Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2024 AĞUSTOS Cilt 67 Sayı 3
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Sarıyer-Şile Thrust and Implications for the Structural Position of the Istanbul Palaeozoic Sequence
Okan Tüysüz Caner Balkaya
View as PDF

Abstract: The Sarıyer-Şile thrust, which has been known for many years in the geological literature, caused the northward emplacement of the Istanbul Palaeozoic sequence and the unconformably overlying Permo-Triassic rocks onto Upper Cretaceous volcanic and volcanogenic rocks. During investigations of drill cores and surficial geological observations, carried out with in the scope of route research for a highway tunnel being built between Kilyos and Sarıyer, a cataclastic zone that developed along this thrust was identified. While the thickness of this zone is limited at the base of the overlying Palaeozoic sequence, it probably reaches 200 metres in the underlying volcanic-volcanogenic rocks to the south, and gradually thins and disappears towards the north. This compression altectonic regime, which probably developed during the middle Eocene period, caused different deformations inrheologically different hanging and foot wall blocks along this low angle thrust. Carboniferous gray wackes in the hanging block are shortened and thickened by generally fan-shaped thrusts, and less commonly by duplex thrusts, while the volcanic-volcanogenic sequence in the footwall block was affected by intense cataclasis.

  • İstanbul Zone

  • İstanbul Palaeozoic Sequence

  • Fold and Thrust Belt

  • Sarıyer-Şile Thrust

  • Abdüsselamoğlu, Ş. (1963). İstanbul Boğazı doğusunda mostra veren Paleozoyik arazide stratigrafik ve paleontolojik yeni müşhadeler, Maden Tetkik ve Arama Dergisi, 60, 1-6.

  • Akartuna, M. (1963). Şile şaryajının İstanbul Boğazı kuzey yakalarında devamı. Maden Tetkik ve Arama Dergisi, 61, 14-20.

  • Aysal, N., Keskin, M., Peytcheva, I. & Duru, O. (2017). Geochronology, geochemistry and isotope systematics of a mafic–intermediate dyke complex in the İstanbul Zone. New constraints on the evolution of the Black Sea in NW Turkey. Geological Society, London, Special Publications, 464, SP464. https://doi.org/10.1144/SP464.4

  • Babaoğlu, C., Topuz, G., Okay, A.I., Köksal, S., Wang, J-M. & Toksoy-Köksal, F. (2023). Middle Permian basic and acidic volcanism in the Istanbul zone (NW Turkey): evidence for post-Variscan extensional magmatism, International Geology Review, 65(21), 3435–3452. https://doi.org/10.10 80/00206814.2023.2188551

  • Barton, N., Lien, R. & Lunde, J. (1974) Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics, 6, 189-236.

  • Baykal, A. F. (1943). Şile bölgesinin jeolojisi, İstanbul Üniversitesi Fen Fakültesi Monografileri, 3, 81s.

  • Baykal, F. & Akartuna, M. (1953). Reponse â «Nouvelles Observations sur la tectonique de la region de Sarıyer-Zekeriyaköy (NW de la Turquie)» de İ. Yalçınlar. C.R.S. Soc.Geol. de France, 13, 250-253.

  • Baykal, F. ve Önalan, M. (1979). Şile Sedimenter Karışığı (Şile Olistostromu). Altınlı Sempozyumu, Türkiye Jeoloji Kurumu/İstanbul Üniversitesi Yerbilimleri Fakültesi, 6-7 Mart 1979, 15–25.

  • Baykal, A. F. ve Kaya, O. (1963). İstanbul Bölgesinde bulunan Karbonifer’in Genel Stratigrafisi, Maden Tetkik ve Arama Dergisi, 61, 1-11.

  • Baykal, A. F. ve Kaya, O. (1966). İstanbul Boğazı kuzey kesiminin jeolojisi. Türkiye Jeoloji Kurumu Bülteni, 10(1-2), 31-44. https://dergipark.org.tr/tr/ pub/tjb/issue/53189/705699

  • Bieniawski, Z.T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum Engineering. New York, Wiley, 251s.

  • Bürküt, Y. (1966). Kuzeybatı Anadolu’da Yer Alan Plutonların Mukayeseli Jenetik Etüdü [Doktora Tezi]. İstanbul Teknik Üniversitesi Maden Fakültesi, 271s.

  • Chaput, E. & Hovasse, R. (1930). Notice preliminaire sur le Cretace superieur de Zekeriya Köy, au Nord de Constantinople. Bulletin de la Faculté des Sciences de Stamboul, 4, 1-16.

  • Erdem, M. E., Özcan, E., Yücel, A. O., Okay, A. İ, Erbay, S., Kayğılı, S. & Yılmaz, İ. (2021). Late Campanian larger benthic foraminifera from the Zekeriyaköy Formation (İstanbul, NW Turkey): taxonomy, stratigraphy, and paleogeography. Turkish Journal of Earth Sciences, 30, 1-21. https://doi.org/10.3906/yer-2007-9

  • Gedik, İ., Timur, E., Duru, M. ve Pehlivan, Ş., 2005. 1/50.000 Ölçekli Türkiye Jeolojisi haritaları, İstanbul – F22d paftası: Pafta No. 10. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Görür, N., Monod, O., Okay, A. I., Şengör, A. M. C., Tüysüz, O., Yiğitbaş, E., Sakınç, M. & Akkök, R. (1997). Palaeogeographic and tectonic position of the Carboniferous rocks of the western Pontides (Turkey) in frame of the variscan belt. Bulletin de la Societe Geologique de France, 168(2), 197- 205.

  • Higgins, M. W. (1971). Cataclastic rocks, U.S. Geol. Survey Prof. Paper, 687, 97p.

  • Hochstetter, F. V. (1870). Die geologischen Verhaltnisse des östlichen Theiles der europaischen Türkei. Jahrbuch der Kaiserlich Königlichen Geologischen Reichsanstalt, 20(3), 365-461.

  • ISRM (1981). Rock Characterization Testing and Monitoring. Brown, E. (Ed.), Pergamon Press, Oxford, 211 p.

  • Kaya, O. (1968). İstanbul bölgesi Karbonifer stratigrafisi [Doktora Tezi]. Ege Üniversitesi Fen Fakültesi.

  • Kaya, O. (1971), İstanbul’un Karbonifer stratigrafisi. Türkiye Jeoloji Kurumu Bülteni, 14(2), 143-199. https://dergipark.org.tr/tr/pub/tjb/ issue/54955/753491

  • Kaya, O. ve Lys, M. (1980). İstanbul Boğazının Batı Yakasında (Kilyos) Yeni Bir Triyas Bulgusu. MTA Dergisi, 93-94, 20-26.

  • Kaya, O. & Mamet, B. 1971. Biostratigraphy of the Visean Cebeciköy limestone near İstanbul, Turkey. Journal of Foramiferal Research, 1, 77–81.

  • Keskin, M. & Tüysüz, O. (2018). Stratigraphy, petrogenesis and geodynamic setting of Late Cretaceous volcanism on the SW margin of the Black Sea, Turkey. In M. D. Simmons, G. C. Tarı & A. I. Okay (Eds), Petroleum Geology of the Black Sea. Geological Society, London, Special Publications, 464. https://doi.org/10.1144/ SP464.5

  • Keskin, M., Ustaömer, T. ve Yeniyol, M. (2003). İstanbul kuzeyinde yüzeylenen Üst Kretase yaşlı volkano-sedimenter birimlerin stratigrafisi, petrolojisi ve tektonik konumu. İstanbul’un jeolojisi Sempozyumu Bildiriler Kitabı, 19-22 Aralık 2003. Jeoloji Mühendisleri Odası İstanbul Şubesi, 23-35.

  • Keskin, M., Ustaömer, T. ve Yeniyol, M. (2010). İstanbul kuzeyindeki Üst Kretase volkanojenik istiflerinin magmatik evrimi ve jeodinamik ortamı. Y. Örgün, ve S. Yılmaz Şahin (Ed.ler), İstanbul›un Jeolojisi Sempozyumu-III Kitabı. İTÜ, İstanbul, 130-180.

  • Less, G., Özcan, R. & Okay, A. I. (2011). Stratigraphy and Larger Foraminifera of the Middle Eocene to Lower Oligocene Shallow-Marine Units in the Northern and Eastern Parts of the Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences, 20, 793–845. https://doi.org/10.3906/yer-1010-53

  • Lom, N., Ülgen, S. C., Sakınç M. & Şengör, A. M. C. (2016). Geology and stratigraphy of Istanbul region, In Sen S.(ed.), Late Miocene mammal locality of Küçükçekmece, European, Turkey. Geodiversitas, 38(2), 175-195.

  • Mamet, B. L. (1973). Foraminiferal biostratigraphy of the Lower Carboniferous Trakya and Heybeliada formations, İstanbul region, Turkey. Kaya, O. (Ed), Paleozoic of İstanbul. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, 137–143.

  • McCallien W. J. & Ketin, İ. (1947). The Structure of Çamlıca etc. Annales de l’ Université d’Ankara, 1, 209-226.

  • Okay, A. C. (1947). Geologishe und petrographiche Untersuchung des Gebietes zwischen Alemdağ, Karlıdağ und Kayışdağ in Kocaeli Bithynien, Türkei. İstanbul Üniversitesi Fen Fakültesi Mecmuası Serie B, XII, 269–288.

  • Okay, A. İ., Satır, M. & Siebel, W., 2006. Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. D. G. Gee & R. A. Stephenson, (Eds.), European Lithosphere Dynamics. Geological Society of London, Memoirs, 32, 389–405

  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. B.Durand, L. Jolivet, F. Horvath, & M. Seranne (Eds), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society of London, Special Publications, 156, 475-515.

  • Önalan, M. (1982). Pendik bölgesi ile Adaların jeolojisi ve sedimenter özellikleri [Doçentlik tezi]. İstanbul Üniversitesi Yerbilimleri Fakültesi Jeoloji Bölümü.

  • Özgül, N. (2011). İstanbul il alanının jeolojisi (yayımlanmamış rapor). İstanbul Büyükşehir Belediyesi Deprem Risk Yönetimi ve Kentsel İyileştirme Daire Başkanlığı Deprem ve Zemin İnceleme Müdürlüğü.

  • Özgül, N. (2012). Stratigraphy and some structural features of the Istanbul Paleozoic. Turkish Journal of Earth Sciences, 21, 817-866.

  • Paeckelmann, W. (1938). Neue Beitrage zur Kenntnis der Geologie, Palaontologie und Petrographie der Umgegend von Konstantinopel. Abhandlungen der Preussischen Geologischen Landesanstalt, Neue Folge, 186, Berlin.

  • Parejas, E. & Baykal, F. (1938). Une lame de charriage â Şile (Anatolie). Publ. Inst. Geol. Univ. İstanbul, nouv ser., l, 1-5.

  • Penck W. (1919). Grudzüge der Geologie des Bosporus. Veröffentlichungen des Instituts für Meereskunde an der Universität Berlin, Geographischnaturwissenschaftliche Reihe, IV, 1-71.

  • Scholz. C. H. (1990). The mechanics of earthquakes and faulting. New York. Cambridge University Press. 439 p.

  • Seymen, İ. (1995). İzmit Körfezi ve çevresinin jeolojisi. İzmit Körfezi Kuvaterner İstifi. E. Meriç (Ed.), Kocaeli Valiliği Çevre Koruma Vakfı, 1-22.

  • Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society (London), 133, 191-213.

  • Sunal, G. & Tüysüz, O. (2002). Palaeostress analysis of Tertiary post-collisional structures in the Western Pontides, Northern Turkey. Geological Magazine, 139(3), 343-359.

  • Şengör, A. M. C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. & Rangin, C. (2004). The North Anatolian Fault: A new look. Annual Review of Earth and Planetary Sciences, 33, 37–112. https://doi.org/10.1146/annurev. earth.32.101802.120415

  • Tüysüz, O. (2018). Cretaceous geological evolution of the Pontides. M. D. Simmons, G. C. Tarı & A. I. Okay (Eds.), Petroleum Geology of the Black Sea. Geological Society, London, Special Publications, 464. https://doi.org/10.1144/SP464.9

  • Tüysüz, O., Aksay, A. & Yiğitbaş, E. (2004). Batı Karadeniz Bölgesinin Litostratigrafi Birimleri. Litostratigrafi Birimleri Serisi 2, Stratigrafi Komitesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Ülgen, S. C., Şengör, A. M. C., Keskin, M. & Aysal, N. (2022). The Bosphorus Volcano: remnants of an ancient volcano on an ancient city. International Journal of Earth Sciences, 111, 2017–2035. https://doi.org/10.1007/s00531-022-02213-1

  • Yalçınlar, İ. (1951). İstanbul civarının Paleozoik Arazisine Dair Yeni müşahedeler. Türkiye Jeoloji Bülteni, 3(1), 125-130. https://dergipark.org.tr/tr/ pub/tjb/issue/50637/659588

  • Yalçınlar, İ. (1953). Nouvelles Observations sur la tectonique des regions de Sarıyer -Zekeriyaköy et de Şile (NW de la Turquie). C. R. Somm. Soc. Géol. France, 5, 71-73.

  • Yavuz, O. ve Yılmaz, Y. (2010). İstanbul kuzeyi volkanitlerinin jeolojik, petrografik ve mineralojik özellikleri, İstanbul Teknik Üniversitesi Dergisi, 9(3), 38-46.

  • Yeniyol, M. ve Ercan, T. (1989/1990). İstanbul kuzeyinin jeolojisi, Üst Kretase volkanizmasının petrokimyasal özellikleri ve Pontid’lerdeki bölgesel yayılımı. İstanbul Üniversitesi Mühendislik Fakültesi Yerbilimleri Dergisi, 7(1- 2), 125-147.

  • Yılmaz, İ. (1977), Sancaktepe granitinin (Kocaeli Yarımadası) mutlak yaşı ve jenezi. Türkiye Jeoloji Kurumu Bülteni, 20, 17-21. https://dergipark.org. tr/tr/pub/tjb/issue/64643/987497

  • Yılmaz-Şahin, S., Aysal, N. & Güngör, Y. (2012). Petrogenesis of Late Cretaceous Adakitic Magmatism in İstanbul Zone (Çavuşbaşı granodiorite, NW Turkey). Turkish Journal of Earth Sciences, 21: 1029-1045. https://doi. org/10.3906/yer-1005-15










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • The MIS 9 Terrestrial Carbonate Records in Anatolia and their Palaeoclimatic Implications at Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) and Bahçecik (Gümüşhane)
    Ezher Tagliasacchi Mine Sezgül Kayseri Özer Raif Kandemir
    View as PDF

    Abstract: The MIS 9, one of the Marine Isotope Stages (MIS) that corresponds to an interglacial period, is considered as an analogue for the present warm period. However, data from terrestrial carbonate sediments for this periodare limited. In this study, records of terrestrial carbonates such as travertine and tufa, which crop out in different locations in Anatolia, were investigated of the MIS 9 interglacial period. For this purpose, the MIS 9 data of terrestrial  carbonates at two locations in SW-Anatolia, (Örtülü/Sarıkavak, Afyon) and (Karahallı, Uşak) were evaluated, and one location from NE-Anatolia (Bahçecik, Gümüşhane). In light of the sedimentological, isotopic and palynological data, the environmental and palaeoclimatic conditions of the MIS 9 interglacial period were revealed. The Örtülü travertines and Sarıkavak tufa, which continued to be precipitated during the MIS 9 period, were accumulated in a depression depositional system and a fluvial system dominated by medium-highly inclined topography, respectively. Karahallı travertines were deposited in a shallow lake margin environment where tectonism was active. Bahçecik travertines were deposited within depression and slope depositional systems. In the MIS 9 period, δ13C stable isotopes values of the Karahallı and Örtülü/Sarıkavak terrestrial carbonates were close to positive (-0.47 to 1.86‰), while δ18O stable isotope values were negative (-9.67 to -8.72‰). However, a significant difference is observed in the stable isotope values of the MIS 9 period in NE-Anatolia. While δ13C isotope values are more positive (4.5 to5.0 ‰), δ18O values are much more negative (–14.67 to –14.6‰). This difference in these carbon and oxygen isotope values is directly related to wetter/drier conditions. According to palynological records, a significant difference was recorded between MIS 9e and MIS 9a, with a changing humidity, relatively. In the light of all data obtained, it can be said that the MIS 9 in Anatolia was generally a milder period, although it showed climatic fluctuations with decreased rainfall within arid conditions.

  • Anatolia

  • MIS 9

  • palaeoclimatology

  • palynology

  • stable isotope

  • terrestrial carbonates

  • Andrews, J. E. (2006). Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75(1-4), 85–104. https://doi.org/10.1016/j.earscirev.2005.08.002

  • Andrews, J. E., Riding, R. & Dennis, P.F. (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 129(1- 2), 171–189. https://doi.org/10.1016/S0031- 0182(96)00120-4

  • Baldini, J. U. L. (2010). Cave atmosphere controls on stalagmite growth rate and palaeoclimate records. Geological Society, London, Special Publications, 336(1), 283–294. https://doi.org/10.1144/SP336.1

  • Bertini, A., Minissale, A. & Ricci, M. (2014). Palynological approach in upper Quaternary terrestrial carbonates of central Italy: anything but a ‘mission impossible’. Sedimentology 61, 200–220.

  • Beug, H. J., (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München, Germany

  • Brasier, A. T., Andrews, J. E., Marca-Bell, A. D. & Dennis, P.F. (2010). Depositional continuity of seasonally laminated tufas: implications for δ18O based palaeotemperatures. Global and Planetary Change, 71(3-4), 160–167. https://doi. org/10.1016/j.gloplacha.2009.03.022

  • Brook, E. J. & Buizert, C. (2018). Antarctic and Global Climate History Viewed from Ice Cores. Nature, 558(7709), 200–208. https://doi.org/10.1038/ s41586-018-0172-5

  • Capezzuoli, E., Gandin, A. & Pedley, M. (2014). Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology, 61(1), 1–21.

  • Capezzuoli, E., Della Porta, G., Rogerson, M. & Tagliasacchi, E. (2022). Non-marine carbonate: Wherefore art thou?. The Depositional Record, 8, 4-8.

  • Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. (2020). The ICS International Chronostratigraphic Chart 2020/03. Episodes 36,199-204.

  • Dabkowski, J., Brou, L. & Naton, H.-G. (2015). New stratigraphic and geochemical data on the Holocene environment and climate from a tufa deposit at Direndall (Mamer Valley, Luxembourg). The Holocene, 25(7), 1153-1164.

  • Erdtman, G. (1943). An Introduction to Pollen Analysis. USA. Choronica Botanica Company.

  • Facenna, C., Soligo, M., Billi, A., Filippis, L. D., Funiciello, R., Rosetti, C. & Tuccimei, P. (2008). Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, central Italy): possible influence of climate and fault activity. Global and Planetary Change, 63, 299-308.

  • Faegri, K. & Iversen, J. (1989). Textbook of pollen analysis, 4th edition. John Wiley & Sons Ltd. 328, Norway.

  • Fletcher, W. J., Müller, U.C., Koutsodendris, A., Christanis, K. & Pross, J. (2013). A centennialscale record of vegetation and climate variability from 312 to 240 ka (Marine Isotope Stages 9c–a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quaternary Science Reviews, 78, 108–125. https:// doi.org/10.1016/j.quascirev.2013.08.005

  • Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Göktürk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A., Kramers, J. & Tüysüz, O. (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters, 36(19), L19707. https://doi. org/10.1029/2009GL040050

  • Ford, T.D. & Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. EarthScience Reviews, 41(3-4), 117–175. https://doi. org/10.1016/S0012-8252(96)00030-X

  • Frank, N., Braum, M., Hambach, U., Mangini, A. & Wagner, G. (2000). Warm period growth of travertine during the last interglaciation in southern Germany. Quaternary Research, 54(1), 38–48. https://doi.org/10.1006/qres.2000.2135

  • Frechen, M., van Vliet-Lanoë, B. & van den Haute, P. (2001). The Upper Pleistocene loess record at Harmignies/Belgium — high resolution terrestrial archive of climate forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3–4), 15, 175-195.

  • Head, M. J. (2021). Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19. Progress in Earth and Planetary Science, 8, Article 50. https://doi.org/10.1186/s40645-021- 00439-2

  • Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A. … & Toggweiler, J. R. (1993). On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography and Paleoclimatology, 8(6), 699-736. https://doi. org/10.1029/93PA02751

  • Kandemir, R., Tagliasacchi, E., Kayseri-Özer, M.S., Şaffak, D., Köroğlu, F., Hsun-Ming Hu, & Shen, C. C. (2021). The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik Travertines, Gümüşhane, NE-Turkey Turkish Journal of Earth Sciences, 30, 561-579.

  • Kazancı, N. (2021). Çibaniyen Katı’nın İlanı, Bilimsel ve Sosyal Arka Planı. Türkiye Jeoloji Bülteni, 64(2), 249-252. https://dergipark.org.tr/tr/pub/tjb/ issue/59789/847446

  • Kaufmann, G. & Dreybrodt, W. (2004). Stalagmite growth and palaeo-climate: An inverse approach. Earth and Planetary Science Letters, 224(3-4), 529–545. https://doi.org/10.1016/j. epsl.2004.05.020

  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P. C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41.

  • Ludwig, K.R. & Paces, J.B. (2002). Urainum-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochimica et Cosmochimica Acta, 66(3), 487-506.

  • Merz, N., Hubig, A., Kleinen, T., Therre, S., Kaufmann, G. & Frank, N. (2022). How the climate shapes stalagmites—A comparative study of model and speleothem at the Sofular Cave, Northern Turkey. Frontiers in Earth Science, 10, Article 969211. https://doi.org/10.3389/feart.2022.969211

  • Meyers, P. A. & Teranes, J. L. (2001). Sediment Organic Matter. In W. Last, & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments, (pp. 240-267). Dordrecht, Kluwer Academic Publishers.

  • Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M. … & Vaselli, O. (2002). Geochemistry of Quaternary travertines in the region North of Rome (Italy): structural, hydrologic and paleoclimatologic implications. Earth and Planetary Science Letters 203(2), 709–728. https://doi.org/10.1016/S0012-821X(02)00875-0

  • Moore, P. D., Webb, J. A. & Collinson, M. E. (1991). Pollen analysis, 2nd edition. Blackwell, Oxford, 1-216.

  • Nehrbass-Ahles, C. Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt, A., Schmidely, L., Silva, L., Teste, G., Grilli, R., Chappellaz, J. A; Hodell, D. A., Fischer, H. & Stocker, T. F. (2020). Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions. Science, 369, 1000-1005, https://doi.org/10.1126/science. aay8178

  • Ocakoğlu, F. & Akkiraz, M.S. (2019). A Lower Pleistocene to Holocene terrestrial record from the Eskişehir Graben (Central Anatolia): Paleoclimatic and morphotectonic implications. Quaternary International, 510, 88-99.

  • Özalp, S., Emre, Ö., Şaroğlu, F., Özaksoy, V., Elmacı, H. & Duman T. Y. (2018). Active fault segmentation of the Çivril Graben System and surface rupture of the 1 October 1995 Dinar Earthquake (Mw 6.2), Southwestern Anatolia, Turkey. Journal of Asian Earth Sciences, 166, 136-151.

  • Özkul, M., Kele, S., Gökgöz, A., Shen, C.C., Jones, B., Baykara, M. O., Fórizs, I., Németh, T., Chang, Y. W. & Alçiçek, M. C. (2013) Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sedimentary Geology, 294, 179-204.

  • Pazdur, A., Pazdur, M.F., Starkel, L. & Szulc, J. (1988). Stable isotopes of Holocene calcareous tufa in southern Poland as palaeoclimatic indicators. Quaternary Research 30, 177–189.

  • Peña, J. L., Sancho, C. & Lozano, M.V. (2000). Climatic and tectonic significance of Pleistocene and Holocene tufa deposits in the Mijares River canyon, eastern Iberian range, Northeast Spain. Earth Surface Processes and Landforms, 25(13), 1403–1417. https://doi.org/10.1002/1096- 9837(200012)25:13%3C1403::AIDESP147%3E3.0.CO;2-N

  • Pedley, M., Andrews, J., Ordoñez, S., García del Cura, M. A., González Martín, J. A. & Taylor, D. (1996). Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeography Palaeoclimatology Palaeoecology 121, 239–257.

  • Petit, J. R., Jouzel, J., Raynaud, D., … & Stievenard, M. (1999). Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735), 429–436. https:// doi.org/10.1038/20859

  • Porter, S. C. & An, Z. S. (1995). Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529), 305–308. https://doi.org/10.1038/375305a0

  • Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94-106.

  • Regattieri, E., Zanchetta, G., Isola, I., Bajo, P., Perchiazzi, N., Drysdale, R. N., Boschi, C., Hellstrom, J.C., Francke, A. & Wagner, B. (2018). A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Global and Planetary Change, 162, 39-52.

  • Rickets, J. W., Ma, L., Wagler, A. E. & Garcia, V. H. (2019). Global travertine deposition modulated by oscillations in climate. Journal of Quaternary Science 34, 558-568. https://doi.org/10.1002/ jqs.3144

  • Rowe, P. J., Mason, J. E., Andrews, J. E., Marca, A. D., Thomas, L., van Calsteren, P., Jex, C. N., Vonhof, H. B. ve Al-Omari, S. (2012). Speleothem isotopic evidence of winter rainfall variability in northeast Turkey between 77 and 6 ka. Quaternary Science Reviews, 45, 60-72.

  • Sadori, L., Koutsodendris, A., Masi, A., Bertini, A., Combourieu-Nebout, N., Francke, A. & Peyron, O. (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (SE Europe) during the past 500 ka. Biogeosciences 13, 1423– 1437.

  • Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo G., Lozano, M.V., José Luis Peña-Monné c, John Hellstromd, José Eugenio Ortiz e, Osácar, M.C., Auqué, L. & Torres, T. (2015). Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research 84, 398–414.

  • Sun, H. L. & Liu, Z. H. (2010). Wet-dry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochimica et Cosmochimica Acta, 74(3), 1016-1029. https:// doi.org/10.1016/j.gca.2009.11.008

  • Sun, J., Ding, Z., Liu, T., Rokosh, D. & Rutter, N. (1999). 580,000-year environmental reconstruction from aeolian deposits at the Mu Us Desert margin, China. Quaternary Science Reviews,18(12), 1351- 1364.

  • Şensoy, S., Demircan, M., Ulupınar, Y. ve Balta, İ. (2019). Türkiye İklimi, Meteoroloji Genel Müdürlüğü, URL https://www.mgm.gov.tr/ FILES/genel/makale/13_turkiye_iklimi.pdf

  • Tagliasacchi-Toker, E. (2018) Orta-Geç Pleyistosen Yaşlı Gürlek-Kocabaş (Denizli) ve Örtülü (Afyon) Travertenlerinin Sedimantolojik Özellikleri ve Paleoortamsal Gelişimine ait ilk bulgular (GBTürkiye). Türkiye Jeoloji Bülteni 61(1):1–22. https://doi.org/10.1016/j.quaint.2019.12.016

  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2018). Palaeoclimate changes in the Afyon province, SW Turkey, during the middle-late Pleistocene: signals from calcareous tufa pollen and stable isotope records. Alpine and Mediterranean quaternary. In: (Quaternary: Past, Present, Future - AIQUA Conference, Florence, Alpine and Mediterranean Quaternary, 31, 161–164. https://amq.aiqua.it/ index.php/amq/article/view/208

  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2020). Multidisciplinary approach palaeoclimatic signals of the non-marine carbonates: the case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International, 544, 41-56. https://doi. org/10.1016/j.quaint.2019.12.016

  • Tagliasacchi, E., Kayseri-Özer, M.S. & Altay, T. (2024). Environmental, vegetational and climatic investigations during the Plio-Pleistocene in SW-Anatolia: A case study from the fluviolacustrine deposits in Uşak-Karahallı area. Palaeobiodiversity and Palaeoenvironments, 104, 29-51. https://doi.org/10.1007/s12549-023- 00590-2

  • Toker, E. (2009). Acıgöl-Çardak (Denizli) Grabeninin kuzeyindeki Tersiyer çökellerinin tektono-sedimanter gelişiminin incelenmesi [Tayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.

  • Toker, E. (2017). Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: facies and depositional systems. Quaternary International, Non-marine Carbonates. Special Issue. 437, 37–50.

  • Toker, E., Kayseri-Özer, M.S., Özkul, M. & Kele, S. (2015). Depositional system and palaeoclimatic interpretations of middle to late Pleistocene travertines: Kocabaş, Denizli, SW Turkey. Sedimentology 62(5), 1360–1383.

  • Tzedakis, P. C., McManus, J. F., Hooghiemstra, H., Oppo, D. W. & Wijmstra, T. A. (2003). Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth and Planetary Science Letters, 212(1-2), 197- 960. https://doi.org/10.1016/ S0012-821X(03)00233-4

  • Wagner B., Wilke T., Francke A., Albrecht C., Baumgarten H., Bertini A., Combourieu-Nebout N., Cvetkoska A., …& Zhang X.S. (2017). The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): Interim results from the SCOPSCO deep drilling project. Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14- 2033-2017

  • Wu, T., Cheng, A., Lin, H., Zhang, H. & Jie, Y. (2023). Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau. Journal of Earth Science, 34, 2556- 1566. https://doi.org/10.1007/s12583-022-1610-8










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Health and Economic Importance of Mineral Waters: A Case Study of Ciritdüzü (Şavşat-Artvin) Mineral Water Spring
    Fatma Gültekin Esra Hatipoğlu Temizel Nergis Erdoğan
    View as PDF

    Abstract: The Mineral Water Producers Association (MASUDER) stated that our country has important resources in terms of mineral water, but consumption rates are quite low. This can be attributed to the fact that the effects ofmineral water are not sufficiently known. So far, studies have shown that mineral waters have positive effects on cardiovascular health, bone structure, digestive system, and metabolism. Increased awareness of health effects willpositively affect consumption. With the increase in consumption, the economic value of mineral water resources will also increase. In this study, the hydrogeochemical and isotopic properties of Ciritdüzü mineral water (CDMS) and some cold-water springs in Şavşat town in Artvin were examined and evaluated in terms of health. The springs have Na-Ca-HCO3, Ca-Mg-Na-HCO3 and Ca-HCO3 water types with temperatures ranging between 8-13 °C, pH values between 6.42-7.97 and EC values between 181-3195 µS/cm. The isotope contents of the waters (O-18, deuteriumand tritium) show that CDMS has deep circulation, and the other springs have shallow circulation. The δ34S values of the waters indicate that the source of sulfate in CDMS is a mixture of marine evaporites, terrestrial evaporitesand atmospheric sulfate; δ13C values indicate that the origin of carbon corresponds to metamorphic CO2. The trace element contents in the waters are generally consistent with the limit values given in the Regulation on Natural Mineral Waters. Antimony and arsenic concentrations are within the limit values and boron concentration is above the limit value for CDMS. When the waters are evaluated medically and climatologically, CDMS has bicarbonate content above the effective dose for drinking cures. When evaluated in terms of sodium, calcium and magnesiumion contents, CDMS can be used for diseases related to the digestive system, prevention of cardiovascular diseases,kidney and urinary tract diseases. The location of the CDMS spring, which has preventive and the rapeutic propertiesfor these disease groups, also offers the opportunity for climatotherapy. 

  • Artvin-Şavşat

  • balneotherapy

  • climatotherapy

  • hydrogeochemistry

  • mineral water

  • Akpınar, D. (2017). Osmanlı’dan Günümüze Afyonkarahisar Maden Suları. Journal of Social and Humanities Sciences Research, 4(12), 1047- 1060. https://doi.org/10.26450/jshsr.185

  • Baba, A., Ereeş, F. S., Hiçsönmez, Ü., Çam, S. & Özdilek, H. G. (2008) An assessment of the quality of various bottled mineral water marketed in Turkey. Environmental Monitoring and Assessment, 139(1-3), 277-285. https://doi. org/10.1007/s10661-007-9833-9

  • Bacciottini, L., Tanini, A., Falchetti, A., Masi, L., Franceschelli, F., Pampaloni, B., Giorgi, G. & Brandi, M. L. (2004). Calcium bioavailability from a calcium-rich mineral water, with some observations on method. Journal of Clinical Gastroenterology, 38(9), 761-6. https://doi. org/10.1097/01.mcg.0000139031.46192.7e

  • Barut, İ. F. ve Erdoğan, N. (2011). Marmara Bölgesi Termal Mineralli Kaynak Suları: Hidrokimyasal Özellikleri ve Zamana Bağlı Değişimi. İstanbul Yerbilimleri Dergisi, 24(1), 19-64.

  • Barut, İ.F., Erdoğan, N., Berköz Erol, B. ve Demircioğlu Güneri, F. (2013). Geçmişten Günümüze Denizli Termal Mineralli Sularının Hidrokimyasal Özellikleri İle Kullanımının Değerlendirilmesi. İstanbul Yerbilimleri Dergisi, 26(1),1-24.

  • Blazejczyk, K. (2008) Bioclimatic Principles of Health Tourism. Conference Reports R-01-2009, Volume 20, pp. 28-43.; Yamanashi Institute of Environmental Sciences. Yamanashi, Japan, 2008.

  • Bortolotti, M., Turba, E., Mari, C., Lopilato, C., Porrazzo, G., Scalabrino, A. & Miglioli, M. (1999). Changes caused by mineral water on gastrointestinal motility in patients with chronic idiopathic dyspepsia. Minerva Medica, 90(5-6), 187-94.

  • Bothe, G., Coh, A. & Auinger, A. (2015). Efficacy and safety of a natural mineral water rich in magnesium and sulphate for bowel function: a doubleblind, randomized, placebo-controlled study. European Journal of Nutrition, 56(2), 491-499.

  • Chruszcz-Lipska, K., Winid, B., Madalska, G.A., Macuda, J. & Lukanko, L. (2021). High content of boron in curative water: from the spa to industrial recovery of borates? (Poland as a case study). Minerals, 11(1), 8. https://doi.org/10.3390/ min11010008

  • Clark, I. & Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis publishers, New York, 328.

  • Craig, H. (1961). Isotopic Variations in Meteoric Water. Science, 133, 1702-1703.

  • Dandinoglu, T., Dandin, O., Ergin, T., Tihan, D., Akpak, Y.K., Aydın, O.U. & Teomete, U. (2017) Can balneotherapy improve the bowel motility in chronically constipated middle-aged and elderly patients? International Journal of Biometeorology, 61(6), 1139-1148. https://doi.org/10.1007/s00484- 016-1295-8

  • De Giglio, O., Quaranta, A., Lovero, G., Caggiano, G. & Montagna, M.T. (2015). Mineral water or tap waters An endless debate. Ann Ig. 27(1), 58-65. https://doi.org/10.7416/ai.2015.2023

  • Direktif 80/777/EEC of 15 July 1980 on the approximation of the laws of the Member States relating to the exploitation and marketing of natural mineral waters. Official Journal of the European Communities, No L 229/9.

  • Direktif 2009/54/EC of the European Parliament and of the counc’l 2009. On the exploitation and marketing of natural mineral waters. Official Journal of the European Union L 164/45-58

  • Drever, J. I. (1997). The geochemistry of natural waters, third edition. New Jersey, Prentice- Hall. Inc.

  • Dupont, C., Campagne, A. & Constant, F. (2014). Efficacy and safety of a magnesium sulfate-rich natural mineral water for patients with functional constipation. Clinical Gastroenterology and Hepatology, 12(8), 1280-7.

  • Ekmekçi, M. ve Gültekin, F. (2015). Doğu Karadeniz Bölümü Suları Çevresel Duraylı İzotop İçeriğinin Değerlendirilmesi. R. Ulusay, M. Ekmekçi, H. Ersoy, A. Fırat Ersoy (Ed.ler), Ulusal Mühendislik Jeolojisi Sempozyumu (MÜHJEO 2015), (s. 459- 466). KTÜ Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü/Mühendislik Jeolojisi Derneği, Trabzon.

  • Erdoğan, N. (2002). Termomineral Banyoların Etki Mekanizması. Balneoloji ve Kaplıca Tıbbı. M.Z. Karagülle (Ed.), İ.Ü. İst. Tıp Fak. Temel ve Klinik Bilimler Ders Kitapları, Nobel Tıp Kitapevleri.

  • Erdoğan, N. (2012). Türkiye’de kaplıca tedavisinin son yirmi yılı. IX. Ulusal Kaplıca Tıbbı ve Balneoloji Kongresi Özet Kitabı 12-14 Nisan Kozaklı Nevşehir.

  • Erendil, M., Turhan, N., Aksoy, A., Özdemir, H. ve Sirel, E. (1989). Artvin Dolayının Jeolojik Etüdü. MTA Derleme Raporu.

  • Fioravanti, A., Karagülle, M., Bender, T. & Karagülle, M.Z. (2017). Balneotherapy in osteoarthritis:Facts, fiction and gaps in knowledge. European Journal of Integrative Medicine, 1(9), 148-150. https://doi.org/10.1016/j.eujim.2017.01.001

  • Gutenbrunner, C., Bender, T., Cantista, P. & Karagülle, Z. (2010). A Proposal for a World-Wide Definition of Health Resort Medicine, Balneology, Medical Hydrology and Climatology. International Journal of Biometeology, 54, 495-507.

  • Gültekin, F., Fırat Ersoy, A. ve Ersoy, H. (2005). Aşağı Değirmendere (Trabzon) Havzasındaki Suların Kalitesi. Jeoloji Mühendisliği Dergisi, 29(1), 21- 34.

  • Gültekin, F., Hatipoğlu Temizel, E., Babacan, A. E., Kırmacı, M. Z., Fırat Ersoy, A. & Subaşı, B.M. (2019) Conceptual model of the Şavşat (Artvin/ NE Turkey) Geothermal Field developed with hydrogeochemical, isotopic, and geophysical studies. Geothermal Energy 7, Article 12. https:// doi.org/10.1186/s40517-019-0128-5

  • Gültekin, F., Hatipoğlu Temizel, E. ve Erdoğan, N. (2023). Ciritdüzü Kaynağının (ŞavşatArtvin) Hidrojeokimyası ve Sağlık Açısından Değerlendirilmesi. Uluslararası Katılımlı 75. Türkiye Jeoloji Kurultayı, (s. 318). 10-14 Nisan 2023, Ankara, Türkiye,

  • Gürdal, H. (2002). Klimaterapi ve Romatizmal Hastalıklar. Balneoloji ve Kaplıca Tıbbı. M.Z. Karagülle (Ed.), İ.Ü. İst. Tıp Fak. Temel ve Klinik Bilimler Ders Kitapları (s.: 215-220). Nobel Tıp Kitapevleri.

  • Gürdal, H., Karagülle, O. ve Karagülle, M.Z. (2002). İçme kürleri. Balneoloji ve Kaplıca Tıbbı. M.Z. Karagülle (Ed.), İ.Ü. İst. Tıp Fak. Temel ve Klinik Bilimler Ders Kitapları (s.: 153-160). Nobel Tıp Kitapevleri.

  • Gürdal, H. (2003). Klimatherapie und Rheumatische Erkrankungen. M. Z. Karagülle, C. Gutenbrunner & O. Karagülle (Eds.) Balneologie Medizinische Klimatologie bei Rheumatischen erkrankungen (pp.: 59-66). O. I.S.M.H. Verlag, Nördlingen Mai.

  • Güven, İ. H. (1993). Doğu Karadeniz Bölgesi’nin 1/250000 ölçekli jeolojik ve Metalojenik Haritası. MTA, Ankara.

  • Halksworth, G., Moseley, L., Carter, K. & Worwood, M. (2003). Iron absorption from Spatone (a natural mineral water) for prevention of iron deficiency in pregnancy. Clinical and Laboratory Haematology, 25(4), 227-31

  • Hatipoğlu Temizel, E., Gültekin, F. & Fırat Ersoy, A. (2019). Rare earth elements and yttrium geochemistry of the geothermal fields in the Eastern Black Sea Region (Ordu, Rize, Artvin), NE Turkey. Bulletin of the Mineral Research and Exploration, 160, 135-153. https://doi. org/10.19111/bulletinofmre.502835

  • Hounslow, A., W. & Back, D. B. (1985). Evaluation of Chemical Data from Water Supplies in Southwestern Oklahoma. Final Report to the Oklahoma Water Resources Board, 125-130.

  • IAH (International Association of Hydrogeologists) (1979). Map of Mineral and Thermal Water of Europe, Scale: 1:500.000. IAH, United Kingdom.

  • Kara, İ. (1997). Türkiye Termal ve Mineralli Sular Envanteri (Artvin), (rapor no: 10261). Maden Tetkik ve Arama Genel Müdürlüğü Derleme Raporu, Ankara, (yayımlanmamış).

  • Karagülle, M. Z. (2002). Klimaterapi. Balneoloji ve Kaplıca Tıbbı. İ.Ü. İst. Tıp Fak. Temel ve Klinik Bilimler Ders Kitapları, Nobel Tıp Kitapevleri, 205-210.

  • Karagülle, D., Frye, C., Sayre, R., Breyer, S., Aniello, P., Vaughan, R. & Wright, D. (2017). Modeling global hammond landform regions from 250-m elevation data. Transactions in GIS, 21(5), 1040- 1060.

  • Karaköse, C., Asutay, H.J., Yergök, A.F., Akbaş B., Dalkılıç, H., Meng, H., Kara, H., Papak, İ. ve Keskin, İ. (1994). Ardahan-Posof Dolayının Jeolojisi, (Rapor No: 9962). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Kınık, K., Akçiçek, A., Yıldırım, R.M., Arıcı, M., Vahapoğlu, B., Kamiloğlu, S., Çapanoğlu, E., Ertugay, M.F., Karasu, S., Tekin, H.Z., Avcı, E., Karakaş C.Y., Karadağ, A., Bekçi, S.B., Çoban, D., Kasapoğlu, B., Seçmele, Ö. ve Sevimli, Y. (2020). Mucize İçecek Maden Suyu. M. Arıcı, S. Karasu, A. Karadağ (Ed.ler), Kızılay Kültür Sanat Yayınları, ss:216 İstanbul.

  • Konak, O., Yılmaz, B.S., Gülibrahimoğlu, İ., Yazıcı,E N, Yaprak, S., Saraloğlu, A., Köse Z, Çuvalcı, F. ve Tosun, C.Y. (1998). Artvin İlinin Çevre Jeolojisi ve Doğal Kaynakları (Rapor no: 10165). Maden Tetkik ve Arama Genel Müdürlüğü Derleme Raporu, Ankara.

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Prentice Hall, Inc., 601 p.

  • MASUDER (2024). Türkiye Maden Suyu Üreticileri Derneği. http://www.masuder. org.tr/Do%C4%9FalMadenSuyu/ MadenSuyuPotansiyeli/tabid/1105/Default.aspx Erişim Tarihi:21.02.2024.

  • NMWE (2024). Natural mineral waters Europe. https:// naturalmineralwaterseurope.org/water/history-ofnatural-mineral-water/. Erişim tarihi: 21.02.2024

  • Petraccia, L., Liberati, G., Masciullo, S.G., Grassi, M., Fraioli, A., Naumann, J. & Sadaghiani, C. (2006). Water, mineral waters and health. Clinical Nutrition, 25(3), 377-462.

  • Pinheiro, V.B., Baxmann, A.C., Tiselius, H.G. & Heilberg, I.P. (2013). The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology. 82(1), 33-40.

  • Quattrini, S., Pampaloni, B. & Brandi, M.L. (2017). Natural mineral waters: chemical characteristics and health effects. Clinical Cases in Mineral and Bone Metabolism 13(3), 173-180, https://doi. org/10.11138/ccmbm/2016.13.3.173

  • Rapolienė, L., Razbadauskas, A., Mockevičienė, D., Varžaitytė, L. & Skarbalienė, A. (2020). Balneotherapy for musculoskeletal pain: does the mineral content matter?. International Journal of Biometeorology, 64, 965-979.

  • Stankovic, A.M., Radonjic, Petkovic, M. & Divnic, D. (2022). Climatic Elements as Development Factors of Health Tourism in South Serbia. Sustainability, 14(23) 15757. https://doi. org/10.3390/su142315757

  • Subaşı, B.M. (2019). Ilıca (Şavşat-Artvin) Jeotermal Sularının Hidrojeokimyasal ve İzotopik İncelenmesi [Yüksek Lisans Tezi]. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.

  • Şentürk, N. (2009). Türkiye Mineralli Su Potansiyeli ve Sorunlarımız. Türkiye`nin Jeotermal Potansiyeli ve Arama Yöntemleri Sempozyumu, İstanbul.

  • T.C. Sağlık Bakanlığı. saglik.gov.tr/TR,10469/dogalmineralli-sular-hakkinda-yonetmelik, html. Son Erişim Tarihi: 20.02.2024.

  • Tenti, S., Cheleschi, S., Galeazzi, M. & Fioravanti, A. (2015). Spa therapy: can be a valid option for treating knee osteoarthritis?. International Journal of Biometeorology, 59, 1133-1143. https://doi. org/10.1007/s00484-014-0913-6

  • Tretiakova, T.N., Shmeleva, T. & Brankov, J. (2018). Thermal springs and health tourism-the analysis of the meteorological parameters. Journal of the Geographical Institute `Jovan Cvijic` 68(1), 133- 148. https://doi.org/10.2298/IJGI1801133T

  • Türkiye Maden Suları (1975). Karadeniz Bölgesi Cilt 3. Sermet Matbaası, İstanbul.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Origin, Geochemistry and Sulfur Isotope Rations of Pb-Zn-Cu Mineralization between Karadoru and Karaköy (Biga Peninsula, Çanakkale)
    Didem Kiray Mustafa Kuşcu Oya Cengiz
    View as PDF

    Abstract: This study aims to investigate the geochemistry and sulfur isotope ratios, as well as the origin of Pb-Zn-Cu mineralization, between Karadoru (Biga, Çanakkale) and Karaköy (Yenice, Çanakkale) in the Biga Peninsula (NWTurkey). Mineralization was observed at four locations: Karadoru, Peynirderesi, Madençeşme (Biga, Çanakkale) and Karaköy (Yenice, Çanakkale). The lowest tectonostratigraphic unit in the region is the Karakaya Complex. The Nilüfer unit, which is part of the Karakaya Complex and mainly consists of metabasic rocks, is overlain by the Hodul unit. The Hodul unit comprises limestones, spilitic basalt, diabase, and arkosic sandstones. The Karadoru, Sarıçayır, and Soğucak granitoids, which are Oligocene-Miocene in age, cut through units of the Karakaya Complex. Skarn zones developed in locations where many plutonic masses intersect with the units of the Karakaya Complex (Nilüferand Hodul). The Çan volcanics, which date back to the Miocene era, are found on top of the Karadoru, Sarıçayır, and Soğucak granitoid rocks. The Pb-Zn-Cu mineralizations were deposited as veins in the Nilüfer unit (epimetamorphics) in the Karadoru and Madençeşme locations within the Karakaya Complex, and in the Hodul unit (metadiabase and crystallized limestone) in the Peynirderesi and Karaköy (Arapuçandere) locations. The paragenesis includes galena, chalcopyrite, sphalerite, pyrite, limonite, hematite, malachite, manganese, quartz, calcite, and chlorite. The δ34S values of galena and pyrite samples taken from the ore zones in the study area are as follows: Karadoru -3.4‰ and-3.9‰, Karaköy -1.7‰ and -1.6‰, and Peynirderesi -1.7‰ and -4.0‰. The examined Pb-Zn-Cu mineralizations had Sb/Bi ratio in galena ranging from 0.06-0.34 ppm, and Co/Ni ratio in pyrites ranging from 1-10 ppm. The sulfur isotope ratios are negative, indicating that the mineralization has magmatic hydrothermal origin and is due toI-type magmatic activity. The mineralization contains vein-shaped epigenetic deposits of Pb-Zn-Cu mineralization, high trace element contents (Pb, Zn, Cu, Bi, Sb, Ag, Au, W, As), and silicification, sericitization, argillization, and limonitization are observed. These characteristics support the view that the mineralization has hydrothermal origin. 

  • Biga Peninsula

  • Karadoru-Karaköy Pb-Zn-Cu mineralization

  • Karakaya Complex

  • origin

  • S34/32 isotope ratios

  • Ağdemir, N., Kırıkoglu, M. S., Lehmann, B. & Tietze, J. (1994). Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit, NW Turkey: a reconnaissance study. Mineralium Deposita, 29, 366-371.

  • Akıska, S. (2020). Crystallization conditions and compositional variations of silicate and sulfide minerals in the Pb-Zn skarn deposits, Biga Peninsula, NW Turkey. Ore Geology Reviews, 118, Article 103322.

  • Akıska, S., Demirela, G. & Sayili, S. (2013). Geology, mineralogy and the Pb, S isotope study of the Kalkim Pb-Zn±Cu deposits, Biga Peninsula, NW Turkey. Journal of Geosciences, 58(4) 379– 396.

  • Akıska, S. & Demirela, G. (2014). Origin of the fluids in the Handeresi, Bağırkaçdere, and Fırıncıkdere (Kalkım, Yenice-Çanakkale) Pb-Zn±Cu distal skarn deposits. Yerbilimleri, 35(3), 199–218 (in Turkish with English abstract).

  • Akıska, S. & Demirela, G. (2018). The geology, mineral chemistry and isotope composition of Çulfa Çukuru (Çanakkale) Pb-Zn±Cu±Ag deposit. In M. Avcıoğlu, T. Kurttaş, F. Toksaoy Köksal, Y. Eyüboğlu, E. Yiğitbaş, (Eds.), 71st Geological Congress of Turkey Abstract Book, (p.: 575–576). Jeoloji Mühendisleri Odası Yayınları. http://www. jmo.org.tr/resimler/ekler/9ee599173fc3528_ ek.pdf

  • Akıs, İ. (2011). Geological and geochemical features of the skarn deposits in the vicinity of the Sarıçayır (Yenice/Çanakkale)-Turkey [Msc. Thesis]. Selcuk University, Konya, Turkey.

  • Andic, T. & Kayhan, F. (1997). Report on the general geochemical research of the Çanakkale Lapseki (Report no. 10059). Technical reports of the general directorate of the Mineral Research and Exploration Institute (MTA) of Turkey, (in Turkish, unpublished).

  • Anil, M. (1979). Etude géologique et métallogénique du secteur septentrional de Yenice (presqu’île de Biga-Turquie) (Doctoral dissertation).

  • Anil, M. (1984). Genesis of the Pb–Zn–Cu mineralization and relations with Tertiary volcanism in Yenice area (Arapuçandere-Kurttasi-Sofular and KalkimHanderesi). Jeoloji Mühendisliği Dergisi, 8(2), 17–30. https://dergipark.org.tr/tr/download/ article-file/289816

  • Anil, M. & Yaman, S. (1985). Fluid inclusion studies on the Arapuçandere (Yenice-Çanakkale) Pb–Zn mineralizations. Bulletin for Earth Science, 12, 81–91.

  • Arvas, H. ve Önder, İ. (1976). Biga Yarımadası Çataltepe sahası bakır-kurşun aramaları IP Etüd Raporu (Rapor No: 5625) MTA Derleme Ankara.

  • Aubert, D., Stille, P. & Probst, A. (2001). REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65(3), 387-406.

  • Aydın, E. (1981). Biga Yarımadasındaki Pbsulfomineralleri, bunların oluşum koşulları ve kökenleri. İ.Ü. Yerbilimleri, 1-2, 53-76.

  • Aydın, E. ve Öztunalı, Ö. (1981). Biga Yarımadasındaki Pb-Zn cevherleşmelerinin oluşum koşulları. İ.Ü. Yerbilimleri, 1-2, 91-95.

  • Aydın, Ü., Şen, P., Özmen, Ö. & Şen, E. (2019). Biga Yarımadası’ndaki granitoyitlerin (KB Anadolu, Türkiye) petrolojik ve jeokimyasal özellikleri. MTA Dergisi, 160, 81-116.

  • Aysal, N. (2005). Biga (Çanakkale) doğusunun Mesozoyik-Tersiyer magmatizması ve metamorfizmasının petrolojisi [Doktora tezi]. İstanbul Üniversitesi Fen Bilimleri Enstitüsü.

  • Aysal, N. (2015). Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Science,105, 68-84.

  • Aysal, N., Öngen, S. ve Hanilçi, N. (2006). Karadoru granitoid plütonu yan kayaçlarının petrografisi ve skarn zonunun özellikleri, Yenice-Çanakkale. İstanbul Üniversitesi Yerbilimleri Dergisi, 19(2), 183-194.

  • Bajwah, Z., Seccombe, P. & Offler, R.(1987). Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22, 292– 300.

  • Bingol, E. (1968).Contributiona l’étude géologique de la partie centrale et sud-est du massif de Kazdag (Turquie) [Doctoral dissertation thesis]. Faculty of Science, University of Nancy (France).

  • Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. Chapter 3. Development of Geochemistry, 2, 63-114.

  • Bozkaya, G. (2011a). Sulphur-and lead-isotope geochemistry of the Arapuçandere lead-zinccopper deposit, Biga Peninsula, NorthwestTurkey. International Geology Review, 53(1), 116-129.

  • Bozkaya, G. (2011b). Sulfur isotope composition of the Bagirkacdere lead-zinc deposit, Biga Peninsula, Turkey. In Goldschmidt Conference 2011, Prague, Abstracts, Mineral Mag 75, 571.

  • Bozkaya, G., Gökçe, A. & Grassineau, N. V. (2008). Fluid inclusion and stable isotope characteristics of the Arapuçandere Pb-Zn-Cu deposits, Northwest Turkey. International Geology Review, 50(9), 848-862.

  • Bozkaya, G. & Gökce, A.(2009). Lead and sulfur isotopestudies of the Koru (Çanakkale, Turkey) lead-zinc eposits. Turkish Journal of Earth Sciences, 18(1), 127-137.

  • Bozkaya, G. & Banks, D. A. (2015). Physico-chemical controls on ore deposition in the Arapucandere Pb– Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey. Ore Geology Reviews, 66, 65-81.

  • Bralia, A., Sabatini, G. & Troja, F. (1979). A revaluation of the Co/Ni ratio in pyrite as a geochemical tool in ore genesis problems: evidence from southern Tuscany pyritic deposits. Mineral Deposita, 14, 353-374.

  • Cagatay, A. (1980). Geology and mineralogy of western Anatolian lead-zinc deposits and some comments about their genesis. Bulletin of the Geological Society of Turkey, 23(2), 119-132. https://www. jmo.org.tr/resimler/ekler/f477737c1829c3e_ ek.pdf

  • Campbell, F. A. & Ethier, V. (1984). Nickel and Cobalt in pyrrhotite and pyrite from the Faro and Sullivan ore bodies. Canadian Mineralogist, 22, 503-506.

  • Cetinkaya, N., Karul, B., Yenigun, K. & Onal, R. (1983). Report of Turkish–Germany project Biga Peninsula on there search project of metallic mines (Pb–Zn–Cu) (Report No. 7745). Mineral Research and Exploration Institute of Turkey (MTA).

  • Çiçek, M. & Oyman, T. (2016). Origin and evolution of hydrothermal fluids in epithermal Pb-ZnCu±Au±Ag deposits at Koru and Tesbihdere mining districts, Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews,78, 176-195.

  • Çiçek, M., Oyman, T., Kaliwoda, M. & Hochleitner, R. (2017). Mineralogy and mineral chemistry of the Arapuçandere Pb-Zn-Cu (Ag-Au) mineralization in the northeast of Yenice (Çanakkale), Biga Peninsula, NW Turkey. Workshop on Subduction Related Ore Deposits, Abstracts Book ( p.:18). Karadeniz Technical University, Trabzon-Turkey

  • Çiçek, M., Oyman, T. &Palmer, M. R. (2021). Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews,136, Article 104255. https:// doi.org/10.1016/j.oregeorev.2021.104255

  • Delaloye, M. & Bingöl, E., (2000). Granitoids from Western and Nortwestern Anatolia: Geochemistry and modeling of geodynamic evolution. International GeologyReview, 42, 241-268.

  • Demirela, G., Akıska, S., Sayılı, İ. S. & Kuşçu, İ. (2014). Çataltepe (Lapseki-Çanakkale) PbZn±Cu±Ag yatağı’nın jeolojisi ve alterasyon özellikleri. Yerbilimleri, 35(2), 141-168.

  • Demirela, G. & Akıska, S. (2022). Evaluation of Pb isotope systematics and metal sources of the Biga Pb–Zn Province (NW Turkey) and comparison with the Pb isotope systematics of the Rhodope Massif. Journal of African Earth Sciences,187, Article 104445. https://doi.org/10.1016/j. jafrearsci.2021.104445

  • Doyuran, M. (1970) . The preliminary study of PbZn mineralizations between Evciler-Dağoba (Bayramiç/Çanakkale) (Report no. 4976). MTA, Ankara. (in Turkish, unpublished).

  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M. ve Akçay, A. E. (2007). 1/100.000 ölçekli Türkiye jeoloji haritaları serisi, Bandırma-H18 paftası, no:102. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Duru, M., Pehlivan, Ş., Okay, A.İ., Şentürk, Y. ve Kar, H.(2012). Biga Yarımadası’nın Tersiyer öncesi jeolojisi. Biga Yarımadası’nın genel ve ekonomik jeolojisi. MTA Özel Yayın Serisi-28, 7-77.

  • Einaudi, M.T., Hedenquist, J.W. & Inan, E. E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In S.F. Simmons, I. Graham (Eds.), Volcanic, Geothermal, and OreForming Fluids: Rulers and Witnesses of Processes within the Earth. https://doi.org/10.5382/SP.10.15

  • Ercan, T., Satır, M., Steinitz, G., Dora, A., Sarıfakıoğlu, E., Adis, C., Walter, H.J. ve Yıldırım, T. (1995). Biga Yarımadası ile Gökçeada, Bozcaada ve Tavşanlı adalarındaki (KB Anadolu) Tersiyer volkanizmasının özellikleri. MTA Dergisi, 117, 55-86.

  • Eric, D., Philippe, B., Jean, L.C., Jean, P.D., Yves, F., Pierre, A. & Toshitaka, G. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63 (5), 627-643.

  • Ersoy, E.Y., Palmer, M.R., Can Genç, Ş., Prevelic D., Akal, C. & Uysal, İ. (2017a). Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of, crustal accretion, subduction, slab rollback and slab break-off processes in genesis of postcollisional magmatism. Lithos, 288-289, 55- 71. https://doi.org/10.1016/j.lithos.2017.07.006

  • Ersoy, E.Y., Akal, C., Can Genç, Ş., Candan, O., Palmer, M.R., Prelevic, D., Uysal, İ. & MertzKraus, R. (2017b). U-Pb zircon geochronology of the Paleogene-Neogene volcanism in the NW Anatolia: Its implications for the late MesozoicCenozoic geodynamic evolution of the Aegean. Tectonophysics, 717, 284-301. https:// doi.org/10.1016/j.tecto.2017.08.016

  • Evans, A.M. (1993). Ore geology and industrial minerals: An introduction. Blackwell Scientific Publications, London.

  • Field, C.W. & Fifarek, R.H. (1985). Light isotope systematics in the epithermal environment. In B. R. Berger, P.M. Bekte (Eds.), Geology and Geochemistry of Geothermal Systems, Reviews in Econ. Geology, 2, 99-128.

  • Foley, S.F. & Wheller, G.E. (1990). Parallels in theorigin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: The role of residual titanites. Chemical Geology, 85, 1–18. https://doi.org/10.1016/0009- 2541(90)90120-V

  • Genç, S.C. (1998). Evolution of the Bayramiç magmatic complex, Northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85, 233– 249.

  • Gözler, M.Z., Ergül, E., Akçaören, F, Genç, Ş., Akat, U. ve Acar, Ş. (1984). Çanakkale Boğazı doğusu Marmara Denizi güneyi Bandırma–Balıkesir Edremit ve Ege Denizi arasındaki alanın jeolojisi ve kompilasyonu (Rapor no:7430). Maden Tetkik Arama Genel Müdürlüğü Raporu, (yayımlanmamış).

  • Gültekin, A. H. ve Örgün, Y. (2005). Arapuçan (YeniceÇanakkale) Pb-Zn-Cu-Ag yatağının jeolojik, mineralojik ve jeokimyasal özellikleri. Anadolu Üniversitesi Bilim veTeknoloji Dergisi, 6(1), 97- 107.

  • Hedenquist, J. W., Arribas, A. & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4), 373-404.

  • Heinrich, C. A., Driesner, T., Stefánsson, A. & Seward, T. M. (2004). Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology, 32(9), 761- 764.

  • Henderson, P. (1984). General geochemical properties and aboundance of the rare earth elements. In P. Henderson (Ed.), Rare Earth Element Geochemistry (pp. 1-32.). Developments in Geochemistry 2, Elsevier, Amsterdam.

  • Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R. & Both, R. A. (1995). Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5), 1167-1196. https://doi.org/10.2113/gsecongeo.90.5.1167

  • Hoefs, J. (1987). Stable Isotope Geochemistry, 3rd edn. Springer, Berlin-Heidelberg New York.

  • Hoefs, J. (2009). Stable Isotope Geochemistry, 6th ed. Springer-Verlag, Berlin Heidelberg.

  • Ishihara, S. & Sasaki, A. (1989). Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith - a reconnaissance study. Geology, 17(9), 788-791.

  • Kaaden, G. v. d. (1956). Edremit Bölgesinde jeoloji ve maden yatakları incelemeleri (Rapor No. 2400). Maden Tetkik Arama Enstitüsü Raporu (yayımlanmamış).

  • Kaaden, G. v. d. (1957). Çanakkale-Biga Edremit yarımadası bölgesindeki jeolojik saha çalışmaları ve maden yatakları hakkında rapor (Rapor no: 2661). Maden Tetkik Arama Enstitüsü Raporu (yayımlanmamış), Ankara.

  • Kandemir, Ö., Pehlivan, Ş., Kanar, F. ve Tok, T. (2013). 1/100.000 ölçekli Türkiye Jeoloji Haritaları Serisi no:191 Bandırma-H21 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Karacık, Z. & Yılmaz, Y. (1998). Geology of the ignimbrites and the associated volcano-plutonic complex of the Ezine area, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1-4), 251-264.

  • Kasapçı, C. (2005). Kuzeybatı Anadolu PbZn yataklarının jeolojisi ve oluşumlarının karşılaştırmalı incelemesi [Yayımlanmamış Yüksek Lisans Tezi]. Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul.

  • Kasapçı, C., Öztürk, H., Hanilçi, N. & Aysal, N. (2008). Jeoloji ve sıvı kapanım bulguları ışığında Arapuçandere (Yenice-Çanakkale) Pb-ZnCu yatağının oluşumu. Türkiye Kurşun-Çinko Yataklarının Jeolojisi, Madenciliği ve Mevcut Sorunları Sempozyumu, Bildiri Kitabı (s.: 100- 118). 14–16 Ocak 2008- İstanbul,

  • Kaya, O. & Mostler, H. (1992). A Middle Triassic age for low-grade greenschist facies metamorphic sequence in Bergama (Izmir), western Turkey: the first paleontological age assignment and structural-stratigraphic implications. Newsletters on Stratigraphy, 1-17.

  • Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J. & Irving, A. J. (1990). High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature, 345(6275), 521-524.

  • Ketin, İ. (1966). Anadolu’nun tektonik birlikleri. MTA Dergisi, 66: 20-37. https://dergipark.org.tr/tr/pub/ bulletinofmre/issue/3892/51961

  • Kıray, D.(2010). Karadoru-Karaköy (Çanakkale) arasındaki Pb-Zn-Cu cevherleşmelerinin jeolojik ve jeokimyasal özellikleri [Yüksek lisans tezi]. Süleyman Demirel Üniversitesi, Jeoloji Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü, Isparta.

  • Kıray, D. (2021). Şahinli (Lapseki-Çanakkale, Batı Türkiye) bölgesindeki Kestanelik AuAgcevherleşmesinin jeolojik, mineralojik ve jeokimyasal incelemeler ile kökeninin belirlenmesi [Yayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü.

  • Kıray, D. ve Cengiz, O. (2023). Kestanelik granitoyidinin petrografik ve jeokimyasal özellikleri (Çanakkale, Biga Yarımadası)/Petrographical and geochemical characteristics of the Kestanelik granitoid (Çanakkale, Biga Peninsula). Türkiye Jeoloji Bülteni, 66(1) 127-148. https://doi.org/10.25288/ tjb.1187739

  • Klinkhammer, G.P., Elderfield, H., Edmond, J.M. & Mitra, A. (1994). Geochemical implications of rareearth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58, 5105-5113.

  • Konak, N., Alan, İ., Bakırhan, B., Bedi, Y., Dönmez, M., Pehlivan, Ş., Sevin, M., Türkecan, A. ve Yusufoğlu, H. (2016). 1/1.000.000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.

  • Kouhestani, H., Mokhtari, M. A. A., Qin, K. & Zhao, J. (2019). Origin andevolution of hydrothermalfluids in theMarshounepithermal Pb–Zn–Cu (Ag) deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113, 103087.

  • Kozur, H.W, Aydın, M., Demir, O., Yakar, H., Göncüoğlu, M.C. & Kuru, F. (2000). New Stratigraphic and Palaeogeographic Results from the Palaeozoic and Early Mesozoic of the Middle Pontides (Northern Turkey) in the Azdavay, Devrekani, Küre and Inebolu Areas: Implications for the Carboniferous - Early Cretaceous Geodynamic Evolution and Some Related Remarks to the Karakaya Oceanic Rift Basin. Geologia Croatica, 53(2), 209-268. https://doi.org/10.4154/GC.2000.03

  • Kuşcu, İ, Tosdal, R. M. & Gençalioğlu-Kuşcu, G. (2019). Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geology Reviews, 107, 119–154. https://doi.org/10.1016/j.oregeorev.2019.02.005

  • Laçin, D. (2003). Biga Yarımadası (ÇanakkaleBalıkesir) halloysitlerinin yataklanma özellikleri, mineralojisi ve oluşumları [Doktora Tezi]. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.

  • Loftus-Hills, G. & Solomon, M. (1967). Cobalt, nickel and selenium in sulfides as indicators of ore genesis: Mineralium Deposita, 2, 228–242.

  • Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25-41. https://doi. org/10.1016/0169-1368(92)90017-F

  • Malakhov, A.A.(1969). Bismuth and antimony in galenas as indicators of some conditions of ore formation. Institute of Geopyhsics, Tashkent.

  • McDonough, W. F. & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120(3-4), 223- 253.

  • Menant, A., Jolivet, L., Tuduri, J., Loiselet, C., Bertrand, G. & Guillou-Frottier, L. (2018). 3D subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geology Reviews, 94, 118–135. https://doi.org/10.1016/j. oregeorev.2018.01.023

  • Michard, A. & Albarède, F. (1986). The REE content of some hydrothermal fluids. Chemical Geology, 55(1-2), 51-60. https://doi.org/10.1016/0009- 2541(86)90127-0

  • Moller, P. & Morteani, G. (1983). On the geochemical fractionation of ram earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. In S.S. Augusthitis (Ed.), The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies (pp. 747-791). Theophrastus, Athens.

  • Müller, D., Rock, N. M. S. & Groves, D. I. (1992). Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings, a pilot study. Mineralogy and Petrology, 46, 259-289. https://doi.org/10.1007/BF01173568

  • Ohmoto, H. & Rye, R. O.(1979). Isotopes Sulfur and Carbon: In H. L. Barnes, (Ed.), Geochemistry of Hy drothermal Ore Deposits, Second Edition, (509–567), John Wiley and Sons Inc., New York.

  • Okay, A. İ., Siyako, M. ve Bürkan, K.A. (1990). Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2(1), 83-121.

  • Okay, A. İ., Siyako, M. & Bürkan, K. A. (1991). Geology and tectonic evolution of Biga Peninsula, Northwest Turkey. Bulletin Technical University of İstanbul, 44, 191-255.

  • Okay, A. I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.

  • Okay, A. I. & Altıner, D. (2004). Uppermost Triassic Limestone in the Karakaya Complex– Stratigraphic and Tectonic Significance. Turkish Journal of Earth Sciences, 13(2), 187-199. https:// journals.tubitak.gov.tr/earth/vol13/iss2/5

  • Okay, A. I. & Göncüoğlu, M. C. (2004). The Karakaya Complex: a review of data and concepts. Turkish Journal of Earth Sciences, 13(2), 75-95.

  • Ovalıoğlu, R. (1973). Biga Yarımadası’nın jeolojisi, maden yatakları ve bakır-kurşun çinko mineralizasyonu için ümitli olan bölgeler. Madencilik Dergisi, 12(6), 1-22.

  • Oyman, T. (2018). Yenice’nin KD’daki Granitoid sokulumlar ile ilişkili magmatik-hidrotermal sistemlerle ilişkili cevherleşmeler arasındaki bağlantılar (Çanakkale, Biga Yarımadası), (Rapor no: 114Y055). Tübitak Proje Raporu.

  • Öngen, S. (1982). Yenice (Çanakkale) granitoyidlerinin ve yan kayaçlarının petrolojisi [Doçentlik Tezi]. İstanbul Üniversitesi.

  • Öngen, S., Aysal, N. & Azaz, D. (2002). Çan Güneyi (Çanakkale) Geç Tersiyer Riyolit-Bazalt Karakterli Volkanizması. 55. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, 201-203.

  • Örgün, Y., Gültekin, A. H. & Önal, A. (2005). Geology, mineralogy and fluid inclusion data from the Arapuçandere Pb-Zn-Cu-Ag deposit, Çanakkale, Turkey: Journal of Asian Earth Sciences, 25, 629- 642.

  • Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental Basalts and Mantle Xenoliths, (pp.: 230-249.). Shiva Cheshire, UK.

  • Pearce, J. A. & Parkinson, I. J. (1993). Trace element models for mantle melting: application to volcanic arc petrogenesis. In H.M. Prichard, T. Alabaster, N.B.W. Harris, C.R. Neary, (Eds.), Magmatic Processes and Plate Tectonics, Volume 76 (pp. 373-403). Geological Society of London: London, UK.

  • Pearce, J. A. & Peate, D. W. (1995). Tectonic implications of the composition of the volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251-285. https://doi.org/10.1146/ annurev.ea.23.050195.001343

  • Pehlivan, A. N. & Çetin, A. (1997). Edremit (Balıkesir) Ezine-Bayramiç-Yenice (Çanakkale) çevresinin altın ağırlıklı polimetal ve ağır mineral çalışmaları raporu (Rapor No: 10061). MTA Derleme Raporu, Ankara (yayımlanmamış).

  • Pehlivan, Ş., Duru, M., Dönmez, M. Akçay, A. E. ve Ilgar, A. (2007). 1/100.000 ölçekli Türkiye Jeoloji Haritaları serisi, Balıkesir-İ19 paftası, No:96. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Qi, X. X., Yu, F. L. & Yu, C. L. (2008). Rare earth element and trace element geochemistry of Shalagang antimony deposit in the Southern Tibet and its tracing significance for the origin of metallogenic elements. Geoscience, 22(2), 162- 172.

  • Richards, J. P. (2015). Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70, 323–345. https://doi.org/10.1016/j. oregeorev.2014.11.009

  • Ringwood, A. E. (1990). Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology, 82, 187-207.

  • Ruggieri, G., Lattanzi, P., Luxoro, S. S., Dessi, R., Benvenuti, M. & Tannelli, G. (1997). Geology, mineralogy and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy. Economic Geology 92, 1–14.

  • Sánchez, M. G., McClay, K. R., King, A. R. & Wijbrams, J. R. (2016). Cenozoic crustal extension and its relationship to porphyry Cu-Au-(Mo) and epithermal Au-(Ag) mineralization in the Biga peninsula, Northwestern Turkey. In J. P. Richards (Ed.), Tectonics and Metallogeny of the Tethyan Orogenic Belt, Special Publication (Society of Economic Geologists (U. S.))19, 113-156. https:// doi.org/10.5382/SP.19.05

  • Shahbazi, S., Ghaderi, M. & Alfonso, P. (2019). Mineralogy, alteration, and sülfür isotope geochemistry of the Zehabad intermediate sulfidation epithermal deposit, NW Iran. Turkish Journal of Earth Sciences, 28(6), 882-901.

  • Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Economic Geology, 68(6), 799- 815.

  • Stolz, A. J., Varne, R., Davies, G. R., Wheller, G. E., & Foden, J. D. (1990). Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contributions to Mineralogy and Petrology, 105, 585-601.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.

  • Şengör, A. M. C., Cin, A., Rowley, D. B. & Nie, S. Y. (1993). Space-time patterns of magmatism along the Tethysides: A preliminary study. The Journal of Geology, 101(1), 51-84.

  • Tufan, E. A. & Kara, A. (1987). Çanakkale-YeniceVakıf Köyü Pb-Zn-Cu Cevherleşmesi Maden Jeolojisi Raporu (rapor no: 8297). Maden Tetkik ve Arama Genel Müdürlüğü.

  • Tunç, I. O., Yiğitbas, E., Sengun, F., Wazeck, J., Hofmann, M. & Linnemann, U. (2012). U-Pb zircon geochronology of northern metamorphic massifs in the Biga Peninsula (NW AnatoliaTurkey): new data and a new approach to understand the tectonostratigraphy of the region. Geodinamica Acta, 25(3-4), 202-225. https://doi. org/10.1080/09853111.2013.877242

  • Ünal-Çakır, E. (2020). Sulphur and lead isotope geochemistry of the Dursunbey (Balıkesir) lead–zinc deposit. Journal of African Earth Sciences,172, Article 104003.

  • Walshe, J. L. & Solomon, M. (1981). An investigation into the environment of formation of the volcanic-hosted Mount Lyell copper deposits using geology, mineralogy, stable isotopes and a six-component chlorite solid solution model. Economic Geology, 76(2), 246-284. https://doi. org/10.2113/gsecongeo.76.2.246

  • Yenigün, K. (1978). The geological report of Alandere Pb-Zn-Cu mineralization in Çakır Village (Yenice/ Çanakkale) (Report no. 6564). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish, unpublished).

  • Yilmaz, Y. (1990). Allochthonous terranes in the Tethyan Middle East: Anatolia and the surrounding regions. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 331, 611–624. https://doi. org/10.1098/rsta.1990.0093

  • Yılmaz, Y., Genç, Ş. C., Karacık, Z. & Altunkaynak, Ş. (2001). Two contrasting magmatic associations of NW Anatolia and their tectonic significance. Journal of Geodynamics, 31(3), 243-271. https:// doi.org/10.1016/S0264-3707(01)00002-3

  • Yılmaz, Y., Genç, Ş. C., Yiğitbaş, E., Bozcu, M. ve Yılmaz, K. (1994). Kuzeybatı Anadolu’da geç Kretase yaşlı kıta kenarının jeolojik evrimi, Türkiye. 10. Petrol Kongresi, 37-55.

  • Yılmaz, H., Oyman, T., Sönmez, F. N., Arehart, G.B. & Billor, Z. (2010). Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Şahinli/Tespih Dere (Lapseki /Western Turkey). Ore Geology Reviews, 37(3-4), 236–258. https://doi.org/10.1016/j. oregeorev.2010.04.001

  • Yiğit, Ö. (2012). A prospective sector in the Tethyan Metalogennic Belt: Geology and Geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148. https://doi.org/10.1016/j.oregeorev.2011.09.015

  • Yiğitbaş, E. & Tunç, İ. O. (2020). Biga Yarımadası’nda Sakarya Zonunun Prekambriyen Metamorfik Kayaları; Geç Ediyakaran Gondwanaland Aktif Kıta Kenarı. Türkiye Jeoloji Bülteni, 63(3), 277- 302. https://doi.org/10.25288/tjb.589144

  • Yusoff, Z. M., Ngwenya, B. T. & Parsons, I. (2013). Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349, 71-86.

  • Yücelay, M. A. (1971). Geological etude of the Karaköy-Arapuçandere Pb-Zn-Cu mineralization, Çanakkale-Yenice (Report No. 4688). Mineral Research and Exploration Institute of Turkey.

  • Yücelay, M. A. (1976). Çanakkale-Yenice geological report related to the Karaköy-Arapuçandere PbZn-Cu area (Report No. 5655). Mineral Research and Exploration Institute of Turkey

  • Zamanian, H. & Radmard, K. (2016). Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran–a key to determine conditions of mineralization. Geologos, 22(1), 33- 47.

  • Zhai, D., Williams-Jones, A. E., Liu, J., Selby, D., Voudouris, P. C., Tombros, S., Li, K., Li, P. & Sun, H. (2020). The genesis of the Giant Shuangjianzishan epithermal Ag-Pb-Zndeposit, Inner Mongolia, Northeastern China. EconomicGeology, 115(1), 101-128.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Mineralogical-Petrographic, Geochemical and Petrogenetic Properties of Plutonic Rocks Located on the Eastern Edge of Yozgat Batholith, Türkiye
    Başak Aydoğdu Nazmi Otlu
    View as PDF

    Abstract: The study area consists of Palaeozoic-aged Kırşehir Block Metasedimentaries, which are represented by Kalkanlıdağ Metamorphite and the Bozçaldağ Formation. The Upper Cretaceous-aged Artova Ophiolitic Melange overlies these basement units tectonically. The Yozgat Batholith cuts these metasedimentaries and the Artova Ophiolitic Melange with a hot contact. However, in the study area, the Artova Ophiolitic Mix is observed tectonicallyon the units belonging to the Yozgat Batholith. The members of Yozgat Batholith in the study area are Karga Quartz Monzonite Porphyry, Karaveli Quartz Monzonite, Kodallı K-feldspar Megacrystalline Quartz Monzonite and Alci Monzogranite. Upper Cretaceous - Palaeocene aged Kötüdağ Volcanite overlies these units. The sedimentary coverrocks in the study area are the Lower – Middle Eocene-aged Baraklı Formation; Upper Miocene – Pliocene-agedKızılırmak Formation and Quaternary-aged Alluvium. Plutonic units belonging to Yozgat Batholith are subalkaline (calcalkaline), generally I-type, metallumino granitoids formed from a hybrid magma which is the product of homogeneous (magma mixing) and sometimes heterogeneous (magma migration) mingling of coeval mafic and felsic magmas. Although these plutonic units were formed in close time intervals, when analyzing the field relations, the formation pattern in the alteration diagramsand the age analysis data (40Ar - 39Ar) geochronological age range 81.48 ± 0.82 Ma – 89.35 ± 0.92 Ma obtained fromhornblende and biotite minerals, it is seen that they were formed in the order of Karga Quartz Monzonite Porphyry, Karaveli Quartz Monzonite, Kodallı K-feldspar Megacrystalline Quartz Monzonite, and Alcı Monzogranite.The plutonic units are within plate granitoids (WPG); which were settled in the region during collisional andpost-collisional uplift (Coniacian – Campanian).  

  • Yozgat Batholith

  • geochemistry

  • geochronology

  • petrology

  • Akıman, O. ve Boztuğ, D. (1993). Orta Anadolu Kristalen Karmaşığı içinde yeralan alkali magmatik kayaçlar. Hacettepe Üniversitesi’nde Yerbilimlerinin 25. Yılı Sempozyumu, bildiri özleri.

  • Alpaslan, M. (1993). Yıldızeli yöresi (Sivas batısı) metamorfitlerinin petrolojik incelenmesi [Doktora Tezi]. Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.

  • Anders, E. & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197-214.

  • Aydın, N. S., Göncüoğlu, M. C. & Erler, A. (1998). Latest Cretaceous magmatism in the Central Anatolian Crystalline Complex: Review of field, petrographic and geochemical features. Turkish Journal of Earth Sciences, 7, 259–268.

  • Aydoğdu, B. (2010). Yozgat batoliti doğu kenarında (Sorgun Güneyi) yer alan plütonik kayaçların mineralojik-petrografik, jeokimyasal ve petrojenetik özellikleri [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü.

  • Bailey, E.B. & Mc. Callien, W.J. (1950). Ankara Melanjı ve Anadolu Şaryajı: MTA Dergisi, 40, 12- 17.

  • Barbarin, B. (1990). Granitoids: main petrogenetic classifications in relation to origin and tectonic setting, Geological Journal, 25(3-4), 227-238. https://doi.org/10.1002/gj.3350250306

  • Barbarin, B. (1991). Contrasted origins for the `poligenic` and `monogenic` enclave swarms in some granitoids of the Sierra Nevada batholith, California. Terra Abstr. 3, 32.

  • Barbarin. B. & Didier, J. (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1-2), 145-153. https://doi.org/10.1017/ S0263593300007835

  • Batchelor, B. & Bowden, P. (1985). Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4), 43-55. https://doi.org/10.1016/0009- 2541(85)90034-8

  • Bozkurt, E. & Mittwede, S. K. (2001). Introduction to the geology of Turkey – a synthesis. Internatonal Geology Review 43, 578–594. https://doi. org/10.1080/00206810109465034

  • Boztuğ, D. (1994/1995). Kırşehir Bloğundaki Yozgat Batoliti doğu kesiminin (Sorgun güneyi)-petrografisi, ana element jeokimyası ve petrojenezi. İstanbul Üniversitesi, Müh. Fak. Yerbilimleri Dergisi, 9(1-2), 1-20.

  • Boztuğ, D. (1998). Post-collisional Central Anatolian alkaline plutonism, Turkey. Turkish Journal of Earth Sciences 7, 145–165.

  • Boztuğ, D. (2000). S-I-A type intrusive associations: geodynamic significance of synchronism between methamorphism and magmatism in Central Anatolia Turkey In Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society Special Publications, London, 173, 441- 458.

  • Boztuğ, D. (2001). Granitoyidlerin Ana, Eser ve Ree Jeokimyası Karakteristikleri. Boztuğ, D. ve Otlu, N., (Ed.ler), Magmatik Petrojenez (s.: 129-152). TÜBİTAK Lisansüstü Yaz Okulu, 7-12 Haziran 2001, Akçakoca-Düzce.

  • Boztuğ, D. & Arehart, G.B. (2007). Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the postcollisional granitoids in central Anatolia, Turkey. Journal of Asian Earth Sciences, 30, 403–416.

  • Boztuğ, D., Jonckheere, R. C., Wagner, G. A., Erçin, A.İ. & Yeğingil, Z. (2007). Titanite and zircon fissiontrack dating resolves successive igneous episodes in the formation of the composite Kaçkar batholith in the Turkish Eastern Pontides. International Journal of Earth Sciences, 96, 875–886.

  • Boztuğ, D. & Harlavan, Y. (2008). K-Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. International Journal of Earth Sciences, 97, 585–599.

  • Boztuğ, D., Jonckheere, R. C., Heizler, M., Ratschbacher, L., Harlavan, Y. & Tichomirova M. (2009). Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics, 473, 223–233.

  • Chappel, B.W. & Stephens, W.E. (1988). Origin of infracrustal (I-type) granite magmas. Trans. Royal Soc. Edinburgh, 79, 71-86.

  • Chappel, B.W. (1996). Compositional variation within granite suites of the Lachlan Fold Belt: Its causes and implications for the physical state of granite magma. Trans. Royal Soc. Edinburgh, 88, 159- 170 (for 1997).

  • Clarke, D.B. (1992). Granitoid Rocks. New York, NY, USA: Chapman and Hall.

  • Clemens, J.D., Holloway, J.R. & White, A.J.R. (1986). Origin of an A-type granite: Experimental constraints. American Mineralogist, 71, 317-324.

  • Collins, W.J., Beams, S.D., White, A.J.R. & Chappel, B. W. (1982). Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189-200.

  • Cox, K.G., Bell, J.D. & Pankhurst, R.J. (1979). The Interpretation of Igneous Rocks. London, UK, George, Allen and Unwin.

  • Creaser, R.A., Price, R.C. & Wormald, R.J. (1991). A-type granites revisited: Assesment of a residualsource model. Geology, 19, 163-166.

  • Dalkılıç, B. ve Erler, A. (1986). Sarıhacılı – Divanlı – Azizli (Yozgat) Bölgesinin Jeolojisi. Türkiye Jeoloji Kurultayı 1986, Bildiri Özleri Kitabı, s.:68.

  • De La Roche, H., Leterrier, J., Grande Claude, P. & Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses – its relationships and current nomenclature. Chemical Geology, 29, 183-210.

  • Demircioğlu, R. (2014). Gülşehir-Özkonak (Nevşehir) Çevresindeki Kırşehir Masifi ve Örtü Birimlerinin Jeolojisi ve Yapısal Özellikleri [Yayınlanmamış Doktora Tezi]. T.C. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.

  • Didier, J. & Barbarin, B. (eds.), (1991). Enclaves and Granite Petrology: Developments in Petrology. 13, Elsevier, Amsterdam.

  • Divilioğlu, E. (2022). Avanos (Nevşehir) Civarındaki Plütonik ve Subvolkanik Kayaçların Mineralojik ve Jeokimyasal Özellikleri [Yayınlanmamış Yüksek Lisans Tezi]. T.C. Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü.

  • Ekici, T. (1997). Yozgat Batoliti Yozgat Güneyi Kesiminin Petrolojisi [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniverstitesi, Fen Bilimleri Enstitüsü, Sivas.

  • Ekici, T ve Boztuğ, D. (1997). Granitoyidlerdeki K-feldispat megakristallerinin Anlamı ve Önemi. Yerbilimleri (Geosound), 30, 507-518.

  • Ekici, T. (2001). Granitoyidlerdeki K-Feldispat Megakristallerinin Jenetik Anlamı. D. ve Otlu, N., (editörler), Magmatik Petrojenez. TÜBİTAK Lisansüstü Yaz Okulu, 7-12 Haziran 2001, Akçakoca-Düzce, 666-681.

  • Erler, A. Akıman, O., Unan, C., Dalkılıç, F., Dalkılıç, B., Geven, A. ve Önen, P. (1991). Kaman (Kırşehir) ve Yozgat yörelerinde Kırşehir Masifi magmatik kayaçlarının petrolojisi ve jeokimyası. Doğa-Tr. J. of Engineering and Environmental Sci., 15, 76- 100.

  • Erler, A. ve Bayhan H. (1995). Orta Anadolu Granitoidleri’nin genel değerlendirilmesi ve sorunları. Yerbilimleri, 17, 49-67.

  • Erler, A & Göncüoğlu, M.C. (1995). Geologic and tectonic setting of the Yozgat Batholith. Second int. Turkish Workshop: “Work in Prog.on the Geo. of the Turkey”, Abst. P. 34, , Sivas, Turkey.

  • Erler, A. & Göncüoglu, M.C. (1996). Geologic and tectonic setting of the Yozgat batholith, Northern Central Anatolian Crystalline Complex, Turkey, International Geology Review, 38(8), 714-726.

  • Frost, B. R., Barnes, C. G., Collins, W. J., Argulus, R. J., Ellis, D. J & Frost, C. D. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033-2048.

  • Gençalioğlu, R. (2011). Yozgat Batoliti Kuzey Kenarında (Yozgat Güneydoğusu) Yer Alan Magmatik Kayaçların Mineralojik-Petrografik, Jeokimyasal ve Petrojenetik Özellikleri [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniverstitesi, Fen Bilimleri Enstitüsü, Sivas.

  • Geven, A. (1992). Mineralogy, Petrography and geochemistry of Cefalıkdağ Plütonic rocks (Kaman Region - Central Anatolia) [Unpublished PhD Thesis]. ODTÜ Fen Bilimleri Enstitüsü, Ankara.

  • Göncüoğlu, M.C. (1986). Orta Anadolu Masifi’nin güney ucundan jeokronolojik yaş bulgular. MTA Dergisi, 105-106, 111-124.

  • Göncüoğlu, M. C., Toprak, V., Kuşçu, İ., Erler, A. ve Olgun, E. (1991). Orta Anadolu Masifinin batı bölümünün jeolojisi (Rapor No: 2909). TPAO (yayınlanmamış).

  • Göncüoğlu, M.C., Erler, A., Toprak, V., Yalınız, K., Olgun, E. ve Rojay, B. (1992). Orta Anadolu Masifi’nin batı bölümünün jeolojisi, Bölüm 2: Orta Kesim (Rapor No: 3155). TPAO (yayımlanmamış).

  • Göncüoğlu, M. C. & Türeli, T.K. (1993). Petrology and geodynamic interpretation of plagiogranites from Central Anatolian Ophiolites (Aksaray-Turkey). Doğa-Türk Yer Bilimleri Dergisi, 2, 195-203.

  • Göncüoğlu, M.C., Erler, A., Toprak V., Olgun, E., Yalınız, K., Kuşçu İ. Köksal S. ve Dirik K. (1993). Orta Anadolu Masifinin orta bölümünün jeolojisi (Rapor no: 3313). TPAO.

  • Göncüoğlu, M.C. & Türeli, T.K. (1994). Alpine collisional - type granitoids from Western Central Anatolian Crystalline Complex, Turkey. Jour. Of Kocaeli Univ., Earth Sci., No. 1, 39-46.

  • Görür, N., Oktay, F. Y., Seymen, İ. & Şengör, A. M. C. (1984). Paleotectonic Evolution of the Tuzgölü Basin Complex, Central Turkey: Sedimantary Record of a Neo-Tethyan Closure. In Dixon, J.E. &Robertson, A.H.F. (Eds), The Geological Evolution of the Eastern Mediterranean (pp.: 8467-482.). Blackwell Scientific Publications, Oxford.

  • Güleç, N. (1993). Agaçören Granitoyidinden Jeokronolojik Bulgular. H.Ü. Yerbilimlerinin 25. Yılı Sempozyumu Bildiri Özleri Kitabı.

  • Hibbard, M. J. (1991). Textural anatomy of twelve magma mixed granitoid systems: In Didier, J. & Barbarin, B (Eds.), Enclaves and Granite Petrology, Development in Petrology, 13 (pp.: 431-444), Elsevier.

  • Higgins, M. D. (1999). Origin of megacrysts in granitoids by textural coarsening: a crystal size distrubution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In Castro, A., Fernandez, C & Vigneresse, J.L. (Eds.), Understanding Granites: Intergrating New and Classical Techniques. Geological Society, London, Special Publications, 168, 207-219.

  • HYNDMAN, R. D. (1972). PLATE MOTIONS RELATIVE TO THE DEEP MANTLE AND THE DEVELOPMENT OF SUBDUCTION ZONES. NATURE, 238, 263–265.

  • Irvine, T. N. & Baragar, W. R. A. (1971). A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055

  • Işık, V., Lo, C.H., Göncüoğlu, C. & Demirel, S. (2008). 39Ar/40Ar ages from the Yozgat Batholith: Preliminary data on the timing of Late Cretaceous extension in the Central Anatolian Crystalline Complex, Turkey. The Journal of Geology, 116(5), 510–526. https://doi.org/10.1086/590922

  • İlbeyli, N., Pearce, J. A., Thirlwall, M. F. & Mitchell, J.vG. (2004). Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72, 163–182.

  • Jahn, B. M., Wu, F. Y., Lo, C. H. & Tsai, C. H. (1999). Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157, 119–146.

  • Kadıoğlu, Y. K. (1996). Genesis of Ağaçören Intrusive Suite and Its Enclaves (Central Anatolia): Contraints from geological, petrographic, geophisical and geochemical data [Unpublished PhD Thesis]. ODTÜ Fen Bilimleri Enstitüsü, Ankara.

  • Kadıoğlu, Y. K., Dilek, Y. & Foland, K. A. (2006). Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex. Geological Society of America (special paper), 409, 381–415.

  • Ketin, İ. (1955). Yozgat Bölgesinin Jeolojisi ve Orta Anadolu Masifinin Tektonik Durumu. Türkiye Jeoloji Kurumu Bülteni, 6(1), 1-40. https:// dergipark.org.tr/tr/download/article-file/970480

  • Köksal, S., Göncüoğlu, M. C. & Floyd, P. A. (2001). Extrusive members of postcollisional A-Type magmatism in Central Anatolia: Karahıdır volcanics, Idisdagı-Avanos area, Turkey. International Geology Review, 43, 683–694.

  • Köksal, S., Romer, R. L., Göncüoğlu, M. C. & Toksoy, F. (2004). Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences, 93, 974–989.

  • Köksal, S. & Göncüoğlu, M. C. (2008). Sr and Nd isotopic characteristics of some S-I and A-type granitoids from Central Anatolia. Turkish Journal of Earth Sciences, 17, 111–127.

  • Kuno, H. (1968). Differentiation of Basalt Magmas. In Hess, H.H. & Poldervaart, A. (Eds.), Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition (pp.: 623-688) Interscience Publishers, New York.

  • Lefebvre, C., Peters, M. K., Wehrens, P. C., Brouwer, F. M., Van Roermund, H. L. M. (2015). Thermal history and extensional exhumation of a hightemperature crystalline complex (Hırkadağ Massif, Central Anatolia). Lithos, 238(15), 156- 173.

  • Le Maitre, R. (1984). A proposal by the IUGS Sub commission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Sciences, 31, 243- 255.

  • MacDonald, G.A. & Katsura, I. (1964). Chemical Composition of Hawaiian Lavas. Journal of Petrology, 5, 82-133.

  • Manier, P. D., Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635- 643

  • Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. EarthScience Reviews, 37(3-4), 215-224. https://doi. org/10.1016/0012-8252(94)90029-9

  • Nabelek, P. I., Papike, J. J. & Paul, J. C. (1986). The Notch Peak Granitic Stok, Utah: Origin of Reverse Zoning and Petrogenesis. Journal Petrology, 27(5), 1035–1069. https://doi.org/10.1093/ petrology/27.5.1035

  • Orhan, A. ve Demirbilek, M. (2018). Kapadokya bölgesi (Nevşehir, Orta Anadolu) kalk-alkalen ve alkalen plütonik/subvolkanik kayaçların petrografik ve jeokimyasal özellikleri. Türkiye Jeoloji Bülteni, 61(1), 23–50. https://doi.org/10.25288/tjb.358171

  • Otlu, N. ve Boztuğ, D. (1997). İç Anadolu alkali plütonizmasındaki Kortundağ ve Baranadağ plütonlarında (D Kaman, KB Kırşehir) silisçe aşırı doygun (ALKOS) ve silisçe tüketilmiş (ALKUS) alkali kayaç birlikteliği. Çukurova Üniversitesi’nde Jeoloji Mühendisliği Eğitiminin 20. Yılı Sempozyumu, bildiri özleri, p 39-40.

  • Otlu, N. (1998). Kortundağ - Baranadağ Arası (D Kaman, KB Kırşehir) Plütonik Kayaçlarının Petrolojik İncelenmesi (Yayınlanmamış Doktora Tezi). Cumhuriyet Üniversitesi. Fen Bilimleri Enstitüsü.

  • Otlu, N. & Boztuğ, D. (1998). The coexistency of the silica oversaturated (ALKOS) and undersaturated alkaline (ALKUS) rocks in the Kortundağ and Baranadağ plutons from the Central Anatolian alkaline plutonism, E Kaman/NW Kırşehir, Turkey. Turkish Journal of Earth Sciences, special Issue on ALKALI MAGMATISM; 7(3), 241-258.

  • Önal, A., Boztuğ, D., Kurum, S., Harlavan, Y., Arehart, G.B. & Arslan, M. (2005). K-Ar age determination, whole rock and oxygen isotope geochemisty of the post-collisional Bizmişen and Caltı plutons, SW Erzincan, eastern Central Anatolia, Turkey. Geological Journal, 40, 457–476.

  • Özcan, A., Erkan, A., Keskin, A., Oral, A., Özer, S., Süngümen, M. ve Tekeli, O. (1980). Kuzey Anadolu Fayı-Kırşehir Mas. Arasının Temel Jeolojisi (Derleme Rapor No: 6722). MTA (Yayımlanmamış).

  • Özkan, H. M. & Erkan, Y. (1994). A Petrological study on a foid synite intrusion in Central Anatolia (Kayseri, Turkey). Turkish Journal of Earth Sciences 3, 45-55.

  • Pearce, J., A., Haris, N. B.W. & Tindle, A. G. (1984). Trace element discriminationdiagrams for the tectonic interpretatin of granitic Rocks. Journal of Petrology, 25(4), 956-983.

  • Pitcher, W. S. (1982). Granite type and tectonic environment. In Hsu, K. (Ed.), Mountain Building Processes. Academic Press, London, 19-40.

  • Pitcher, W. S. (1993). The nature and origin of granite. Blackie Academic and Professional, London.

  • Poisson, A. (1986). Anatolian micro-continents in the Eastern Mediterranean context: The neo Tethysian oceanic troughs. Sci. de la terre, Mem., 47, 311-328.

  • Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22, 247-263.

  • Rollinson, H.R (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman.

  • Rollinson; H & Pease, V. (2021). Using Geochemical Data. To Understand Geological Processes, second edition. Cambridge University Press.

  • Seymen, İ. (1981a). Kaman (Kırşehir) dolayısında Kırşehir masifinin stratigrafisi ve metamorfizması. Türkiye Jeoloji Kurumu Bülteni, 24(2), 7-14. https://www.jmo.org.tr/resimler/ ekler/049a9571563f351_ek.pdf

  • Seymen, İ. (1981b). Kaman (Kırşehir) dolayında Kırşehir masifinin metamorfizması. Türkiye Jeoloji Kurumu 35. Bilimsel ve Teknik Kurultayı `İç Anadolunun Jeolojisi simpozyumu` 12-15.

  • Seymen, İ. (1982). Kaman dolayında Kırşehir masifinin jeolojisi [Yayınlanmamış Doçentlik Tezi]. İstanbul Teknik Üniversitesi, Maden Fakültesi, İstanbul.

  • Streickeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12(1), 1-33. https:// doi.org/10.1016/0012-8252(76)90052-0

  • Şenel, M. (2002). 1/500.000 ölçekli Türkiye Jeoloji Haritası Kayseri Paftası (Şenel, M. (Edt.)) Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4) 181-241. https://doi. org/10.1016/0040-1951(81)90275-4

  • Tatar, S. (1997). Yozgat Batoliti Sefaatli Kuzey Kesiminin (Güney Yozgat) Petrolojik İncelenmesi [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü.

  • Tatar, S. ve Boztuğ, D. (1997). Yozgat Batoliti GB kesiminde (Şefaatli-Yerköy arası) FC ve magma mingling/mixing süreçlerinin kanıtları. Çukurova Üniversitesi’nde Jeoloji Mühendisliği Eğitiminin 20. Yılı Sempozyumu, Bildiri özleri, s.215, Adana.

  • Tatar, S. ve Boztuğ, D. (1998a). Kompozit Yozgat Batoliti’ndeki I/HLO tipi monzonitik birlikte fraksiyonel kristalleşme ve asimilasyon – fraksiyonel kristalleşme ile oluşmuş ters zonlanma. 51. Türkiye Jeoloj Kurumu Kurultayı Bildiri Özleri, (s. 35-37.). 16-20 Şubat 1998, Ankara.

  • Tatar, S. & Boztuğ, D. (1998b). Fractional Crystallization and Magma Mingling/Mixing Processes in the Monzonitic Association in the SW Part of the Composite Yozgat Batholith (Yozgat Batholith (Şefaatli-Yerköy, SW Yozgat). Turkish Journal of Earth Sciences, 7(3), 215-230.

  • Tatar, S. & Boztuğ, D. (2001). Batolitlerde Normal ve Ters Zonlanma. Boztuğ, D. ve Otlu, N., (Ed.ler), Magmatik Petrojenez. TÜBİTAK Lisansüstü Yaz Okulu (s.: 643-665). 7-12 Haziran 2001, Akçakoca-Düzce,

  • Tatar, S., Boztuğ, D., Harlavan, Y. & Arehart, G.B. (2003). Kompozit Behrekdağ Batoliti: İzmirAnkara-Erzincan Kenet Kuşağı Boyunca AnatolidPontid Çarpışmasının Kırıkkale İli –Hirfanlı Barajı Arası Kesimindeki magmatik Kanıtı. 56. Türkiye Jeoloj Kurumu Kurultayı Bildiri Özleri, (s.: 28).

  • Tiryaki, C. (2012). Yozgat batolitini oluşturan lökogranitlerin ve Yozgat volkanitlerinin petrolojisi [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü.

  • Tolluoğlu, A.Ü. (1986). Orta Anadolu Masifinin güneybatısında (Kırşehir yöresinde) petrografik ve petrotektonik incelemeler [Yayınlanmamış Doktora Tezi]. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü.

  • Tolluoğlu, A.Ü. (1987). Orta Anadolu Masifi Kırşehir Metamorfitlerinin (Kırşehir kuzeybatısı) petrografik özellikleri. Doğa Bilim Derg. Müh. Ve Çevre Derg. 11(3), 344-361.

  • Tolluoğlu, A.Ü. (1990). Orta Anadolu Masifi Kırşehir Metamorfitlerinin (Kırşehir kuzeybatısı) petrografik özellikleri. Cumhuriyet Üniversitesi Müh. Fak. Derg. Seri-A. Yerbilimleri, 6-7(1-2), 3-25.

  • Tolluoğlu, A.Ü. (1993). Kırşehir masifini kesen felsik intrüziflerin (Kötüdağ ve Buzlukdağ) Petrografik ve Jeokimyasal Karakterleri. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 16, 19-41.

  • Türeli, T. K., Göncüoğlu, M. C., ve Akıman, O. (1993). Ekecik granitoyidinin petrolojisi ve kökeni (Orta Anadolu Kristalin Karmaşığı Batısı). H.Ü. Yerbilimleri 25. Yılı sempozyumu. Bild. Özl.

  • Tüvar, O. (2015). Yozgat-Yerköy Doğusunun Mineralojik, Petrografik Ve Jeokimyasal İncelenmesi [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü.

  • Tüysüz, O., Dellaloğlu, A. A. (1992). Çankırı havzasının tektonik birlikleri ve jeolojik evrimi. Türkiye 9. Petrol Kongresi Kitabı, 333-349.

  • Tüysüz, O., Dellaloğlu, A. A. & Terzioğlu, N. (1995). A magmatic belt within the Neo-Tethyan suture zone and its role in the tectonic evolution of Northern Turkey. Tectonophysics 243, 173-191.

  • Vache, R. 1963. Akdağmadeni kontakt yatakları ve bunların Orta Anadolu Kristaline karşı olan jeolojik çerçevesi. MTA Dergisi, 19, 22-36.

  • Vernon, R. H. (1984). Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature, 309, 438-439.

  • Whalen, J. B., Currie, K. L. & Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to mineralogy and petrology, 95, 407-419.

  • Whalen, J. B., Jenner, G. A., Longstaffe, F. J., Robert, F. & Gariepy, C. (1996). Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 37(6), 1463–1489.

  • White, A. J. R. & Chappel, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7-22.

  • White, A. J. R. & Chappel, B. W. (1988). Some supracrustal (S-type) granites of the Lachlan Fold Belt. Trans. Royal Soc. Edinburgh, 79, 169-181.

  • Whitney, D. L., Teyssier, C., Dilek, Y. & Fayon, A. K. (2001). Influence of orogen-normal collision vs. wrench-dominated tectonics on metamorphic P-T-t paths, Central Anatolia Crystalline Complex, Turkey. Journal of Metamorphic Geology, 19(4), 411–432.

  • Yalınız, K. M., Floyd, P. & Göncüoğlu, M. C. (1996). Suprasubduction zone ophiolites of Central Anatolia: geochemical evidence from the Sarıkaraman ophiolite, Aksaray, Turkey. Mineralogical Magazine, 60, 697–710.

  • Yalınız, M. K. ve Göncüoğlu, M. C. (1998). Orta Anadolu ofiyolitlerinin genel jeolojik özellikleri ve dağılımı. Yerbilimleri, 19(2), 19–30.

  • Yılmaz, S. ve Boztuğ, D. (1994). Granitoyid petrojenezinde magma mingling/mixing kavramı. Jeoloji Mühendisliği Dergisi, 44-45, 1-20.

  • Yılmaz, A., Uysal Ş., Bedi, Y., Yusufoğlu, H., Havzoğlu, T., Ağan, A., Göç, D. ve Aydın, N. (1995). Akdağ Masifi ve Dolayının Jeolojisi. MTA Dergisi, 117, 125-138.










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • ISSUE FULL FILE
    View as PDF