Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2016 NİSAN Cilt 59 Sayı 2
View as PDF
View as PDF
View as PDF
A hypothesis for the alternative southern branch of the North Anatolian Fault Zone, Northwest Turkey
Gürol Seyitoğlu Bülent Kaypak Bahadir Aktuğ Esra Gürbüz Korhan Esat Alper Gürbüz
View as PDF

Abstract: This paper proposes an alternative route for the southern branch of the NorthAnatolian Fault Zone (NAFZ)using evidence from morphotectonic features, seismology, GPS and recently published Magnetotelluricand Transient Electromagnetic (MT) data. In this new route, the southern branch connects with the mainbranch of the NAFZ in Bolu via the Gölpazarı pull-apart basin and Mudurnu. The slip distribution of theNAFZ as taken from GPS data indicates that the newly hypothesized route is the second most importantbranch of the NAFZ.

  • Earthquake

  • GPS

  • Neotectonics

  • North Anatolian Fault Zone

  • Turkey


  • Aktuğ, B., Nocquet, J.M., Cingöz, A., Parsons, B., Erkan, Y., England, P., Lenk, O., Gürdal, M.A., Kılıçoğlu, A., Akdeniz, H., and Tekgül, A., 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behaviour. Journal of Geophysical Research, 114, B10404, doi: 10.1029/2008JB006000.

  • Aktuğ, B., Dikmen, Ü., Doğru, A., Özener, H., 2013a. Slip rates near Karlıova Triple Junction by GPS Observations. Journal of Geodynamics, 67, 21-29.

  • Aktuğ, B., Parmaksız, E., Kurt, M., Lenk, O., Kılıçoğlu, A.,Gürdal,M.A.,Özdemir,S., 2013b.Deformation of Central Anatolia: GPS Implications. Journal of Geodynamics, 67, 78-96.

  • Aktuğ, B., Doğru,A., Özener, H., Peyret, M., 2015. Slip rates and locking depth variation along central and easternmost segments of North Anatolian Fault. Geophysical Journal International, 202, 2133- 2149.

  • Ambraseys, N.N.,Jackson,J.A., 2000. Seismicity of the Sea of Marmara (Turkey) since 1500. Geophysical Journal International, 141, F1-F6.

  • Ambraseys, N., 2002. The seismic activity of the Marmara Sea Region over the last 2000 years. Bulletin of Seismological Society America, 92, 1–18.

  • Ambraseys, N., 2009. Earthquakesin the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press.

  • Armijo, R., Meyer, B., Hubert, A., Barka, A., 1999. Westward propagation of the NorthAnatolian fault into the northern Aegean: Timing and kinematics. Geology, 27, 267-270.

  • Armijo, R., Meyer, B., Navarro, S., King, G., Barka, A., 2002. Asymmetric slip partitioning in the Sea of Marmara pull-apart: a clue to propagation processes of the North Anatolian Fault? Terra Nova, 14, 80-86.

  • Barka, A., Kadinsky-Cade, K., 1988. Strike-slip fault activity. Tectonics, 7, 663-684.

  • Barka, A., Reilinger, R., 1997. Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geofisica 40, 587-610

  • Barka, A., 1992, The North Anatolian Fault Zone. Annales Tectonicae, 6, 164-195.

  • Barka, A.A., Kuşçu, İ., 1996, Extents of the North Anatolian fault in the İzmit, Gemlik and Bandırma bays. Turkish Journal of Marine Sciences, 2, 93- 106.

  • Çağlar, İ., İşseven, T., 2004. Two-dimensional geoelectrical structure of the Göynük geothermal area, northwest Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 134, 183- 197.

  • Ekmekçi, N., Nazik, L., 2004. Evolution of GölpazarıHüyük karst system (Bilecik-Turkey): Indications of morpho-tectonic controls. International Journal of Speleology, 33, 49-64.

  • Ekström, G.A., England, P.C., 1989. Seismic strain rates in regions of distributed continental deformation. Journal of Geophysical Research, 94, 10231- 10257.

  • Emre, Ö., Erkal, T., Kazancı, N., Görmüş, S., Görür, N., Kuşçu, İ., Keçer, M., 1997. Morphotectonics of the southern Marmara region during the Neogene and Quaternary: TÜBİTAK Project Report YDABÇAG-426/G, 36–68.

  • Emre, Ö., Doğan, A., Duman, T.Y., Özalp, S., 2011. Bursa (NK 35-12) quadrangle, active fault map series of Turkey: General Directorate of Mineral Research and Exploration, Ankara-Turkey, serial number 9, scale 1/250,000, 1 sheet.

  • Eyidoğan, H., 1988. Rates of crustal deformation in western Turkey as deduced from major earthquakes. Tectonophysics, 148, 83-92.

  • Flerit, F., Armijo, R., King, G., Meyer, B., 2004. The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth and Planetary Science Letters, 224, 347-362.

  • Guidoboni,E.,Comastri,A.,Traina,G., 1994.Catalogue of Ancient Earthquakes in the Mediterranean area up to the 10th century. ING-SGA, Bologna 1: 504 p.

  • Gürbüz, A., 2010, Geometric characteristics of pullapart basins. Lithosphere, 2, 199-206.

  • Gürbüz, E., Seyitoğlu, G., 2014. Quaternary development of the Gölpazarı basin (NW Turkey). Geological Bulletin of Turkey, 57, 1-17.

  • Gürer, Ö.F., Kaymakçı, N., Çakır, Ş., Özburan, M. 2003. Neotectonics of the southeast Marmara region, NW Anatolia, Turkey. Journal of Asian Earth Sciences, 21, 1041-1051.

  • Gürer, Ö.F., Sangu, E., Özburan, M. 2006. Neotectonics of the SW Marmara region, NW Anatolia, Turkey. Geological Magazine, 143, 1-13.

  • Kaya, C., 2010. Deep crustal structure of northwestern part of Turkey. Tectonophysics, 489, 227-239.

  • Ketin, İ., 1948. Uber die tektonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeden des letzten Dozennimus. Geologische Rundschau, 36, 77-83.

  • Kondorskaya, N.V., Ulomov, V.I., 1999. Special catalogue of earthquakes of the Northern Eurasia from ancient times through 1995 (SECNE). Joint Institute of Physics of the Earth (JIPE), Russian Academy of Sciences, Moscow, Russia.

  • Koçyiğit A. 1988. Tectonic setting of the Geyve Basin: Age and total displacement of the Geyve Fault Zone. METU Journal of Pure and Applied Sciences, 21, 81–104.

  • Kurtuluş, C., Canbay, M.M., 2007. Tracing the middle strand of the North Anatolian Fault Zone through the southern Sea of Marmara based on seismic reflection studies. Geo-marine letters 27, 27-40.

  • Le Pichon, X., Kreemer, C., 2010. The Mioceneto-present kinematic evolution of the eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351.

  • Le Pichon, X., İmren, C., Rangin, C., Şengör, A.M.C., Siyako, M., 2014. The south Marmara Fault. International Journal of Earth Sciences, 103, 219- 231.

  • Matsu’ura, M., Jackson, D.D., and Cheng, A., 1986. Dislocationmodelfor aseismic crustal deformation at Hollister, California. Journal of Geophysical Research, 91(B12), 2661–2674.

  • McCaffrey, R., 2002. Crustal block rotations and plate coupling, in Stein, S., and Freymueller, J.T., eds., Plate Boundary Zones American Geophysical Union Geodynamics Series 30, pp. 101–122. doi:10.1029/030GD06.

  • McCaffrey, R., 2005. Block kinematics of the southwestern United States from inversion of GPS, seismological, and geologic data. Journal of Geophysical Research, 110(B7), B07401, doi: 10.1029/2004JB003307.

  • McKenzie, D., 1972. Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109-185.

  • Meade, J. B., Hager, B. H., McClusky, S.C., Reilinger, R.E., Ergintav, S., Lenk, O., Barka, A., Özener, H., 2002. Estimates of seismic potential in the Marmara sea region from block models of secular deformation constrained by Global Positioning System Measurments. Bulletin of the Seismological Society of America, 92, 208-215.

  • Nyst, M., Thatcher, W., 2004. New constrains on the active tectonic deformation of the Aegean. Journal of Geophysical Research, 109, B11406, doi: 10.1029/2003JB002830.

  • Okada, Y., 1985. Surface deformation due shear and tensile faults in a halfspace. Bulletin of the Seismological Society of America, 75, 1135– 1154.

  • Önde, E., Gürbüz, A., 2010. Morphotectonic setting of the Gölpazarı pull-apart basin: Implications on the region between the North Anatolian and Eskişehir fault zones, NW Turkey. Geophysical Research Abstracts 12, EGU2010-944-2.

  • Özener, H., Arpat, E., Ergintav, S., Doğru, A., Çakmak, R., Turgut, B., Doğan, U., 2010. Kinematics of the eastern part of the North Anatolian Fault Zone. Journal of Geodynamics, 49, 141–150.

  • Papazachos, B., Kiratzi, A., Papadimitriou, E., 1991. Regional focal mechanisms for earthquakes in the Aegean Area. Pure and Applied Geophysics, 136, 407–420.

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R. and Karam, G., 2006. GPS constraints on continental deformation in the Africa - Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05411, doi: 10.1029/2005JB004051.

  • Selim, H.H., Tüysüz, O., 2013. The Bursa-Gönen depression, NW Turkey: a complex basin developed on the North Anatolian Fault. Geological Magazine, 150, 801-821.

  • Seymen, İ. 1975. Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği: Dr. Eng., İstanbul Tek. Univ., Maden Fak., 192 pp.

  • Soysal, H., Sipahioğlu, S., Koçak, D.,Altınok, Y., 1981. A historical earthquake catalogue for Turkey and its surrounding–2100 BC to 1900: TÜBİTAK Project Report TBAG-341.

  • Şengör, A.M.C., 1979. The North Anatolian transform fault: İts ages ofset and tectonic signifiance. Journal of the Geological Society London, 136, 269-282.

  • Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., and Rangin, C., 2005. The North Anatolian Fault: A New Look: Annual Review of Earth and Planetary Sciences, doi: 10.1146/annurev. earth.32.101802.120415.

  • Tan, O., Tapırdamaz, M.C., and Yörük, A., 2008. The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17, 405-418.

  • Tatar, O., Poyraz, F., Gürsoy H., Çakır, Z., Ergintav, S. Akpınar, Z., Koçbulut, F., Sezen, F., Türk, T., Hastaoğlu, K.Ö., Polat, A., Mesci, B.L., Gürsoy, Ö., Ayazlı İ.E., Çakmak, R., Belgen, A Yavaşoğlu, A., 2012,Crustaldeformation and kinematics ofthe Eastern Part of the North Anatolian Zone (Turkey) from GPS measurements. Tectonophysics, 518– 521, 55–62

  • Yaltırak, C., 2002. Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology, 190, 493-529.

  • Yavaşoğlu, H., Tarı, E., Tüysüz, O., Çakır, Z., Ergintav, S., 2011. Determining and modelling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. Journal of Geodynamics, 51, 339– 343.

  • Yılmaz, M., Koral, H., 2007. Neotectonic features and geological development of the Yenişehir basin (Bursa). İstanbul Yerbilimleri Dergisi 20, 21-32.

  • Seyitoğlu, G , Kaypak, B , Aktuğ, B , Gürbüz, E , Esat, K, Gürbüz, A. (2016). A hypothesis for the alternative southern branch of the North Anatolian Fault Zone, Northwest Turkey. Türkiye Jeoloji Bülteni, 59 (2), 115-130. DOI: 10.25288/tjb.298155

  • TitaniQ Thermometer and Trace Element Composition of Rutile in Meta-Ophiolitic Rocks From the Kazdağ Massif, Biga Peninsula
    Firat Şengün
    View as PDF

    Abstract: Ophiolitic meta-gabbros are exposed on the Kazdağ Massif located in the southern part of the BigaPeninsula. Trace element composition of rutile and quartz was determined for metagabbros from theKazdağ Massif by LA-ICP-MS. The Zr content of both matrix rutiles and rutile inclusions in garnet rangefrom 176 to 428 ppm (average 335 ppm). Rutile grains usually have a homogeneous Zr distribution. Therutile grains from studied samples in the Kazdağ Massif are dominated by subchondritic Nb/Ta (11-23)and Zr/Hf ratios (20-33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced bysilicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. Thecore of rutile grains are generally characterized by low Nb/Ta ratios of 17-18 whereas the rims exhibitrelatively high Nb/Ta ratios of 19-23. Trace element analyses in rutile suggest that these rutile grains weregrown from metamorphic fluids.Ti-in-quartz can be used as a thermobarometer when used in combination with Zr-in-rutile thermometer.P-T conditions of ophiolitic meta-gabbros were calculated by Ti content of quartz and Zr content ofrutile, which are in equilibrium with each other. Ti contents of quartz are ranging between 28 and 42ppm (average 36 ppm). A P–T estimate can be obtained from the intersection of the Ti-in-quartz isoplethswith the Zr-in-rutile isopleths, which yield ~ 660 oC and 10 kbar. The P-T conditions of meta-ophioliticrocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdağ Massif.Amphibolite-facies metamorphism resulted from northward subduction of the İzmir-Ankara branch of theNeo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of theKazdağ Massif resulting from southerly directed compression during the collision.

  • Metamorphism

  • Rutile

  • Quartz

  • Thermobarometer

  • Meta-gabbro


  • Austrheim, H., Putnis, C.V., Engvik, A.K. ve Putnis, A., 2008. Zircon coronas around Fe-Ti oxides: a physical reference frame for metamorphic and metasomatic reactions. Contribution to Mineralogy and Petrology 156, 517–527.

  • Aysal, N., Ustaömer, T., Öngen, S., Keskin, M., Köksal, S., Peytcheva, I. ve Fanning, M., 2012. Origin of the Early-Middle Devonian Magmatism in the Sakarya Zone, Nw Turkey: Geochronology, Geochemistry and Isotope Systematics. Journal of Asian Earth Sciences 45, 201-222.

  • Baldwin, J.A. ve Brown, M., 2008. Age and duration of ultrahigh-temperature metamorphism in the Anápolis Itauçu Complex, Southern Brasília Belt, central Brazil – constraints from U-Pb geochronology, mineral rare earth element chemistry and trace element thermometry. Journal of Metamorphic Geology 26, 213–233.

  • Beccaletto, L. ve Jenny, C., 2004. Geology and Correlation of the Ezine Zone: A Rhodope Fragment in NW Turkey? Turkish Journal of Earth Sciences 13, 145-176.

  • Bingöl, E. 1969. Kazdağ Masifi’nin Merkezi ve GD Kesiminin Jeolojisi. MTA Dergisi 72, 110-123.

  • Brenan, J.M., Shaw, H.F., Phinney, D.L. ve Ryerson, F.J., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters 128, 327–339.

  • Cavazza, W., Okay, A.I. ve Zattin, M., 2009. Rapid early-middle Exhumation of the Kazdağ Massif (western Anatolia). International Journal of Earth Sciences 98, 1935-1947.

  • Deer, W.A., Howie, R.A., Zussman, J., 1992. An Introduction to Rock-Forming Minerals. Longman Group, Harlow, UK.

  • Ding, X., Hu, Y.H., Zhang, H., Li, C.Y., Ling, M.X. ve Sun, W.D., 2013. Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro. Journal of Geology 121, 255–274.

  • Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş, F. ve Kar, H., 2004. New Results on the Lithostratigraphy of the Kazdağ Massif in Northwest Turkey. Turkish Journal of Earth Sciences 13, 177-186.

  • Dürr, S., Alther, R., Keller, J., Okrusch, M. ve Seidel, E., 1978. The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In: Closs, H., Roeder, D., Schmidt, K., (eds) Alps, Appenines and Hellenides: Stuttgart, Scheweizerbart, pp. 455–476.

  • Eggins, S., Kinsley, L. ve Shelley, J., 1998. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Applied Surface Science 127, 278– 286.

  • Erdoğan, B., Akay, E., Hasözbek, A., Satır, M. ve Siebel, W., 2013. Stratigraphy and tectonic evolution of the Kazdağ Masif (NW Anatolia) based on field studies and radiometric ages. International Geology Review 55, 2060-2082.

  • Ewing, T.A.,, Herman, J. ve Rubatto, D., 2013. The robustness of the Zr-in-rutile and Ti-inzircon thermometers during high-temperature metamorphism (Ivrea-Verbano zone, northern Italy). Contribution to Mineralogy and Petrology 165, 757–779.

  • Ferry, J.M. ve Spear, F.S., 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contribution to Mineralogy and Petrology 66, 113–117.

  • Ferry, J.M. ve Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-inzircon and Zr-in-rutile thermometers. Contribution to Mineralogy and Petrology 154, 429–437.

  • Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417: 837–840.

  • Foley, S.F., Barth, M.G. ve Jenner, G.A., 2000. Rutile/ melt partition coefficients for trace elements and assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica Cosmochimca Acta 64, 933–938.

  • Gao, X.Y., Zheng, F.Y., Xia, X.P. ve Chen, Y.P., 2014. U-Pb ages and trace element of metamorphic rutile from ultrahigh-pressure quartzite in the Sulu orogen. Geochimica Cosmochimica Acta 143, 87- 114.

  • Graham, J. ve Morris, R.C., 1973. Tungsten- and antimony substituted rutile. Mineralogical Magazine 39, 470–473.

  • Green, T.H., 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system. Chemical Geology 120, 347–359.

  • Hermann, J., Spandler, C., Hack, A. ve Korsakov, A., 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos 92, 399–417.

  • Horng, W.S. ve Hess, P.C., 2000. Partition coefficients of Nb and Ta between rutile and anhydrous haplogranite melts. Contribution to Mineralogy and Petrology 138, 176–185.

  • Huang, J., Xiao. Y.L., Gao, Y.J., Hou, Z.H. ve Wu, W., 2012 Nb–Ta fractionation induced by fluid-rock interaction in subduction-zones: constraints from UHP eclogite- and vein-hosted rutile from the Dabie orogen, Central-Eastern China. Journal of Metamorphic Geology 30, 821–842.

  • Jochum, K.P. ve Nehring, F., 2006. NIST 610: GeoReM preferred values (11/2006). GeoReM http:// georem.mpch-mainz.gwdg.de.

  • John, T., Scherer, E.E., Haase, K. ve Schenk, V., 2004. Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu-Hf-Sm-Nd isotope systematics. Earth and Planetary Science Letters 227, 441–456.

  • John, T., Klemd, R., Klemme, S., Pfander, J., Hoffmann, J. ve Gao, J., 2011. Nb–Ta fractionation by partial melting at the titanite–rutile transition. Contribution to Mineralogy and Petrology 161, 35–45.

  • Klemme, S., Prowatke, S., Hametner, K., Gunther, D., 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochimica Cosmochimica Acta 69, 2361– 2371.

  • Kohn, M.J. ve Spear, F.S., 1990. Two new geobarometers for garnet amphiboliteso with applications to southeastern Vermont. American Mineralogist 75, 89-96.

  • Luvizotto, G.L. ve Zack, T., 2009. Nb and Zr behavior in rutile during high-grade metamorphismand retrogression:An example fromthe Ivrea–Verbano Zone. Chemical Geology 261, 303–317.

  • Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Munker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E. ve Eynatten, H., 2009. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology 261, 346–369.

  • Meinhold, G., 2010. Rutile and its applications in earth sciences. Earth Science Review 102, 1–28.

  • Meinhold, G., Kostopoulos, D., Frei, D.,, Himmerkus, F. ve Reischmann, T., 2010. U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: Palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. International Journal of Earth Sciences 99, 813–832.

  • Meyer, M., John, T., Brandt, S. ve Klemd, R., 2011. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos 126, 388-401.

  • Miller, C., Zanetti, A. ve Thoni, M., 2007. Eclogitisation of gabbroic rocks: Redistribution of trace elements and Zr in rutile thermometry in an EoAlpine subduction zone (Eastern Alps). Chemical Geology 239, 96–123.

  • Moix, P., Beccaletto, L., Kozur, H., Hochard, C., Rosselet, F. ve Stampfli, G.M., 2008. A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics 451, 7–39.

  • Münker, C., Pfänder, J.A., Weyer, S., Büchl, A., Kleine, T. ve Mezger, K., 2003. Evolution of planetary cores and the Earth–Moon system from Nb/Ta systematic. Science 301, 84–87.

  • MTA, 2012. General and economic geology of the Biga Peninsula. Special Publication Series, 28, p 326 (in Turkish).

  • Okay, A.I., 1984. Distribution and characteristics of the northwest Turkish blueschists. In: Robertson, A.H.F., Dixon, J.E., (eds) The geological evolution of the eastern Mediterranean. Geological Society of Special Publication No:17, 455–466.

  • Okay, A.I., 1986. High-pressure/low-temperature metamorphic rocks of Turkey: Geological Society of America Memoir 164, 333–347.

  • Okay, A.I. ve Tüysüz, O., 1999. Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society Special Publications No: 156, 475–515.

  • Okay, A.I. ve Satır, M., 2000. Coeval plutonism ve metamorphism in a latest Oligocene metamorphic core complex in Northwest Turkey. Geological Magazine 137, 495-516.

  • Okay, A.I. ve Göncüoğlu, M.C., 2004. The Karakaya Complex: A Review of Data and Concepts. Turkish Journal of Earth Sciences 13, 77-95.

  • Okay, A.I., Satır, M. ve Siebel, W., 2006. Pre-Alpide and Mesozoic orogenic events in the Eastern Mediterranean region. Geological Society of Special Publication No:32, 389-405

  • Okay, A.I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. ve Akyüz, S., 1996. Paleo-and Neotethyan events in northwest Turkey. In: Yin, A., Harrison, M., (eds) Tectonics of Asia. Cambridge University Press, Cambridge, pp. 420-441.

  • Philpotts, A.R., 1990. Principles of igneous and metamorphic petrology. Prentice Hall, Englewood Cliffs.

  • Pickett, E.A., Robertson, A.H.F. ve Dixon, J.E., 1996. The Karakaya Complex, NW Turkey: A Palaeo Tethyan Accretionary Complex, Geology of the Black Sea Region. Geological Society of Special Publication No: 153, 995-1009.

  • Rudnick, R.L., Barth, M., Horn, I. ve McDonough, W.F., 2000. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287, 278–281.

  • Scambelluri, M., Bottazzi, P., Trommsdorff, V., Vannucci, R., Hermann, J., Gomez-Pugnaire, M.T. ve Lopez-Sanchez-Vizcaino, V., 2001. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth and Planetary Science Letters 192, 457–470.

  • Schmidt, M.W., Dardon, A., Chazot, G. ve Vannucci, R., 2004. The dependence of Nb and Ta rutile– melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters 226, 415–432.

  • Schmidt, A., Weyer, S., Mezger, K., Scherer, E.E., Xiao, Y.L., Hoefs, J. ve Brey, G.P., 2008. Rapid eclogitisation of the Dabie-Sulu UHP terrane: constraints from Lu–Hf garnet geochronology. Earth and Planetary Science Letters 273, 203–213.

  • Schmidt A, Weyer S, John T, Brey GP (2009) HFSE systematics of rutile-bearing eclogites: new insights into subduction zone processes and implications for the earth’s HFSE budget. Geochim Cosmochim Acta 73: 455–468

  • Spear, F.S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Washington.

  • Spear, F.S., Wark, D.A. ve Cheney, J.T., 2006. Zr-inrutile thermometry in blueschists from Sifnos, Greece. Contribution to Mineralogy and Petrology 152, 375–385.

  • Stalder, R., Foley, S.F., Brey, G.P. ve Horn, I., 1998. Mineral-aqueous fluid partitioning of trace elements at 900–1200 C and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica Cosmochimica Acta 62, 1781–1801.

  • Stepanov, A.S. ve Hermann, J., 2013. Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox”. Geology 41, 303–306.

  • Şengör, A.M.C. ve Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181-241.

  • Şengün, F. ve Zack, T., 2016. Trace element composition of rutile and Zr-in-rutile thermometry in metaophiolitic rocks from the Kazdağ Massif, NW Turkey. Mineralogy and Petrology, DOI 10.1007/ s00710-016-0433-7.

  • Şengün, F., Yigitbas, E. ve Tunç, İ.O., 2011. Geology and Tectonic Emplacement of Eclogite and Blueschist, Biga Peninsula, Northwest Turkey. Turkish Journal of Earth Sciences 20, 273-285.

  • Tatsumi, Y. ve Nakamura, N., 1986. Composition of aqueous fluid from serpentine in the subducted lithosphere. Geochemical Journal 20, 191–196.

  • Tetiker, S., Yalçın, H., Bozkaya, Ö. ve Göncüoğlu, M. C., 2015. Diagenetic to Low-Grade Metamorphic Evolution of the Karakaya Complex in northern Turkey based on phyllosilicate mineralogy. Mineralogy and Petrology, 109, 201-215.

  • Thomas, J.B., Watson, E.B., Spear, F.S. ve Wark, D.A., 2015. TitaniQ recrystallized: experimental confirmation of the original Tiinquartz calibrations. Contribution to Mineralogy and Petrology 169, 27.

  • Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, F.S., Nayak, S.K. ve Lanzirotti, A., 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contribution to Mineralogy and Petrology 160, 743–759.

  • Tomkins, H.S., Powell, R. ve Ellis, D.J., 2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology 25, 703–713.

  • Wark, D.A. ve Watson, E.B., 2006. The TitaniQ: a Titanium-in-quartz geothermometer. Contribution to Mineralogy and Petrology 152, 743–754.

  • Watson, E.B,, Wark, D.A. ve Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contribution to Mineralogy and Petrology 151, 413–433.

  • Weyer, S., Muenker, C. ve Mezger, K., 2003. Nb/Ta, Zr/ Hf and REE in the depleted mantle: implications for the differentiation history of the crust–mantle system. Earth and Planetary Science Letters 205, 309–324.

  • Wilson, S.A., 1997. The collection, preparation, and testing of USGS reference material BCR-2, Columbia River, Basalt: U.S. Geological Survey Open-File Report 98.

  • Xia, Q.X., Zheng, Y.F. ve Hu, Z.C., 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 114, 385–412.

  • Xiao, Y.L., Sun, W.D., Hoefs, J., Simon, K., Zhang, Z.M,. Li, S,G, ve Hofmann, A.W., 2006. Making continental crust through slab melting: constraints from niobium–tantalum fractionation in UHP metamorphic rutile. Geochimica Cosmochimica Acta 70, 4770–4782.

  • Xiong, X.L., Adam, J. ve Green, T.H., 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–359.

  • Van Achterbergh, E., Ryan, C.G. ve Griffin, W.L., 2000. GLITTER (Version 3.0, On-line Interactive Data Reduction for LA-ICPMS). Maquarie Research Ltd.

  • Yiğitbaş, E., Şengün, F. ve Tunç, İ.O., 2014. PreNeogene tectonic units in the Biga Peninsula and an approach to geodynamic evolution of region. TUBITAK project (110Y281).

  • Zack, T., Kronz, A., Foley, S.F. ve Rivers, T., 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology 184, 97–122.

  • Zack, T., Moraes, R. ve Kronz, A., 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contribution to Mineralogy and Petrology 148, 471–488.

  • Zhang, J.X., Yu, S., Meng, F.C. ve Li, J.P., 2009. Paired high-pressure granulite and eclogite in collision orogens and their geodynamic implications. Acta Petrologica Sinica 25: 2050–2066 (in Chinese with English abstract).

  • Zheng, Y.F., Xia, Q.X., Chen, R.X. ve Gao, X.Y., 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Science Reviews 107, 342–374.

  • Şengün, F . (2016). Kazdağ Masifi’nde (Biga Yarımadası) Yer Alan Meta-Ofiyolitik Kayaların TitaniQ Termometresi ve Rutil İz Element Bileşimi . Türkiye Jeoloji Bülteni , 59 (2) , 131-154 . DOI: 10.25288/tjb.298197

  • 10 January 2015 Hacıduraklı-Çiçekdağı (Kırşehir) earthquake (Mw = 5.0); implications about related structures and tectonic environment, Central Anatolia - Turkey
    Uğur Temiz Yaşar Ergün Gökten
    View as PDF

    Abstract: An earthquake, a moment magnitude of 5.0 (Mw), occurred on 10 January 2016 at 19.40 local withits epicenter, Hacıduraklı, the village of Çiçekdağı, Kırşehir in Central Anatolia that was known as a seismically quiet region. Its focal mechanism solution showed a right-lateral strike-slip faulting. Thisindicated that the earthquake occurred in WNW-ESE trend segment of Manahözü Fault that was rightlateral strike-slip fault, consisted of two structural segments and complied with the focal mechanismof the earthquake. Manahözü Fault is active and one of the most important structures that play a rolein shaping the region. Seyfe Fault Zone NW-SE trend right-lateral strike-slip fault is one of the mostsignificant geological structures in Kırşehir and its near surroundings. The interaction between theseactive structures caused the occurrence of Seyfe pull-apart basin. Besides, it is thought that the rise inthe northern part of the Manahözü fault may occur due to the convergence between Manahözü Fault andYerköy Fault Zone. NW-SE trend segment of Manahözü Fault, an active structure, is also evaluated as astructure that has a potential to create earthquakes in future.

  • Hacıduraklı-Çiçekdağı (Kırşehir) Earthquake

  • Kırşehir

  • Manahözü Fault

  • Seyfe Fault Zone

  • Seyfe pull-apart basins

  • Yerköy Fault Zone


  • AFAD (Afet ve Acil Durum Başkanlığı), DDB (Deprem Dairesi Başkanlığı), 2016. http://www.deprem. gov.tr/depremdokumanlari/426, 20 Ocak 2016.

  • Arni, P., 1938. Kırşehir, Keskin ve Yerköy zelzelesi hakkında. MTA Enst. yayını, Seri B, 1.

  • B.Ü. KRDAE - BDTİM (Boğaziçi Üniversitesi Kandilli Rasathanesi Ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme Ve Değerlendirme Merkezi), 2016. http://www.koeri. boun.edu.tr/sismo/2/10-ocak-2015-haciduraklicicekdagi-kirsehir-depremi-ml5-0/, 5 Şubat 2016.

  • Canıtez, N., Büyükaşıkoğlu, S., 1984. Seismicity of the Sinop nuclear power plant site. Final report, Istanbul Technical University.

  • Gürsoy, H., Piper, J.D.A., Tatar, O., Temiz, H., 1997. A palaeomagnetic study of the Sivas Basin, Central Turkey: crustal deformation during lateral escape of the Anatolian Block. Tectonophysics, 271, 89 - 106.

  • Gürsoy, H., Piper, J.D.A., Tatar, O., Mesci, L., 1998. Palaeomagnetic study of the Karaman and Karapýnar volcanic complexes, central Turkey: neotectonic rotation in the south-central sector of the Anatolian Block. Tectonophysics, 29, 191- 211.

  • Gürsoy, H., Piper, J.D.A., Tatar, O., 1999. Palaeomagnetic study of the Galatean Volcanic Province, north-central Turkey: Neogene deformation at the northern border of the Anatolian Block. Geological Journal, 34, 7 - 23.

  • Gürsoy, H., Tatar, O., Piper, J.D.A., Heimann, A., Mesci, L., 2003. Neotectonic deformation in the Gulf of Iskenderun, Southern Turkey, deduced from paleomagnetic study of the Ceyhan - Osmaniye Volcanics. Tectonics, 22, 1067-1079.

  • Jackson, J., Mckenzie, D., 1984. Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan.Geophysical Journal of Royal Astronomical Society 77, 185-264.

  • Koçyiğit, A., 2003. Orta Anadolu’nun genel Neotektonik Özellikleri ve Depremselliği. Haymana-TuzgölüUlukışla Basenleri Uygulamalı Çalışma, TPJD, Özel sayı:5, 1-26.

  • Parejas, E., Pamir, H. N., 1939. Le tremblement de terre du 19 avril 1938 en Anatolie Centrale. İst. Üniv, Fen. Fak. Yayınl., seri B., cilt IV, no. 3/4.

  • Tatar, O., Piper, J. D. A., Gürsoy, H., Temiz, H., 1996. Regional Significance of Neotectonic Counterclockwise rotation in central Turkey. Inter. Geol. Review, 38, 692-700.

  • Tatar, O., Piper, J.D.A., Gürsoy, H., 2000. Palaeomagnetic study of the Erciyes sector of the Ecemis Fault Zone: neotectonic deformation in the southeastern part of the Anatolian Block. In: Bozkurt, E., Winchester, J.A., Piper, J.D.A. (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London, Special Publication, 173, 423-440.

  • Tatar, O., Gürsoy, H., Piper, J.D.A. 2002. Differential Neotectonic rotations in Anatolia and the Tauride Arc: palaeomagnetic investigation of the Erenlerdağı Complex and Isparta volcanic district, south-central Turkey. Journal of Geological Society (London), 159, 281 - 294.

  • Temiz, U., 2004. Kırşehir Dolayının Neotektoniği ve Depremselliği (Neotectonics and seismicity of the Kırşehir region). Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 104.

  • Temiz, U., Gökten, E., Eikenberg, J., 2009. U/Th dating of fissure ridge travertines from the Kırşehir region (Central Anatolia Turkey): structural relations and implications for the Neotectonic development of the Anatolian block. Geodinamica Acta, 22/4, 201-213.

  • Temiz, U., Gökten, E. 2011. Ms 6.8 19 Nisan 1938 Akpınar (Kırşehir) Depreminin Coulomb Gerilme Analizi. Türkiye Jeoloji Bülteni, 54/3, 81-92.

  • Temiz, U , Gökten, Y . (2016). 10 Ocak 2016 Hacıduraklı-Çiçekdağı (Kırşehir) depremi (Mw = 5.0); ilgili yapılar ve tektonik ortam, Orta Anadolu - Türkiye . Türkiye Jeoloji Bülteni , 59 (2) , 155-166 . DOI: 10.25288/tjb.298218

  • Geology and Landslide Investigations in and Around the Çetin Dam Site
    Doğan Perinçek
    View as PDF

    Abstract: Purpose of this study is to locate the landslides that can threaten the settlement areas around the Çetin damreservoir is situated in vicinities of Pervari town of Siirt city. The Çetin Dam is going to be constructed inBotan Çayı (Ulu Çay) valley. The Çetin dam crest, reservoir areas are all located on allochthonous units.The Maden Complex is situated between the slices of the metamorphic rocks. Very steep inclination of thevalley slopes are among the significant causes of the landslides. The frequency of the landslides increaseswhen this feature is combined with the presence of the Maden Complex. Another reason triggering thelandslides is the earthquakes.The reason why the slope inclination is steeper along Botan Çayı River is thetectonism which affected the region since the Middle Miocene. Among the most important numerous datathat shows that the region is uplifting continuously are elevated erosional surface of the old rivers and theterraces can be counted as evidence of uplifting. These features provide important evidences to understandthe relative ages of the landslides. The uplifting causes an increase in slope inclination. As the inclinationof the slopes increase, new and younger landslides occur in debris of the older landslides. It was observedin many places that the material sliding downslope following the occurrence of the landslide divertedthe river bed in the opposite direction. Most of the villages established on both banks along the valley ofBotan Çayı River are located on old landslide material, landslide debris and erosional surface. The wateremerging from the toe and foot of the older landslide material has promoted the horticultural activities. Inline with the increase in water saturation of the rock and soil beneath the reservoir after water holding inthe dam, new landslides can be expected around the active landslide areas. Based on their relative ages,the landslides mapped were classified in 7 groups. The symbol «1» was used for the oldest landslideand similarly, «7» was used for the youngest one. The landslides with the numbers «1,2,3,4 and 5» are theinactive, fossil landslides. The landslides indicated with 6 and 7 are active landslides. The landslides alsowere grouped based on flowing-sliding types and flowing-sliding materials except for dating.

  • Landslide

  • scree deposit

  • Siirt

  • Southeast Turkey

  • Tectonic uplif

  • terrace


  • Perinçek, D., 1979. Interrelation of the Arabian and Anatolian plates, Guidebook for excursion “B”, First Geological Congress of the Middle East, Ankara, Turkey, 34 p.

  • Perinçek, D., 1980a. Arabistan Kıtası kuzeyindeki tektonik evrimin kıta üzerinde çökelen istifteki etkileri: Türkiye 5. Petrol Kongresi Tebliğleri, s. 77-93.

  • Perinçek, D., 1980b. IX. Bölge Hakkâri-Yüksekovaçukurca-Beytüşşebap-Uludere -Pervari dolayının jeolojisi: TPAO Rap., No. 1481, Ankara, yayınlanmamış.

  • Perinçek, D., 1990. Hakkâri ili dolayının stratigrafisi, Güneydoğu Anadolu, Türkiye: Türkiye Petrol Jeologları Derneği Bülteni. 2,.no.1, s. 21-68.

  • Perinçek, D. ve Çemen, İ., 1992. Late CretaceousPaleocene Structural Evolution of the Structural Highs of Southeastern Anatolia. Ozan Sungurlu Symposium, Proceedings. In Tectonics and Hydrocarbon Potential of Anatolia and Surrounding Regions. Turkish Petroleum Corporation - Turkish Association of Petroleum Geologists, p. 386-403.

  • Perinçek, D., ve Çemen. I., 1990. The structural relationship between the East Anatolian and Dead Sea fault zones in southeastern Turkey; Tectonophysics, v.172, p. 331-340.

  • Perinçek, D. ve Özkaya, I., 1981. Arabistan levhası kuzey kenarının tektonik evrimi: Yerbilimleri, Hacettepe Üniversitesi Yerbilimleri Enstitüsü Bülteni. No. 8. p. 91-101.

  • Perinçek, D., Duran, O., Bozdoğan N. ve Çoruh T., 1992. Stratigraphy and Paleogeographical Evolution of the Autochthonous Sedimentary Rocks in Southeast Turkey. Ozan Sungurlu Symposium, Proceedings. In Tectonics and Hydrocarbon Potential of Anatolia and Surrounding Regions. Turkish Petroleum Corporation - Turkish Association of Petroleum Geologists, p. 274-305.

  • Perinçek, D., Günay Y. ve Kozlu, H., 1987. Doğu ve Güneydoğu Anadolu bölgesindeki yanal atımlı faylar ile ilgili yeni gözlemler: Türkiye Yedinci Petrol Kongresi tebliğleri, s.89-104.

  • Sungurlu, O., 1974. VI. Bölge kuzeyinin Jeolojisi ye petrol imkanları, Okay and Dileköz (Eds.), Türkiye ikinci petrol kongresi tebliğleri, Türkiye Petrol Jeologları Derneği Bildiriler Kitabı, ss. 85- 107.

  • Sungurlu, O., Perinçek, D., Kurt, G., Tuna, E., Dülger, S., Çelikdemir E. ve Naz., H. 1985. Elazığ-HazarPalu alanının jeolojisi: T.C. Petrol İşleri Genel Müdürlüğü Dergisi, no. 29, s. 83-190.

  • Şengör, A.M.C., 1980. Türkiye’nin Neotektoniğinin Esasları, Geol. Soc.Turkey Conference Series 2, (in Turkish with English abstract).

  • Şengör, A. M. C. ve Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach: Tectonophysics, v. 75, p. 181-241.

  • U.S. Geological Survey, 2009. U.S. Department of the Interior; USGS Science Landslide Hazards program. http://3dparks.wr.usgs.gov/ haywardfault/images/slump.jpg), geology.com/ usgs/landslides/

  • Perinçek, D . (2016). Çetin Baraj Gövdesi ve Dolayının Jeolojisi ve Heyelan Araştırması . Türkiye Jeoloji Bülteni , 59 (2) , 167-210 . DOI: 10.25288/tjb.298224

  • Shale Gas; Geological Properties, Environmental Effects and Global Economic Meaning
    Nazan Yalçin Erik
    View as PDF

    Abstract: Global energy prospecting has significantly shown change with the development of technology that can beused in the production of energy sources which are unconventional such as tight reservoir and shale gasespecially within last several years. These sources which are economically seen as a great contributionand are predicted that it will be greater impact potential in the fields of economic, social and politics inthe future have been protested on the ground water, surface water and local air quality by millions ofpeople in many countries because of harmful and it has necessitated that these subjects are evaluated indetails with the economic benefits. Especially, natural disasters which have been encountered at global scale have drawn attention to the effect of the chemical composition of the atmosphere and compositionalchanges on humanity and echology in the 20th century. In this article, as well as it has been turn undereconomic prospecting, the formation of shale gas which becomes focus of interest especially of the last fewyears and also maybe causes to the configuration of global politics again, petrophysical features of shalesource rock, the role on the fulfillment of the energy need of the countries with searching and productiontechniques; and meanwhile the effects on ecology have been evaluated. It has been tried to be statedthat energy sources will not have a meaning as only fuel and energy source in the future just like in thehistorical process by being mentioned about their effects on the fields of economy and social.

  • Emissions

  • energy sources

  • global warming

  • hydraulic fracturing

  • shale gas


  • Arthur, M.A. ve Cole, D.R., 2014. Unconventional Hydrocarbon Resources: Prospects and Problems. Elements 10:257-264

  • Bahtiyar, İ., 2012. Türkiye Petrol Jeologları Derneği Basın Açıklaması. http://www.haberturk. com/ekonomi/makro-ekonomi/haber/735797- turkiyede-40-yil-yetecek-kaya-gazi-var. Erişim Tarihi 03.03.2016

  • BBC. 2013. North American firms quit shale gas fracking in Poland. BBC News. Available at http://www.bbc.co.uk/news/business-22459629. Accessed May 8, 2013.

  • Bloomberg. 2011. Shell ends shale gas search in Sweden; invests in China fields. Available at http://www.bloomberg.com/news/2011-07-28/ shell-ends-shale-gas-search-in-swedeninvests-inchina-fields.html. Accessed December 1, 2014.

  • Bloomberg. 2012. German lawmakers reject ban on shale gas fracking in parliament. Bloomberg News. Available at http://www.bloomberg.com/ news/2012-12-13/german-lawmakersrejectban-on-shale-gas-fracking-in-parliament.html. Accessed December 14, 2012.

  • Bohacs, K.M., Passey, Q.R., Rudnicki, M., Esch, W.L., 2013. The spectrum of fine-grained reservoits from shale gas tos hale oil/tight liquids: Essential attributes, key controls, practical characterization. International Petroleum Technology Conference, IPTC 16676, 16 pp.

  • Bryndzia, L.T., ve Braunsdorf, N.R., 2014. From source rock to reservoir: The evolution of selfsourced unconventional resource plays. Elements 14, 271-276.

  • Buller, D., Hughes, S.N., Market, J., Petre, J.E., Spain, D.R., Odumosu, T., 2010. Petrophysical evaluation for enchancing hydrolic stimulation in horizontal shale gas wells. SPE Annual Tecnical Conf. And Exh., Florence, SPE-132900-MS.

  • Bustin, R.M., 2006. Geology report: where are the high-potential regions expected to be in Canada and the U.S.? Capturing opportunities in Canadian shale gas. Second Annual Shale Gas Conference, The Canadian Institute, Calgary-Canada.

  • Bustin, A.M.M., Bustin, R.M., Cui, X., 2008. Importance of fabric on the production of gas shales. SPE Paper No. 114167. Proceedings of the Unconventional Gas Conference, Keystone, Colorado, February 10-12.

  • Caineng, Z., Dazhong, D., Wang, S., Jianzhong, L., Xinjing, L., Yuman, W., Denghua, L., Keming, C., 2010. Geological characteristics and resource potential of shale gas in China. Petrol Explor Dev; 37 (6): 641–653.

  • Engelder, T., Cathles, LM, Bryndzia, LT, 2014. The fate of residual treatment water in gas shale. Journal of Unconventional Oil and gas resources 7, 33-48.

  • CPFI, 2013. Shale gas exploration and production, Key issues and responsible business practices, Guidance note for financiers

  • Etiope, G., Schoell, M., 2014. Abiotic gas: Atypical, but not rare. Elements 10, 291-296.

  • Fisher, M.K., Heinze, J.R., Harris, C.D., McDavidson, B.M., Wright, C.A., Dunn, K.P., 2004. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping. Paper No. SPE 90051. Proceedings of the SPE Annual Technical Conference and Exhibition, 26-29 September, Houston, TX.

  • Kavak, K., 2013. Dünyadaki enerji oyununu değiştiren yeni faktör: konvansiyonel olmayan petrol ve doğal gaz, Enerji Araştırmalar Merkezi Makale No:1

  • Kennedy, R., 2010. Shale gas challenges/technologies over the asset life cycle. US China Oil and Gas Industry Forum. Baker Hughes.

  • King, G.E., 2010. Thirty years of gas shale fracturing: what have we learned? Paper No. SPE 133456. Proceedings of the SPE Annual Technical Conference and Exhibition, September, Florence, Italy

  • Lakatos, I., ve Szabo, J.L., 2009. Role of conventional and unconventional hydrocarbons in the 21st century: Comparison of resources, reserves, recovery factors and technologies. Society of Petroleum Engineers; SPE-121775-MS.

  • Lash, G.G., Engelder, T., 2011. Thickness trends and squence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian foreland basin evolution. AAPG Bull. 95, 61-103.

  • Lu, S., Huang, W., Chen, F., Li, J., Wang, M., Xue, H., Wang, W., Cai, X. 2012. Classification and evaluation criteria of shale oil and gas resources: Discussion and application. Petrol Explor Dev 39 (2): 268–276.

  • Lucier, A.M., Hoffmann, R., Bryndzia, L.T., 2011. Evaluation of variable gas saturation on acoustic log data from the Haynesville shale gas play, NW Louisiana, USA. The Leading Edge 30, 300-311.

  • Martini, A.M., Walter, L.M., Budai, J.M., Ku, T.C.W., Kaiser, C.J., Schoell, M., 1998. Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim shale, Michigan Basin, USA. Geochim. Cosmochim. Acta 62 (10), 1699-1720.

  • Martini, A.M., Walter, L.M., Ku, T.C.W., Budai, J.M., McIntosh, J.C., Schoell, M., 2003. Microbial production and modification of gases in sedimentary basins: a geochemical case study from a Devonian shale gas play, Michigan Basin. Am. Assoc. Pet. Geol. Bull. 87 (8), 1355-1375.

  • Martini, A.M., Nüsslein, K., Petsch, S.T., 2004. Enhancing microbial gas from unconventional reservoirs: geochemical and microbiological characterization of methane-rich fractured black shales. Final Report. Subcontract No. R-520, GRI05/0023. Research Partnership to Secure Energy for America, Washington, DC.

  • Molofsky, L.J., Connor, J.A., Farhat, S.K., Wylie, A.S. Jr, Wagner, T., 2011. Methane in Pennsylnvania water wells unrelated to Marcellus shale fracturing. Oil and Gas Journal, pp. 54-67.

  • Odusina, E.O., Sondergeld, C.H., Rai, C.S., 2011. NMR study of shale wettability. Canadian Unconventional Resources Conf. Alberta-Canada, Soc. Of Petroleum Eng.

  • Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R., Sinha, S., 2010. From oil-prone source rocks to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoir. SPE Paper No. 131350. Proceedings of the CPS/SPE International Oil & Gas Conference and Exhibition, June 8-10, Beijing, China.

  • Ratner, M., ve Tiemann, M., 2013. An overview of unconventional oil and natural gas: Resources and Federal actions. Congressional Research Service Report R43148

  • Reddy, T.R., ve Nair, R.R., 2012. Fracture characterization of shale gas reservoir using connectedcluster DFN simulation. Proceedings of the Second International Conference on Drilling Technology 2012 (ICDT-2012) and First National Symposium on Petroleum Science and Engineering 2012 (NSPSE-2012). Sharma, R., Sundaravadivelu, R., Bhattacharyya, S.K., Subramanian, S.P. (Eds.), 6-8 December, pp. 133_136.

  • Rezaee, R., ve Rothwell, M., 2015. Gas Shale: Global Significance, distribution, and challenges Fundamentals of Gas Shale Reservoirs, First Edition. Edited by Reza Rezaee. © 2015 John Wiley & Sons, Inc.

  • Ridley, M., 2011. The shale gas shock. The Global Warming Policy Foundation, Report 2

  • Schrag, D.P., 2012. Is shale gas good for climate change? Dædalus, J. Am. Acad. Arts Sci. 141 (2), 72-80.

  • Scott, A.R., Kaiser, W.R., Ayers, W.B., 1994. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico: implications for coalbed gas productivity. Am. Assoc. Pet. Geol. Bull. 78 (8), 1186-1209.

  • Shine, K.P., 2009. The global warming potential-the need for an interdisciplinary retrial. Clim. Change 96 (4), 467-472.

  • Smith, A.L., 2011. First correlation of NORM with a specific geologic hypothesis. SPE European Health, Safety and Environmental Conference in oil and gas production, SPE 138136, 17 p

  • Speight, J.G., 2013. Shale gas production Process, Gulf Professional Publ. Elsevier, 162 p.

  • Staff, 2010. Unconventional gas outlook, the next wave. Volume 1. Draft for participant review. Core Energy Group; Staff. 2025

  • Tissot, B., ve Welte, D.H., 1984. Petroleum Formation and Occurrence: Springer–Verlag, Berlin.

  • US EIA 2010. Schematic geology of natural gas resources. Available at http://www.eia.gov/oil_ gas/natural_gas/special/ ngresources/ngresources. html. Accessed April 19, 2013.

  • US EPA, 2012. Regulation of Hydraulic Fracturing Under the Safe Drinking Water Act. United States Environmental Protection Agency, Washington, DC.

  • US EIA, 2013a. Shale gas exploration and production Key issues and responsible business practices, Guidance note for financiers, 34 p.

  • US EIA/ARI, 2013b. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, 730 p.

  • US EIA/ARI, 2014. Annual Energy Outlook 2014 with projections to 2040, www.eia.gov/forecasts/aeo

  • US EIA, 2015. The Annual Energy Outlook 2015 (AEO2015), 154 s.

  • Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., Yoxtheimer, D., Abad, J.D., 2013. Impact of shale gas development on regional water quality. Science 340.

  • Yalçın, M.N., 2013. Kaya Gazı (Shale Gas), Doğal Gaz Dergisi, Sayı: 75, (Kasım-Aralık 2012), s.67.

  • Yergin, D., 1991. Petrol: Para ve güç çatışmasının Epik öyküsü, TC İş Bankası Yay. 332, 742 s.

  • Wipf, R.A. ve Party, J.M., 2006. Shale Plays-A US Overview. AAPG Energy Minerals Division Southwest Section Annual Meeting.

  • World Energy Outlook 2015. Yönetici özeti, Ocak 2016 Yayın No: TÜSİAD-T/2016/01/572

  • Zhang, J., Delshad, M., Sepehrnoori, K., 2007. Development of a framework for optimization of reservoir simulation studies. J. Pet. Sci. Eng. 59, 135_146.

  • http://www.ktwop.com/

  • http://www.fractracker.org/2015/08/1-7-million-wells/

  • http://www.propublica.org/special/hydraulic-fracturing

  • http://ekonomi.isbank.com.tr/

  • http://www.opec.com/

  • Yalçın Erik, N . (2016). Şeyl Gazı; Jeolojik Özellikleri, Çevresel Etkileri ve Küresel Ekonomik Anlamı . Türkiye Jeoloji Bülteni , 59 (2) , 211-237 . DOI: 10.25288/tjb.298230

  • View as PDF