Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2015 OCAK Cilt 58 Sayı 1
KAPAK
PDF Olarak Görüntüle
KÜNYE
PDF Olarak Görüntüle
İÇİNDEKİLER
PDF Olarak Görüntüle
Fosil Plaj ve Kumulların Yüzey Altı Yapılarının İncelenmesinde Elektrik Özdirenç Tekniği ve Paleo-Kıyı Ortamı Yorumuna Katkısı
Alper Demirci Yunus Levent Ekinci Ahmet Evren Erginal Muhammed Zeynel Öztürk4
PDF Olarak Görüntüle

Öz: Teknolojik ilerlemelere bağlı olarak, bilgisayar yazılımları ve çoklu-elektrot ölçüm sistemlerindeki gelişmeler Elektrik Özdirenç Tomografi (EÖT) çalışmalarının hızlı ve güvenilir bir şekilde ve yerbilimlerinin farklı alanlarında kullanılmasına olanak sağlamıştır. Bu çalışmada özellikle sığ yeraltı yapısının aydınlatılması amacıyla oldukça sık kullanılan EÖT tekniğinin alışılagelmiş uygulama alanlarının dışında kıyı araştırmalarındaki kullanım avantajlarına yer verilmiştir. Kıyılarda dalga, akıntı ve rüzgar denetimli olarak istiflenen ve ardından kalsiyum karbonat çimento ile birbirine bağlanan tabakalı kıyı çökellerinin plaj ve kumul kumları (veya diğer örtü birimleri) altında kalan kısımlarının ve bunların da örttüğü gömülü jeolojik yapı ve fosil topografyaların görüntülenmesi EÖT tekniğinin kıyı jeolojisi ve paleo-coğrafyası araştırmalarına verdiği önemli katkılar arasındadır. Bu çalışmada Karadeniz (Şile, Karaburun, Kıyıköy) ve Ege Denizi (Bozcaada) kıyılarında gerçekleştirilen EÖT uygulamalardan elde edilen bulgular sunulmuştur. Geç Pleyistosen`den Geç Holosen`e kadar farklı jeolojik evrelerde çökelen ve çimentolanan bu fosil kıyı istiflerinin yüzey altı geometrileri, dokunak ilişkileri ve depolanma özellikleri oluştukları dönemin deniz seviyesi değişimleri ve paleo-rüzgar, akıntı dinamiklerinin daha iyi anlaşılması açısından önemli ipuçları sunmaktadır. Sunulan arazi öneklerinden elde edilen EÖT görüntüleri, çalışılan tabakaların derindeki (örtülü) kısımlarının çökelme ortamının anlaşılmasına katkı koyduğunu göstermektedir.

  • Deniz seviyesi değişimleri

  • EÖT

  • kıyı çökelleri

  • paleo-coğrafya


  • Allaby, M. 2008. A Dictionary of Earth Sciences, Oxford University Press, New York.

  • Avşarcan, B. 1997. Yalıtaşı oluşumu üzerine teoriler ve Türkiye kıyılarındaki yalıtaşlarının bazı özellikleri, İstanbul Üniversitesi Coğrafya Dergisi 5, 259–282.

  • Bener, M. 1974. Alanya-Gazipaşa arasındaki kıyı kesiminde yalıtaşı oluşumu, İstanbul Üniversitesi Coğrafya Enstitüsü Yayınları, no. 75.

  • Bezerra, F.H.R., Lima-Filho, F.P., Amaral, R.F., Caldas, L.H.O. ve Costa-Neto, L.X. 1998. Holocene coastal tectonics: coastal tectonics, Special Publication, vol:146, eds: Stewart, I.S., Vitafinzi, C., Geological Society, London, 279–293.

  • Binkley, K.L., Wilkinson, B.H. ve Owen, R.M. 1980. Vadose beachrock cementation along a Southeastern Michigan marl lake, Journal of Sedimentary Petrology 50, 953–962.

  • Bricker, O.P. 1971. Introduction: beachrock and intertidal cement: Carbonate Cements: 1-3, ed: Bricker, O.P., John Hopkins Press, Baltimore, M.D.

  • Brooke B. 2001. The distribution of carbonate eolianite, EarthScience Reviews 55, 135–164.

  • Desruelles, S., Fouache, E., Ciner, A., Dalongevılle, R., Pavlopoulos, K., Kosun, E., Coquınot, Y. ve Potdevın, J-L. 2009. Beachrocks and sea-level changes since Middle Holocene: comparison between the insular group of Mykonos-DelosRhenia (Cyclades, Greece) and the southern coast of Turkey, Global and Planetary Change 66, 19–33.

  • Ekinci, Y.L., Demirci, A., Erginal, A.E. ve Öztürk, B. 2010. Detection of cavities in carbonate-cemented fossil eolian sand dunes using DC electrical resistivity survey, Bozcaada Island, Turkey, European Geosciences Union General Assembly, Geophysical Research Abstracts, v. 12, EGU2010-7005.

  • Ekinci, Y.L., Demirci, A., Erginal., A., Kaya, H. ve Ekinci, R. 2012. The nature and subsurface geometry of Late Holocene Coquina rocks, Karaburun-İstanbul, NW Turkey, European Geosciences Union General Assembly, Geophysical Research Abstracts, v. 14, EGU2012-9367.

  • Erginal, A.E., Kıyak, N.G., Bozcu, M., Ertek, T.A., Güngüneş, H., Sungur, A. ve Türker, G. 2008. On the origin and age of Arıburnu beachrock, Gelibolu Peninsula, Turkey, Turkish Journal of Earth Sciences 17, 803–819.

  • Erginal, A.E., Kıyak, N.G. ve Öztürk, B. 2010. Investigation of beachrock using microanalyses and OSL dating: A case study from the Bozcaada Island, Turkey, Journal of Coastal Research 26 (2), 350–358.

  • Erginal A. E., Ekinci Y. L., Demirci A., Elmas E. K. ve Kaya K. 2012. First note on Holocene coquinite on Thrace (Black Sea) coast of Turkey, Sedimentary Geology 267–268, 55–62.

  • Erginal, A.E. 2012. Beachrock as evidence of sea-level lowstand during the Clasical period, Parion antique city, Marmara Sea, Turkey, Geodinamica Acta 25, 96–103.

  • Erginal, A.E., Ekinci, Y.L., Demirci, A., Avcioglu, M., Ozturk, M.Z., Turkes, M. ve Yigitbas, E. 2013a. Depositional characteri stics of carbonate-cemented fossil eolian sand dunes, Bozcaada Island, Turkey, Journal of Coastal Research 29 (1), 78–85.

  • Erginal, A.E., Kiyak, N.G., Ekinci, Y.L., Demirci, A., Ertek, A. ve Canel, T. 2013b. Age, composition and paleoenvironmental significance of a late Pleistocene eolianite from the western Black Sea coast of Turkey, Quaternary International 296, 168–175.

  • Erginal, A.E., Ekinci, Y.L., Demirci, A., Bozcu, M., Ozturk, M.Z., Avcioglu, M. ve Oztura, M.Z. 2013c. First record of beachrock on Black Sea coast of Turkey: Implications for Late Holocene sea-level fluctuations, Sedimentary Geology 294, 294–302.

  • Erol, O. 1972. Gelibolu Yarımadası kıyılarında yalıtaşı oluşumları, Ankara Üniversitesi Coğrafya Dergisi 3–4, 1–2.

  • Frebourg G., Hasler C., Le Guern P. ve Davaud E. 2008. Facies characteristics and diversity in carbonate eolianites, Facies 54 (2), 175–191.

  • Ginsburg, R.N. 1953. Beachrock in South Florida, Journal of Sedimentary Petrology 23, 85–92.

  • Goudie, A. 1966. A preliminary examination of the beach conglomerates of Arsuz, South Turkey, Geographical Articles 6, 6–9.

  • Goudie, A. S. 2001. The Nature of the Environment, WileyBlackwell, Oxford.

  • Kelletat, D. 2006. Beachrock as a sea-level indicator? Remarks from a geomorphological point of view, Journal of Coastal Research 22 (6), 1555–1564.

  • Kıyak, N.G. ve Erginal, A.E. 2010. Optical stimulated luminescence dating study of Eolianite on the Island of Bozcaada, Turkey: preliminary results, Journal of Coastal Research 26 (4), 673–680.

  • Kneale, D. ve Viles, H.A. 2000. Beach cement: incipient CaCO3- cemented beachrock development in the upper intertidal zone, North Uist, Scotland, Sedimentary Geology 132, 165–170.

  • Loke, M.H. ve Barker, R.D. 1996. Rapid least-squares inversion of apparent resistivity pseudosections using a quasiNewton method, Geophysical Prospecting 44, 131–152.

  • Loke, M.H., Acworth, I. ve Dahlin, T. 2003. A comparison of smooth and blocky inversion methods in 2D electrical resistivity imaging, Exploration Geophysics 34, 182–187.

  • Loope D.B. 2009. Eolianite, Encyclopedia of Paleo-climatology and Ancient Environments, ed: Gornitz, V., Springer, Dordrecht-The Netherlands, 319–320.

  • Lovejoy, D.W. 1998. Classic exposures of the Anastasia Formation in Martin and Palm Beach Counties, Florida, Miami Geological Society Publications, Miami-Florida.

  • McLaren, S. 2004. Aeolianite, Enclopedia of Geomorphology, ed: Andrew S. Goudie, Routledge, New York.

  • Neumeier, U. 1998. Le rôle de l’activité microbienne dans la cimentation précoce des beachrocks (sédiments intertidaux), Terra Environ 12, 1–183.

  • Polymeris, G.S., Erginal, A.E. ve Kiyak, N.G. 2012. A comperative morphology, compositional as well as TL study of Bozcaada (Tenedos) and Şile aeolianites, Turkey, Mediterranean Archaeology & Archaeometry 12 (2), 117–131.

  • Ramsay, P.J. ve Cooper, J.A.G. 2002. Late Quaternary sea level changes in South Africa, Quaternary Research 57, 82–90.

  • Rey, D., Rubio, B., Bernabeu, A.M. ve Vilas, F. 2004. Formation, exposure, and evolution of a high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain). Sedimentary Geology 169 (1–2), 93–105.

  • Russel, R.J. 1959. Carribean beach-rock observations, Zeitschrift für Geomorphologie. 3 (3), 227–236.

  • Sasaki, Y. 1992. Resolution of resistivity tomography inferred from numerical simulation, Geophysical Prospecting 40, 453–464.

  • Scholle P.A., Bebout D.G. ve Moore C.H. 1983. Carbonate Depositional Environments, Memoir no. 33, American Association of Petroleum Geologists, Tulsa-Oklahoma.

  • Shen J-W., Long J-P., Pedoja K., Yang H-Q., Xu H-L. ve Sun J-L. 2013. Holocene coquina beachrock from Haishan Island, east coast of Guangdong Province, China, Quaternary International, (baskıda), 1–19.

  • Spratt, T.A.B. ve Forbes, E. 1847. Travels in Lycia, Milyas, and the Cibyratis. II.-John Van Voorst, Paternoster Row, London.

  • Thomas, P.J. 2009. Luminescence dating of beachrock in the Southeast Coast of India–potential for Holocene shoreline reconstruction, Journal of Coastal Research 26 (1), 1–7.

  • Vousdoukas, M.I., Velegrakis, A.F. ve Plomaritis, T.A. 2007. Beachrock occurrence, characteristics, formation and impacts, Earth Science Reviews 85, 23–46.

  • Wessel, P. ve Smith, W.H.F. 1995. New version of the Generic Mapping Tools, Eos Transactions, American Geophysical Union 76, 329-329.

  • Zenkovitch, V.P. 1967. Processes of Coastal development, Oliver & Boyd, London.

  • Demirci, A , Ekinci, Y , Erginal, A , Öztürk, M. (2015). Fosil Plaj ve Kumulların Yüzey Altı Yapılarının İncelenmesinde Elektrik Özdirenç Tekniği ve Paleo-Kıyı Ortamı Yorumuna Katkısı. Türkiye Jeoloji Bülteni, 58 (1), 1-18. DOI: 10.25288/tjb.298600

  • Danişmen Formasyonu Stratigrafisi ve Birim İçindeki Linyit Düzeylerinin Havzadaki Dağılımı, Trakya Havzası, Türkiye
    Doğan Perinçek Nurdan Ataş Şeyma Karatut Esra Erensoy
    PDF Olarak Görüntüle

    Öz: Trakya Havzası`nın linyit potansiyeli havza genelinde yer altı verileri kullanılarak çalışılmıştır. Buçalışmada TPAO, MTA ve TKİ kuruluşlarınca sağlanan çok sayıda kuyu verisi ve sismik veri kullanılmıştır.Amaç Danişmen Formasyonu (Oligosen-Erken-Miyosen) içinde yer alan linyit katkılarının ekonomik değerlendirmesini yapmaktır. Bu nedenle Ergene-Kırcasalih (Geç Miyosen-Pliyosen) formasyonlarının toplam kalınlık haritası hazırlanmıştır. Ayrıca çalışmanın ana hedefi olan ve genellikle Danişmen Formasyonu`nun orta kesiminde yer alan linyit katkılarının toplam kalınlık haritası hazırlanmıştır. Havzada Danişmen Formasyonu linyit katkılarının yanal değişimlerini ortaya çıkarmak için korelasyonlar hazırlanmıştır. Danişmen Formasyonu içindeki linyit katkılarına ulaşmak için ilk engel en üsteki Ergene-Kırcasalih formasyonlarının kalınlığıdır. Bu birimlerin ve Danişmen Formasyonunun kalınlık dağılımını kontrol eden faktör Orta Miyosen sırasında etkin olan Trakya Fay Sistemi`dir. Trakya Fay Sistemi`nin fayzonları üzerinde ve dolayında oluşan yükselimler üzerinde Danişmen Formasyonu aşınmıştır. Danişmen Formasyonu`nun tamamen veya kısmen aşındığı alanlarda, linyit katkıları da yok olmuştur. Trakya Fay Sistemi`nin etkisiyle oluşan yükselim alanları aşınmaya rağmen yüksekliklerini korumuşlar. Söz konusu paleo yükselim alanlarında Ergene - Kırcasalih formasyonları düşük kalınlıklarda çökelmiştir. Çalışma kapsamında gerçekleştirilen kuyular arası litoloji korelasyonları yardımıyla Danişmen Formasyonu içindeki linyit seviyelerinin yanal kalınlık değişimleri ve süreksizlikleri ortaya çıkarılmıştır. Ayrıca Danişmen Formasyonu üzerinde yer alan Ergene-Kırcasalih formasyonlarının ince olduğu kesimler saptanmıştır. Böylece linyite kolay ulaşılacak alanlar örtünün ince olduğu yerler saptanmıştır.

  • Danişmen Formasyonu

  • Kuyu Logu Korelasyonu

  • Linyit

  • Trakya Fay Sistemi

  • Trakya Havzası













  • Perinçek, D , Ataş, N , Karatut, Ş , Erensoy, E . (2015). Danişmen Formasyonu Stratigrafisi ve Birim İçindeki Linyit Düzeylerinin Havzadaki Dağılımı, Trakya Havzası, Türkiye . Türkiye Jeoloji Bülteni , 58 (1) , 19-62 . DOI: 10.25288/tjb.298677

  • Tekirova (Antalya) Ofiyolit Napı Kayaçlarının Alterasyon Mineralojisi ve Jeokimyası
    Hüseyin Yalçin Ömer Bozkaya Canan Yilmaz
    PDF Olarak Görüntüle

    Öz: Güneybatı Anadolu`da Antalya Birliğinin bir parçası olan Tekirova Ofiyolit Napı; değişik boyutta tektonik dilimler halinde okyanusal kabuk bileşenlerini içermektedir. Ofiyolitik kayaçlarda okyanusal kabuk oluşumu, yerleşmesi ve sonrasında birbirini izleyen üç süreç bulunmaktadır. İlk aşama olan pirometamorfizma (pirometasomatizma), skapolit, diyopsit, granat, epidot ve tremolit gibi metamorfik minerallerin oluşumuna neden olmuştur. İkinci aşama hidrotermal metamorfizma (alterasyon), ultramafik kayaçların serpantinleşmesi ile temsil edilmektedir. Üçüncü aşama listvenit oluşumu olup, neoformasyon ve/veya alterasyon ürünleri karbonat (kalsit, dolomit, aragonit, manyezit, hidromanyezit, hidrotalsit), oksit ve hidroksitler (brusit, götit, hematit), fillosilikatlar (smektit, illit, klorit, talk, C-V, C-S, I-S) ve kuvars minerallerini içermektedir. Serpantin minerallerinden antigorit şeritimsi, lizardit levhamsı ve krizotil lifsi morfolojileri ile birbirlerinden ayırt edilebilmektedir. Serpantinler, A- (klinokrizotil-2M1), C- (lizardit-1T) ve D- (lizardit-2H1) yapısal grupları içerisinde yer alan üç farklı politipi ile temsil edilmektedir. 1T ve 2H1 Fe-lizardit, Fe-tremolit ve Cahidromanyezit minerallerinin kondrite normalize iz ve nadir toprak element dağılımları; benzer yönelimleri ve ofiyolitik köken kayacı işaret etmekte ve birbirinden farklılaşmaktadır. Serpantinlerin δ18O ve δD değerleri; yaklaşık 200 °C and 100 °C sıcaklıklarda hipojen okyanusal (lizardit-1T) ve süperjen Alpin tipi (klinokrizotil2M1 ve lizardit-2H1) koşullar altında iki farklı serpantinleşme evresi geçirdiklerini göstermektedir. 

  • Ana-iz elementler

  • duraylı izotoplar

  • fillosilikat

  • petrograf


  • Yalçın, H , Bozkaya, Ö , Yılmaz, C . (2015). Tekirova (Antalya) Ofiyolit Napı Kayaçlarının Alterasyon Mineralojisi ve Jeokimyası . Türkiye Jeoloji Bülteni , 58 (1) , 63-89 . Retrieved from https://dergipark.org.tr/tr/pub/tjb/issue/28114/298688

  • SAYI TAM DOSYASI
    PDF Olarak Görüntüle