Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2020 OCAK Cilt 63 Sayı 1
View as PDF
View as PDF
View as PDF
Ökmen Sümer Deniz Şanliyüksel Yücel Alper Baba
View as PDF
A Geological Overview of Historical Development of the Anthropogene and Anthropocene Concepts
Ökmen Sümer Akin Alak Arman Tekin
View as PDF

Abstract: Humanities efforts to exist in nature have brought man from being a part of the ecosystem to the point ofshaping nature. This struggle of humanity undoubtedly causes destruction at different scales in nature. Traces ofthis destruction are recorded by geological processes. Negative environmental changes caused by human effectson nature are called anthropogenic pollution today. The beginning of the most serious scientific studies to describethe permanent traces of man on nature dates back to the mid-19th century. However, this awareness is known tobe much older, especially in the works of ancient Greek and Roman philosophers and writers. Many researchersargue that with the introduction of scientific methods to investigate these effects, the Holocene should be separatedfrom the Anthropocene with a time boundary as a new geological series. Although this theory was mentioned manytimes in the 19th century, it was later forgotten. It returned to the agenda since the early 2000s and its popularity has increased. After the suggestion of this time-boundary separation, scientific studies about the existence and thebeginning of the Anthropocene have considerably increased, and it has become a multidisciplinary issue discussedby many researchers. There are two main factors that need to be addressed in order to clarify and elaborate theconcepts of anthropogene and Anthropocene in the future. These are; (1) problems in setting standards for measuringanthropogenic effects especially geogenic and the steps to be taken to solve this, and (2) the necessity to producestudies that can be supported by absolute age data rather than conceptual discussion of the temporal separationof the Anthropocene. Scientific studies in different regions where these elements are taken in consideration willundoubtedly reveal the extent of the anthropogenic effect and the temporal separation of the Anthropocene boundaryin a much more realistic manner.

  • Anthropogenic pollution

  • Anthropocene

  • geogenic

  • geological time

  • Ackermann, F., 1980. A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environmental Technology, 1(11), 518-527.

  • Adams, F., 1849. The Genuine Works of Hippocrates. Vol 1, Chapter: On Airs, Waters, And Places. The Sydenham Society, Londra, 179-222.

  • Akçay, H., Ardisson, G., 1988. Radioactive pollution of Turkish biotas one year after the Chernobyl accident. Journal of radioanalytical and nuclear chemistry, 128(4), 273-281.

  • Aksu, A.E., Yaşar, D., Uslu, O., 1998. Assessment of marine pollution in Izmir Bay: Heavy metal and organic compound concentrations in surficial sediments. Turkish Journal of Engineering and Environmental Sciences, 22(5), 387-416.

  • Alagarsamy, R., 2006. Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuarine, Coastal and Shelf Science, 67(1-2), 333-339.

  • Alak, A., Sümer, Ö., 2017. Marmara ve Karadeniz Kıyılarındaki Güncel Sedimanlar İçinde Antroposen’in Varlığına Ait Yeni Bulgular. Türkiye Jeoloji Bülteni, 60(2), 145-168.

  • Andersson, A.J., Mackenzie, F.T., Lerman, A., 2005. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. American Journal of Science, 305(9), 875-918.

  • Anonymous, 1882. Congrès Géologique International: Compte Rendu 2me Session, Bologne, 1881, Fava et Garagnani, Bologne, 660 s.

  • Armesto, J.J., Manuschevich, D., Mora, A., SmithRamirez, C., Rozzi, R., Abarzúa, A.M., Marquet, P.A., 2010. From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. La

  • Atkinson, D.J., 1957. Heavy metal concentration in streams in north Angola. Economic Geology, 52(6), 652-667.

  • Atkinson, D.J., 1957. Heavy metal concentration in streams in north Angola. Economic Geology, 52(6), 652-667.Journal of Environmental Radioactivity, 35(1), 23-35.

  • Balkıs, N., Aktan, Y., Balkıs, N., 2012. Toxic metal (Pb, Cd and Hg) levels in the nearshore surface sediments from the European and Anotolian Shores of Bosphorus, Turkey. Marine pollution bulletin, 64(9), 1938-1939.

  • Balkıs, N., Topçuoğlu, S., Güven, K.C., Öztürk, B., Topaloğlu, B., Kirbaşoğlu, Ç., Aksu, A., 2007. Heavy metals in shallow sediments from the Black Sea, Marmara Sea and Aegean Sea regions of Turkey. Journal of Black Sea/Mediterranean Environment, 13,

  • Banat, K., Frstner, U., Miller, G., 1972. Schwermetalle in Sedimenten von Donau, Rhein, Ems, Weser und Elbe im Bereich der Bundesrepublik Deutschland. Naturwissenschaften, 59, 525-528.

  • Bodur, M.N., Ergin, M., 1988. Heavy metal associations in Recent inshore sediments from the Mersin Bay. Bollettino di Oceanologia Teorica ed Applicata, 6(1), 15-34.

  • Bostock, J.,Riley, H.T., 1856. The Natural History of Pliny. Translated, with copious notes and illusteations. Vol. IV, cover (Book 18-23), Henry G. Bohn, Londra, 523 s.

  • Buat-Menard, P., Chesselet, R., 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42(3), 399-411.

  • Certini, G., Scalenghe, R., 2011. Anthropogenic soils are the golden spikes for the Anthropocene. The Holocene, 21, 1269-1274.

  • Clarke, F.W., 1889. The relative abundance of the chemical elements. Bulletin of the Philisophical Society of Washington, 11, 131-142.

  • Clarke, F.W., 1911. The data of geochemistry, Second Edition. Department of the interior United States Geological Survey (Bulletin 491). Washington, Government Printing Office, 782 s.

  • Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.

  • Crossland, C.J., Kremer, H.H., Lindeboom, H., Crossland, J.I.M., Le Tissier, M.D., 2005. Coastal fluxes in the Anthropocene: the land-ocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme. Springer-Verlag,

  • Crutzen, P.J., Stoermer, E.F., 2000. The Anthropocene. Global Change Newsletter, 41, 17-18.

  • Crutzen, P.J., 2002. Geology of mankind. Nature, 415, 23.

  • Crutzen, P.J., 2006. The Anthropocene, (Earth System Science in the Anthropocene, Editörler: Ehlers E., Krafft T.). Heidelberg: Springer Berlin, Heidelberg, 13-18.

  • Çoban, B., Balkıs, N. ve Aksu, A., 2009. Heavy metal levels in sea water and sediments of Zonguldak. Journal of Black Sea/Mediterranean Environment, 15, 23-32.

  • Çoşkun, M., Steinnes, E., Frontasyeva, M.V., Sjobakk, T.E., Demkina, S., 2006. Heavy metal pollution of surface soil in the Thrace region, Turkey. Environmental monitoring and assessment, 119(1- 3), 545-556.

  • Dana, J.D., 1863. A Text-book of Geology. Designed For Schools And Academies. Ivison, Blakeman, Taylor & Company, New York and Chicago, 354 s.

  • Davis, R.V., 2011. Inventing the present: historical roots of the Anthropocene. Earth Science History, 30, 63-84.

  • Desnoyers, J., 1829. Observations sur un ensemble de dépots marins plus recens que les terrains tertiaires du bassin de la Seine et constituant une formation géologique distincte: précédées d’un aperçu de la non simultanéité des bassins tertiaires. A

  • Efe, R., Soykan, A., Cürebal, İ. ve Sönmez, S., 2008. Türkiye’de Doğal Ortam Bozulmasına Antroposen Açısından Bakış. TÜCAUM (Türkiye Coğrafyası Araştırma ve Uygulama Merkezi) V. Ulusal Coğrafya Sempozyumu (16-17 Ekim 2008) Bildiriler Kitabı, Ankara,

  • Ell, T., 2011. Two letters of Signor Giovanni Arduino, concerning his natural observations: first full English translation. Part 1. Earth Sciences History, 30(2), 267-286.

  • Ell, T., 2012. Two letters of signor Giovanni Arduino, concerning his natural observations: first full English translation. Part 2. Earth Sciences History, 31(2), 168-192.

  • Ellis, E.C., 2011. Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society of London A, 369(1938), 1010-1035.

  • Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., Yörük, R., 1991. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269- 285.

  • Ergin, M., Bodur, M.N., Yildi̇z, M., Edi̇ger, D., Edi̇ger, V., Yemeniciog, S., Yücesoy, F., 1994. Sedimentation rates in the sea of Marmara: a comparison of results based on organic carbonprimary productivity and 210 Pb dating. Contine

  • Ergin, M., Kazan, B., Eryilmaz, F.Y., Eryilmaz, M., 1998. Metal contamination in the bottom sediments of the gulf of Iskenderun. International journal of environmental studies, 55, 101-119.

  • Erlenkeuser, H., Suess, E., Willkomm, H., 1974. Industrialization affects heavy metal and carbon isotope concentrations in recent Baltic Sea sediments. Geochimica et Cosmochimica Acta, 38(6), 823-842.

  • Ertek, T.A., 2017. Antropojenik Jeomorfoloji: Konusu, kökeni ve amacı. Türk Coğrafya Dergisi, (69), 69- 79.

  • Fischer-Kowalski, M., Krausmann, F., Pallua, I., 2014. A sociometabolic reading of the Anthropocene: Modes of subsistence, population size and human impact on Earth. The Anthropocene Review, 1, 8-33.

  • Fowler, S.W., Oregioni, B., LaRosa, J., 1976. Trace metals in pelagic organisms from the Mediterranean Sea (Rapor: Trace metals in pelagic organisms from the Mediterranean Sea), International Nuclear Information System. Rapor No. IAEA-TECDOC--187, 11

  • Förstner, U., Müller, G., 1975. Factors controlling the distribution of minor and trace metals (heavy metals, V, Li, Sr) in recent lacustrine sediments. IX International Sedimentology Congress, Nice, 57-63.

  • Gale, S.J., Hoare, P.G., 2012. The stratigraphic status of the Anthropocene. The Holocene, 22(12), 1491- 1494.

  • Galuszka, A., Migaszewski, Z.M., Zalasiewicz, J., 2014. Assessing the Anthropocene with geochemical methods. Geological Society, London, Special Publications, 395(1), 221-238.

  • Gerland, P., Raftery, A.E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Bailey, K.F., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., Wilmoth, J., 2014. World population stabilization unlikely this century. Science, 34

  • Gervais, P., 1848-1852. Zoologie et paléontologie Françaises (animaux vertébrés) ou nouvelles recherches sur les animaux vivants et fossiles de la France. Tome I, Paris: Libraire Éditeur; Arthus Bertrand, 271 s.

  • Goldschmidt, V.M., 1937. The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937, Journal of the Chemical Society (Resumed), 655-673.

  • Gümgüm, B., Tez, Z., Gülsün, Z., 1994. Heavy metal pollution in water, sediment and fish from the Tigris River in Turkey. Chemosphere, 29(1), 111- 116.

  • Gürbüz, A., Gürer, Ö.F., 2008. Anthropogenic affects on lake sedimentation process: a case study from Lake Sapanca, NW Turkey. Environmental geology, 56(2), 299-307.

  • Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, 975-1001.

  • Haughton, S., 1865. Manual of geology. Longman, Green, Longman, Robersts, & Green, Londra, 360 s.

  • Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2(4), 437-451.

  • Jenkyn, T.W., 1854. Lessons in Geology – No. L. Chapter V. On the classification of rocks. Section IV, Popular Educator 4, 313–316.

  • Jones, H.L., 1923. Geography of Strabo. Vol. II. (cover Book III – V), William Heinemann, Londra, 480 s.

  • Jowett, M.A., 1892. The Dialogues of Plato Translated Into English with Analyses and Introductions, Third editon, Vol. 3, Clarendon Press, Oxford, 543s.

  • Karadede, H., Ünlü, E., 2000. Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41(9), 1371-1376.

  • Lin, S., Hsieh, I.J., Huang, K.M., Wang, C.H., 2002. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 182(2), 377-394.

  • Lyell, C., 1830. Principles of Geology, First ed., Vol. I. John Murray, Londra, 511 s.

  • Lyell, C., 1833. Principles of Geology, First ed., Vol. III, John Murray, Londra, 109 s.

  • Marsh, G.P., 1864. Man and nature; or, physical geography as modified by human action. Charles Scribner, New York, 560 s.

  • Morgan, J.W., Higuchi, H., Takahashi, H., Hertogen, J., 1978. Chondritic eucrite parent body - inference from trace-elements. Geochimica et Cosmochimica Acta, 42(1), 27-38.

  • Murozumi, M., Chow, T.J., Patterson, C., 1969. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33(10), 1247-1294.

  • Müller, G., 1979. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79(24), 778-783.

  • Müller, G., 1986. Schadstoffe in SedimentenSedimente als Schadstoffe. Mitt, Österreichische Geologische Gesellschaft, 79, 107-126.

  • Oldfield, F., 2015. When and how did the Anthropocene begin?. The Anthropocene Review, 2(2), 101.

  • Omgbu, J.A., Kokogbo, M.A., 1993. Determination of Zn, Pb, Cn and Hg in soils of Ekpan, Nigeria. Environment International, 19, 611–612.

  • Orhon, S., 1984. İzmit Körfezi’nde sediment-kor analizi ile demir, mangan ve organik karbon tayini. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü, İstanbul, Yüksek Lisans Tezi, 49 s., (yayımlanmamış).

  • Önder, S., Dursun, S., 2006. Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmospheric Environment, 40(6), 1122-1133.

  • Özkan, E.Y., Büyükışık, B., 2012. Geochemical and statistical approach for assessing heavy metal accumulation in the southern Black Sea sediments. Ekoloji, 21(83), 11-24.

  • Özmen, M., Güngördü, A., Kucukbay, F.Z., Güler, R.E., 2006. Monitoring the effects of water pollution on Cyprinus carpio in Karakaya Dam Lake, Turkey. Ecotoxicology, 15(2), 157-169.

  • Özşahin, E., Eroğlu, İ., 2017. Tekirdağ İlinin Antropojenik Biyomlarının (Antronomların) Zamansal Ve Mekânsal Değişimi. Marmara Coğrafya Dergisi, (35), 218-227.

  • Ray, A.K., Tripathy, S.C., Patra, S., Sarma, V.V., 2006. Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environment International, 32(2), 219-223.

  • Reboul, H., 1833. Géologie de la période quaternaire et introduction a l’histoire ancienne. F.G. Levrault, Paris, 222 s.

  • Ruddiman, W.F., 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3), 261-293.

  • Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust, (Treatise On Geochemistry, Volume 3: The Crust, Editörler: Holland, H.D., Turekian, K.K.), Elsevier Ltd., 1-64.

  • Sakai, H., Kojima, Y., Saito, K., 1986. Distribution of heavy metals in water and sieved sediments in the Toyohira river. Water Research, 20(5), 559-567.

  • Salomons, W., Förstner, U., 1984. Metals in the hydrocycle. Springer, Berlin, 653 s.

  • Sarasiab, A.R., Mirsalari, Z., Hosseini, M., 2014. Distribution and Seasonal Variation of Heavy Metal in Surface Sediments from Arvand River, Persian Gulf. Journal of Marine Science: Research & Development, 4(3; 150), 1-6.

  • Sarı, E., Çağatay, M.N., Acar, D., Belivermiş, M., Kılıç, Ö., Arslan, T.N., Tutay, A., Kurt, M.A., Sezer, N., 2018. Geochronology and sources of heavy metal pollution in sediments of Istanbul Strait (Bosporus) outlet area, SW Black Sea, Turkey. Chemo

  • Schlütz, F., Lehmkuhl, F., 2009. Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: palynological and geomorphological results from the Nianbaoyeze Mountains. Quaternary Science Reviews, 28, 1449-1471.

  • Slaughter, R.A., 2012. Welcome to the Anthropocene. Futures, 44(2), 119-126.

  • Starodubtseva, I.A., 2006. Aleksei Petrovich Pavlov (1854–1929) – The propagator of Sueߒ ideas in Russia. Berichte der Geologischen Bundesanstalt, 69: 65.

  • Steffen, W., Crutzen, P.J., McNeill, J.R., 2007. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. AMBIO: A Journal of the Human Environment, 36(8), 614-621.

  • Stoffers, P., Glasby, G.P., Wilson, C.J., Davis, K.R., Walter, P., 1986. Heavy metal pollution in Wellington Harbour. New Zealand Journal of Marine and Freshwater Research, 20, 495-512.

  • Stoppani, A., 1873. Corso di Geologia, Vol. II, Geologia Stratigrafica, (Editörler: G. Bernardoni, EG Brigola), Milan, 868 s.

  • Suess, E., 1862. Der Boden der Stadt Wien nach seiner Bildungsweise, Beschaffenheit und seinen Beziehungen zum Bürgerlichen Leben. Eine geologische Studie. Wilhelm Braumüller, Viyana, 326 s.

  • Sutherland, R.A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611-627.

  • Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241-265.

  • Taymaz, K., Yigit, V., Özbal, H., Ceritoglu, A., Müftügil, N., 1984. Heavy metal concentrations in water, sediment and fish from Izmit Bay, Turkey. International Journal of Environmental Analytical Chemistry, 16(4), 253-265.

  • Tomlinson, D.L., Wilson, J.G., Harris, C.R., Jeffrey, D.W., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1-4), 566-575.

  • Tuncer, G., Karakas, T., Balkas, T.I., Gökçay, C.F., Aygnn, S., Yurteri, C., Tuncel, G., 1998. Landbased sources of pollution along the Black Sea coast of Turkey: concentrations and annual loads to the Black Sea. Marine Pollution Bulletin, 36(6), 409

  • Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175-192.

  • Tyler, G., 1972. Heavy metals pollute nature, may reduce productivity. Ambio, 1(2), 52-59.

  • Upadhyay, A.K., Gupta, K.K., Sircar, J.K., Deb, M.K., Mundhara, G.L., 2006. Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environmental Geology, 50(3), 397-403.

  • Upadhyay, A.K., Gupta, K.K., Sircar, J.K., Deb, M.K., Mundhara, G.L., 2007. Dominance of lithogenic effect for nickel, cobalt, chromium and mercury as found in freshly deposited sediments of the river Subernarekha, India. Environmental Geology, 51(8)

  • von Cotta, B., 1866. Die geologie der gegenwart dargestellt und beleuchtet. JJ Weber, Leipzing, 424 s.

  • Waters, C.N., Zalasiewicz, J.A., Williams, M., Ellis, M.A., Snelling, A.M., 2014. A stratigraphical basis for the Anthropocene?. Geological Society, Londra, Special Publications, 395(1), 1-21.

  • Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill, J.R., Richter, D.D., Steffen, W., Syvitski, J., Vidas, D., Wagr

  • Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217-1232.

  • Wilkinson, I.P., Poirier, C., Head, M.J., Sayer, C.D., Tibby, J., 2014. Microbiotic signatures of the Anthropocene in marginal marine and freshwater palaeoenvironments. Geological Society London Special Publications, 395(1), 185-219.

  • Wilkinson, I.P., Poirier, C., Head, M.J., Sayer, C.D., Tibby, J., 2014. Microbiotic signatures of the Anthropocene in marginal marine and freshwater palaeoenvironments. Geological Society London Special Publications, 395(1), 185-219.Holocene–Anthropo

  • Yatkın, S., Bayram, A., 2008. Determination of major natural and anthropogenic source profiles for particulate matter and trace elements in Izmir, Turkey. Chemosphere, 71(4), 685-696.

  • Yücesoy, F., Ergin, M., 1992. Heavy-metal geochemistry of surface sediments from the southern Black Sea shelf and upper slope. Chemical Geology, 99(4), 265-287.

  • Zalasiewicz, J., Waters, C.N., Williams, M., Barnosky, A.D., Cearreta, A., Crutzen, P., Ellis, E., Ellis, A.M., Fairchild, J.I., Grinevald J., Haff, K.P., Hajdas. I., Leinfelder, R., McNeill, J., Odada, E.O., Poirier, C.,Richter D., Steffen, W., Summ

  • Zalasiewicz, J., Williams, M., Haywood, A., Ellis, M. 2011. The Anthropocene: a new epoch of geological time?. Philosophical Transactions of the Royal Society of London A, 369, 835-841.

  • Zhang, C., Wang, L., Li, G., Dong, S., Yang, J., Wang, X., 2002. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry, 17(1), 59-68.


  • Sümer, Ö , Alak, A , Tekin, A . (2020). Antropojen ve Antroposen Kavramlarının Tarihsel Gelişimine Yerbilimsel Bir Bakış . Türkiye Jeoloji Bülteni , 63 (1) , 1-20 . DOI: 10.25288/tjb.605167

  • Investigation of Anthropogenic Heavy Metal Pollution in Core Sediments from the Eckernförder and Geltinger Bays in the Western Baltic Sea, Germany
    Mustafa Ergin
    View as PDF

    Abstract: The main purpose of this study was to investigate the effects of increasing human activities (agriculture,urbanization, settlement, wars, industrialization) and cold climatic periods that occurred pre-and post-1800 in andaround the western Baltic Sea. To investigate this, sediment box cores were collected onboard the R/V SENCKENBERGin 1978 from two bights of Eckernförder (EB) and Geltinger (GB). Vibration hammer technology was used to obtainundisturbed core sediments and grain size, carbonate, organic carbon, element, SEM-EDAX and Pb-210 datinganalysis were carried out. The results were then interpreted using statistical methods.The greyish to black colored mud (“schlick”) sediments deposited under suboxic to anoxic. conditions in the bightsmainly consists of silicate-aluminosilicate minerals. Carbonate contents in both cores are low (generally <3%) but EB sediments are finer grained than the GB sediments. Regional characteristic source and depositional conditionscaused the accumulation of high organic matter (2-6%) in core sediments from both bights. Major elementconcentrations (Si, Al, K, Mg, Fe, P) largely do not display any significant changes throughout the cores and indicatelithogenic-geogenic sources. The downcore changes in Mn, Co and in part, P, concentrations can be related tosediment diagenesis in the cores. Cr, Ni, Cu, Pb, Zn, Cd and Hg contents showed increases towards the upper coresections. The contamination factors obtained from division of metal concentrations in the upper sections to thosefrom the lowest sections of the cores were 18-76 for Hg (very high contamination), 3.5-4.7 for Cd (considerable, highcontamination), 2.1-2.9 for Zn and Pb (low to moderate pollution), and 0.7-1.7 for Cu, Cr, Ni, Co, Mn and Fe (verylow to no contamination). In particular, high contamination factors (CF>2) showed the effects of anthropogenicactivities present in the region since the 1800s. The presence of coal, ash and metallic slag particles in the sandfractions of the upper 4-22 cm core sections also confirmed anthropogenic effects in the two bights.

  • Baltic Sea

  • Germany

  • Sediment

  • Anthropogenic

  • Pollution

  • Abu-Hilal, A.H., Badran, M.M., 1990. Effect of Pollution Sources on Metal Concentration in Sediment Cores from the Gulf of Aqaba (Red Sea). Marine Pollution Bulletin, 21(4), 190-197.

  • Adamo, P., Arienzo, M., Imperato, M., Naimo, D., Nardi, G., Stanzione, D., 2005. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 61 (6), 800-809.

  • Alak, A., Sümer, Ö., 2017. Marmara ve Karadeniz Kıyılarındaki Güncel Sedimanlar İçinde Antroposen’in Varlığına Ait Yeni Bulgular. Türkiye Jeoloji Bülteni, 60, 145-168.

  • Aksu, A.E., Yaşar, D., Uslu, O., 1998. Assessment of marine pollution in İzmir Bay: Heavy metal and organic compound concentrations in surficial sediments. Turkish Journal of Engineering and Enviromental Sciences, 22(5), 387-416.

  • Algan, O., Balkıs, N., Çağatay, M.N., Sarı, E., 2004. The sources of metal contents in the shelf sediments from the Marmara Sea, Turkey. Environmental Geology, 46, 932-950.

  • Atabey, E., 2010. Türkiye’de İnsan Kaynaklı (Antropojenik) Unsurlar ve Çevresel Etkileri. MTA Yer Bilimleri ve Kültür Serisi-7, Ankara, 286 s.

  • Balkıs, N., Çağatay, M.N., 2001. Factors controlling metal distributions in the surface sediments of the Erdek Bay, Sea of Marmara, Turkey. Environment International, 27, 1-13.

  • Balsved, J.E., http://www.navalhistory.dk

  • Bayat, O., 1998. Characterisation of Turkish fly ashes. Fuel, 77 (9/10), 1059-1066.

  • Birch, G.F., Davies,K.P., 2003. A scheme for assessing human impacts on coastal aquatic environments using sediments,(Coastal GIS 2003: an integrated approach to Australian coastal issues, (371- 380), Editörler: Woodcoffe, C.D., R.A. Furness). Wollon

  • Bodur, M.N., Ergin, M., 1994. Geochemical characteristics of the recent sediments from the Sea of Marmara. Chemical Geology,115, 73-101.

  • Brügmann, L., Bublitz, G., Hennings, U., 1980. Der Gehalt von Spurenmetallen in Sedimentkernen der westlichen Ostsee. Zeitschrift für Angewandte Geologie, 26(8), 398-405.

  • Covelli, S., Fontolan, G., 1997. Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30 (1-2), 34-45.

  • Crutzen, P.J., 2006. The “Anthropocene”, (Earth System Science in the Anthropocene, Editörler: Ehlers E., Kraft, T.). Springer, Berlin, Heidelberg, 13-18.

  • Djafari, D., 1977. Mangan-Eisen-Akkumulate in der Kieler Bucht. Meyniana, 29, 1-9.

  • Edgerton, H.E., Seibold, E., Vollbrecht, K., Werner, F., 1966. Morphologische Untersuchungen am Mittelgrund (Eckernförder Bucht, westliche Ostsee). Meyniana, 16, 37-50.

  • Ergin, M., 1982. Mineralogisch-Sedimentologische und Geochemische Untersuchungen an Zwei Sedimentkernen Aus Schlickgebieten der Westlichen Ostsee- Einfluss klimatischer und anthropogener faktoren auf die sedimentation in den Meeresbuchten Schleswig-H

  • Ergin, M. 1988. Mineralogy and petrology of Holocene sediments from the western Baltic Sea. Bollettino Di Oceanologia Teorica Ed Applicata, 6(4), 227- 242.

  • Ergin, M., 1990. Pre-Civilizational and Civilizational Layers in Two Sediment Cores from the Western Baltic Sea. Bollettino Di Oceanologia Teorica Ed Applicata, 8 (1), 41-50.

  • Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., Yörük, R., 1991. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269- 285.

  • Ergin, M., Bodur, M.N., Ediger, D., Ediger, V., Yılmaz, A., 1993. Organic carbon distribution in the surface sediments of the Sea of Marmara and its control by the inflows from adjacent water masses. Marine Chemistry, 41, 311-326.

  • Ergin, M., Kazan, B. ve Ediger, V., 1996. Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of İskenderun, Eastern Mediterranean. Marine Geology, 133, 223-239.

  • Erlenkeuser, H., Suess, E. ve Willkomm, H., 1974. Industraliaztion affects heavy metal and carbon isotope concentrations in recent Baltic Sea sediments. Geochim. Cosmochim. Acta, 38 (6), 823-842.

  • Fagan, B., 2000. The Little Ice Age: How Climate Made History 1300-1850. Basic Books, New York, 272 s.

  • Förstner, U., Wittmann, G.T.W., 1979. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin, 486 s.

  • Garnaga, G., 2012. Integrated assessment of pollution in the Baltic Sea. Ekologija, 58(3), 331-355.

  • Güven, K.C., Öztürk, B., 2005. Deniz Kirliliği-Temel Kirleticiler ve Analiz Yöntemleri. Türk Deniz Araştırmaları Vakfı (TÜDAV) Yayınları No.21, İstanbul, 512 s.

  • Hahn, H.-W., 2011. Die Industrielle Revolution in Deutschland (Enzyklopaedi deutscher Geschichte). Band 491, 193 s.

  • Hakanson, L., 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975-1001.

  • Hartman, N., 1964. Zur Geochemie von Mangan und Eisen in der Ostsee. Meyniana, 14, 3-20.

  • HELCOM, 2007. Heavy Metal Pollution to the Baltic Sea in 2004. HELCOM Baltic Sea Environment Proceedings No. 108, 33s. http:// www.google. com/maps/ 12 Haziran 2019. Image Landsat/ Copernicus, 2009 GeoBasis-DE-BKG.

  • Kanellopoulos, T.D., Angelidis, M.O., Karageorgis, A.P., Kaberi, H., Kapsimalis, V. ve Anagnostou, C., 2006. Geochemical composition of the uppermost prodelta sediments of the Evros River, northeastern Aegean Sea. Journal of Marine Systems, 63, 63-78

  • Kaufhold, H., Burbaum, B., Grube, A., 2012. Geologische Übersichtskarte von SchleswigHolstein 1:250.000. Landesamt für Landwirtschaft, Umwelt und laendliche Raüme SchleswigHolstein. Geologischer Dienst.

  • Kemp, A.L.W., Thomas, R.L., Dell, C.I., Jacquet, J.M., 1976. Cultural impact on the geochemistry of sediments in Lake Erie. Journal of the Fisheries Research Board of Canada, 33(3), 440-462.

  • Komatina, M.M., 2004. Tıbbi Jeoloji-Jeolojik Ortamların İnsan Sağlığı Üzerindeki Etkileri. (Medical Geology Effects of Geological Environments on Human Health’ten Türkçeye çeviri: Örgün Y., Bayrak D. TMMOB Jeoloji Mühendisleri Odası, Çeviri Serisi No

  • Kucuksezgin, F., Kontas, A., Altay, O., Uluturhan, E., Darılmaz, E., 2006. Assessment of marine pollution in Izmir Bay: Nutrient, heavy metal and total hydrocarbon concentrations. Environment International, 32, 41-51.

  • Kuijpers, A., 1974. Trace elements at the depositional interface and in sediments of the outer Parts of the Eckernförder Bucht, Western Baltic. Meyniana, 26, 23-38.

  • Leivuori M., Joksas, K., Seisuma, Z., Kulikova, I., Petersell, V., Larsen, B., Pedersen, B., Floderus, S., 2000. Distribution of heavy metals in sediments of the Gulf of Riga, Baltic Sea. Boreal Environment Research, 5, 165-185.

  • Lorenzo, F., Alonso, A., Pellicer, M.J., Pages, J.L., Perez-Arlucea, M., 2007. Historical analysis of heavy metal pollution in three estuaries on the North coast of Galicia (NW Spain). Environmental Geology, 52, 789-802.

  • Magaard, L., Rheinheimer, G., 1974. Meereskunde der Ostsee. Springer, Berlin-Heidelberg, 269 s.

  • Müller, G., 1964. Methoden der Sedimentuntersuchungen. Schweizert Verlag, Stuttgart, 303 s.

  • Müller, G., Dominik, J., Reuther, R., Malish, R., Schulte, E., Acker, L., Irion, G., 1980. Sedimentary record of environmental pollution in the western Baltic Sea. Naturwissenschaften, 67(12), 595-600.

  • Nilsson, S., 2006. International river basins in the Baltıc Sea region. European Union, BSR INTERREG III B Programme Project Report 14.

  • Prange, W., 1978. Der letzte weichselzeitliche Gletschervorstoss in Schleswig-Holstein-das Gefüge überfahrener Schmelzwassersande und die Entstehung der Morphologie. Meyniana, 30, 61-75.

  • Remeikaite-Nikiene, N., Garnaga-Budre, G., Lujaniene, G., Joksas, K., Stankevicius, A., Malejevas, V., Bariseviciute, R., 2018. Distribution of metals and extent of contamination in sediments from the South-eastern Baltic Sea (Lithuanian zone). Ocean

  • Schlichting, E., (1960). Typische Böden SchleswigHolsteins, P.Pray, Hamburg, 140 s.

  • Secrieru, D., Secrieru, A., 2002. Heavy-Metal Enrichment of Man-made Origin of Superficial Sediment on the Continental Shelf of the Northwestern Black Sea. Estuarine, Coastal and Shelf Science, 54, 513-526.

  • Seibold, E., 1970. Nebenmeere im humiden und ariden Klimabereich. Geologische Rundschau, 60(1), 73- 105.

  • Seibold, E., Exon, N., Hartmann, M., Kögler, F.C., Krumm, H., Lutze, G.F., Newton, R.S., Werner, F., 1971. Marine Geology of Kiel Bay. In: Sedimentology of Parts of Central Europe. VIII. International Sediment. Congress, Heidelberg, 209-23.

  • Shen, F., Mao, L.,Sun, R., Du, J., Tan, Z., Ding, M., 2019. Contamination Evaluation and Source Identification of Heavy Metals in the Sediments from the Lishui River Watershed, Southern China. International Journal of Environmental Research and Publi

  • Siegel, F.R., 2002. Environmental Geochemistry of Potentially Toxic Metals. Springer-Verlag, BerlinHeidelberg, 218 s.

  • Suess, E., Erlenkeuser, H., 1975. History of metal pollution and carbon input in Baltic Sea sediments. Meyniana, 27, 63-75.

  • Swaine, D.J., 1990. Trace elements in Coal. Butterworths, Londra, 294s.

  • Szefer, P., 2002. Metal pollutants and radionuclides in the Baltic Sea- an overview. Oceanologia, 44(2), 129-178.

  • Tomlinson, D.L., Wilson, J.G., Harris, C.R., Jeffrey, D.W., 1980. Problems in the assessment of heavy-metal levels inestuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566-575.

  • Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., Ayçık, H., Şahin, N., 2002. Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, 401 s.

  • Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175-192.

  • Ünlü, S., Topçuoğlu, S., Alpar, B., Kırbaşoğlu, Ç., Yılmaz, Y.Z., 2007. Heavy metal pollution in surface sediment and mussel samples in the Gulf of Gemlik. Environmental monitoring and assessment, 144, 169-178.

  • Voipio, A., 1981. The Baltic Sea. Elsevier, Amsterdam, 418 s.

  • Wang, X.C., Feng, H. ve Ma, H.Q., 2007. Assessment of Metal Contamination in Surface Sediments of Jiaozhou Bay, Qingdao, China. Clean, 35(1), 62- 70.

  • Yaşar, D., Aksu, A.E.,Uslu, O., 2001. Anthropogenic Pollution in İzmit Bay: Heavy Metal Concentrations in Surface Sediments. Turkish Journal of Engineering and Environmental Sciences, 25(4), 299-313.

  • Yücesoy, F.,Ergin, M., 1992. Heavy-metal geochemistry of surface sediments from the southern Black Sea shelf and upper slope. Chemical Geology, 99, 265- 287.


  • Ergin, M . (2020). Eckernförder ve Geltinger Körfezlerinin Antropojenik Ağır Metal Kirliliğinin Karot Sedimentlerinde Araştırılması, Batı Baltık Denizi, Almanya . Türkiye Jeoloji Bülteni , 63 (1) , 21-42 . DOI: 10.25288/tjb.590966

  • Mitigation of Environmental Effects of Anthropogenic Metal Contamination Using Fly Ash
    Deniz Şanliyüksel Yücel Burcu İleri
    View as PDF

    Abstract: Acid mine drainage (AMD) generated by anthropogenic effects has low pH and contains highconcentrations of metals, sulfate, dissolved and suspended solids. The Etili coal mine, located within the Çan CoalBasin, northwestern Turkey, has been facing environmental problems caused by AMD since the 1980s. As a result ofmining activities, fine grain size mine waste with high sulfur content is distributed over large areas around the coalmines and accelerates the AMD formation process. In this study, the aim was to determine the effect of using thefluidized bed thermal power plant waste of fly ash to neutralize AMD and reduce environmental effects caused bymine wastes at the laboratory scale. Based on the results of chemical analysis, paste pH and acid-base accountingtests, it was identified that mine wastes need to be mixed with at least 30% fly ash by weight in order to preventAMD production. The leach tests prepared according to the determined optimum mixing ratio showed that as the pHvalue of leachate increased, the electrical conductivity, metal (Al, Fe, Mn, Ni, Pb and Zn) and sulfate concentrationsdecreased. At the end of 24 h, the metal concentrations of the leachate fell below the permissible limits in the Turkish Water Pollution Control Regulation and there was no increase in metal concentrations of the leachate during 720 h.At the end of 720 h, reductions of 72-97% were identified for the metal concentrations in leachate. In this research,it was determined that the environmental effects of AMD could be minimized by using fly ash. 

  • Acid mine drainage

  • Çan Coal Basin

  • environmental effect

  • metal leaching

  • mine waste

  • fly ash

  • Akçil, A., Koldaş, S., 2006. Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.

  • Balcı, N., Gül, S., Kılıç, M.M., Karagüler, N.G., Sarı, E., Sönmez, M.Ş., 2014. Balya (Balıkesir) Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna etkileri. Türkiye Jeoloji Bülteni, 57(3), 1–24.

  • Görhan, G., Kahraman, E., Başpınar, M.S., Demir, İ., 2009. Uçucu Kül bölüm II: Kimyasal, mineralojik ve morfolojik özellikler. Yapı Teknolojileri Elektronik Dergisi, 5(2), 33–42.

  • Hageman, P.L., Seal, R.R., Diehl, S.F., Piatak, N.M., Lowers, H.A., 2015. Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Ap

  • Jones, S.E., Çetin, B., 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel, 188, 294–309.

  • Karadeniz, M., 2008. Sülfürlü Madenlerin Sorunu Asit Maden Drenajı ve Çözümü. TMMOB Maden Mühendisleri Odası Yayını, Oda Yayın No: 146, Ankara, 231 s.

  • Karadeniz, M., 2011. Balıkesir Balya kurşun-çinko madeni flotasyon artıklarının asit maden drenajı oluşum potansiyelinin derinlikle değişiminin araştırılması. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 228 s.

  • Krauskopf, K.B., Bird, D.K., 1995. Introduction to Geochemistry, Third Edition. McGraw-Hill, New York, 647 s.

  • Lapakko, K., 1992. Recent literature on static predictive test. Proceedings of the Symposium on Emerging Process Technologies for a Cleaner Environment, Phoenix, AZ., 24-27 February 1992, S. Chander (ed.), Society for Mining, Metallurgy and Explorati

  • Lottermoser, B.G., 2010. Mine wastes: Characterization, Treatment, and Environmental Impacts, Third Edition. Springer Heidelberg, Berlin, 410 s.

  • Okumuşoğlu, D., Gündüz, O., 2013. Hydrochemical status of an acidic mining lake in Can-Canakkale,Turkey. Water Environment Research, 85(7), 604– 620.

  • Perez-Lopez, R., Nieto, J.M., Almodovar, G.R., 2007. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67(8), 1637–1646.

  • Qureshi, A., Jia, Y., Maurice, C., Öhlander, B., 2016. Potential of fly ash for neutralisation of acid mine drainage. Environmental Science Pollution Research, 23(17), 17083–17094.

  • Qureshi, A., Maurice, C., Öhlander, B., 2019. Effects of the co-disposal of lignite fly ash and coal mine waste rocks on AMD and leachate quality. Environmental Science Pollution Research, 26(4), 4104–4115.

  • Sayılgan, E., Kürklü, K., 2018. Uçucu kül örneğinden demir ve alüminyum gideriminde Taguchi yaklaşımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 133–142.

  • Smart, R., Skinner, W.M., Levay, G., Gerson, A.R., Thomas, J.E., Sobieraj, H., Schumann, R., Weisener, C.G., Weber, P.A., Miller, S.D., Stewart, W.A., 2002. ARD Test Handbook: Project P387A Prediction and Kinetic Control of Acid Mine Drainage. AMIRA

  • Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M., 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. Environmental Protection Technology Series, United States Environmental ProtectionAgency EPA-600/2-78-054. Washington

  • Stouraiti, C., Xenedis, A., Paspaliaris, I., 2002. Reduction of Pb, Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air and Soil Pollution, 137, 247–265.

  • Şanlıyüksel Yücel, D., Baba, A., 2013. Geochemical characterization of acid mine lakes and their effect on the environment, NW of Turkey. Archives of Environmental Contamination and Toxicology, 64(3), 357–376.

  • Şanlıyüksel Yücel, D., Yücel, M.A., Baba, A., 2014. Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environmental Earth Sciences,

  • Şanlıyüksel Yücel, D., Balcı, N., Baba, A., 2016. Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Archives of Environmental Contamination and Toxicology, 70(4), 757–782.

  • Şanlıyüksel Yücel, D. 2017. Removal of heavy metals from aqueous solution using fly ash: Can Thermal Power Plant, NW Turkey as a case study. Karaelmas Science and Engineering Journal, 7(1), 291–298.

  • Şanlıyüksel Yücel, D., Yücel, M.A., 2017. Determining hydrochemical characteristics of mine lakes from abandoned coal mines and 3D modelling of them using unmanned aerial vehicle. Pamukkale University Journal of Engineering Sciences, 23(6), 780–791.

  • Şanlıyüksel Yücel, D., İleri, B., 2018. Evaluation of ultrasound-assisted modified fly ash for treatment of acid mine drainage. In: S.A. Akinyemi (ed.), Coal Fly Ash Beneficiation- Treatment of Acid Mine Drainage with Coal Fly Ash, InTech: Croatia, 5

  • Şanlıyüksel Yücel, D., 2019. Characterization and comparison of mine wastes in Can Coal Basin, northwest Turkey: A case study. Environmental Earth Sciences, 78, 154.

  • Villeneuve, M., Bussière, B., Benzaazoua, M., Aubertin, M., Monroy, M., 2003. The influence of kinetic test type on geochemical response of low acid generating potential tailings. 10th International Conference on Tailings and Mine Waste: Tailings and

  • Wang, J., Teng, X., Wang, H., Ban, H., 2004. Characterizing the metal adsorption capability of a Class F coal fly ash. Environmental Science & Technology, 38(24), 6710–6715.

  • Yehesis, M.B., Shang, J.Q., Yanful, E.K., 2009. Longterm evaluation of coal fly ash and mine tailings co-placement: A site-specific study. Journal of Environmental Management, 91(1), 237–244.

  • Yerüstü Su Kalitesi Yönetmeliği, 2015. Orman ve Su İşleri Bakanlığı, http://www.resmigazete.gov.tr/ eskiler/2015/04/20150415-18.htm 17 Temmuz 2019.

  • Yolcubal, İ., Demiray, A.D., Çiftçi, E., Sangu E., 2016. Environmental impact of mining activities on surface water and sediment qualities around Murgul copper mine, Northeastern Turkey. Environmental Earth Sciences, 75, 1415.


  • Şanlıyüksel Yücel, D , İleri, B . (2020). Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı . Türkiye Jeoloji Bülteni , 63 (1) , 43-56 . DOI: 10.25288/tjb.593416

  • Distribution of Heavy Metal and Enrichment Degree in Core Sediments from Erdek Gulf
    Tuğçe Nagihan Arslan Erol Sari Mehmet Ali Kurt Dursun Acar
    View as PDF

    Abstract: The Gulf of Erdek is located in southwest Marmara Sea. Average and maximum depths are around 34 and55 m, respectively. The study area is less polluted by pollutants of anthropogenic origin than the other gulfs (Izmit,Gemlik) in the Marmara Sea. The main source of fresh water and sediments in the gulf are the Gönen and KarabigaRivers. These rivers, which receive pollution load from domestic, industries (ceramic factories and leather industry)and agricultural waste water from Gönen and Biga towns, drain in the Marmara Sea. In this study, distribution ofhistorical heavy metal contamination derived from anthropogenic and/or natural origin was investigated in a 174-cm long core sediment collected from the mouth of the Gönen River at -16 m water depth. Heavy metal enrichmentin the region was determined by analysing heavy metal (Cu, Pb, As, Zn, Cr and Co), grain size and total organiccarbon (TOC) contents. According to the results obtained, average Cu, Pb, Zn, Cr and Co values in the core are 16,68, 10, 26, 111 and 4 mg.kg-1, respectively. The mean distribution of gravel, sand, silt and clay are 0.1, 1, 28.5 and70.4%, respectively. TOC values range between 0.5 and 1.9%. Enrichment factor (EF) was calculated throughout the core to reveal the pollution history of the study area more clearly. Mean EF values through the vertical profile ofthe core are EF-Pb 12.2, EF-As 4.8, EF-Cr 3.3, EF-Zn 1.1, EF-Cu 0.9, and EF-Co 0.7. Based on Sutherland’s (2000)enrichment factor contamination categories, core sediments were moderately contaminated with Cr and As, andcontaminated significantly with Pb. The study area was not contaminated with Co, Cu and Zn. The EF-Pb, EF-Asand EF-Cr values indicate that untreated anthropogenic waste water with agricultural and industrial origin (leatherindustry) was supplied in  the gulf.

  • Heavy metal

  • anthropogenic pollution

  • Gönen River

  • core sediment

  • enrichment factor

  • Akkaya, E., 2004. Marmara Denizi’nin mevcut kirlenme durumu ve çözüm önerileri. 1. Ulusal Çevre Kongresi, 13-15 Ekim 2004, Sivas.

  • Akyüz, H.S., 1995. Manyas-Susurluk-Kepsut (Balıkesir) civarının jeolojisi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 202 s (yayımlanmış).

  • Akyüz, T., Mukhamedshina, N., Akyuz, S., Sarı, E., Mirsagatova, A.A., 2007. Toxic and trace element analysis of surface sediments from the Gulf of Saros by INAA and XRF methods. Journal of Radioanalytical and Nuclear Chemistry, 273 (3), 747-751.

  • Amin, B., Ismail, A., Arshad, A., Yap, C.K., Kamarudin, M.S., 2009. Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environmental Monitoring and Assessment, 148, 291-305.

  • Atgın, R.S., El-Agha, O., Zararsız, A., Kocataş, A., Parlak, H., Tuncel, G., 2000. Investigation of the sediment pollution in İzmir Bay: Trace elements. Spectrochimica Acta Part B: Atomic Spectroscopy, 55 (7), 1151-1164.

  • Balkıs, N., Çağatay, M.N., 2001. Factors controlling metal distributions on the surface sediments of the Erdek Bay, Sea of Marmara, Turkey. Environment International, 27 (1), 1-13.

  • Çağatay, M.N., Balkıs, N., Sancar, Ü., Çakır, Z., Yücesoy, F., Eryılmaz, M., Sarı, E., Erel, L., Akçer, S., Biltekin, D., 2006. Marmara Denizi çökel jeokimyası atlası, TÜBİTAK Projesi, 103Y053, İstanbul (Yayınlanmış).

  • Çağatay, M.N., Görür, N., Polonia, A., Demirbağ, E., Sakinç, M., Cormier, M.H., Capotondi, L., McHugh, C.M.G., Emre, Ö., Eriş, K., 2003. Sea-level changes and depositional environments in the Izmit Gulf, eastern Marmara Sea, during the late glacial–H

  • Çağatay, M.N., Keigwin, L.D., Okay, N., Sarı, E., Algan, O., 2002. Variability of clay-mineral composition on Carolina Slope (NW Atlantic) during marine isotope stages 1–3 and its paleoceanographic significance. Marine Geology, 189 (1-2), 163-174.

  • EİE. 1993. Türkiye akarsularında sediment gözlemleri ve sediment taşınım miktarları. Elektrik İşleri Etüd İdaresi Genel Müdürlüğü, No: 93-59, Ankara (yayınlanmış).

  • European Commission, 2007, MET referans dokümanı (BREF), (http:// eippcb.jrc.ec.europa.eu/), 30 Nisan 2019.

  • Galehouse, J.S., 1971. Sedimentation Analysis, (Procedures in sedimentary petrology, Editör: Carver, R.E., Wiley-Interscience, New York, 69- 94.

  • Gaudette, H.E., Flight, W.R., Tonner, L., Folger, D.G., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44, 249-253.

  • Hallı, M., 2014. Ergene Nehri’nin Ege Denizi’ne Olan Kirlilik Etkisinin Güncel Çökel Jeokimyası ve Sedimantolojik Yöntemlerle Araştırılması. İstanbul Üniversitesi Deniz Bilimleri ve İşletmeciliği Enstitüsü, Yüksek Lisans Tezi, 86 s., (yayımlanmamış).

  • Hallı, M., Sarı, E., Kurt, M.A., 2014. Assessment of arsenic and heavy metal pollution in surface sediments of the Ergene River, Turkey. Polish Journal of Environmental Studies, 1581-1590.

  • Karabulut, A.T., 2004. Biga Yarımadasında Jura Öncesi Muhtemel Bir Ofiyolit Topluluğu. İstanbul Teknik Üniversitesi, Yüksek Lisans tezi, 41 s., (yayınlanmış).

  • Karbassi, A.R., Monavari, S.M., Bidhendi Gh. R., Nouri, J., Nematpour, K., 2008. Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 147, 107-116.

  • Krauskopf, K.B., 1979. Introduction to Geochemistry, 2nd edition. International series in the Earth and Planetary Sciences. McGraw-Hill, New York, 617 s.

  • Loring, D.H., Rantala, R.T.T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32 (4), 235-283.

  • Malvandi, H., 2017. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran. Marine Pollution Bulletin, 117, 547-553.

  • McManus, J., 1988. Grain size determination and interpretation, (Techniques in Sedimentology, Editör: Tucker, M.,). Blackwell Scientific Publication, Oxford, 63-85.

  • Mohsen, M., Wang, Q., Zhang, L., Sun, L., Lin, C., Yang, H., 2019. Heavy metals in sediment, microplastic and sea cucumber Apostichopus japonicas from farms in China. Marine Pollution Bulletin, 143, 42-49.

  • Mülayim, A., Balkıs, N., Balkıs, H., Aksu, A., 2012. Distributions of the metals in the surface sediments of the Bandırma and Erdek Gulfs, MarmaraSea, Turkey. Toxicological and Environmental Chemistry, 94 (1), 56-69.

  • Sakan, S.M., Dordevic, D.S., Monojlovic, D.D., Predrag, P.S., 2009. Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382-3390.

  • Sarı, E., 2008. Source and distribution of heavy metals in river sediments from the southern drainage basin of the Sea of Marmara, Turkey. Fresenius Environmental Bulletin, 17 (12), 2007-2019.

  • Sarı, E., Ünlü, S., Apak, R., Balcı, N., Koldemir, B., 2013. Evaluation of contamination by selected elements in a Turkish Port. Polish Journal of Environmental Studies, 22, 841-847.

  • Sarı, E., Çağatay, M.N., Acar, D., Belivermiş, M., Kılıç, Ö., Arslan, T.N., Tutay, A., Kurt, M.A., Sezer, N., 2018. Geochronology and sources of heavy metal pollution in sediments of Istanbul Strait (Bosporus) outlet area, SW Black Sea, Turkey. Chemo

  • Sutherland, R.A., 2000. A comparison of geochemical information obtained from two fluvial bed sediment fractions. Environmental Geology, 39 (3-4), 330-341.

  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metals toxicity and the environment. EXS 101 (101), 133-164.

  • Ternek, Z., Erentöz, C., Pamir, H.N., Akyürek, B., 1987. 1/500.000 ölçekli Türkiye Jeoloji Haritası, İstanbul Paftası. Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Ünlü, S., Topçuoğlu, S., Alpar, B., Kırbaşoğlu, C., Yılmaz, Y.Z., 2008. Heavy metal pollution in surface sediment and mussel samples in the Gulf of Gemlik. Environmental Monitoring and Assessment, 144, 169-178

  • Ünlüata, Ü., Oğuz, T., Latif M.A., Özsoy, E., 1990. On The Physical Oceanography of The Turkish Straits. The Physical Oceanography of the Sea Straits. NATO/ASI Series, 25-60.

  • Yıldız, M., Gürkan, M.O., Turgut, C., Kaya, Ü., Ünal, G., 2005. Tarımsal savaşımda kullanılan pestisitlerin yol açtığı çevre sorunları (Environmental problems of pesticides used in plant protection), VI. Türkiye Ziraat Mühendisliği Teknik Kongresi, 3

  • Yüce, H., Türker, A., 1991. Marmara Denizi’nin fiziksel oşinografik özellikleri ve Akdeniz suyunun Karadeniz’e girişi. Uluslararası Çevre Sorunları Sempozyumu Tebliğleri, İstanbul Marmara Rotary Kulübü, İstanbul, 284-303.

  • Yümün, Z.Ü., Kam, E., Önce, M., 2019. Analysis of toxic element with ICP-OES and libs methods in marine sediments around the sea of Marmara in Kapıdağ Peninsula. Journal of Engineering Technology and Applied Sciences, 4 (1), 43-50.


  • Arslan Kaya, T , Sarı, E , Kurt, M , Acar, D . (2020). Erdek Körfezi Karot Çökellerinin Ağır Metal Dağılımı ve Zenginleşme Derecesi . Türkiye Jeoloji Bülteni , 63 (1) , 57-68 . DOI: 10.25288/tjb.563038

  • Effects of Urban Activities on Coastal Aquifers: Case Study in the Eastern Black Sea Basin
    Fatma Gültekin Esra Hatipoğlu Temizel
    View as PDF

    Abstract: The Eastern Black Sea Basin is the highest rainfall area in Turkey with an average rainfall of 1300mm. However, this region is one of the poorest regions in terms of spring and groundwater potential due to itstopography having extremely high slopes, and impermeable-less permeable rocks exposed in the basin. Alluvium,which is carried by streams flowing from north to south along the Eastern Black Sea coastline, are important interms of groundwater. Alluvium, of which thickness and width decrease from north to south, has a length of 1-16 kmand a width of 50-1500 m. Water is provided from wells that are drilled in alluvium with a thickness of up to 40 m.According to DSI (2015) data, the static water level is between 0.3 and 1 m, while the dynamic water level is between5 and 15 m. The volume of water stored in the coastal aquifers of the Eastern Black Sea Basin is 238 hm3. Some of these aquifers are still used and some were used in the past as drinking water sources. However, in recent years,construction such as industrial sites, quarries, coal storage and packaging facilities, warehouses and buildings ofsome public institutions and organizations has been increasing on these aquifers, which form partially flat areasbetween narrow valleys. This construction adversely affects both the quantity and quality of shallow groundwaterstored in alluvium. The aquifers are the most important groundwater sources in the basin and are used to supplydrinking and potable water for 4 cities. Değirmendere and Taşlıdere aquifers, which provided drinking-potablewater in the past, were completely under stress by urbanization and the use of groundwater was terminated. Theurban activities on Melet, Civil, Pazarsuyu (Ordu) and Batlama and Keşap (Giresun) aquifers, which are locatedin the settlement area, continue to increase. The aquifers of Curi, Yağlıdere, Gelevera, Akhisar, Yanbolu, Baltacı,İyidere and Fırtına are less affected by urban activities. Among them, Curi, Yağlıdere, İyidere and Fırtına aquifersare aquifers with high groundwater capacities. In order to be able to use the Eastern Black Sea coastal aquifers formany years, it is necessary to protect them in terms of quality and recharging.

  • Coastal aquifers

  • Eastern Black Sea Basin

  • urban activities

  • Acar, S., 2015, Petrografik ve Fiziksel Özelliklerin Granitik Kayaçların Dayanımına Etkisinin Araştırılması. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 154 s, (yayımlanmamış).

  • Arslan, M., Temizel, İ., Abdioğlu, E., Kolaylı, H., Yücel, C., Boztuğ, D., Şen, C. 2013. 40Ar- 39Ar dating, whole-rock and Sr-Nd-Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey

  • Brassington, F. K., Rushton, K., 1987. Rising water table in central Liverpool. Quarterly Journal of Engineering Geology, 20, 151-158.

  • Brencic, M., 2006. Groundwater and highways interaction: past and present experiences of highway construction in Slovenia. Environmental Geology, 49, 804-813.

  • Celep, S., 2009. Trabzon İli Yeraltı ve Yerüstü Sularının Hidrojeolojik, Hidrojeokimyasal İncelemesi ve Su Kalitesinin İzlenmesi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 165 s., (yayımlanmamış).

  • Choi, B., Yun, S., Yu, S., Lee, P., Park, S., Chae, G., 2005. Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land use and pollutant recharge. Environmental Geology Journal, 48 (8) 979-990.

  • Çevik, L., 2012. Aydınlıkevler (Trabzon) Yöresindeki Bina Temel Zemininin Jeoteknik Özelliklerinin Araştırılması. Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, Trabzon, Lisans Tezi, 32 s., (yayımlanmamış).

  • Diaz-Fierros, T.F., Puerta, J., Suarez, J., Diaz-Fierros, F.V., 2002. Contaminant loads of CSOs at the wastewater treatment plant of a city in NW Spain. Urban Water, 4 (3) 291-299.

  • Dilek, R., 1979. Trabzon-Hopa Kıyı Şeridinin Yeraltı Suyu Olanakları, Karadeniz Teknik Üniversitesi Basımevi, Trabzon, No: 99, 103 s., (yayımlanmamış).

  • DSİ, 2015. Devlet Su İşleri 22. Bölge Müdürlüğü, Doğu Karadeniz Havzası Master Plan Çalışmaları İşi, Doğu Karadeniz Havzası Hidrojeoloji Raporu, 551 s, (yayımlanmamış).

  • Ersoy, H., Yalçınalp, B., Babacan, A.E., 2014. Sarraftepe (Trabzon) Tefrit Silinin Jeolojik ve Jeomekanik Özelliklerinin Araştırılması. Jeoloji Mühendisliği Dergisi, 38 (1) 39-50.

  • Fetter, C.W., 2001. Applied Hydrogeology. PrenticeHall, Inc., New Jersery, USA, 612 s.

  • Fletcher, T.D., Andrieu, H., Hamel, P., 2013. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Advances in Water Resources, 51, 261-279.

  • Foster, S.S.D., Lawrence, A.R., Morris, B.M., 1998. Groundwater in urban development, Assessing Management Needs and Formulating Policy Strategies. World Bank Technical Paper no 390, Washington DC., 74 s., (yayımlanmış).

  • Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, New Jersey, USA, 562 s.

  • Fusillo, T.V., Hockreiter, J.J., Lord, D.G., 1985. Distribution of volatile organic compounds in a New Jersey coastal plain aquifer. Ground Water, 23, 354-360.

  • Gültekin F., Dilek, R., Fırat Ersoy, A., Ersoy, H., 2005. Aşağı Değirmendere (Trabzon) Havzasındaki Suların Kalitesi. Jeoloji Mühendisliği Dergisi, 29 (1) 21-35.

  • Güven, İ.H., 1993. Doğu Pontidlerin Jeolojisi ve 1/250.000 Ölçekli Kompilasyonu. Maden Tetkik Arama Yayınları, Ankara, 65 s.

  • Hayashi, T., Tokunaga, T., Aichi, M., Shimada, J., Taniguchi, M., 2009. Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Science of the Total Environment 4

  • İklim Değişikliğinin Su Kaynaklarına Etkisi Projesi, 2016. T.C. Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, Ankara, İklim Değişikliğinin Su Kaynaklarına Etkisi Projesi Nihai Raporu, Ek 24–Doğu Karadeniz Havzası, 120 s, (yayımlanmamış).

  • Knipe, C.V., Lloyd, J.W., Lerner, D.N., Gresswell, R., 1993. Rising groundwater levels in Birmingham and the engineering implications. Construction Industry Research and Information Association Special Publication, 92, 114 s.

  • Leitao, T.E., 2005. Impact of road runoff in soil and groundwater. Synthesis of Portuguese and other European case-studies. The Fourth Inter-Celtic Colloguium on Hydrology and Managemet of Water Resources, Guimaraes, Portugal, July, 11- 14, 2005.

  • Long, D.T., Saleem, Z.A., 1974. Hydrogeochemistry of carbonate groundwaters of an urban area. Water Resources Research, 10, 1229-1238.

  • McGrane, S.J., Tetzlaff, D., Soulsby, S., 2014. Influence of lowland aquifers and anthropogenic impacts on the isotope hydrology of contrasting mesoscale catchments. Hydrological Processes, 28 (3) 793- 808.

  • McGrane, S.J., 2016. Impacts of urbanisation on hydrological and waterquality dynamics, and urban water management:a review. Hydrological Sciences Journal, 61 (13), 2295-2311.

  • Naik, P.,K., Tambe J.A., Dehury, B.N., Tiwari, A.N., 2008. Impact of urbanization on the groundwater regime in a fast growing city in central India. Environmental Monitoring and Assessment, 146, 339-373.

  • Nazari, M.M., Burston, M.W., Bishop, P.K., Lerner, D.N., 1993. Urban ground-water pollution: A case study from Coventry, United Kingdom. Ground Water, 31 (3) 417-424.

  • Niemczynowicz, J., 1999. Urban hydrology and water management – Present and future challenges. Urban Water, 1 (1) 1-14.

  • Somel, N., 1988. Aksu Vadisi (Giresun) Alüvyonlarının Hidrojeolojisi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 46 s., (yayımlanmamış).

  • Temizel, İ., Arslan, M., Yücel, C., Abdioğlu, E., Ruffet, G., 2016. Geochronology and geochemistry of Eocene-aged volcanic rocks around the Bafra (Samsun, N Turkey) area: Constraints for the interaction of lithospheric mantle and crustal melts. Litho

  • Trivedi, S.M., Yadav, B., Gupta, R.N., Chandrasekharan, H., Ramachandran, K, 2001. Effects of urbanization on changes in groundwater quantity and quality in Delhi State, India, (Impact of Human Activity on Groundwater Dynamics, Editörler: Gehrels, H.

  • Vörösmarty, C.J., Green, P., Salisbury, J., Richard, B., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. Nature, 289, 284-288.

  • Yanbay, H., 1995. Curi Irmağı (Ünye-Ordu) Alüvyonlarının Hidrojeolojisi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 80 s., (yayımlanmamış).

  • Yavuz, H., 2004. Giresun – Trabzon – Rize İllerinin Sahil Kesimlerinin Hidrojeolojik Etüt Raporu, Devlet Su İşleri 22. Bölge Müdürlüğü, Jeoteknik Hizmetler ve Yeraltısuları Şube Müdürlüğü, Trabzon, (yayımlanmamış).

  • Yücel, C., 2013. Trabzon-Giresun arasındaki Tersiyer volkanitlerinin petrografisi, 40Ar-39Ar jeokronolojisi, petrokimyası, Sr-Nd-Pb izotop jeokimyası ve petrolojisi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Doktora Tezi, 406 s

  • Yüksek, T., 2004. Türkiye’nin Su Kaynakları ve Havza Planlamasına Dönük Genel Değerlendirmeler. Kafkas Üniversitesi, Artvin Orman Fakültesi Dergisi (1-2), 71-83.


  • Gültekin, F , Hatipoğlu Temizel, E . (2020). Kentsel Faaliyetlerin Kıyı Akiferlerine Etkileri: Doğu Karadeniz Havzası Örneği . Türkiye Jeoloji Bülteni , 63 (1) , 69-82 . DOI: 10.25288/tjb.571382

  • Anthropogenic Pollution Assessment of Pertek (Tunceli) Geothermal Field
    Tuğbanur Özen Balaban Özlem Öztekin Okan Taylan Sançar Ayten Öztüfekçi Önal
    View as PDF

    Abstract: The study area is located in Pertek town in Tunceli province in Eastern Anatolia. The geology of the studyarea is very important for the geodynamic evolution of the Eastern Taurus. Geological formations in the studyarea are Paleozoic Keban metamorphics, Upper Cretaceous Harami Formation, Middle-Upper Eocene Kırkgeçit Formation, Upper Miocene Karabakir Formation, and Quaternary alluvium, from the oldest to the youngest,respectively. Hydrogeological units were divided in three units in accordance with lithological, structural andhydrogeological properties. The basement of the study area of sandstone, marbles and dolomitic marbles in theKeban metamorphic rocks are highly fractured and karstified and act as the main reservoir in particular for thermalwaters in the study area. Kırkgeçit and Karabakır Formations occur as barrier rocks in the geothermal area due toimpermeable properties. Some levels of limestone units within the Keban metamorphics are aquifers for freshwater.Alluvium is the most important and suitable unit for cold groundwater production. In the study area, streams andrivers flow from southwest to northeast towards Keban Dam Lake. The lake is very important in the region from thepoint of view of hydroelectric power production, flood control, and irrigation.The thermal and mineral waters generally have high mineral contents. When they are discharged onto the surface,they can cause contamination in surface water, ground water, and of soil. Because of the fact that the water resourcesin the region are used for drinking and irrigation purposes, the quality of the water is evaluated within the scopeof this study. For this reason, water and sediment samples were analyzed for boron, arsenic and other contaminant(Pb, Fe, Sb, Sn and Hg) substances to measure the contamination. The results acquired from the analysis of watersamples suggest that concentrations of B, As and Pb in some of the samples exceed the limits of the TSE drinkingwater standards (>100 ppb). Fe concentration is 2.16 ppm, Hg and Sb concentrations are also 0.05 ppm. Moreover,some of the sediment samples collected from thermal springs in Singeç Creek are contaminated with B, As, Sb, Hgand Pb and other elements sourced from geothermal fluids. In this study, the geochemical evaluation of the presenceof B, As, and other contaminants (Pb, Fe, Sb, Sn) derived from geothermal activities within sediment and water inthe Pertek Geothermal Field and surrounding area were discussed.

  • Pertek

  • geothermal

  • hydrogeochemistry

  • anthropogenic pollution

  • Aksoy, E., 1993. Elazığ batı ve güneyinin jeolojik özellikleri. TÜBİTAK Yerbilimleri Dergisi, 1, 113-123.

  • Aksoy, E., 1994. Pertek (Tunceli) Çevresinin Jeolojik Özellikleri ve Pertek Bindirme Fayı. Fırat Üniversitesi Fen ve Mühündislik Bilimleri Dergisi, 6, 1-18.

  • Bingöl, A.F., 1984. Geology of the Elazığ area in the Eastern Taurus region. Geology of the Taurus Belt. Proceedings of International Symposium, Ankara, 26-29 Eylül 1983, editörler: Tekeli O., Göncüoğlu, M.C., Ankara, 209-216.

  • Chon, H.T., Cho, C.H, Kim, K.W., Moon, H.S., 1996. The occurrence and dispersion of 453 potentially toxic elements in areas covered with black shales and slates in Korea. Aplied Geochemistry, 11, 69- 76.

  • Çetindağ, B., 1985. Palu-Kovancılar (Elazığ) dolayının hidrojeoloji incelemesi., Fırat Üniversitesi, Fen Bilimleri Enstitüsü Elazığ, Yüksek Lisans Tezi, 110 s., (yayımlanmamış).

  • Çetindağ, B., 1989. Elazığ-Ören Çayı çevresinin hidrojeoloji incelemesi. Fırat Üniversitesi, Fen Bilimleri Enstitüsü Elazığ, Doktora Tezi, 270 s., (yayımlanmamış).

  • Hempton, R.M., 1984. Result of detailed mapping near Lake Hazar (Eastern Taurus Mountains). Geology of the Taurus Belt. Proceedings of International Symposium, Ankara, 26-29 Eylül 1984, editörler: Tekeli O., Göncüoğlu, M.C., Ankara, 223 -228.

  • IAH., 1979. Map of mineral ve thermal water of Europe. Scale 1:500.000, International Association of Hydrogeologists, United Kingdom.

  • Kaplıcalar Yönetmeliği, 2001. Türkiye Cumhuriyeti Sağlık Bakanlığı, Resmi gazete sayısı: 24472.

  • MTA, 2002. Maden Tetkik ve Arama Genel Müdürlüğü 1/500.000 Ölçekli Türkiye Jeoloji Haritası Erzurum Paftası. Düzenleyen: Tarhan N., Editör: Şenel, M., Ankara.

  • Mutlu, H., Güleç, N., 1998. Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia, Turkey, Journal of Volcanology and Geothermal Research, 85, 495-515.

  • Müller G., 1981. Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chemiker-Zeitung, 105: 157–164.

  • Nimick, D.A., Moore, J.M., 1991. Prediction of water soluble metal concentrations in fluvially deposited tailings sediments, upper Clark ork Valley, Montana, USA, Applied Geochemistry, 6, 635– 646.

  • Nishida, H., Tada, F., Suzuki, S., 1980. Computation of the index of pollution caused by heavy metals of river sediment: Report of Research Nippon Institute of Technology, No: 10, 87–93.

  • Özen, T., 2009. Salihli Jeotermal Alanlarının Hidrojeolojik ve Hidrojeokimyasal İncelenmesi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 239 s.,(yayımlanmamış).

  • Öztekin Okan, Ö., 2004. Kolan (Karakoçan) Sıcak ve Mineralli Su Kaynağı’nın Hidrojeokimyasal İncelenmesi. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Doktora Tezi 114s., (yayımlanmamış).

  • Piper, A.M. 1944. A graphic procedure in the geochemical interpretation of water analysis. Transactions. American Geophysical Union, 25(6) 914–923.

  • Piper, A.M., 1979. Interpretation of water analyses. U.S. Geological Survey Ground Water Notes, Geochemistry, no. 12, 14 s.

  • Sağıroğlu, A., 1992. Pertek-Demürek (Tunceli) Skarn Tipi Manyetit ve İlişkili Bakır Cevherleşmeleri. Türkiye Jeoloji Bülteni, 35 (2), 63-70.

  • Schoeller, H., 1962. Les eaux souterraines. Masson et Cie, Paris, 1, 642 s.

  • Sponza, D., Karaoğlu, N., 2002. Environmental geochemistry and pollution studies of Aliağa metal industry district. Environmental International, 27, 541-553.

  • Tarcan, G., 2003. Jeotermal Su Kimyası Ders Notları. Dokuz Eylül Üniversitesi, Jeoloji Mühendisliği Bölümü, İzmir, yayınlanmamış.

  • TS 266, 2005. Sular-insani tüketim amaçlı sular. Türk Standartları Enstitüsü, Ankara.

  • Turan, M., Aksoy, E., Bingöl, A.F., 1993. Doğu Toroslar’ın Jeodinamik Evriminin Elazığ Civarındaki Özellikleri. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 7, 1-23.

  • WHO, 2004. Guidelines For Drinking-water Quality, Third Edition, Volume 1. Recommendations. World Health Organization (Dünya Sağlık Örgütü), Cenevre. 515 s.

  • Yaqin, JI., Yinchang, F., Jianhi, WU., Tan, ZHU., Zhipeng, B.,Chiqing, D., 2008. Using geoaccumulation index to study source profiles of soil dust in China. Journal Environmental Sciences, 20, 571–578.


  • Özen Balaban, T , Öztekin Okan, Ö , Sançar, T , Öztüfekçi Önal, A . (2020). Pertek (Tunceli) Jeotermal Alanının Antropojenik Kirliliğinin Değerlendirmesi . Türkiye Jeoloji Bülteni , 63 (1) , 83-96 . DOI: 10.25288/tjb.594151

  • Hydrochemistry and Environmental Impacts of Kestanbol Geothermal Fluid
    Harika Marmara Deniz Şanliyüksel Yücel Süha Özden Mehmet Ali Yücel
    View as PDF

    Abstract: Kestanbol geothermal field, located in the ancient town of Alexandria Troas, is at the contact betweenplutonic intrusions and neighboring metamorphic rocks in the Biga Peninsula. This area is also controlled by anENE-WSW striking right lateral strike-slip fault segment representing the extension of the southern branch of theNorth Anatolian Fault to the west and is one of the geothermal fields with highest temperature in the Biga Peninsula.Kestanbol geothermal fluid from a well is used to heat facilities for thermal tourism and balneological purposes. The geothermal fluid continuously seeps in the environment with low flow rate and additionally, wastewater from thefacility is discharged in Ilıca stream. This study was conducted to determine the hydrochemical characteristics ofthe well and springs located in Kestanbol geothermal field and to evaluate the environmental effects of geothermalfluids on the soil and stream sediment. The temperature, electrical conductivity (EC) and pH of Kestanbol geothermalfluids are 59.5-74.1ºC, 30.3-35.5 mS/cm, and 6.45-6.71, respectively. The geothermal fluids are NaCl water type,with mean NaCl concentration of 19511 mg/L. In addition to higher EC values, and total dissolved solid content,Na+, Cl-, B, Ba, Fe and Mn concentrations of the Kestanbol geothermal fluid are above the tolerance limit of TS 266.Moreover, the geothermal fluid is heavily polluted water (class IV) according to the Turkish Inland Water QualityRegulations in terms of EC, Na+, Cl-, B and Fe. There is a scaling problem in the Kestanbol geothermal field. XRDand SEM-EDX analyses identified the minerals causing scale as calcite, halite and siderite. Arsenic, Fe and Mnconcentration of scale, soil and stream sediment samples are higher than the mean value of world continental crust.According to the enrichment factor and geoaccumulation index, the geothermal fluid with intense rock interactionenriches soil and stream sediment in terms of As and Mn metal(loid)s as a result of discharge. It is recommended thatgeothermal fluids and waste waters from the facility should not be discharged in the soil and Ilıca stream.

  • Kestanbol geothermal fluid

  • environmental impact

  • hydrochemistry

  • scaling

  • Aksoy, N., 2007. Jeotermal sahalarda kabuklaşma ve çözüm yöntemleri. Jeotermal Enerji Semineri, 143–153.

  • Baba, A., Ertekin, C., 2007. Determination of the source and age of the geothermal fluid and its effects on groundwater resources in Kestanbol (Çanakkale-Turkey). GQ07: Securing Groundwater Quality in Urban and Industrial Environments, 7th Internatio

  • Baba, A., Sözbilir, H., 2012. Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey. Chemical Geology, 334, 364–377.

  • Balderer, W., 1994. A multidisciplinary approach for the study of the effects of active tectonics along the North Anatolian fault zone: possibilities for the application of the electrical self potential method. Annals of Geophysics, 37(5), 1269–1282.

  • Beccaletto, L., 2003. Geology, correlations, and geodynamic evolution of the Biga Peninsula (NW Turkey). Lozan Üniversitesi, İsviçre, Doktora tezi, 140 s., (yayımlanmamış).

  • Beccaletto, L., Jenny, C., 2004. Geology and correlation of the Ezine zone: a Rhodope fragment in NW Turkey?. Turkish Journal of Earth Sciences, 13 (2), 145–176.

  • Bertani, R., 2015. Geothermal power generation in the World-2010-2014 update report. World Geothermal Congress (WGC2015), Proceedings of World Geothermal Congress, Melbourne, Australia, 19-25 April 2015, R. Horne ve T. Boyd (eds.), International Geot

  • Birkle, P., Merkel, B., 2000. Environmental impact by spill of geothermal fluids at the geothermal field of Los Azufres, Michoacán, Mexico. Water, Air, & Soil Pollution, 124(3-4), 371–410.

  • Cattaneo, A., Couillard, Y., Wunsam, S., Fortin, C., 2011. Littoral diatoms as indicators of recent water and sediment contamination by metals in lakes. Journal of Environmental Monitoring, 13, 572–582.

  • Chapman, D., Kimstach, V., 1996. Selection of water quality variables. In: D. Chapman (ed.), Water Quality Assessments-A Guide to Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed., Chapmam & Hall: E&FN Spon, Cambridge, 59–126.

  • Çağlar, K.Ö., 1947. Türkiye maden suları ve kaplıcaları. Maden Tetkik Arama Yayınları, Ankara, Fasikül 2, Seri B, No 11, 249–250.

  • Çağlar, I., Demirörer, M., 1999. Geothermal exploration using geoelectric methods in Kestanbol, Turkey. Geothermics, 28(6), 803–819.

  • Çardak, M., Şanlıyüksel Yücel, D., Ay, M., Söküt Acar, T., Erol Tınaztepe, Ö., 2019. Jeotermal akışkanın hidrokimyasal karakterizasyonunun belirlenmesi: Simav (Kütahya) örneği. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1)

  • Doğdu, M.S., Bayarı, S., 2005. Environmental impact of geothermal fluids on surface water, groundwater and streambed sediments in the Akarcay Basin Turkey. Environmental Geology, 47, 325–340.

  • Erguvanlı, K., Yüzer, E., 1973. Yeraltı Suları Jeolojisi (Hidrojeoloji). İstanbul Teknik Üniversitesi Kütüphanesi, Sayı 967, 339 s.

  • Erkul, H., 2012. Jeotermal enerjinin ekonomik katkıları ve çevresel etkileri: Denizli-Kızıldere jeotermal örneği. Yönetim Bilimleri Dergisi, 10(19), 1–30.

  • Eroğlu, A., Aksoy, N., 2003. Jeotermal suların kimyasal analizi. VI. Ulusal Tesisat Kongresi, İzmir, Türkiye, 8-10 Ekim 2003, Jeotermal Enerji Semineri Kitapçığı, TMMOB Makine Mühendisleri Odası Yayınları, Ankara, 149–183.

  • Gemici, U., Tarcan, G., 2002. Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts. Environmental Geology, 43, 87–98.

  • Gevrek, A.İ., Şener, M., Ercan, T., 1986. ÇanakkaleTuzla jeotermal alanının hidrotermal alterasyon etüdü ve volkanik kayaçların petrolojisi. Maden Tetkik ve Arama Dergisi, 103-104, 55–81.

  • Gündüz, O., Şimşek, C., Hasözbek, A., 2010. Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air & Soil Pollution, 205, 43–62.

  • Gözler, M.Z., Ergül, E., Akçaören, F., Genç, Ş., Akat, U., Acar, Ş., 1984. Çanakkale boğazı doğusu- Marmara Denizi güneyi-Bandırma-BalıkesirEdremit ve Ege Denizi arasındaki alanın jeolojisi ve kompilasyonu. MTA Rapor No: 7430, (yayımlanmamış).

  • Haklıdır Tut, F.S., Batı Anadolu’da Yüksek Sıcaklıklı Jeotermal Sistemlerde Gözlenen Kabuklaşma Türleri ve Kabuklaşma Oluşumunun Kontrolünün Sağlanmasında Kullanılan Sistemler; Kızıldere-II (Denizli) Jeotermal Güç Santrali Örneği. Türkiye Jeoloji Bül

  • IAH, 1979. Map of mineral and thermal water of Europe. Scale 1:500.000, International Association of Hydrogeologists, Paris, France.

  • Kalafatçıoğlu, A., 1963. Ezine civarının ve Bocaada’nın jeolojisi, kalker ve serpantinlerinin yaşı. MTA Dergisi, 60, 61–70.

  • Karagülle, M.Z., Doğan, M.B., 2002. Kaplıca Tıbbı ve Türkiye Kaplıca Rehberi. Nobel Tıp Kitapevi, İstanbul, 48 s.

  • Kelly, W.P., 1963, Use of saline irrigation water. Soil Science, 95, 355–391.

  • Koçak, A., 2002. Jeotermal uygulamalar ve MTA. Jeotermalde Yer bilimsel Uygulamalar Yaz Okulu Ders Notları, Dokuz Eylül Üniversitesi, Jeotermal Enerji ve Araştırma Merkezi, İzmir, 119–131.

  • Krauskopf, K.B., 1979. Introduction to Geochemistry, 2nd edition. McGraw-Hill International series in the Earth and Planetary Sciences, 617 s.

  • Kristmannsdottir, H., Armannsson, H., 2003. Environmental aspects of geothermal energy utilization. Geothermics, 32(4-6), 451–461.

  • Liu, W.H., Zhao, J.Z., Ouyang, Z.Y., Soderlund, L., Liu, G.H., 2005. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(6), 805–812.

  • Lund, J.W., Boyd, T.L., 2016. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 60, 66–93.

  • Mertoğlu, O., Şimşek, Ş., Başarır, N., 2015. Geothermal country update report of Turkey (2010–2015). Proceedings of World Geothermal Congress 2015, Melbourne, Australia, 19-24 April 2015, International Geothermal Association, Bonn, 1–7.

  • Mutlu, H., Güleç, N., Hilton, D.R., 2014. Chemical and isotopic constraints on the origin of thermal waters in Anatolia, Turkey: fluid-mineral equilibria approach, (Geothermal Systems and Energy Resources: Turkey and Greece, Editörler: Baba, A., Bund

  • Müller, G., 1979. Schwermetalle in den sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79, 778–783.

  • Müller, G., 1986. Schadstoffe in SedimentenSedimente als Schadstoffe. Mitt, Österreichische Geologische Gesellschaft, 79, 107–126.

  • Mützenberg, S., 1997. Nature and origin of the thermal springs in the Tuzla area, Western Anatolia, Turkey. (Active Tectonics of Northwestern Anatolia-The Marmara Poly-Project, Editörler: Schindler, C., Pfister, M.). VDF Hochschul Verlag AG an der ET

  • Nicholson, K., 1993. Geothermal Fluids: Chemistry and Exploration Techniques. Springer-Verlag, Berlin, 263 s.

  • Ölmez, E., 1976. Çanakkale-Ezine Kestanbol sıcak su 1. sondajı kuyu bitirme raporu. Manden Tetkik ve Arama Enstitüsü Rapor No: 5595, 3 s., (yayımlanmamış).

  • Özbey, G., Atamer, N., 1987. Kizelgur (Diatomit) hakkında bazı bilgiler. 10. Türkiye Madencilik Bilimsel Teknik Kongresi, 11-15 Mayıs 1987, Ankara, 493–502.

  • Özen Balaban, T., Bülbül, A., Tarcan, G., 2017. Review of water and soil contamination in and around Salihli geothermal field (Manisa, Turkey). Arabian Journal of Geosciences, 10, 523.

  • Piper, A.M., 1944. A graphical procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–928.

  • Richards, L.A., 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agricultural hand book 60, U.S. Deptment of Agriculture, Washington D.C., 160 s.

  • Salah, E.A.M., Zaidan, T.A., Al-Rawi, A.S., 2012. Assessment of heavy metals pollution in the sediments of Euphrates River, Iraq. Journal of Water Resource and Protection, 4, 1009–1023.

  • Sarp, S., Burçak, M., Yıldırım, T., Yıldırım, N., 1998. Biga Yarımadası’nın jeolojisi ve jeotermal enerji olanakları ile Balıkesir-Havran-Derman kaplıca sahasının detay jeotermal etüdü ve gradyan sondajları. MTA Rapor No: 10537, (yayımlanmamış).

  • Schoeller, H., 1955. Geochimie des Eaux Souterraines. Revue de l’Institut Francais du Petrole, Paris, 10 (3), 181–213, 10 (4), 219–246.

  • Siyako, M., Burkan, K.A., Okay, A.I., 1989. Biga ve Gelibolu Yarımadaları’nın Tersiyer jeolojisi ve hidrokarbon olanakları. Türkiye Petrol Jeologları Derneği (TPJD) Bülteni, 1 (3), 183–199.

  • Sutherland, R.A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627.

  • Şahinci, A., 1991. Doğal Suların Jeokimyası. Reform Matbaası, Beyler, İzmir, 548 s.

  • Şamilgil, E., 1966. Çanakkale’nin Tuzla ve Kestanbol sıcak su havzalarında jeotermik enerji araştırması yönünden hidrojeolojik etüt. MTA Rapor No: 4274, 53 s., (yayımlanmamış).

  • Şanlıyüksel, D., Baba, A., 2011. Hydrogeochemical and isotopic composition of a low temperature geothermal source in northwest Turkey: Case study of Kirkgecit geothermal area. Environmental Earth Sciences, 62, 529–540.

  • Şanlıyüksel Yücel, D., Karaca, Z., Yücel, M.A., 2013. Determining hydrogeochemical characteristics of geothermal resources in Biga Peninsula (city of Canakkale), NW Turkey. 40th International Association of Hydrogeologists Congress, 15-20 September 2

  • Şanlıyüksel Yücel, D., Yücel, M.A., 2017. Determining hydrochemical characteristics of mine lakes from abandoned coal mines and 3D modelling of them using unmanned aerial vehicle. Pamukkale University Journal of Engineering Sciences, 23 (6), 780–791.

  • Şanlıyüksel Yücel, D., Baba, A., 2018. Determining water and sediment quality related to lead and zinc mining activity. Archives of Environmental Protection, 44 (3), 19–30.

  • Şanlıyüksel Yücel, D., 2019. Characterization and comparison of mine wastes in Can Coal Basin, northwest Turkey: a case study. Environmental Earth Sciences, 78, 154.

  • Şaroğlu, F., Emre, Ö., Kuşçu, İ., 1992. Türkiye Diri Fay Haritası (Ölçek 1/2.000.000). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Şimşek, Ş., 1997. Geochemical potential in northwestern Turkey. (Active Tectonics of Northwestern Anatolia-The Marmara Poly-Project, Editörler: Schindler, C., Pfister, M.). VDF hochschulverlag AG an der ETH Zurich, 111–123.

  • Şimşek, Ş., Yıldırım, N., Gülgör, A., 2005. Developmental and environmental effects of the Kızıldere geothermal power project, Turkey. Geothermics, 34 (2), 234–251.

  • Şimşek, Ş., 2015. Dünya’da ve Türkiye’de jeotermal gelişmeler. TMMOB Jeoloji Mühendisleri Odası III. Jeotermal Kaynaklar Sempozyumu, 4-6 Kasım 2015, Ankara, 1–17.

  • TS 266, 2005. İnsani tüketim amaçlı sular hakkında yönetmelik, Türk Standartları Enstitüsü, Ankara, Resmî Gazete Tarihi: 17.02.2005, Resmî Gazete Sayısı: 25730.

  • Yalçın, T., 2007. Geochemical characterization of the Biga Peninsula thermal waters (NW Turkey). Aquatic Geochemistry, 13 (1), 75–93.

  • Yalçın, T., Sarp, S., 2012. Biga Yarımadası Termal Sularının Jeokimyasal ve Jeotermal Potansiyeli. Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi, E. Yüzer ve G. Tunay (Editörler), Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayın Serisi, Ankara, 289

  • Yenal, O., Kanan, E., Bilecen, L., Öz, G., Öz, Ü., Göksel, A., Alkan, H., Kutluat, S., Yassa, K., 1975.

  • Türkiye Maden Suları: Marmara Bölgesi, İstanbul Üniversitesi, Tıp Fakültesi, Hidroklimatoloji Kürsüsü, İstanbul, 212 s.

  • Yerüstü Su Kalitesi Yönetmeliği, 2015. Yüzeysel Su Kalitesi Yönetimi Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik, Orman ve Su İşleri Bakanlığı, Ankara, Resmî Gazete Tarihi: 15.04.2015, Resmî Gazete Sayısı: 29327.


  • Marmara, H , Şanlıyüksel Yücel, D , Özden, S , Yücel, M . (2020). Kestanbol Jeotermal Akışkanının Hidrokimyasının ve Çevresel Etkilerinin Belirlenmesi . Türkiye Jeoloji Bülteni , 63 (1) , 97-116 . DOI: 10.25288/tjb.604842

  • Toxic Metal Pollution in the Surface Sediments from Güllük Bay (Muğla-Turkey)
    Nuray Çağlar (Balkis) Abdullah Aksu Gülşen Altuğ
    View as PDF

    Abstract: In this study, total lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), zinc (Zn), arsenic (As) andaluminum (Al) contents were investigated in surface sediments in order to determine the current pollution inGüllük Bay, which has dense population in summer, low population in winter, and a thermal power plant in thevicinity. For this purpose, surface sediments were collected from the bay seasonally in 2011 and 2012. Strong acid(HNO3+HF+HClO4) digestion was used for metal analysis after drying in a freeze-dryer. Total metal concentrationswere measured by atomic absorption spectrophotometer. The total metal contents changed between 1 and 209 µg/g;10 and 259 µg/g; 1 and 59 µg/g; 0.1 and 46 µg/g; <0.01 and 2.8 µg/g, <0.01 and 0.4 µg/g and 0.6% and 5.9% forPb, Zn, Cu, Cr, Cd, As and Al, respectively. Cu, Cr and As concentrations were lower than the background values,contrary to higher Pb, Cd and Zn contents in bay surface sediments during all sampling periods. These high metalvalues indicate the presence of anthropogenic (domestic and industrial) inputs via Sarıçay creek and both maritimetransport and tourism waste in Güllük Bay. As a result, it was found that population growth and human activitiesaffected metal contamination.

  • Metal pollution

  • sediment

  • Güllük Bay

  • Aksu, A., Taşkın, Ö.S., 2012. Organochlorine residue and toxic metal (Pb, Cd and Cr) levels in the surface sediments of the Marmara Sea and the coast of Istanbul, Turkey. Marine Pollution Bulletin, 64 (5), 1060-1062.

  • Algan, O., Çağatay, N., Sarıkaya, H.Z, Balkıs, N., Sarı, E., 1999. Pollution monitoring using marine sediments: A case study on the Istanbul metropolitan area. Turkish Journal of Engineering and Environmental Sciences, 23 (1), 39-48.

  • Algan, O., Balkıs, N., Çağatay, M. N., Sarı, E. 2004. The sources of metal contents in the shelf sediments from the Marmara Sea, Turkey. Environmental Geology, 46, 932-950.

  • Altuğ, G., Balkıs, N., Çardak, M., Gürün S., Çiftçi Türetken, P.S., Kalkan, S., Hulyar, O., 2013. Güllük Körfezi Ekosisteminin Bakteriyolojik Analizlerle Araştırılması. Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK), Proje No: 110Y243, (ya

  • Baba, A., Kaya, A., Birsoy, Y.K., 2003. The effect of Yatağan Thermal power plant (Muğla, Turkey) on the quality of surface and groundwaters. Water Air and Soil Pollution, 149 (1-4), 93-111.

  • Balcıoğlu, E.B., Aksu, A., Balkıs, N., Öztürk, B., 2014. T-PAH contamination in Mediterranean mussels (Mytilus galloprovincialis, Lamarck, 1819) at various stations of the Turkish Straits System. Marine Pollution Bulletin 88 (1-2), 344-346.

  • Balkıs, N., Çağatay M.N., 2001. Factors controlling metal distributions in the surface sediments of the Erdek Bay, Sea of Marmara, Turkey. Environment International, 27, 1-13.

  • Balkıs, N., Algan O., 2005. Marmara Denizi Yüzey Sedimentlerinde (Şelf Alanı) Metallerin Birikimi ve Denetleyen Mekanizmalar, (Deniz Kirliliği Analiz Yöntemleri İlgili Uluslararası Sözleşmeler, Editörler: Güven, K.C., Öztürk, B.). TÜDAV Yayınları No:

  • Balkıs, N., Senol, E., Aksu, A., 2007. Trace metal distributions in water column and surface sediments of Izmit Bay (Turkey) after Marmara (Izmit) earthquake. Fresenius Environmental Bulletin, 16 (8), 910-916.

  • Balkıs, N., Aksu A., Okuş E., Apak, R., 2010. Heavy metal concentrations in water, suspended matter, and sediment from Gökova Bay, Turkey. Environmental monitoring and assessment, 167 (1-4), 359-370

  • Brayn, G.W., 1971. The effects of heavy metals on marine and easturaine organisms. Proceedings of the Royal Society of London, 389-410.

  • Brayn, G.W., 1976. Heavy metal contamination in the sea, (Marine Pollution, Editör: Johnson R.). Academic Press, London 185-302.

  • Dalman, Ö., Demirak, A., Balcı, A., 2006. Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the Southeastern Aegean Sea (Turkey) by atomic absorption spectrometry. Food Chemistry, 95 (1), 157-162.

  • Gailer, J. 2007. Arsenic-selenium and mercuryselenium bonds in biology. Coordination Chemistry Reviews 251 (1-2), 234-254.

  • Güler Ç., Çobanoğlu Z., 1994. Çocuk ve Çevre. Çevre Sağlığı Temel Kaynak Dizisi No:23, T.C. Sağlık Bakanlığı Temel Sağlık Hizmetleri Genel Müdürlüğü, Ankara, 24.

  • Hakanson, L., 1980. An ecological risk index for aquatic pollution control a sedimentological approach. Water Research, 14 (8), 975-1001.

  • Krauskopf, K.B. 1979. Introduction to Geochemistry. McGraw-Hill, New York, 617 s.

  • Küçüksezgin, F., Kontas, A., Altay, O., Uluturhan, E., Darılmaz, E., 2006. Assessment of marine pollution in Izmir Bay: Nutrient, heavy metal and total hydrocarbon concentrations. Environment International, 32(1), 41-51.

  • Li, X., Shen, Z., Wai, O.W.H., Li, Y., 2000. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chemical Speciation and Bioavailability, 12, 17–25.

  • Loring, D.H. ve Rantala, R.T.T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235-283.

  • Mülayim, A., Balkıs, N., Balkıs, H., Aksu, A., 2012. Distributions of total metals in the surface sediments of the Bandirma and Erdek Gulfs, Marmara Sea, Turkey. Toxicological & Environmental Chemistry, 94 (1), 56-69.

  • Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., Bakoğlu, M., 2004. Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946-953.

  • Taşkın, Ö.S., Aksu, A. ve Balkıs, N., 2011. Metal (Al, Fe, Mn and Cu) distributions and origins of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of the Marmara Sea and the coast of Istanbul, Turkey. Marine Pollution Bulletin, 62 (1

  • Tuna, L.A., Yağmur, B., Hakerlerler, H., Kılınç, R., Yokas, İ., Bürün, B., 2005. Muğla Bölgesi’ndeki Termik Santrallerinden Kaynaklanan Kirlilik Üzerine Araştırmalar. Muğla Üniversitesi, Bilimsel Araştırma Projesi-Kesin Raporu, Muğla, 79 s.

  • TÜİK, 2018. http://www.tuik.gov.tr/PreTablo.do?alt_ id=1047


  • Çağlar, N , Aksu, A , Altuğ, G . (2020). Güllük Körfezi (Muğla-Türkiye) Yüzey Sedimentlerinde Toksik Metal Kirliliği . Türkiye Jeoloji Bülteni , 63 (1) , 117-124 . DOI: 10.25288/tjb.585304

  • Investigation of Potential Heavy Metal Pollution Caused by Geothermal Waters in GAP’s Largest Irrigation Area
    Perihan Derin Ayşegül Demir Yetiş Mehmet İrfan Yeşilnacar Pelin Yapicioğlu
    View as PDF

    Abstract: The Karaali Geothermal field, one of the geothermal areas in Turkey is located 45 km south-east ofŞanlıurfa province in southeastern Anatolia. It also covers the area including Karaali village within the Akçakale graben. In addition, Karaali geothermal area is of great importance for Şanlıurfa not only because of thermal tourism and being a greenhouse heating source, but also because it is located in the Harran Plain which has very important agricultural potential for the development of Turkey. In recent studies, direct/indirect uncontrolleddischarge of geothermal waters in the nearest drainage channels was shown to adversely affect soil and plantsin terms of heavy metal contamination This study aims to determine the direct and indirect exposure to heavy metalpollution originating in geothermal waters with respect to human health. Seasonal sampling was carried out between February - October 2018 at 6 points in total, including the drainage channels (D9, D10, D11, D12 and D13) in thevicinity of Karaali geothermal fluid (KJ). Heavy metal parameters were measured such as Al, As, Co, Cr, Fe, Mn,Mo, Ni, Pb, Sb, Se and V. As a result, it was concluded that the sampling values exceed the values for Al, Cr, Fe,Mo, Ni, Se and V in the regulations that should be taken in consideration for the reuse of water in the drainagechannels. Additionally, in nearby 2 groundwater wells (K7 and K8), the limit values were exceeded for Al and Feparameters according to TSE 266, EPA and WHO drinking water criteria. Finally, heavy metal pollution in thedrainage channels affected the wells only in terms of Al and Fe. It was also concluded that the indirect exposureimpact due to heavy metal that is carried to soil, plants and groundwater by the re-use of irrigation water is moreserious for human health than direct exposure caused by groundwater consumption However, over a certain periodof time an increase in parameters exceeding the limit values in terms of heavy metal may also occur.

  • Geothermal water

  • Harran Plain

  • heavy metal pollution

  • Karaali

  • Sanliurfa

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition, Editörler: Clesceri, L.S., Greenberg, A.E.., Eaton, A.D. United Book Press, Baltimore, MD, USA, 4-103.

  • Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., Mittal, N., 2008. Heavy Metal Accumulation in Vegetables Irrigated with Water from different Sources. Food Chemistry, 111, 811-815.

  • Baba, A., Akkuş, İ., Şaroğlu, F., Özel, N., Yeşilnacar, M.İ., Nalbantçılar, M.T., Demir, M., Gökçen, G., Arslan, Ş., Dursun, N., Yazdani, H., 2015. GAP İlleri Jeotermal Kaynakları Araştırma Projesi. GAP Bölge Kalkınma İdaresi Başkanlığı, Şanlıurfa.

  • Bahçeci, İ., 2019. Tarımsal Drenaj Sistemleri Ders Notları. Harran Üniversitesi, Ziraat Fakültesi, Tarımsal Yapılar ve Sulama Bölümü – Şanliurfa [http://web.harran.edu.tr/assets/uploads/other/ files/Ziraat_Fak%C3%BCltesi/SULAMA/ TARIMSAL_DRENAJ_M%C3%

  • Çelik, M.A., Gülersoy, A.E., 2013. Güneydoğu Anadolu Projesi’nin (GAP) Harran Ovası tarımsal yapısında meydana getirdiği değişimlerin uzaktan algılama ile incelenmesi. Uluslararası Sosyal Araştırmalar Dergisi, 6 (28), 46-54.

  • Derin, P., 2019. Karaali (Şanlıurfa) Jeotermal Sahasının Ağır Metal Kirliliği Açısından Araştırılması. Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, Yüksek Lisans Tezi, 73 s., (yayımlanmış).

  • EPA (United States Environmental Protection Agency), 2009. National Primary Drinking Water Regulations, EPA 816-F-09-004.

  • Güven, K.C., Öztürk, B., 2005. Deniz Kirliliği. TÜDAV Yayınları, No: 21, İstanbul, 512 s.

  • Kara, Y., 2005. Bioaccumulation of Cu, Zn and Ni from the Wastewater by Treated Nasturtium Officinale. International Journal of Environmental Science and Technology, 2, 63-67.

  • Marrugo-Negrete, J., Pinedo-Hernández, J., Díez, S., 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388.

  • OSİB, 2017. GAP Bölgesi’nde sulamadan dönen suların kontrolü ve yeniden kullanımı için iyileştirilmesinin araştırılması proje nihai raporu. Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, TÜBİTAK-MAM, Gebze, Kocaeli.

  • Özyürek, F., 2016. Nevşehir’de Farklı Su Kaynaklarıyla Sulanan Sebzelerde Ağır Metal (Cd, Cr, Cu, Fe, Ni, Pb, Zn) Birikimi. Nevşehir Hacı Bektaş Veli Üniversitesi, Fen Bilimleri Enstitüsü, Nevşehir, Yüksek Lisans Tezi, 118 s., (yayımlanmış).

  • Sabiha-Javied, M.T., Tufai, M., Irfan, N., 2009. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91, 94-99

  • TS-266, 2005. Sular-İnsani tüketim amaçlı sular, Türk Standartları Enstitüsü. Nisan. ICS 13.060.20

  • Verma, R., Dwivedi, P., 2013. Heavy metal water pollution-A case study. Recent research in Science and Technology, 5(5), 98-99.

  • WHO (World Health Organization), 2017. Guidelines for Drinking Water Quality: Fourth Edition. Incorporating the First Addendum. Geneva. ISBN 978-92-4-154995-0

  • Yeşilnacar, M.İ., Demir, F., Uyanık, S., Yılmaz, G., Demir, T., 2007. Harran Ovası Yeraltı Suyu Kalitesi ve Kirlenme Potansiyelinin Belirlenmesi. TÜBİTAK Proje No: 104Y188.

  • Yetiş, R., Atasoy, A.D., Demir Yetiş, A., Yeşilnacar, M.İ., 2019. Hydrogeochemical characteristics and quality assessment of groundwater in Balikligol Basin, Sanliurfa, Turkey. Environmental Earth Sciences, 78, 331.


  • Derin, P , Demir Yetiş, A , Yeşilnacar, M , Yapıcıoğlu, P . (2020). GAP’ın En Büyük Sulama Sahasında Jeotermal Sulardan Kaynaklanan Potansiyel Ağır Metal Kirliliğinin Araştırılması . Türkiye Jeoloji Bülteni , 63 (1) , 125-136 . DOI: 10.25288/tjb.6267

  • Arsenik Kirliliği Bakımından Harran Ovası Yeraltı Sularının Değerlendirilmesi
    Pelin Yapicioğlu Perihan Derin Mehmet İrfan Yeşilnacar
    View as PDF

    Abstract: Arsenic (As) contamination in water,  especially in groundwater, has led to major health problems. Dueto the recognition that As at low concentrations in potable water causes crucial health effects, As removal methodshave gained significant importance in recent years. In this study, As concentration was monitored in October and March in ten observation wells located in Harran Plain, which has the largest groundwater reserves in the MiddleEast. According to the analyses, there was no well that exceeded the limit for As concentration (10ppb). The results revealed that As concentrations in October were lower than in March. In March, the highest Asconcentration was observed in Yaygılı well with the value of 4.12 ppb. Ozanlar well had the lowest As concentrationwith the value of <0.5 ppb. In October, the highest As concentration was 2.39 ppb in Çamlıdere well. For Çamlıdereand Yaygılı wells, As removal methods (coagulation and flocculation, adsorption, membrane processes, advancedoxidation processes, electrocoagulation, biochar) were investigated and discussed. As a result of the assessment, itwas estimated that the best available As removal method could be biochar application considering its advantages. 

  • Arsenic

  • biochar

  • groundwater

  • Harran Plain

  • removal methods

  • American Public Health Association (APHA), American Water Works Association, 1995. Standard Methods for the Examination of Water and Wastewater, USA.

  • Baba, A., Saroglu, F., Akkuş, İ., Ozel, N., Yesilnacar, M.I., 2019. Geological and hydrogeochemical properties geothermal systems in the southeastern region of Turkey. Geothermics, 78, 255-271.

  • Bakshi, S., Banik, C., Rathke S.J., Laird, D.A., 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research, 137, 153-163.

  • Choonga, T.S.Y., Chuaha, T.G., Robiaha, Y., Koaya, F.L.G., Aznib, I., 2007. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217, 139-166.

  • Derin, P., 2019. Karaali (Şanlıurfa) Jeotermal Sahasının Ağır Metal Kirliliği Açısından Araştırılması. Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, Yüksek Lisans Tezi, 73 s., (yayımlanmış).

  • DSI, 1972. Harran Ovası Hidrojeolojik Etüt Raporu, DSI Genel Müdürlüğü Matbaası, Ankara, 49 s.

  • DSI, 2003. Harran Ovasında Tuzluluk ve Drenaj Problemi, Özet Rapor. Devlet Su İşleri, Şanlıurfa, 10 s.

  • Eguez, H.E., Cho, E.H., 1987. Adsorption of arsenic on activated charcoal, The Journal of The Minerals, Metals & Materials Society, 39, 38–41.

  • Frank, P., Clifford, D., 1986. Arsenic III oxidation and removal from drinking water. US Environ Protection Agency Report. EPA-600-52-86/021.

  • Hering, J.G., Elimelech, M., 1995. International perspective on arsenic in groundwater: problems and treatment strategies. Proc. AWWA, Annual Conference.

  • Jain, C.K. and Ali, I., 2000. Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34 (17), 4304-4312.

  • Kang, M., Kawasaki, M., Tamada, S., Kamei, T., Magara, Y., 2000. Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination, 131, 293-298.

  • McNeill, L.S., Edwards, M., 1995. Soluble arsenic removal at water treatment plants. Journal American Water Works Association (AWWA), 87, 105-113.

  • Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J., Cocke, D.L., 2004. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114, 199-210.

  • Niazi, N.K., Bibi I., Shahid, M., 2018. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31-41.

  • Nidheesh, P.V., Singh, T.S.A., 2017. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere, 81, 418-432.

  • Qambrani, N.A., Rahman, M.M., Won, S., 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255–273.

  • Robertson, F.N., 1989. Arsenic in ground water under oxidizing conditions, south-west United States. Environmental Geochemistry Health, 11, 171– 176.

  • Saitúa, H., Campderrós, M., Cerutti, S., Pérez, A., 2005. Padilla effect of operating conditions in removal of arsenic from water by nanofiltration membrane. Desalination, 172, 173–180.

  • Ucar, C., Baskan, M.B., Pala, A., 2013. Arsenic removal from drinking water by electrocoagulation using iron electrodes. Korean Journal of Chemical Engineering, 30, 1889-1895.

  • Vasudevan, S., Lakshmi, J., Sozhan, G., 2010. Studies relating to removal of arsenate by electrochemical coagulation: optimization, kinetics, coagulant characterization. Separation Science and Technology, 45, 1313-1325.

  • WHO (World Health Organization), 2011. Guidelines for Drinking-water Quality. https://apps.who.int/iris/ bitstream/handle/10665/44584/9789241548151_ eng.pdf?sequence=1 10 October 2019.

  • Yeşilnacar, M.I., Güllüoğlu, M.S., 2008. Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey. Environmental Geology, 54, 183-196.

  • Yuan, T., Luo, Q.F., Hu, J.Y., Ong, S.L., Ng, W.J., 2003. A study on arsenic removal from household drinking water. Journal of Environmental Science and Health; Part A, 38, 1731-1744.

  • Yuan, H., Lu, T., Wang, Y., Chen Y., Lei, T., 2016. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma, 267, 17–23.

  • Zouboulis, A., Katsoyiannis, I., 2002. I. Removal of arsenates from contaminated water by coagulation–direct filtration. Separation Science and Technology, 37, 2859-2873.


  • Yapıcıoğlu, P , Derin, P , Yeşilnacar, M . (2020). Assessment of Harran Plain Groundwater in Terms of Arsenic Contamination . Türkiye Jeoloji Bülteni , 63 (1) , 137-144 . DOI: 10.25288/tjb.620349

  • ISSUE FULL FILE
    View as PDF