erdem, D , Aslan, Z . (2015). Kalk-alkalen Şapçı (Balıkesir) Volkanitlerin Petrografisi ve Petrolojisi: Biga Yarımadası’nda (Kuzeybatı Türkiye) Çarpışma ile İlişkili Volkanizma . Türkiye Jeoloji Bülteni , 58 (3) , 1-22 . DOI: 10.25288/tjb.298325

  • Petrography and Late Cenozoic Geodynamic Evolution of Simav (Kütahya) and Surroundings
    Erdem Gündoğdu Süha Özden Talip Güngör
    View as PDF

    Abstract: The Late Cenozoic geodynamic evolution of Simav (Kütahya) and surroundings was determined by datingactive tectonic structures in the region (Simav Fault and Simav Detachment Fault) and granitic andvolcanic rocks of the Eğrigöz Magmatic Complex. Additionally it was revealed that the currently normal Simav Fault, in previous periods acted as a strike-slip fault according to dating studies of fault planesand field observations. Dating of the fault planes along the Simav Fault determined that initiation of theSimav Fault occurred in the interval between 19.3-26.1 Ma. In this period the Simav Fault demonstratedstrike-slip fault behavior in a compressional regime. The results of dating studies of the Eğrigöz andKoyunoba Plutons (21.9-26.3 Ma) reveal that the unroofing of these plutons was related to the SimavDetachment Fault (20.0-27.4 Ma). Additionally the presence of volcanism in the time period was identified(7.1-21.3 Ma). The Simav Fault which displayed previous strike-slip character currently has listric normalfault behavior after a tectonic regime change in the Plio-Quaternary. The transition from extensionalcompressional regime to a regional extensional regime and cause of the tectonic regime change is thoughtto be related to the complex subduction process (slab-pull and and roll-back) between the African Plateand Anatolian Plate in the Eastern Mediterranean. 

  • Late Cenozoic

  • radiometric dating

  • Simav detachment fault

  • Simav fault

  • Tectonic regime change

  • West Anatolia


  • Akdeniz, N. ve Konak, N., 1979. Simav-EmetTavşanlı-Dursunbey-Demirci yörelerinin jeolojisi. MTA Derleme No: 6547, 108 s (Yayınlanmamış).

  • Altunkaynak, S.¸ ve Yılmaz, Y., 1998. The Mount Kozak magmatic complex, Western Anatolia. Journal of Volcanology Geothermal Research 85, 211–231.

  • Barka, A. A., 1992., The North Anatolian Fault Zone, Annales Tectonicae VI suppl.,164-195.

  • Bingol E., Delaloye M. ve Ataman G., 1982. Granitic Intrusions in Western Anatolia: a Contribution to the Geodynamic Study of This Area. Eclogae Geologica Helvetica 75, 437–446.

  • Bozkurt, E., Satır, M. ve Buğdaycıoğlu, Ç., 2011. Surprisingly young Rb/Sr ages from the Simav extensional detachment fault zone, northern Menderes Massif, Turkey. Journal of Geodynamics, 52, 406-431.

  • Bürküt, Y., 1966. Comperative Geology of Plutons in NW Anatolia. Istanbul Technical University, Faculty of Mining, İstanbul (in Turkish with English abstract).

  • Carey, E., 1979. Recherche des Directions Principales de Contraintes Associées au jeu d’une Population de Failles, Revue Geological Dynamic and Géography physic., 21, 57-66.

  • Carey, E. ve Mercier, J. L., 1987. A numerical Method for Determining the State of Stress Using Focal Mechanisms of Earthquake Populations, Earth Planet. Sci. Lett., 82, 165-179.

  • Delaloye, M. ve Bingöl, E., 2000. Granitoids from Western and Northwestern Anatolia: geochemistry and modelling of geodynamic evolution. International Geology Review 42, 241–268.

  • Doğan, A. ve Emre, Ö., 2006. Ege Graben Sistemi’nin Kuzey Sınırı: Sındırgı-Sincanlı Fay Zonu. 59. Türkiye Jeoloji Kurultayı, 20-24 Mart 2006, Bildiri Özleri Kitabı, s. 83-84, Ankara.

  • Dora, O.Ö., Kun, N. ve Candan, O., 1992. Metamorphic history and geotectonic evolution of the Menderes Massif. In: Savaşçın, M.Y. ve Eronat, A.H. (eds), Proceedings of International Earth Sciences Congress on Aegean Regions 1990, Dokuz Eylül University Publications 2, 107–115.

  • Dürr, S.H., 1975. Über alter und geotektonische stellung des Menderes-kristallins/Sw-Anatolien und seine aequivalente in der mittleren Aegaeis. Habil.-Schr. Philipps-Univ. Marburg/Lahn, 107 p.

  • Emre, Ö. ve Duman, T.Y., 2011. 19 Mayıs 2011 Simav (Kütahya) Depremi Ön Değerlendirmesi Raporu, MTA Jeoloji Etütleri Dairesi Yer Dinamikler Araştırma ve Değerlendirme Koordinatörlüğü Aktif Tektonik Araştırmaları Birimi.

  • Emre, Ö., Özalp, S. ve Duman, T.Y., 2011. Türkiye Diri Fay Haritası Serisi, 1:250.000 Ölçekli Uşak (NJ 35-8) Paftası, Seri No:11, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Emre, Ö., Doğan, A. ve Özalp, S., 2011. Türkiye Diri Fay Haritası Serisi, 1:250.000 Ölçekli Balıkesir (NJ 35-3) Paftası, Seri No:4, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Emre, Ö., Duman, T.Y. ve Özalp, S., 2011. Türkiye Diri Fay Haritası Serisi, 1:250.000 Ölçekli Kütahya (NJ 35-4) Paftası, Seri No:10 Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Emre, Ö., Duman, T.Y., Özalp, S., Olgun, Ş., ve Elmacı, H., 2011. Türkiye Diri Fay Haritası Serisi, 1:250.000 Ölçekli Afyon (NJ 36-5) Paftası, Seri No:16 Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Ercan, T., Günay, E., ve Savasçın, M.Y., 1984. Simav ve çevresindeki Senozoyik yaslı volkanizmanın bölgesel yorumlanması: Maden Tetkik ve Arama Enstitüsü Dergisi (in Turkish with English abstract), 97/98, 86–101.

  • Ercan T., Satır M., Sevin D. ve Türkecan A., 1997. Interpretation of Radiometric Age Data on Tertiary–Quaternary Volcanic Rocks in W Anatolia. Mineral Research and Exploration Institute (MTA) of Turkey, 119, 103–112.

  • Erdoğan, B., Güngör T., Akay, E. ve Hasözbek, A., 2003. Eğrigöz Granit Masifi’nin Jeolojisi, Petrolojisi ve Yerleşim Mekanizması. 101Y014, TÜBİTAK Projesi Final Raporu.

  • Erdoğan, B. ve Güngör, T., 2004. The problem of the core-cover boundary of the Menderes Massif and an emplacement mechanism for regionally extensive gneissic granites, western Anatolia (Turkey). Turkish Journal of Earth Sciences, 13, 15-36.

  • Erkül, F., 2010. Tectonic Significance of Synextensional Ductile Shear Zones Within the Early Miocene Alacamdag Ganites, Northwestern Turkey. Geological Magazine, 147, 611–637.

  • Genç, S.C., 1998. Evolution of the Bayramiç magmatic complex, northwestern Anatolia: Journal of Volcanology and Geothermal Research, 85, 233– 249.

  • Gündoğdu, E., 2013. Simav Fayı ve Yakın Civarının Jeodinamik Evrim Modeli. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Doktara Tezi, 146 s.

  • Hasözbek, A., Akay, E., Erdoğan, B., Satır, M. ve Siebel, W., 2010a. Early Miocene granite formation by detachment tectonics or not? A case study from the northern Menderes Massif (Western Turkey). Journal of Geodynamics, 67–80.

  • Hasözbek, A., Satir, M., Erdoğan, B., Akay, E. ve Siebel, W., 2010b. Early Miocene post-collisional magmatism in NW Turkey: geochemical and geochronological constraints. International Geology Review, 1-22.

  • Hinsbergen, D.J.J.V., 2010. A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey. EarthScience Reviews 102, 60–76.

  • Işık, V., 2004. Kuzey Menderes Masifinde Simav Makaslama Zonunun Mikrotektonik Özellikleri, Batı Anadolu, Türkiye. Türkiye Jeoloji Bülteni, 47(2), 49-91.

  • Işık, V. ve Tekeli, O., 1999. Microstructure of deformed grains in the granitic mylonites of lower plate: northern Menderes massif, western Turkey. EUG 10, J. Conference Abstracts, 4 (1), 730.

  • Işık, V. ve Tekeli, O., 2001. Late orogenic crustal extension in the northern Menderes massif (western Turkey): Evidences for metamorphic core complex formation. Int. J. Earth Sci. 89, 757- 765.

  • Işık, V., Seyitoğlu, G. ve Çemen, İ., 2003. Ductilebrittle transition along the Alaşehir shear zone and its structural relationship with the Simav detachment, Menderes massif, wes-tern Turkey. Tectonophysics 374, 1-18.

  • Işık, V., Tekeli, O. ve Seyitoğlu, G., 2004a. The 40Ar/39Ar age of extensional ductile deformation and granitoid intrusions in the northern Menderes core complex: Implications for the initiation of extensional tectonics inwestern Turkey. Journal of Asian Earth Science 23, 555-566.

  • Işık, V., Gürsu S., Göncüoğlu, C. ve Seyitoğlu, G., 2004b. Deformational and geochemical features of syn-tectonic Koyunoba and Egrigöz granitoids, western Turkey. 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14-20 April, Proceedings, V.3, 1143-1146.

  • Işık, V. ve Seyitoğlu, G., 2007. Menderes Masifi’nin Geç Senozoyik’te Asimetrik ve Simetrik Çekirdek Kompleksi Olarak Yüzeyleme ve Parçalanma Tarihçesi. Menderes Masifi Kolokyumu, 5-10 Kasım 2007. İzmir.

  • Karacık, Z. ve Yılmaz, Y., 1998, Geology of the ignimbrites and the associated volcano-plutonic complex of the Ezine area, northwestern Anatolia: Journal of Volcanology and Geothermal Research, 85, 251–264.

  • Konak, N., 1982. Simav dolayının jeolojisi ve metamorf kayaçlarının evrimi. İstanbul Yerbilimleri, 3, 313- 337.

  • Lister, G.S. ve Davis, G.A., 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. Journal of Structural Geology 11, 65–94.

  • Malavieille, J., 1993. Dağ kuşaklarında Geç orojenik uzantısı, havzası ve aralığı ve Geç Paleozoyik Variskan kemer Insights doi: 10,1029 / 93TC01129 Tektoniği 12. ıssn: 0278-7407.

  • Mercier, J. L., Sorel, D. and Simeakis, V., 1987. Changes in the state of stress in the overriding plate of a subduction zone: the Aegean Arc from the Pliocene to the Present. Annales Tectonicae, 1, 20- 39.

  • M.TA., 2002. 1:500.000 ölçekli Türkiye Jeoloji Haritaları, İzmir Paftası.

  • Özden, S., Tutkun, S.Z., Bekler, T., Karaca, Ö., Komut, T., Kalafat, D., Ate,ş Ö., Demirci, A., Gündoğdu, E. ve Çınar, S., 2012. Simav Fayı ile Kütahya Fayı (Emet-Orta Batı Anadolu) Arasında Kalan Bölgenin Neotektonik ve Sismotektonik Özellikleri. 109Y103, TÜBİTAK Projesi Final Raporu, 212 s.

  • Öztunalı, Ö., 1973. Uludağ ve Eğrigöz Masiflerinin petrolojisi ve Jeokronolojisi, İ.Ü.F.F., Monog, Tabii İlimler, 23, 115 s.

  • Ring, U. ve Collins, A.S., 2005. U–Pb SIMS dating of syn-kinematic granites: timing of core-complex formation in the northern Anatolide belt of western Turkey. Journal of the Geological Society, London 162, 289–298.

  • Schuiling, R.D., 1962. On petrology, age and structure of the Menderes migmatite complex (SW Turkey). General Directorate of Mineral Research and Exploration Institute of Turkey (MTA) Bulletin 58, 71–84.

  • Seyitoğlu, G., 1997. The Simav graben: An example of young E-W trending structures in the Late Cenozoic extensional system of western Turkey. Turkish Journal of Earth Sciences, 6, 135-141.

  • Seyitoğlu, G., Işık, V. ve Çemen, İ., 2004. Complete Tertiary exhumation history of Menderes massif, western Turkey: a working hypothesis Turkey. Terra Nova 16, 358-364.

  • Seyitoğlu, G. ve Işık, V., 2006. Batı Anadolu’nun Geç Tersiyer Jeolojik evrimi: Menderes masifinin yüzeyleme mekanizması ve ilişkili sedimanter havza oluşumu hakkında yeni bir tektonik model [Late Tertiary geological evolution of western Anatolia: A new tectonic model about the exhumation mechanism of Menderes massif and related basin formation]. 59. Türkiye Jeoloji Kurultayı Bildiri Özleri, s. 18-20.

  • Şaroğlu, F., Emre, Ö., Boray, A., 1987. Active faults and seismicity in Turkey. MTA Report No: 8174. Ankara, Turkey: MTA

  • Şaroğlu, F., Emre, Ö. ve Boray, A., 1992. 1: 1 000 000 Türkiye diri fay haritası. MTA, Ankara.

  • Şengör, A.M.C., 1979. The North Anatolian Transform Fault: its age, offset and tectonic signifıcance: J. Geol. Soc. London, 13, 269-282.

  • Şengör, A. M. C., Satır, M. ve Akkök, R., 1984. Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for pan-African basement in Turkey. Tectonics, 3, 693-707.

  • Temiz, U. ve Işık, V., 2002. Simav (Kütahya-Batı Anadolu) güneyinde metamorfik kayaların petrografik ve yapısal özelikleri. Cumhuriyet Üniversitesi Fakültesi, Seri A-Yerbilimleri 19, 1, 21- 34.

  • Thomson, S.N. ve Ring, U., 2006. Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics 25, TC3005, doi:10.1029/2005TC001833.

  • Westaway, R., 2006, Cenozoic cooling histories in the Menderes Massif, western Turkey, may be caused by erosion and flat subduction, not low-angle normal faulting: Tectonophysics, 412, 1–2, 1–25.

  • Yılmaz, Y., Tüysüz O., Yiğitbaş, E., Genç, C. ve Şengör, A.M.C., 1997. Geology and tectonic evolution of the Pontides. In: Robinson, A.G. (ed), Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists, Memoir 68, 183–226.

  • Yılmaz, Y, Genç, Ş.Ç., Karacık, Z. ve Altunkaynak, Ş., 2001. Two contrasting magmatic associations of NW Anatolia and their tectonic signifance. J. Jeodynamics, 31, 243-271.

  • Gündoğdu, E , Özden, S , Güngör, T . (2015). Simav (Kütahya) ve Yakın Civarının Geç Senozoyik Yaşlı Jeodinamik Evrimi . Türkiye Jeoloji Bülteni , 58 (3) , 23-38 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28092/298444

  • Palaeoecology of the Early-Middle Miocene Coal-Bearing Sediments: Examples From the Uşak-Güre and Soma Basins
    Mehmet Serkan Akkiraz Funda Akgün Torsten Utescher Volker Wilde Angela Bruch Volker Mosbrugger Sariye Duygu Üçbaş-Durak
    View as PDF

    Abstract: This study reveals paleoecological characteristics of the coal-bearing Miocene sediments in the Somaand Uşak-Güre basins. Palynological samples from the Soma Basin were obtained from a drilling nearArabacıbozköy. The thickness of drilling is around 425 m. The deposits are mainly made up of fineclastic sediments including lignite and tuffite levels. Levels with clastic and lignite correspond to theSoma Formation. The section containing the volcano-clastic levels corresponds to the Deniş Formation.Palynological assemblage from the Soma Formation includes abundant undifferentiated Pinaceae,Cupressaceae, evergreen Quercus, Quercus spp. and Alnus. In the assemblage herbaceous plants, such asPoaceae and Ephedra are observed in low quantities. The Deniş Formation also contains a high percentageof sporomorphs recorded in the Soma Formation. Castanea and Engelhardia are also abundant here.However, herbaceous plants recorded in the Soma pollen assemblage with low percentages are representedby both high percentages and varieties and consist of Poaceae, Asteraceae ve Amaranthaceae.The Miocene sediments in the Uşak-Güre Basin occur in the Hacıbekir Group. Partial sections from thelignite-bearing sequences of İlyaslı, Banaz and Büyükoturak locations were taken and palynological sampleswere collected. Sporomorph assemblages of the sediments on each locations indicate that Polypodiaceae/Telipteridaceae, undifferentiated Pinaceae, evergreen Quercus, Quercus spp. and Alnus were abundant.However, there are some local differences in quantities. Diversity and percentage of spore are the highest inthe İlyaslı pollen assemblage. Also Cupressaceae encountered in other communities at low rates are in highquantities here. Carya and Sparganiaceae forms are predominant in the Büyükoturak pollen assemblage.Herbaceous plants such as Poaceae, Asteraceae and Amaranthaceae in the Büyükoturak and Banaz pollencommunities are aboserved in high quantities. These changes in the pollen concentrations should be relatedwith in local vegetational changes. According to palaeoclimate data obtained, deposition of coal-bearingdeposits in the Soma and Uşak-Güre basins might have occurred in warm and humid conditions.  

  • Arabacıbozköy

  • Miocene

  • Palaeoclimate

  • Palynology

  • Uşak-Güre Basin


  • Akgün, F., 1993. Palynological age revision of the Neogene Soma coal basin. Bulletin Geological Society, 28, 151-170.

  • Akgün, F., Alişan, C. ve Akyol, E., 1986. Soma Neojen stratigrafisine palinolojik bir yaklaşım Türkiye Jeoloji Kurumu Bülteni, 29, 13–25.

  • Akgün, F. and Akyol, E., 1999. Palynostratigraphy of the coal-bearing Neogene deposits Graben in Büyük Menderes Western Anatolia. Geobios, 32(3), 367-383.

  • Akgün, F. and Sözbilir, H., 2001. A palynostratigraphic approach to the SW Anatolian molasse basin: Kale-Tavas molasse and Denizli molasses, Geodinamica Acta, 14, 71–93.

  • Akgün, F., Kaya, T., Forsten, A. and Atalay, Z., 2000. Biostratigraphic data (Mammalia and Palynology) from the Upper Miocene İncesu Formation at Düzyayla (Hafik Sivas, Central Anataloia). Turkish Journal of Earth Sciences, 9, 57–67.

  • Akgün, F., Kayseri, M. S. and Akkiraz, M. S., 2007. Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 56–90.

  • Akgün, F., Akkiraz, M. S., Üçbaş, S. D., Bozcu, M., Sevinç Kapan-Yeşilyurt, S. and Bozcu, A., 2013. Vegetation and Climate Characteristics of the Oligocene in Northwest Turkey: Data from the Southwestern Part of the Thrace Basin, Northwest Turkey. Turkish Journal of Earth Sciences, 22, 277-303

  • Akkiraz, M. S. and Akgün, F., 2005. Palynology and age of the Early Oligocene units in Çardak– Tokça basin, southwest Anatolia: paleoecological implications. Geobios 38, 283-299.

  • Akkiraz, M.S., 2011. Vegetation and climate in the Miocene deposits of southern side of the Buyuk Menderes Graben, Șahinali-2 core, SW Turkey. Bulletin of Geosciences, 86(4), 859–878.

  • Akkiraz, M. S., Akgün, F., Utescher, T., Bruch, A.A. and Mosbrugger, V., 2011. Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, (3-4), 276-290.

  • Akkiraz, M. S., Akgün, F., Utescher, T., Wilde, V., Bruch, A. A., Mosbrugger, V. and Üçbaş, S. D., 2012. Palaeoflora and Climate of Lignitebearing Lower−Middle Miocene Sediments in the Seyitömer and Tunçbilek Sub-basins, Kütahya Province, Northwest Turkey. Turkish Journal of Earth Sciences, 21, 213-235.

  • Akyol, E., 1971. Microflore de l’Oigocene infériur récoltée dans un sondage pres d’ Avcıkoru, Şile– İstanbul. Pollen et Spores 13 (1), 117-133.

  • Benda, L., 1971. Grundzüge einer pollenanalytischen Gliederung des türkischen Jungtertiärs (Känozoikum und Braunkohle der türkei. 4.). Beihhefte zum Geologischen Jahrbuch 113, 1–46.

  • Benda, L. and Meunlenkamp, J. E., 1990. Biostratigraphic correlations in the Eastern Mediterranean Neogene 9. Sporomorph associations and event stratigraphy the Eastern Mediterranean. Newsletter Stratigraphy, 23, 1-10.

  • Bruch A., Fauquette S. and Bertini A., 2002. Two quantitative approaches for climate reconstructions on Neogene palynofloras – an application on a Late Miocene profile from the Velona Basin (Tuscany,Italy). Acta Universitatis Carolinae, Geologica, 46 (4), 27-37.

  • Bruch, A., and Zhilin, S.G., 2007. Early Miocene climate of Central Eurasia–evidence from Aquitanian floras of Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology 248,32-48.

  • Çemen, İ., Catlos, E.J., Göğüş, O. and Özerdem, C., 2006. Postcollisional extensional tectonics and exhumation of the Menderes Massif in Western Anatolia extended terrane, Turkey. Geological Society of America Special Paper, 409, 353-379.

  • Ediger, V. Ş., Batı, Z. and Alişan, C., 1990. Paleopalynology and Paleoecology of Calamus like Disulcate Pollen Grains. Review of Paleobotany and Palynology, 62, 97-105.

  • Ercan, E., Dinçel, A., Metin, S., Türkecan, A. ve Günay, A., 1978. Uşak yöresindeki Neojen havzalarının jeolojisi (Geology of the Neogene basins in Uşak region). Bulletin of the Geological Society of Turkey, 21, 97-106.

  • Ersoy, E.Y., Helvacı, C. ve Sözbilir, H., 2010. Tectonostratigraphic evolution of the NE–SW- trending superimposed Selendi basin: Implications for late Cenozoic crustal extension in Western Anatolia, Turkey. Tectonophysics, 488, 210-232.

  • Ersoy, Y.E., Helvacı, C. and Palmer, M.R., 2011. Stratigraphic, structural and geochemical features of the NE–SW trending Neogene volcano-sedimentary basins in western Anatolia: implications for associations of supradetachment and transtensional strike-slip basin formation in extensional tectonic setting. Journal of Asian Earth Sciences, 41, 159-183.

  • Ersoy, Y., Helvacı, C. ve Palmer, M.R., 2012. Petrogenesis of the Neogene volcanic units in the NE-SW-trending basins in western Anatolia, Turkey. Contributions to Mineralogy and Petrology, 163, 379-401.

  • Ersoy, Y.E., Çemen, İ., Helvacı, C. and Billor, Z., 2014. Tectono-stratigraphy of the Neogene basins in Western Turkey: Implications for tectonic evolution of the Aegean Extended Region. Tectonophysics, 635, 33-58.

  • Gemici, Y., Akyol, E., Akgün, F. ve Seçmen, Ö., 1991. Soma kömür havzası fosil makro ve mikroflorası. Maden Tetkik Arama Dergisi, 112, 161-178.

  • Gemici, Y., Akgün, F. and Yılmazer, Ç., 1992. Akcaşehir (Tire-İzmir) Neojen Havzası fosil makro ve mikroflorası. Doğa Türk Botanik Dergisi, 16/3, S. 383-393

  • Ivanov, D., Utescher, T., Ashraf, A. R., Mosbrugger, V., Bozukov, V., Djorgova, N. and Slavomirova, E., 2012. Late Miocene Palaeoclimate and Ecosystem Dynamics in Southwestern Bulgaria − A Study Based on Pollen Data from the Gotse-Delchev Basin. Turkish Journal of Earth Sciences, 21, 187- 211.

  • İnci, U., 1998. Miocene synvolcanic alluvial sedimentation in lignite-bearing Soma Basin,Western Turkey. Journal of Earth Sciences, 7(2), 63-78.

  • İnci, U., 2002. Depositional evolution of Miocene coal successions in the Soma coalfield, western Turkey. International Journal of Coal Geology, 51, 1-29.

  • Jimenez-Moreno, G., Rodriguez-Tovar, F.J., PardoIguzquiza, E., Fauquette, S., Suc, J.-P. and Muller, P., 2005. High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(1), 73-97.

  • Karaoğlu, Ö., Helvacı, C. and Ersoy, E.Y., 2010. Petrogenesis and 40Ar/39Ar Geochronology of the Volcanic Rocks of the Uşak and Güre basins, western Türkiye. Lithos, 119, 193-210.

  • Karaoğlu, Ö., and Helvacı, C., 2012. Growth, destruction and volcanic facies architecture of three volcanic centers in the Miocene Usak-Güre basin, western Turkey: subaqueous-subaerial volcanism in a lacustrine setting. Journal of Volcanology and Geothermal Research, 245-246: 1-20.

  • Karaoğlu Ö., and Helvacı C., 2014. Isotopic Evidences to the Transition from Subduction to Slab Tearingrelated Volcanism: the case of Western Anatolia, Turkey. Lithos, 192-195: 226-239.

  • Karayiğit, A.İ. and Whateley, M.K.G., 1997. Properties of a lacustrine subbituminous (k1) seam, with special reference to the contact metamorphism, Soma-Turkey. International Journal Of Coal Geology, 34,131-155.

  • Kaya, O., Ünay, E., Göktaş, F. and Saraç, G., 2007. Early Miocene stratigraphy of Central West Anatolia, Turkey: implications for the tectonic evolution of the Eastern Aegean area. Geological Journal, 42, 85-109.

  • Kayseri-Özer, M. S., 2014. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 28, 1-36.

  • Kayseri, M. S. and Akgün, F., 2008. Palynostratigraphic, Palaeovegetational and Palaeoclimatic Investigations on the Miocene Deposits in Central Anatolia (Çorum Region and Sivas Basin). Turkish Journal of Earth Sciences, 17, 361-403.

  • Mosbrugger, V. and Utescher, T., 1997. The coexistence approach-a method for quantitative reconstructions of Tertiary terrestrial paleoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61-86.

  • Nebert, K., 1978. Linyit içeren Soma Neojen Bölgesi, Batı Anadolu : Maden Tetkik Arama Enstitüsü Dergisi, 90, 20-69.

  • Seghedi, I., Helvacı, C. and Pécskay, Z., 2015. Composite volcanoes in the south-eastern part of İzmir– Balıkesir Transfer Zone, Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 291, 72-85.

  • Seyitoğlu, G., 1997. Late Cenozoic tectono-sedimentary development of the Selendi and Uşak- Güre basins: a contribution to the discussion on the development of east–west and north trending basins in western Turkey. Geological Magazine, 134(2), 163-175.

  • Seyitoğlu, G., Benda, L. and Scott, B.C., 1994. Neogene Palynological and isotopic data from Gördes basin, West Turkey. Newsletters on Stratigraphy 31, 133– 42.

  • Seyitoğlu, G. and Scott, B.C., 1991. Late Cenozoic crustal extension basin formation in west Turkey. Geological Magazine, 128, 155-166.

  • Seyitoğlu, G. and Scott, B.C., 1994. Late Cenozoic basin development in west Turkey, Gördes basin: tectonics and sedimentation. Geological Magazine 131, 631–7

  • Seyitoğlu, G. and Scott, B.C., 1996. The age of Alaşehir graben (west Turkey) and its tectonic implications. Geological Journal, 31, 1-11.

  • Suc, J.-P., 1984. Origin and Evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 429-432.

  • Şengör, A.M.C., 1987. Cross-faults and differential stretching of hangingwalls in regions of low-angle normal faulting: examples from western Turkey, Geological Society, London, 1987, pp. 575-589.

  • Şengüler, İ ve Akkiraz, M. S., 2014. Eskişehir Havzasındaki Miyosen Yaşlı Çökellerin Palinolojisi ve Paleoekolojisi. Türkiye TPJD Bülteni, 26(1), 7-17.

  • Takahashi, E. and Jux, U., 1991. Miocene palynomorphs from lignites of the Soma Basin. Bull. Faculty of Liberal Arts, Nagasaki University. Natural Science, 31(1), 7-165.

  • Utescher, T., Mosbrugger, V. and Ashraf, A.R., 2000. Terresterial Climate Evolution in Northwest Germany over the Last 25 Million Years, Palaios. 15, 430-449.

  • Utescher, T., Djordjevic-Milutinovic, D., Bruch, A. and Mosbrugger, V., 2007. Palaeoclimate and vegetation change in Serbia during the last 30 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 141-152.

  • Yavuz-Işık, N., 2007. Pollen analysis of coalbearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia. Geobios, 40, 701-708

  • Yavuz-Işık, N., Saraç, G., Ünay, E., and Bruijn H., 2011. Palynological Analysis of Neogene Mammal Sites of Turkey – Vegetational and Climatic Implications. Yerbilimleri, 32(2), 105- 20.

  • Akkiraz, M , Akgün, F , Utescher, T , Vılde, V , Bruch, A , Mosbrugger, V , Üçbaş Durak, S . (2015). Erken-Orta Miyosen Yaşlı Kömürlü Tortulların Paleoekolojisi: Erken-Orta Miyosen Yaşlı Kömürlü Tortulların Paleoekolojisi: . Türkiye Jeoloji Bülteni , 58 (3) , 39-60 . DOI: 10.25288/tjb.298483

  • Cenozoic Humic Acid Properties of Bituminous Shales in the Region of Düzağaç (Kozan-Adana)
    Faruk Ay Ergün Kasaka
    View as PDF

    Abstract: Bituminous shale in our country takes second place in terms of reserve, when compared the fossil energyresources such as coal, petroleum and natural gas and for this reason, it appears that they have an important  value for the country economy. One of the biggest problems in our country, like in all over the world, isto meet the energy demand. Although lignite and coal from the most important fossil fuels having energypotential in our country have been considered important until today, it is not possible to say this for thebituminous shale. According to many scientific studies carried out in recent years, bituminous shale canbe used both energy resource and different areas. One of these areas is the efforts to increase agriculturalproductivity. In the vast majority in our country’s agricultural lands, due to below 1 % of organic matteramount, there is a need for organic matter additives such as fertilizers to obtain efficient and high qualityproducts. In this study, it has been tried to assess the potential of shale to increase the efficiency of soils,rather than as an energy source. In this context, possibility of use of Düzağaç (Kozan-Adana) bituminousshale as a soil conditioner (compost-humic acid) has been investigated. pH of Düzağaç bitumen wasdefined as 7.79 and this value will help our acidic soils to be balanced in terms of pH. In this study, itwas concluded that the use of bituminous shale, which has not economic value as an energy source in ourcountry, as compost (humic acid) is crucial to economical ways and our soil’s reclamation and future.

  • Adana-Kozan

  • bituminous shale

  • compost

  • Düzağaç

  • humic acid


  • Ayhan, A., 1988, 1/100.000 ölçekli açınsama nitelikli Türkiye jeoloji haritaları serisi, Kozan- J21 paftası, MTA yayınları, Ankara.

  • Ballice, L., Yüksel, M., Sağlam, M. ve Hanoğlu, C., 1995. Mevcut enerji ve kimyasal hammadde kaynakları arasında bitümlü şistlerin yeri ve önemi. Ekoloji Dergisi, 14; 9 - 13.

  • Calemma, V. ve Rausa, R., 1988. Process for the production of regenerated humic acids from coal. US Patent 4.788.360.

  • Çolakoğlu, H., 1996. Organo-mineral Gübre Üretimine Yeni Yaklasımlar. Turkish Journal of Agriculture and Forestry, 20, s: 25–28. Özel Sayı Tübitak.

  • Dağlıoğlu, C., 1988. Kozan-Feke-Saimbeyli Tufanbeyli (Adana ilçeleri)-Sarız (Kayseri) ilçesi Dolayının Demir Cevherleşmeleri Prospeksiyonu Jeoloji Raporu; MTA Derleme No: 9215, 102 s. (yayınlanmamış).

  • Dağlıoğlu, C., 1990. T.D.Ç.A Genel Müdürlüğü adına Adana-Feke-Mansurlu Çevresinde AR:1704, AR:1544, AR:1660, AR:1662 Ruhsat Alanlarında Yapılan Etüt ve Arama Çalışmaları Jeoloji Raporu; MTA Derleme No: 8910 (yayınlanmamış).

  • Dekker, J. ve Cronje, I., 1991. Recovery of humic acids. US Patent 5.004.831.

  • Demirtaşlı, E., 1967. Pınarbaşı-Sarız-Mağara civarının jeoloji raporu; MTA Enst. Raporu, Rap. No: 1935, 129 s. (yayınlanmamıs).

  • Depel, G., 2000. Düşük Değerli Linyitin Tarımda Kullanılma Olanağı. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 54s.

  • Detroit, W. ve Lebo, Jr. 1997, Production of acid soluble humates. US Patent 5.663.425.

  • DPT, 2001. 8. Beş Yıllık Kalkınma Planı, ÖİK Raporu, 11-50.

  • EASAC Report, 2007. A Study on the EU Oil Shale Industry-Viewed in the Light Oil the Estonian Experience, A Report by EASAC to the Committee on Industry, Research and Energy of the EU Parliament.

  • Eyüpoğlu, F., 1999. Türkiye Topraklarının Verimlilik Durumu. Toprak ve Gübre Araştırma Enstitüsü Yayınları, Genel Yayın No: 220, Ankara.

  • FAO, 2009. Resource STAT-Fertilizer. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/575/Desktop

  • Francioso, O., Ciavatta, C., Montecchio, D., Tugnoli, V., Sanchez-Cortes, S. and Gessa, C., 2003. Quantitative estimation of peat, brown coal and lignite humic acids using chemical paremeters, 1H-NMR and DTAanalyses. Bioresource Technology, 88; 189-195.

  • Grabowska, E. L. ve Gryglewicz, G., 2005. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. Journel of Colloid and Interface Science 284; 416-423.

  • Hayes, M.H.B., MacCarthy, P., Malcolm, R.L. ve Swift, R.S. (Eds.)., 1989. Humic Substances H: In Search of Structures, Wiley, New York.

  • Ketin, A., 1966. Anadolu’nun tektonik birlikleri; M.T.A Dergisi, 6, 20-34.

  • Kim, H.T., 2003. Humic Matter in Soil and the Environment ; c. 7, p: 31.

  • Kural, O., 1978. Türkiye Linyitlerinde Humik Asit Dağılımının İncelenmesi. İTÜ Maden Fakültesi. Doktora Tezi, 99 s, (Yayımlanmamış).

  • Kural, O., 1998. Kömür Özellikleri, Teknolojisi ve Çevre İliskileri. İstanbul Teknik Üniversitesi, Maden Fakültesi Kimya Mühendisliği Bölümü, İstanbul, 55; 117-127.

  • Kök, M.V., 2006. Oil Shale Resources in Turkey, Oil Shale, 23 (3) 209–210.

  • Güleç, K. ve Önen, A., 1993. Turkish oil shales: reserves, characterization and utilization, Proceedings of the 1992 Eastern Oil Shale Symposium, University of Kentucky, Institute for Mining and Minerals Research, Lexington, USA, pp. 12–24.

  • Laherrere, J., 2005. Review of Oil Shale Data, www. hubbertpeak.com/laherrere/ OilShale Review.pdf.

  • Lehtonen, K., Hanninen, K. and Ketola, M., 2001. Structurally bound lipids in peat humic acids. Organic Geochemistry, 32; 33-43.

  • Lguriate, A., Ait Baddi, G., El Mousadik, A., Gilard, V., Revel, J.C. and Hafidi, M., 2005. Analysis of humic acids from aerated and non- aerated urban landfill composts. Internetional biodeterioration & biodegradation, 56; 8-16.

  • Metin, S., 1984. Doğu Toroslar’da Derebaşı (Develi), Armutalan ve Gedikli (Saimbeyli) Köyleri Arasının Jeolojisi; A.Ü. Müh. Mim. Fak. Yerbilimleri Dergisi., 4, 1-2, 45-66.

  • Metin, S., Papak, I. ve Keskin, H., 1982. TufanbeyliSarız ve Göksün Saimbeyli Arasının Jeolojisi, MTA Rap., Ankara, No: 7219 (yayımlanmamış).

  • Özgül, N., 1971. Orta Toroslar’ın kuzey kesiminin yapısal gelişiminde blok hareketlerinin önemi; Türkiye Jeol. Kur. Bült., 14, 75-87.

  • Özgül, N., Metin, S., Göger, E., Bingöl, A., Baydar, O. ve Erdoğan, B., 1973. Tufanbeyli dolayının (Doğu Toroslar, Adana) Kambriyen-Tersiyer kayaları; Türkiye Jeoloji Kurumu Bülteni, 16, 39-52.

  • Özgül, N., 1976. Torosların Bazı Temel Jeoloji Özellikleri; TJK Bülteni, 19, 1, 65-78.

  • Özgül, N. ve Kozlu, H., 2002. Kozan-Feke (Doğu Toroslar) Yöresinin Stratigrafisi ve Yapısal Konumu ile İlgili Bulgular; Türkiye Petrol Jeologları Derneği Bülteni, 14, 1, 1-36.

  • Özgül, N., 2006. Toroslar’ın Paleozoyik Yaşta Bazı Kaya Stratigrafi Birimleri. Stratigrafi Komitesi 6. Çalıştayı (Toros Kuşağı ve Güneydogu Anadolu Bölgesi Prekambriyen-Paleozoyik Kaya Birimlerinin Litostratigrafi Adlamaları); Bildiri Özleri, 1-8, Ankara.

  • Probstein, R.F. ve Hicks, R.E., 1982, Synthetic Fuels, Mc Graw Hill Chemical Engineering Series, 322- 373.

  • Senn, T. L. And Kingman, A. R., 1973. “A review of Humus and Humic Acids.” Clemson University, Dept of Horticulture, Research Series No. 145.

  • Skhonde, M.P. Herod, A.A., Van der Walt, T.J., Tsatsi, W.L. ve Mokoena, K., 2006. The effect of thermal treatment on the compositional structure of humic acids extracted from South African bituminous coal. International Journal of Mineral Processing, 01950; 1-7.

  • Şengüler, İ. 1985, Bitümlü şeylden yararlanma. Yeryuvarı ve insan, 10, 4, 59-63.

  • Şengüler, İ., 1994. Bitümlü şeyl. Türkiye Enerji Bülteni, TMMOB Jeoloji Mühendisleri Odası Yayını, 1,1, 21-26.

  • Şengüler, İ., 2001. Türkiye bitümlü şeyllerinin GAP bölgesinde toprak güçlendirici olarak kullanılma imkanlarının araştırılması ve geliştirilmesi. MTA Genel Müdürlüğü Enerji Hammadde Etüt ve Arama Daire Başkanlığı, 21 s., Ankara.

  • Şengüler, İ., 2007. Asfaltit ve Bitümlü Şeylin Türkiye’deki Potansiyeli ve Enerji Değeri, TMMOB Türkiye VI. Enerji SempozyumuKüresel Enerji Politikaları, Ankara.

  • Taban, S. ve Turan, M.A., 2012. Tarımda Gübre Çevre İlişkileri.TarımTürk, 34: 10-14.

  • Tissot, B.P., ve Welte, D.H., 1984. Petroleum Formation and Occurrence: Springer-Verlag. Berlin.

  • Toraman, Ö.Y. ve Uçurum, M., 2009. Alternatif Fosil Enerji Kaynağı: Bitümlü Şeyl, TÜBAV Bilim Dergisi 2(1), 37-46.

  • USA Department of Energy, 2004. Strategic Significance of America’s Oil Shale Resource, Vol.II, Section 2.1.

  • Ünalan, G., 2003. Türkiye Enerji Kaynaklarının Genel Değerlendirmesi, Jeoloji Mühendisliği Dergisi, 27 (1).

  • Valdrighi, M. M., Pera, A., Agnolucci, M., Frassinitti, S., Lunardi, D. and Vallini, G., 1996. Effect of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: a comparative study.Agriculture Ecosystems & Environment, 58; 133-144.

  • Vogel, E., Geßner, R., Hayes, M.H.B. ve Kiefer, W., 1999. Characterisation of humic acid by means of SERS, Journal of Molecular Structure vol. 482- 483, p. 195-199.

  • World Energy Council (WEC), Survey of Energy Resources, 21, ISBN 0946121265, Retrieved on 2007-11-13.

  • Yapıcı, N. ve Anıl, M., 2007. Düzağaç Kuvarsit Yatağının (Kozan-Adana) Cam Sanayinde Kullanılabilirliğinin Araştırılması. Ç.Ü. Müh. Mim. Fak. Dergisi, Cilt 22, Sayı, 2 .309-323.

  • Ay, F , Kasaka, E . (2015). Düzağaç (Kozan-Adana) Bölgesindeki Bitümlü Şeyllerin Hümik Asit Özellikleri . Türkiye Jeoloji Bülteni , 58 (3) , 61-74 . DOI: 10.25288/tjb.298487

  • View as PDF