Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2026 OCAK Cilt 69 Sayı 1
KAPAK
PDF Olarak Görüntüle
KÜNYE
PDF Olarak Görüntüle
İÇİNDEKİLER
PDF Olarak Görüntüle
Prof. Dr. Namık AYSAL` ın Ardından: Bilime, Gençliğe ve Dağlara Adanmış Bir Ömür
Sabah Yilmaz Şahin Nurullah Hanilçi
PDF Olarak Görüntüle

Öz: Türkiye jeoloji camiası büyük bir değerini,İstanbul Üniversitesi-Cerrahpaşa, Jeoloji Mühendisliği Bölümü Öğretim Üyesi, kıymetli dostumuz ve hocamız Prof. Dr. Namık Aysal`ı6 Ekim 2025 tarihinde kaybetmenin derin üzüntüsünü yaşamıştır. Henüz 52 yaşında, hayatının en verimli çağında aramızdan zamansız ayrılan Prof. Dr. Aysal`ın vefatı, yalnızca akademik camiada değil, öğrencileri ve dostları arasında da yeri doldurulamaz bir boşluk bırakmıştır. Sayın Aysal, kısa ömrünü bilime, öğrencilerine, ülkemizde tek olan ve büyük emek harcayarak arkadaşları ile kurduğu Jeokronoloji ve Jeokimya Laboratuvarına, Türkiye`nin dört bir yanındaki meslektaşlarına ve çok sevdiği dağlara adamıştır. Sahip olduğu çok yönlü kişiliği, tükenmez enerjisi ve çevresine yaydığı "yön gösterici itici güç", yokluğunda çok daha fazla hissedilmekte ve özlemle aranmaktadır.

  • Namık Aysal

  • Jeokronoloji ve Jeokimya Laboratuvarı

  • İstanbul Üniversitesi

  • Aysal, N., Ustaömer, T., Öngen, S., Keskin, M., Köksal,S., Peytcheva, I. & Fanning, M. (2012). Originof the Early-Middle Devonian magmatism inthe Sakarya Zone, NW Turkey: geochronology,geochemistry and isotope systematics. Journal ofAsian Earth Sciences, 45, 201-222.https://doi.org/10.1016/j.jseaes.2011.10.011

  • Aysal, N., Öngen, S., Doksanaltı, E. M., Şahin, O.,Çağıran, E., Şahin, D., Eruş, M., Baykır, M.ve Kocaışık, F. (2016). Knidos Antik KentindeKullanılan Yapıtaşları, Harç ve SıvalarınMineralojisi, Petrografisi ve Yer Seçiminde RolOynayan Jeolojik Faktörler. Restorasyon veKonservasyon Çalışmaları Dergisi, 19, 46-62.

  • Aysal, N., Guillong, M., Bayanova, T., Fukuyama, M.,Leonard, N., Yılmaz, İ., Varol, E., Tükel, F. Ş.,Kadıoğlu, Y. K., Hanilçi, N. & Uzun, F. (2023).A new natural secondary reference material forgarnet U-Pb dating by TIMS and LA-ICP-MS.Geostandards and Geoanalytical Research, 47(2),297-310. https://doi.org/10.1111/ggr.12493

  • Aysal, N., Karslıoğlu, Ö., Erdem, E., Guillong, M.,Öngen, S., Uysal, I. T., Kaygısız, E. & Yıldırım,I. D. (2025a). U-Pb calcite geochronology, EPR,geochemistry, and CO-Sr isotopes of ancientmarbles in the İznik Region (Bursa-Türkiye).Turkish Journal of Earth Sciences, 34(5), 650-668. https://doi.org/10.55730/1300-0985.1981

  • Aysal, N., Erdem, E., Hanilçi, N., Güngör, T., Öngen,S., Yılmaz, I., Uzun, F., Laçin, D. & Yıldırım, I.D. (2025b). Petrography, electron paramagneticresonance, geochemistry, and Sr-CO isotope datafor provenance studies of the ancient MarmorIassense in Kıyıkışlacık (Muğla region), Türkiye.Turkish Journal of Earth Sciences, 34(2), 176-189. https://doi.org/10.55730/1300-0985.1952

  • Bozkaya, Ö., Bozkaya, G., Aysal, N., Hanilçi, N. &Yılmaz, H. (2024). Mineral chemistry and garnetU-Pb dating in the Bizmişen iron skarn deposit,Erzincan, East-Central Türkiye. Geochemistry,84(4), 126163.https://doi.org/10.1016/j.chemer.2024.126163

  • Göçmengil, G., Tükel, F. Ş., Uzun, F., Guillong, M.,Yılmaz, İ., Aysal, N. & Hanilçi, N. (2022).Accurate whole-rock geochemistry analysis bycombined ICP-OES and LA-ICP-MS instruments.Bulletin of the Mineral Research and Exploration,168, 157-165.https://doi.org/10.19111/bulletinofmre.947703

  • Göçmengil, G., Müntener, O., Karacık, Z., Genç, Ş.C.,Ulianov, A. & Aysal, N. (2025). Petrogenesis of apost-collisional, shallow crustal mafic complex: Acase study of the Yıldız Dağı gabbroic intrusion(Northern Türkiye). Lithos, 516-517, Article108260.https://doi.org/10.1016/j.lithos.2025.108260

  • Kaygısız, E., Aysal, N. & Yağcıoğlu, K.D. (2024).Detrital zircon and rutile U–Pb dating of garnetmica schist in the Istranca (Strandja) Massif (NWTürkiye): Mineral chemistry and metamorphicconditions. Geochemistry, 84(4), Article 126172.https://doi.org/10.1016/j.chemer.2024.126172

  • Öngen, S., Aysal, N., Baykır, M. ve Şahin, M.O. (2012).Tarihi Aydos Kalesi yapı taşları, harç ve sıvalarınınpetrografisi ve kaynak alanları. Restorasyon veKonservasyon Çalışmaları Dergisi, 8, 30-36.

  • Öngen, S. ve Aysal, N., (Basım Aşamasında). İstanbul’u Süsleyen Dekor Taşları - Roma, Bizans, Osmanlı Medeniyetleri Mirası. (Kitap).

  • Özbaş, F. & Hanilçi, N. (2025). Quartz textures, mineral chemistry and fluid inclusion features of Tuztaşı low-sulphidation Au mineralization: Implication to it’s formation. Geochemistry, 85(1), Article 126220. https://doi.org/10.1016/j.chemer.2024.126220

  • Özbey, Z., Aysal, N., Caran, Ş., Tükel, F.Ş., Yağcıoğlu, K. D., Yeşiltaş, M. & Yılmaz, İ. (2024). Mineral chemistry and P–T conditions of the winchitebearing metabasic rocks in the NE edge of the Menderes Massif (Western Türkiye). Geochemistry, 84(4), Article 126126. https://doi.org/10.1016/j.chemer.2024.126126

  • Sönmez, T. & Aysal, N. (2025). Crystal morphology of Antarctic micrometeorites based on melting– cooling processes during atmospheric entry. Crystals, 15(2). https://doi.org/10.3390/cryst15020179

  • Şahin, S. Y., Aysal, N., Güngör, Y., Peytcheva, I. & Neubauer, F. (2014). Geochemistry and U–Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the geodynamic evolution of Cadomian orogeny. Gondwana Research, 26(2), 755-771. https://doi.org/10.1016/j.gr.2013.07.011

  • Şahin, S. Y., Naycı, Ö., Aysal, N., Cansu, Z. & Tükel, F. Ş. (2024). Geochemical and geochronological evidences from Cambrian to Ordovician protracted magmatism in the Istranca Massif, NW Türkiye. Geochemistry, 84(4), Article 126196. https://doi.org/10.1016/j.chemer.2024.126196

  • Tükel, F. Ş., Tiringa, D., Hanilçi, N., Ateşçi, B., Aysal, N. & Alan, İ. (2025a). Geochemistry and U-Pb dating of the Yahyalı pluton and associated skarn occurrences, SW Kayseri (Central Türkiye): Geodynamic significance and relation to mineralization. Journal of Geochemical Exploration, 274, Article 107756. https://doi.org/10.1016/j.gexplo.2025.107756

  • Tükel, F. Ş., Aysal, N., Yıldırım, İ. D., Guillong, M., Uysal, T., Öngen, S. & Erdem, E. (2025b). U-Pb calcite geochronology, EPR, geochemistry, and CO-Sr isotopes of Africano marbles in the Seferihisar (İzmir, Türkiye). Turkish Journal of Earth Sciences, 34(4), 590-609. https://doi.org/10.55730/1300-0985.1977

  • Uzun, F., Aysal, N., Guillong, M. ve Allaz, J.M. (2024). Mineral chemistry and geothermobarometry of metasedimentary rocks of Central Menderes Massif, Western Türkiye: Metamorphic evolution and source of metapelitic rocks. Geochemistry, 84(4), Article 126199. https://doi.org/10.1016/j.chemer.2024.126199

  • Ündül, Ö., Erözmen, T., Aysal, N. ve Güleç, A. (2025). Alternative stones and cleaning efficiencies for historical building stones used in İstanbul (Türkiye). Turkish Journal of Earth Sciences, 34(3), 455-478. https://doi.org/10.55730/1300-0985.1969

  • Yılmaz, İ., Şahin, S.Y., Aysal, N., Güngör, Y., Akgündüz, A. ve Bayhan, U. C. (2022). Geochronology, geochemistry and tectonic setting of the Cadomian (Ediacaran–Cambrian) magmatism in the Istranca (Strandja) Massif: new insights in to magmatism along the northern margin of Gondwana in NW Turkey. International Geology Review, 64(17), 2456-2477. https://doi.org/10.1080/00206814.2021.1901249










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Taşköprü (Akşehir-Eber Gölleri Arası) Sondaj Karot Verilerinin Geç Pleyistosen Gastropoda-Bivalvia Faunası ve Paleobiyocoğrafik Yayılımı (GB Anadolu)
    Harika Marmara Sevinç Kapan Ürün
    PDF Olarak Görüntüle

    Öz: Bu çalışmada, Taşköprü köyünde (Akşehir ve Eber gölleri arasında yer alan) yaptırılmış olan her biri 12 metre derinliğe sahip iki adet sondaj karotuna ait örneklerin Mollusca (Gastropoda ve Bivalvia) faunası ilk kez sistematik olarak incelenmiş ve faunanın paleobiyocoğrafik dağılımı ortaya çıkarılmıştır. Sondaj karotlarından sistematik olarak derlenen örneklerden; Mollusca şubesinin Gastropoda sınıfına ait 8 cins ve 8 tür; Valvata piscinalis (O. F. Müller,1774), Valvata sp., Bithynia pseudemmericia Schütt, 1964, Bithynia pseudemmericia operkül, Graecoanatolica lacustristurca Radoman, 1973, Laevicaspia caspia (Eichwald, 1838), Laevicaspia kolesnikoviana (Logvinenko& Starobogatov, 1966), Laevicaspia lincta (Milaschewitsch, 1908), Laevicaspia sp., Lymnaea sp., Stagnicola sp.,Radix auricularia (Linnaeus, 1758), Radix sp., Gyraulus parvus (Say, 1817), Gyraulus sp. ile Bivalvia sınıfına ait;Euglesa casertana (Poli, 1791), Euglesa personata (Malm, 1855), Pisidium amnicum (O. F. Müller, 1774), Pisidiumjassiensis Cobălcescu, 1883, Pisidium sp., Dreissena iconica Schütt, 1991, Dreissena polymorpha (Pallas, 1771),Dreissena sp. olmak üzere 3 cins ve 6 türün tanımlaması yapılmıştır. Göller Bölgesi`nde daha önce yapılmış olan çalışmalar incelendiğinde; Konya Kapalı Havzası, Eğirdir, Beyşehir, Burdur ve Suğla göllerinin çökellerinde varlığı tespit edilmiş olan Valvata piscinalis, Bithynia pseudemmericia, Graecoanatolica lacustristurca, Radix auricularia,Gyraulus parvus, Euglesa casertana, E. personata, Pisidium amnicum, P. jassiensis ve Dreissena iconica türlerinin, inceleme alanında da tarafımızdan tanımlanmış olması, Geç Pleyistosen esnasında söz konusu havzalar arasında fiziksel bir bağlantının mevcut olabileceğine ya da bu göllerin benzer paleoortamsal koşullarda gelişmiş olabileceğine işaret etmektedir.

  • Gastropoda-Bivalvia

  • GB Anadolu

  • Geç Pleyistosen

  • Paleocoğrafya

  • Taşköprü

  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., Balcı,V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T.,Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez,H. Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin,M., Şenel, M., Tarhan, N., Turhan, N., Türkecan,A., Ulu, Ü., Uğuz, M. F. ve Yurtsever, A. (2011).1:1.250.000 ölçekli Türkiye Jeoloji Haritası.Maden Tetkik ve Arama Genel Müdürlüğü Yayını.Ankara, Türkiye.

  • Akbulut, M., Öztürk, M. & Öztürk, M. (2002). TheBenthic Macroinvertebrate Fauna of SarıkumLake and Spring Waters (Sinop). Turkish Journalof Marine Sciences, 8, 103-119. https://dergipark.org.tr/en/pub/jbme/issue/9866/121993

  • Aktürk, K. & Kapan, S. (2025). The Quaternaryfluvial-lacustrine system in the Akarçay Basin(SW Anatolia): depositional environments andpaleoclimatic interpretation. Turkish Journalof Earth Sciences, 34(4), 562-581. https://doi.org/10.55730/1300-0985.1975

  • Alçiçek, H., Gross, M., Bouchal, J. M., Wesselingh,F. P., Neubauer, T. A., Meijer, T., van den HoekOstende, L. W., Tesakov, A., Murray, A. M., Mayda,S. & Alçiçek, M. C. (2023). Paleobiodiversityand paleoenvironments of the eastern Paratethys Pleistocene lacustrine-palustrine sequence in the Baklan Basin (SW Anatolia, Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 626, Article 111649. https://doi. org/10.1016/j.palaeo.2023.111649

  • Alçiçek, M. C. (2007). Tectonic development of an orogen-top rift recorded by its terrestrial sedimentation pattern: the Neogene Eşen Basin of southwestern Anatolia, Turkey. Sedimentary Geology, 200(1-2), 117-140.

  • Alçiçek, M. C., Mayda, S., ten Veen, J. H., Boulton, S. J., Neubauer, T. A., Alçiçek, H., ... & Van Den Hoek Ostende, L. W. (2019). Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia. Palaeobiodiversity and Palaeoenvironments, 99, 551-570.

  • Altınsaçlı, S., Kılıç, M. & Altınsaçlı, S. (2000). A Preliminary study on the Ostracoda (Crustacea) fauna of Lake Akşehir. Turkish Journal of Zoology, 24, 9-16.

  • Anderson, R. (2005). An annotated list of the nonmarine Mollusca of Britain and Ireland. Journal of Conchology, 38(6), 607-638.

  • Atalay, İ. (1977). Sultandağları ile Akşehir ve Eber Gölleri havzalarının strüktüral, jeomorfolojik ve toprak erozyonu etüdü. Atatürk Üniversitesi Yay. No.500, Erzurum.

  • Bering, D. (1971). The development of the Neogene and Quaternary intramontane basins within the Pisidic lake district in S. Anatolia. Newsletters on Stratigraphy, 1, 27–32.

  • Bespalaya, Y. V., Aksenova, O. V., Sokolova, S. E., Shevchenko, A. R., Tomilova, A. A. & Zubrii, N. A. (2021). Biodiversity and distributions of freshwater mollusks in relation to chemical and physical factors in the thermokarst lakes of the Gydan Peninsula, Russia. Hydrobiologia, 848, 3031-3044. https://doi.org/10.1007/s10750-020- 04227-9

  • Bilgin, F. H. (1973). Batı Anadolu İç Sularında Tespit Edilen Mollusk Türlerinin Tanıtılması Ekolojisi ve Dağılışları ile Bazı Prosobranch’ların Anatomilerinde Görülen Özellikler [Doçentlik Tezi]. EÜ FF Genel Zooloji Kürsüsü Bornovaİzmir.

  • Bilgin, F. H. (1980). Batı Anadolunun bazı önemli tatlı sularından toplanan Mollusca türlerinin sistematiği ve dağılışı. Diyarbakır Üniversitesi Tıp Fakültesi Dergisi, 8(2), 1-64.

  • Bizzarri, R., Corrado, P., Magri, D., Martinetto, E., Esu, D., Caprai, V., Colacicchi, R., Napoleone, G., Albianelli, A. & Baldanza, A. (2018). Palaeoenvironmental and climatic inferences from the late early Pleistocene lacustrine deposits in the eastern Tiberino Basin (central Italy). Quaternary Research, 90(1), 201-221. https://doi.org/10.1017/ qua.2018.41

  • Büyükmeriç, Y. & Wesselingh, F. P. (2018). New cockles (Bivalvia: Cardiidae: Lymnocardiinae) from Late Pleistocene Lake Karapınar (Turkey): Discovery of a Pontocaspian refuge?. Quaternary International, 465, 37-45. https://doi. org/10.1016/j.quaint.2016.03.018

  • Coşkun, S. (2024). Akarçay Kapalı Havzası’nın yaz mevsiminde buharlaşma ve akım verilerinin trend analizi. The Journal Of Social Sciences, (47), 162- 177. https://doi.org/10.29228/SOBIDER.45362

  • Çetinkaya, O. (1991). Akşehir Gölü su Kalitesi, plankton ve bentik faunası üzerine bir araştırma. Göller Bölgesi Tatlı Su Kaynaklarının Korunması ve Çevre Sorunları Sempoyumu, Bildiriler Kitabı (s. 413-429), Isparta.

  • Çolakoğlu, G. (2006). Karacaören (Çanakkale) Civarının Neojen Stratigrafisi ve Mollusk Faunası [Yayımlanmamış Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü.

  • Danukalova, G., Yakovlev, A., Osipova, E., Kurmanov, R. & van Kolfschoten, T. (2016). Biostratigraphy of the early Middle Pleistocene of the Southern Fore-Urals. Quaternary International, 420, 115- 135. https://doi.org/10.1016/j.quaint.2015.09.087

  • Demir, A. ve Kapan, S. (2025). Beyşehir Göl Havzası Çevresindeki Çökellerin Kuvaterner Stratigrafisi, Gastropoda Faunası ile Paleoiklimi ve Paleoekolojisi/Quaternary Stratigraphy, Gastropoda Fauna, Palaeoclimate and Palaeoecology of the sediments around Beyşehir Lake Basin. Türkiye Jeoloji Bülteni, 68(1), 1-22. https://doi.org/10.25288/tjb.1570701

  • Demirtaş, R., Kuru, T. ve Mirzaoğlu, M. (2019). Sultandağı (Afyon) Yenikarabağ Köyü civarında 2018 yılında oluşmuş yüzey yarıkları-çökmelerin oluşum mekanizması. Afet ve Acil Durum Yönetim Başkanlığı, Deprem Dairesi Başkanlığı Teknik raporu (Yayımlanmış), Ankara. https://doi. org/10.13140/RG.2.2.32663.42406

  • Dönmez, S. (2018). Akşehir Gölü su seviyesinin çekilmesinin meteorolojik ve uydu verileri ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(1). https://doi. org/10.17341/gazimmfd.406790

  • Eichwald, E. (1838). Faunae Caspii Maris primitiae. Bulletin de la Société Impériale des Naturalistes de Moscou, 11(2), 125–174. https:// biodiversitylibrary.org/page/41342125

  • Elmacı, A. ve Obalı, O. (1998). Akşehir Gölü kıyı bölgesi alg florası. Turkish Journal of Biology, 22, 81-98.

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F. (2013). 1:1.250.000 Ölçekli Açıklamalı Türkiye Diri Fay Haritası. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310- 56-1.

  • Eren, Y. & Nalbantçılar, T. (2021). Akşehir-Eber gölleri su seviye değişimini etkileyebilecek yüzey kırıklarının belirlenmesi projesi. Akşehir ve Eber Çevre Koruma Birliği Raporu (yayımlanmamış).

  • Ergun, Z. (2020). Suğla Gölü (Seydişehir, Konya) Çökellerinin Sedimantolojik ve Palinolojik İncelemesi; Göller Bölgesi Kuvaterner Paleocoğrafyasının Gelişimi [Yayımlanmış Doktor Tezi]. Ankara Üniversitesi.

  • Erol, O. (1969). Geology and geomorphology of Tuzgölü (Salt Lake) basin (Report No. 4220). Mineral Research and Exploration Institute Reports, Turkey [in Turkish].

  • Erol, O. (1971). Konya, Tuz Gölü, Burdur havzalarındaki pluvial göllerin çekilme safhalarının jeomorfolojik delilleri. Coğrafya Araştırmaları Dergisi, 3-4, 13–52.

  • Erol, O. (1978). The Quaternary history of the Lake Basins of central and southern Anatolia. In Brice, W.C. (Ed.), The Environmental History of the Near and Middle East since the Last Ice Age (pp. 111–139.). Academic Press, London.

  • Geze Kalanyuva, Y. (2021). Tarsus-Seyhan-Ceyhan nehirleri delta kompleksinin Kuvaterner jeolojisi, Adana, GD Türkiye [Yayımlanmış Doktor Tezi]. Ankara Üniversitesi.

  • Girod, A. (2013). Recent and Ancient Deathassemblages of Molluscs in Lakes Eğirdir and Beyşehir (SW Anatolia, Turkey). Natural History Sciences, 154(1), 41-56. https://doi.org/10.4081/ nhs.2013.41

  • Glöer, P. & Meier-Brook, C. (2003). Süßwassermollusken. Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland [Freshwater molluscs. Identification keys for the FRG]. Deutscher Jugendbund für Naturbeobachtung, Hamburg. ISBN 3-923376-02-2.

  • Glöer, P., Meier-Brook, C. & Ostermann, O. (1992). Süßwassermollusken: Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland (10th rev. and expanded ed.). Hamburg: Deutscher Jugendbund für Naturbeobachtung, 111 pp.

  • Glöer, P. & Yıldırım, Z. M. (2006). Some records of Bithyniidae from Turkey with the description of Bithynia pesicii n.sp. (Gastropoda: Bithyniidae). Malakologische Abhandlungen. Dresden. 24, 37- 42.

  • Gözler, A. M. & Baytaşoğlu, H. (2020). Mollusca fauna of the Çoruh River and its tributaries. Journal of Anatolian Environmental and Animal Sciences, 5(2), 185-190. https://doi.org/10.35229/ jaes.678664

  • Grigorovich, I. A., Mills, E. L., Richards, C. B., Breneman, D., Ciborowski, J. J. H. (2005). European Valve Snail Valvata piscinalis (Müller) in the Laurentian Great Lakes Basin. Journal of Great Lakes Research, 31, 135-143.

  • Gürbüz, A. & Kazancı, N. (2014). Facies characteristics and control mechanisms of Quaternary deposits in the Tuz Gölü basin. Bulletin of the Mineral Research and Exploration, 149, 1-18. https://doi. org/10.19111/bmre.63616

  • Gürbüz, A., Kazancı, N., Hakyemez, H. Y., Leroy, S. A., Roberts, N., Saraç, G., Ergun, Z., Boyraz-Arslan, S., Gürbüz, E., Koç, K., Yedek, Ö. & Yücel, T. O. (2021). Geological evolution of a tectonic and climatic transition zone: the Beyşehir-Suğla basin, lake district of Turkey. International Journal of Earth Sciences, 110, 1077-1107. https://doi. org/10.1007/s00531-021-02007-x

  • Gürbüz, E. (2023). Monitoring spatio-temporal changes in wetlands with harmonized image series in Google Earth Engine. Environmental Monitoring and Assessment, 195(6), 770. https:// doi.org/10.1007/s10661-023-11400-9

  • Gürlek, M. E. (2009). Kahramanmaraş bölgesi tatlısularındaki Mollusca türleri üzerine faunistik bir araştırma [Yayımlanmış Yüksek Lisans Tezi]. Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş.

  • Horsák, M. Juřičková, L. Beran, L. Čejka, T. & Dvořák, L. (2010). Komentovaný seznam měkkýšů zjištěných ve volné přírodě České a Slovenské republiky. [Annotated list of mollusc species recorded outdoors in the Czech and Slovak Republics]. Malacologica Bohemoslovaca, Suppl. 1, 1-37.

  • İleri, Ö. (2002). Eber Gölü (İç Batı Anadolu) Geç Kuvaterner Tortullarının Sedimantolojik İncelemesi [Yayımlanmamış Doktora Tezi]. Ankara Üniversitesi.

  • Jokinen, E. (1992). The Freshwater Snails (Mollusca: Gastropoda) of New York State. The University of the State of New York, The State Education Department, The New York State Museum, Albany, New York 12230.

  • Kabasakal, S. (2005). Lapseki (Çanakkale) Yöresi Neojen Stratigrafisi ve Gastropod-Pelecypod Faunası [Yayımlanmamış Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü.

  • Kala, H. (2006). Akarçay ve çevresinin (Afyonkarahisar) florası. [Yayımlanmamış Yüksek Lisans Tezi]. Afyon Kocatepe Üniversitesi, 133 s.

  • Kale, M. M. (2021). Akarçay Kapalı Havzası için hidrolojik kuraklık analizi. Coğrafya Dergisi, (42), 165-180. https://doi.org/10.26650/ JGEOG2021-892360

  • Kapan, S., Delikan, A., Sayın, Ü., Gürsoy, B., Demir, A., Bakkal, G., Orhan, H., Engin, B. ve Özmen, A., (2018). Geç Pleyistosen Molluskları ile Eski Konya Gölünün Paleoekolojisi ve OksijenKarbon İzotopları ile Paleoiklimsel Yorumu. Avcıoğlu, M., Kurttaş, M., Toksoy, Köksal., F, Eyüboğlu., Y, Baba, A., Yiğitbaş, E. (Ed. ler), 71. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, (s. 803-806). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo.org.tr/resimler/ ekler/9ee599173fc3528_ek.pdf

  • Karabıyıkoğlu, M. (2003). Konya Havzası’nın Geç Kuvaterner Evrimi. [Yayımlanmış Doktor Tezi]. İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı. İstanbul.

  • Karayiğit, A. I., Oskay, R. G., Tuncer, A., Mastalerz, M., Gümüş, B. A., Şengüler, I., Yaradılmış, H. & Tunoğlu, C. (2016). A multidisciplinary study of the Gölbaşı-Harmanlı coal seam, SE Turkey. International Journal of Coal Geology, 167, 31- 47. https://doi.org/10.1016/j.coal.2022.104149

  • Kazancı, N. & Roberts, N. (2019). The lake basins of South-west Anatolia. In Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (Eds.) Landscapes and Landforms of Turkey (pp. 325-337). Springer International Publishing.

  • Kazancı, N., Nemec, W., İleri, Ö. ve Kavuşan, G. (1994). Islah ve kurtarma çalışmaları için Akşehir ve Eber göllerinin sedimantolojik incelenmesi (Proje No: YBAG, 19). TÜBİTAK.

  • Kebapçı, Ü., Koca, S. B. & Yıldırım, M. Z. (2012). Revision of Graecoanatolica (Gastropoda: Hydrobiidae) species in Turkey. Turkish Journal of Zoology, 36(4), 399-411. https://doi:10.3906/ zoo-1011-10

  • Kebapçı, Ü. & Yıldırım, M. Z. (2010). Freshwater snails fauna of lakes region (Göller Bölgesi), Turkey. Muzeul Olteniei Craiova. Oltenia. Studii şi comunicari. Ştiintele Naturii, 26(2), 75-83.

  • Kempf, E.K. (1968). Mollusken aus dem HolsteinIntergiazial des Niederrheingebietes. Arch. Molluskenkunde, 98(1/2): 1-21.

  • Kılıçaslan, I. & Özbek, M. (2010). Contributions to the knowledge on the distribution of freshwater Mollusca species of Turkey. Review of Hydrobiology, 3(2).

  • Klinkenbuß, D., Metz, O., Reichert, J., Hauffe, T., Neubauer, T. A., Wesselingh, F. P. & Wilke, T. (2020). Performance of 3D morphological methods in the machine learning assisted classification of closely related fossil bivalve species of the genus Dreissena. Malacologia, 63(1), 95-105. https:// doi.org/10.4002/040.063.0109

  • Koçyiğit, A. & Özacar, A. (2003). Extensional Neotectonic Regime through the NE Edge of the Outer Isparta Angle, SW Turkey: New Field and Seismic Data, Turkish Journal of Earth Science, 12, 67-90. https://journals.tubitak.gov.tr/earth/ vol12/iss1/5

  • Kuiper, J. G. J., Økland, K. A., Knudsen, J., Koli, L., von Proschwitz, T. & Valovirta, I. (1989). Geographical distribution of the small mussels (Sphaeriidae) in North Europe (Denmark, Faroes,Finland, Iceland, Norway and Sweden). Annales Zoologici Fennici, 26(2), 73–101.

  • Kuzucuoğlu, C., Bertaux, J., Black, S., Denefle, M., Fontugne, M., Karabıyıkoğlu M., Kashima, K., Limondin-Lozouet, N., Mouralis, D. & Orth, P. (1999). Reconstruction of climatic changes during the late Pleistocene, based on sediment records from the Konya basin (Central Anatolia, Turkey), Geological Journal, Special Issue on Turkish Geology, 34, 175-198.

  • Lorencová, E., Beran, L., Nováková, M., Horsáková, V., Rowson, B., Hlaváč, J. Č., Nekola J. C. & Horsák, M. (2021). Invasion at the population level: a story of the freshwater snails Gyraulus parvus and G. laevis. Hydrobiologia, 848(19), 4661-4671. https://doi.org/10.1007/s10750-021- 04668-w

  • Marmara, H., Kapan, S. & Aktürk, K., (2024). Paleoenvironmental Characteristics of Quaternary Sediments Around Taşköprü (Afyonkarahisar/ Sultandağı, SW Turkey) with Distribution of Molluscan Fauna. Çan, T., Tekin, S., Pınarcı, E., Kadakçı, T., Koca, M., Koçkar, K., Olgun, Ş., Güler, C., Sarı, E., Tiringa, D. E. (Ed. ler), 76. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, (s. 307). Jeoloji Mühendisleri Odası Yayınları. https:// www.jmo.org.tr/resimler/ekler/4ce6ecf6eff3fd0_ ek.pdf

  • Meriç, E., Meriç, İ. E., Avşar, N., Tunoğlu, C., Güler, T., Yeşilyurt, S. K., Ünsal. İ. ve Rosso, A. (2000). Geç Kuvaterner (Holosen)’de İstanbul Boğazı Yolu ile Marmara Denizi-Karadeniz Bağlantısı Hakkında Yeni Bulgular. Türkiye Jeoloji Bülteni, 43(1), 73-118. https://www.jmo.org.tr/resimler/ ekler/ff8424b526eadce_ek.pdf

  • Milaschewitsch, K. O. (1908). Molluscs collected during the excursion of S.A. Zernov on the torpedo-boat No. 264 on the Danube River from June 28 to July 3, 1907. [Моллюски, собранные во время экскурсии С.А. Зернова на миноносце № 264 на р. Дунай с 28 июня по 3 июля 1907 г.]. Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg. ser. 6, 2(12): 991-996.

  • Minchin, D., Maguire, C. & Rosell, R. (2003). The zebra mussel (Dreissena polymorpha Pallas) invades Ireland: human mediated vectors and the potential for rapid intranational dispersal. In Biology and Environment: Proceedings of the Royal Irish Academy (Vol. 103, No. 1, pp. 23-30). Royal Irish Academy. https://doi.org/10.1353/ bae.2003.0017

  • Mouthon, J., Forcellini. M. & Le Goff, G. (2017). Reconnaître Euglesa (Cyclocalyx) compressa Prime, 1852, (Bivalvia, Sphaeriidae), une nouvelle espèce pour la faune de France. Folia conchyliologica, 38, 6-p.

  • Nemec & Kazancı. (1999). Quaternary colluvium in west-central Anatolia: sedimentary facies and palaeoclimatic significance. Sedimentology, 46(1), 139-170. https://doi.org/10.1046/j.1365- 3091.1999.00210.x

  • Neubauer, T. & Wesselingh, F. (2023). The Early Pleistocene freshwater mollusks of the Denizli Basin (Turkey): a new long-lived lake fauna at the crossroads of Pontocaspian and AegeanAnatolian realms. Zitteliana, 97, 53-88. https:// doi.org/10.3897/zitteliana.97.115682

  • Neubauer, T.A., van de Velde, S., Yanina, T. & Wesselingh, F. P. (2018). A late Pleistocene gastropod fauna from the northern Caspian Sea with implications for Pontocaspian gastropod taxonomy. ZooKeys, 770, 43. https://doi. org/10.3897/zookeys.770.25365

  • Nordsieck, F. (1982). Die Europäischen MeeresGehäuseschnecken 2. Auflage. Gustav Fischer, Stuttgart, pp. 539.

  • Odabaşı, D. A., Glöer, P. & Yıldırım, M. Z. (2015). The Valvata species of Turkey with a description of Valvata kebapcii n. sp. (Mollusca: Valvatidae). Ecologica Montenegrina, 2(2), 135-142. https:// doi.org/10.37828/em.2015.2.16

  • Okay, A. I., Zattin, M., Özcan, E., Sunal, G. (2020). Uplift of Anatolia. Turkish Journal of Earth Sciences, 29(5), 696-713. https://doi.org/10.3906/ yer-2003-10

  • Orhan, H., Delikan, A., Demir, A., Kapan, S., Olgun, K., Özmen, A., Sayın, Ü., Ekici, G., Aydın, H., Engin, B. & Tapramaz, R. (2021). Late Quaternary paleoclimatic and paleoenvironmental changes in the Konya Closed Basin (Konya, Turkey) recorded by geochemical proxies from lacustrine sediments. Arabian Journal of Geosciences, 14, 1-14. https:// doi.org/10.1007/s12517-021-07030-5

  • Orlova, M. I. (2002). Dreissena (D.) polymorpha: evolutionary origin and biological peculiarities as prerequisites of invasion success. In: Invasive aquatic species of Europe. Distribution, impacts and management (pp. 127-134). Dordrecht: Springer Netherlands.

  • Öktener, A. (2004). A preliminary research on Mollusca species of some freshwaters of Sinop and Bafra.Gazi University Journal of Science, 17(2), 21- 31. https://dergipark.org.tr/en/download/articlefile/83210

  • Özmen, A., Orhan, H., Engin, B., Sayın, Ü., Kapan, S., Delikan, A., Tapramaz, R., Ekici, G., Aydın, H., Demir, A., Işık, M. (2018). ESR Tekniği ile Konya Havzasındaki Kuvaterner Birimlerin Tarihlendirilmesi ve Jeolojik Değerlendirilmesi (Rapor no: 114Y237). Türkiye Bilimsel ve Teknik Araştırma Kurumu Yerbilimleri Araştırma Grubu Araştırma Projesi Kesin Raporu.

  • Öztürk, M. O. (2005). Eber Gölü (Afyon)’ndeki sazan (Cyprinus carpio L.)’ların metazoon parazitleri üzerine bir araştırma. Türkiye Parazitoloji Dergisi, 29(3), 204-210.

  • Özsayın, E., Gürbüz, A., Kuzucuoğlu, C., Erdoğu, B. (2019). Salted landscapes in the Tuz Gölü (Central Anatolia): the end stage of a Tertiary Basin. In Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (Eds.), Landscapes and landforms of Turkey, (pp. 339- 351). Springer International Publishing. https:// doi.org/10.1007/978-3-030-03515-0_16

  • Pallas, P.S. (1771). Reise durch verschiedene Provinzen des Rußischen Reichs, Erster Theil. Kayserliche Academie der Wissenschaften, St. Petersburg, pp. 504. http://resolver.sub.uni-goettingen.de/ purl?PPN329913735

  • Reeves, C. C. (Ed.). (1968). Introduction to Paleolimnology (Developments in sedimentology; 11). Elsevier Science Limited, Amsterdam.

  • Ring, U. W. E., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous– Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441. https:// doi.org/10.1017/S0016756803007878

  • Roberts, N. (1983). Age, palaeoenvironments, and climatic significance of Late Pleistocene Konya Lake, Turkey. Quaternary Research, 19, 154-171.

  • Roberts, N., Karabıyıklıoğlu, M., Jones, M., Mather, A., Jones, G., Rodenberg, I., Eastwood, W.J., KapanYeşilyurt, S., Yiğitbaşıoğlu, H. & Watkinson, M. (2003). Climatic and tectonic controls over late quaternary sedimantation in the Burdur Lake Basin, Southwest Turkey. 3 rd International Limnogeology Congress, USA.

  • Schultheiß, R., Albrecht, C., Bößneck, U., Wilke, T. (2009). The neglected side of speciation in ancient lakes: phylogeography of an inconspicuous mollusc taxon in lakes Ohrid and Prespa. In Patterns and Processes of Speciation in Ancient Lakes: Proceedings of the Fourth Symposium on Speciation in Ancient Lakes (pp. 141-156), Berlin, Germany, September 4–8, 2006. Springer Netherlands. https://doi.org/10.1007/s10750-008- 9553-3

  • Schütt H. (1964). Die Molluskenfauna eines reliktaren Quellsees der südlichen Türkei. Archiv für Molluskenkunde, 93, 173-180. Frankfurt a. Main.

  • Schütt, H. (1990). Die pleistozinen Mollusken dreier pisidischer Salzseen. Mitteilungen der Deutschen malakozoologischen Gesellschaft, 46, 15-24.

  • Schütt, H. (1991). Fossile mollusken dreier anatolischer Ovas. Archiv für Molluskenkunde, 120, (4-6), 131-147. https://doi.org/10.1127/arch. moll/120/1991/131

  • Seyitoǧlu, G., Işık, V. & Cemen, I. (2004). Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova, 16(6), 358-364. https:// doi.org/10.1111/j.1365-3121.2004.00574.x

  • Son, M.O. (2007). Native range of the zebra mussel and quagga mussel and new data on their invasions within the Ponto-Caspian Region. Aquatic Invasions, 2(3), 174-184. http://aquaticinvasions. net/2007/AI_2007_2_3_Son.pdf

  • Sözen, M. & Yiğit, S. (1999). The benthic fauna and some limnological aspects of Lake Akşehir (Konya). Turkish Journal of Zoology, 23(7), 829- 848.

  • Steininger, F. F. & Rögl, F. (1984). Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geological Society, London, Special Publications, 17(1), 659-668. https://doi.org/10.1144/GSL.SP.1984.017.01.52

  • Stefanescu, S. (1896). Études sur les terrains tertiaires de Roumanie. Contribution à L’étude des Faunes Sarmatique, Pontique et Levantine. Mem Soc. 15, 147s., Paris.

  • Tagliasacchi, E. & Yağmurlu, F. (2019). Acıgöl Grabeni Kuzeyindeki Pliyo-Kuvaterner Yaşlı Karasal Çökellerin Fasiyes Özellikleri ve Bölgenin Paleoortamsal Gelişimi, GB-Türkiye. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 440-451. https://doi.org/10.19113/ sdufenbed.462302

  • Taner, G. (1977). Gelibolu Yarımadası Neojen Formasyonları ile Baküniyen Molluska Faunasının İncelenmesi [Doçentlik Tezi]. Ankara Üniversitesi.

  • Taner, G. (1983). Hamzaköy Formasyonu’nun Çavda (Baküniyen) Bivalvleri, Gelibolu Yarımadası. Türkiye Jeoloji Kurumu Bülteni, 26(1), 59-64. https://www.jmo.org.tr/resimler/ ekler/5a61717dddc3501_ek.pdf

  • Tuncer, A., Karayiğit, A. I., Oskay, R. G., Tunoğlu, C., Kayseri-Özer, M. S., Gümüş, B. A., Bulut, Y. & Akbulut, A. (2023). A multi-proxy record of palaeoenvironmental and palaeoclimatic conditions during Plio-Pleistocene peat accumulation in the eastern flank of the Isparta Angle: A case study from the Şarkikaraağaç coalfield (Isparta, SW Central Anatolia). International Journal of Coal Geology, 265, Article 104149. https://doi. org/10.1016/j.coal.2022.104149

  • Umut, M., Karabıyıkoğlu, M., Saraç, G., Bulut, V., Demirci, A.R., Erkan, M., Kurt, Z., Metin, S. ve Özgönül, E. (1987). Tuzlukçu-Ilgın-DoğanhisarDoğanbey (Konya ili) ve dolayının jeolojisi (Rapor no: 8246). Maden Tetkik ve Arama Genel Müdürlüğü.

  • van de Velde, S., Wesselingh, F. P., Yanina, T. A., Anistratenko, V. V., Neubauer, T. A., ter Poorten, J. J., Vonfolf, H. B. & Kroonenberg, S. B. (2019). Mollusc biodiversity in late Holocene nearshore environments of the Caspian Sea: A baseline for the current biodiversity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 535, Article 109364. https://doi.org/10.1016/j. palaeo.2019.109364

  • Vinarski, M. V. & Kantor, YuI. (2016). Analytical catalogue of fresh and brackish water molluscs of Russia and adjacent countries. A.N. Severtsov Institute of Ecology and Evolution of RAS, Moscow, 544 pp.

  • Wenz, W. (1938-44). Gasteropoda. In Handbuch der Palaozoologie, herasgeg. v. Schindewolf, Bd. 6, Teil I: 1-240. Verl. G. Borntraeger, Berlin.

  • Wenz, W. (1942). Die Mollusken des Pliozäns der rumänischen Erdöl-Gebiete als Leitversteinerungen für die Aufschluss-Arbeiten. Senckenbergiana, 24, 1-293.

  • Wenz, W. & Zilch, A. (1959-60). Gastropoda, Euthyheura. Handbuch der Palaozoologie, Band 6, Teil II, 834 p., Verl. G. Borntraeger, Berlin.

  • Wesselingh, F. P., Neubauer, T. A., Anistratenko, V. V., Vinarski, M.V., Yanina, T., Ter Poorten, J. J., Kijashko, W., Albrecht, C., Anistratenko,O. Y., D’Hont, A., Frolov, P., Ándara, A. M., Gittenberger, A., Gogaladze, A., Karpinsky, M., Lattuda, M., Popa, L., Sands, A.F., van de Velde, S., Vandendorpe, J. & Wilke, T. (2019). Mollusc species from the Pontocaspian region–an expert opinion list. ZooKeys, 827, 31. https://doi. org/10.3897/zookeys.827.31365

  • Yıldırım, M. (1999). The Prosobranchia (Gastropoda: Mollusca) species of Turkey and their zoogeographic distribution 1. Fresh and brackish water. Turkish Journal of Zoology, 23(7), 877-900.

  • Yıldırım, M. Z. (2004). The Gastropods of Lake Eğirdir. Turkish Journal of Zoology, 28(1), 97-102. https:// journals.tubitak.gov.tr/cgi/viewcontent.cgi?article =2508&context=zoology

  • Yıldırım, M. Z. & Kebapçı, Ü. (2009). Endemism of land and freshwater gastropods in the Lakes region (Turkey). Oltenia. Studii şi comunicări. Ştiinţele Naturii, 55-59.

  • Yıldırım, M. Z., Gülle, I., Kebabçı, Ü. & Küçük, F. (2007). Faunal Diversity of Lake Burdur and its Vulnerability. Natura Montenegrina, 7(2), 393- 400.

  • Yıldırım, M.Z., Kebabçı, Ü., Şereflişan, H., Gürlek, M.E., Şereflişan, M. (2023). Türkiye Yumuşakçaları Tatlısu Çiftçenetlileri (Bivalvia) 1. Cilt. Yıldırım. M. Z. (Eds.) s. 196. Ankara, İksad.

  • Yıldız, H. F. (2016). Burdur Gölü Kuvaterner Tortullarının Paleontolojisi ve GastropodaBivalvia Faunası ile Paleoekolojik Özellikleri (Burdur Güneybatı Türkiye) [Yayımlanmış Yüksek Lisans Tezi]. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü.

  • Zhadin, V. I. (1965). Mollusks of Fresh and Brackish Water of The U.S.S.R. Zoological Institute of The Academy Sciences of The Union of Soviet Socialist Republics. Israel Program for Scientific Translations Jerusalem, 46, 1-368.

  • URL 1: WoRMS, (2025, 07 Temmuz). World Register of Marine Species. http://www.marinespecies.org

  • URL 2: MolluscaBase, (2025, 07 Temmuz). https:// www.molluscabase.org/

  • URL 3: Vikipedi, (2025, 09 Nisan). https://en.wikipedia. org/wiki/Radix_auricularia#cite_note-USGS-17

  • URL 4: Vikipedi, (2025, 09 Nisan). https://en.wikipedia. org/wiki/Gyraulus_parvus










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Anadolu Çaprazı`na ait Biruni Fayı: Morfolojik, Sismolojik ve Sismik Yansıma Verileri ile Doğu Akdeniz`in Neotektonik Çerçevesi Üzerindeki Etkileri
    Nuray Şahbaz Esra Tunçel Bülent Kaypak Gürol Seyitoğlu
    PDF Olarak Görüntüle

    Öz: Anadolu Çaprazı, Türkiye`nin neotektonik yapısında önemli bir rol oynayan, Orta Anadolu ve Doğu Anadolu fay zonları arasında 170 km ve Erzincan`dan Kıbrıs Yayına kadar yaklaşık 850 km uzanan belirgin bir sol yanal makaslama zonudur. Güneybatıda karadaki ucu Ecemiş-Deliler Fayı ile temsil edilirken, açık denizdeki devamı olan Biruni Fayı, Kıbrıs Yayına doğru yönelmektedir. Bu çalışma, Ecemiş-Deliler Fayı`nın güneybatı ucunu jeomorfolojik belirteçler aracılığıyla karakterize etmeyi ve Türkiye Petrolleri tarafından sağlanan önemli açık deniz sismik yansıma profilleri ve jeolojik kesitler kullanarak Biruni Fayı`nı tanımlamayı amaçlamaktadır. Ayrıca, fay kinematiğini değerlendirmek için açık deniz sismik olaylarının odak mekanizması çözümleri de incelenmiştir. Kara gözlemlerine göre, Göksu Nehri boyunca 18 km`lik sol yanal ötelenme, Ecemiş-Deliler Fayı`nın güneybatı ucunda yılda yaklaşık 2,25 mm`lik uzun vadeli bir kayma hızına işaret etmektedir. Açık denizde, Biruni Fayı`nın ayrıntılı bir şekilde tanımlanması ve haritalaması ile fayın kuzeydoğu kesiminde birbirine yakın, paralel doğrultu atımlı segmentlerden oluşan bir zondan oluştuğunu ve güneybatıya, Ege Yayına doğru uzanan tek bir doğrusal fay izine dönüştüğünü ortaya koymuştur. Açık morfolojik ifadesine rağmen, Anadolu Çaprazı`ndaki Ecemiş-Deliler Fayı`nın güneybatı ucu ile Biruni Fayı düşük sismik aktivite göstermektedir. Bunun nedeni, bölgesel deformasyonun çoğunun daha batıdaki Antalya-Kekova Fay Zonu ve Ptolemy-Plinius-Strabo Fay Zonu boyunca karşılanması olabilir. Bu yapılar arasında gelişen Antalya Bindirmesi ve Fethiye Bindirmesi, Doğu Akdeniz`deki kayma bölümlenmesine yeni bir bakış açısı sağlamaktadır.

  • Anadolu Çaprazı

  • Biruni fayı

  • Doğu Akdeniz

  • Ecemiş-Deliler Fay Zonu

  • Morfotektonik

  • Neotektonik

  • Acarel, D., Cambaz M. D., Turhan, F., Kömeç Mutlu A. & Polat, R. (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosciences, 11(1), 1098-11111. https://doi.org/10.1515/geo-2019- 0085

  • Aksu, A. E., Calon, T. J., Hall, J., Mansfield, S. & Yaşar, D. (2005). The Cilicia–Adana basin complex, Eastern Mediterranean: Neogene evolution of an active fore-arc basin in an obliquely convergent margin. Marine Geology, 221, 121-159. https:// doi.org/10.1016/j.margeo.2005.03.011

  • Aksu, A. E., Calon, T., Hall, J., Kurtboğan, B., Gürçay, S. & Çiftçi, G. (2014a). Complex interactions fault fans developed in a strike-slip system: Kozan Fault Zone, Eastern Mediterranean Sea. Marine Geology, 351, 91-107. https://doi.org/10.1016/j. margeo.2014.03.009

  • Aksu, A.E., Walsh-Kennedy, S., Hall, J., Hiscott, R. N., Yaltırak, C., Coşkun, S. D. & Çiftçi, G. (2014b). The Pliocene-Quaternary tectonic evolution of the Cilicia and Adana basins, eastern Mediterranean: Special reference to the development of the Kozan Fault zone. Tectonophysics, 622, 22-43. https:// doi.org/10.1016/j.tecto.2014.03.025

  • Aksu, A. E., Hall, J. & Yaltırak, C. (2022). The uppermost Messinian-Quaternary evolution of the Anamur-Kormakiti zone: The transition between the outer Cilicia and Antalya basins, northeastern Mediterranean. Marine and Petroleum Geology, 136, Article 105451. https://doi.org/10.1016/j. marpetgeo.2021.105451

  • Aktaş, G. & Robertson, A. H. F. (1984). The Maden complex, SE Turkey: evolution of a Neotethyan active margin. Geological Society, London, Special Publications, 17, 375-402. https://doi. org/10.1144/GSL.SP.1984.017.01

  • Akyüz, H. S., Uçarkuş, G., Altunel, E., Doğan, B. & Dikbaş, A. (2012). Paleoseismological investigations on slow-moving active fault in central Anatolia, Tecer Fault, Sivas. Annals of Geophysics, 55, 847-857. https://doi.org/10.4401/ ag-5444

  • Alan, İ., Balcı, V. & Elibol, H. (2014). Geological map of the Silifke-P31 and P32 Quadrangles. MTA Ankara, Türkiye.

  • Anastasakis, G. & Kelling, G. (1991). Tectonic connection of the Hellenic and Cyprus arcs and related geotectonic elements. Marine Geology, 97, 261-277. https://doi.org/10.1016/0025- 3227(91)90120-S

  • Arvidsson, R., Avraham, Z. B., Ekström, G. & Wdowinski, S. (1998). Plate tectonic framework for the October 9, 1996, Cyprus earthquake. Geophysical Research Letters, 25, 2241-2244. https://doi.org/10.1029/98GL01547

  • Barrier, E., Chamot-Rooke, N. & Giordano, G. (2004). Geodynamic Maps of the Mediterranean-sheet 1: Tectonics and Kinematics. Commission for the Geological map of the World (CGMW) and UNESCO.

  • Blumental, M. M. (1941). Niğde ve Adana Vilayetleri dolayındaki Toroslar’ın Jeolojisine umumi bir bakış. General Directorate for Mineral Research and Exploration (MTA), Publication Series B, no 6, Ankara.

  • Blumental, M. M. (1952). Torosların yüksek Aladağ silsilesinin coğrafyası, stratigrafisi ve tektoniği hakkında yeni etüdler. General Directorate for Mineral Research and Exploration (MTA), Publication Series D, no 6, Ankara.

  • Burton-Ferguson, R., Aksu, A. E., Calon, T. J. & Hall, J. (2005). Seismic stratigraphy and structural evolution of the Adana basin, eastern Mediterranean. Marine Geology, 221, 189-222. https://doi.org/10.1016/j.margeo.2005.03.009

  • Calon, T. J., Aksu, A. E. & Hall J. (2005). The Oligocene-Recent evolution of the Mesaria Basin (Cyprus) and its western marine extension, Eastern Mediterranean. Marine Geology, 221, 95-120. https://doi.org/10.1016/j.margeo.2005.03.012

  • Cosentino, D., Schildgen, T. F., Cipollari, P., Faranda, C., Gliozzi, E., Hudackova, N., Lucifora, S. & Strecker, M. R. (2012). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. Geological Society of America Bulletin, 124(1-2), 133-145. https://doi.org/10.1130/B30466.1

  • Darin, M. & Umhoefer, P. (2019). Structure and kinematic evolution of the southern Sivas foldthrust belt, Sivas Basin, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 28(6), 834- 859. https://doi.org/10.3906/yer-1907-29

  • Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Şaroğlu, F. & Şengör, A. M. C. (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone. In: Coward MP, Ries AC, (ed). Collision Tectonics. Geological Society London Special Publications, 19, 3-36 (Robert M. Shackleton volume). https:// doi.org/10.1144/gsl.sp.1986.019.01.01

  • Dirik, K. (2001). Neotectonic evolution of the northwestward arched segment of the Central Anatolian Fault Zone, Central Anatolia, Turkey. Geodinamica Acta, 14, 147-158. https://doi. org/10.1016/S0985-3111(00)01056-1

  • Dirik, K. & Göncüoğlu, M. C. (1996). Neotectonic Characteristics of Central Anatolia. International Geology Review, 38, 807-817. https://doi. org/10.1080/00206819709465363

  • Duman, T. & Emre, Ö. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society, London, Special Publications, 372, 495-529. https://doi.org/10.1144/SP372.14

  • Elmacı, H., Gürboğa, Ş., Özalp, S., Avcı, H. O., Aydoğan, H., Yavuzoğlu, A., Yüce, A. A., Kara, M. & Öztürker, A. R. (2025). Active tectonic characteristics of the Turkish Republic of Northern Cyprus in light of paleoseismological data. Şen, C. & Bak, T. (Eds.), 77th Geological Congress of Türkiye, Abstract Book (p.: 343). Chamber of Geological Engineers of Türkiye Publications. https://www.jmo.org.tr/resimler/ ekler/662575e8a4e2055_ek.pdf

  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active fault map of Turkey with and explanatory text. Special Publication Series 30. General Directorate of Mineral Research and Exploration (MTA). ISBN: 978-605-5310-56-1

  • Esat, K. & Seyitoğlu, G. (2023). Surface rupture map of the 2023.02.06 Kahramanmaraş Earthquakes based on high-resolution satellite and aerial imagery. ResearchGate Technical Report. https:// doi.org/10.13140/RG.2.2.36259.32808

  • Evans, G., Morgan, P., Evans, W. E., Evans, T. R. & Woodside, J. M. (1978). Faulting and halokinetics in the northeastern Mediterranean between Cyprus and Turkey. Geology, 6, 392-396. https:// doi.org/10.1130/0091-7613(1978)6<392:FAHIT N>2.0.CO;2

  • Güneş, P., Aksu, A. E. & Hall, J. (2018). Structural framework and deformation history of the western Cyprus Arc. Tectonophysics, 744, 438-457. https:// doi.org/10.1016/j.tecto.2018.07.023

  • Güvercin, S.E. (2023). A local earthquake tomography on the EAFZ shows dipping fault structure. Turkish Journal of Earth Sciences, 32(3): 294- 305. https://doi.org/10.55730/1300-0985.1845

  • Hall, R. (1976). Ophiolite emplacement and the evolution of the Taurus suture zone, southeast Turkey. Geological Society of America, 87, 1078- 1088.

  • Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84, 1081-1088. https://doi.org/10.1785/0220110096

  • Higgins, M., Schoenbohm, L. M., Brocard, G., Kaymakçı, N., Gosse, J. C. & Cosca, M. A. (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics, 34, 2118-2141. https://doi.org/10.1002/2015TC003864

  • Huguen, C., Mascle, J., Chaumillon, E., Woodside, J. M., Benkhelil, J. Kopf, A. & Volkonskaia, A. (2001). Deformational styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics, 343, 21-47. https://doi. org/10.1016/S0040-1951(01)00185-8

  • İnan, S. ve Ekingen, S. (2007). Namrun Fay Zonu’nun jeolojik – morfotektonik özellikleri: Orta Anadolu Fay Sistemi’nin güneybatı bölümü (Orta Toroslar – Türkiye). Yerbilimleri, 28, 147-158.

  • Jaffey, N. & Robertson, A. H. F. (2001). New sedimentological and structural data from the Ecemiş Fault Zone, southern Turkey: implications for its timing and offset and the Cenozoic tectonic escape of Anatolia. Journal of the Geological Society, London, 158, 367-378. https://doi. org/10.1144/jgs.158.2.367

  • Kaymakçı, N., İnceöz, M. & Ertepınar, P. (2006). 3d-Architecture and Neogene evolution of the Malatya basin: Inferences for the kinematics of the Malatya and Ovacık fault zones. Turkish Journal of Earth Sciences, 15, 123-154.

  • Ketin, İ. (1960). Tectonic units of Anatolia. Bulletin of the Mineral Research and Exploration (MTA), 54, 20-34.

  • Koçyiğit, A. & Beyhan, A. (1998). A new intracontinental transcurrent structure: The Central Anatolian Fault Zone, Turkey. Tectonophysics, 284, 317-336. https://doi.org/10.1016/S0040-1951(97)00176-5

  • Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019). The geomorphological regions of Turkey. In Kuzucuoğlu, C., Çiner, A. & Kazancı, N (Eds.), Landscapes and Landforms of Turkey, (p.: 41- 178). World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3- 030-03515-0_4

  • Mansfield, S. L. (2005). Neogene Tectonic and Sedimentary Evolution of the Outer Cilicia Basin, Eastern Mediterranean Sea [MSc Thesis]. Memorial University of Newfoundland and Labrador. ISBN: 978-0-494-19380-8.

  • McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30, 109-185. https://doi. org/10.1111/j.1365-246X.1972.tb02351.x

  • Metz, K. (1956). Aladağ ve Karanfil Dağı’nın yapısı ve bunların Kilikya Torosu tesmiye edilen batı kenarları hakkında malümat husulü için yapılan jeolojik etüt. Bulletin of Mineral Research and Exploration (MTA), 48, 63-76.

  • Özel, E., Uluğ, A. & Pekçetinöz, B. (2007). Neotectonic aspects of the northern margin of the Adana-Cilicia submarine basin, NE Mediterranean. Journal of Earth System Science, 116(2), 113-124. https:// doi.org/10.1007/s12040-007-0011-9

  • Özkan, A., Yavaşoğlu, H. H. & Masson, F. (2023). Present-day strain accumulations and fault kinematics at the Hatay Triple Junction using new geodetic constraints. Tectonophysics, 854, Article 229819. https://doi.org/10.1016/j. tecto.2023.229819

  • Pavoni, N. (1961). Die Nordanatolische Horizontalverschiebung. Geologische Rundschau, 51, 122-139.

  • Pilidou, S., Priestley, K., Jackson, J. & Maggi, A. (2004). The 1996 Cyprus earthquake: a large, deep event in the Cyprean Arc. Geophysical Journal International, 158, 85-97. https://doi.org/10.1111/ j.1365-246X.2004.02248.x

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., … & Karam, G. (2006). GPS constraints on continental deformation in the Africa - Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, Article B05411. https://doi.org/10.1029 / 2005JB004051

  • Sançar, T., Zabcı, C., Akçar, N., Karabacak, V., Yeşilyurt, S., Yazıcı, M., Akyüz, H.S., Öztüfekçi Önal, A., Ivy-Ochs, S., Christl, M. & Vockenhuber, C. (2020). Geodynamic importance of the strikeslip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift ond slip rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). Journal of Asian Earth Sciences, 188, Article 104091. https://doi.org/10.1016/j. jseaes.2019.104091

  • Sarıkaya, M. A., Yıldırım, C. & Çiner, A. (2015a). No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~64.5ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics, 649, 33-46. https://doi. org/10.1016/j.tecto.2015.02.022

  • Sarıkaya, M.A., Yıldırım, C. & Çiner, A. (2015b). Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides. Geomorphology, 228, 512-525. https://doi.org/10.1016/j. geomorph.2014.10.008

  • Schildgen, T. F., Cosentino, D., Bookhagen, B., Niedermann, S., Yıldırım, C., Echtler, H., Wittmann, H. & Strecker, M.R. (2012). Multiphased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth and Planetary Science Letters, 317-318, 85-95. https://doi. org/10.1016/j.epsl.2011.12.003

  • Scott, B. (1981). The Eurasian-Arabian and African continental margin from Iran to Greece. Journal of Geological Society, London, 138, 7694-7706.

  • Seyitoğlu, G., Esat, K. & Kaypak, B. (2017). The neotectonics of southeast Turkey, northern Syria and Iraq: the internal structure of the South East Anatolian Wedge and its relationship with the recent earthquakes. Turkish Journal of Earth Sciences, 26, 105-126. https://doi.org/10.3906/ yer-1605-21

  • Seyitoğlu, G., Esat, K., Kaypak, B., Toori, M. & Aktuğ, B. (2018). Internal deformation of the Turkish-Iranian Plateau in the hinterland of BitlisZagros Suture Zone. In Farzipour Saein A. (Ed), Tectonic and Structural Framework of the Zagros Fold-Thrust Belt (pp.: 161-244). Developments in Structural Geology and Tectonics Volume 3. Elsevier. https://doi.org/10.1016/B978-0-12- 815048-1.00010-X

  • Seyitoğlu, G., Tunçel, E., Kaypak, B., Esat, K. & Gökkaya, E. (2022a). The Anatolian Diagonal: A left lateral shear zone between East and Central Anatolia and its relationship with both North Anatolian Fault Zone and Aegean Cyprus Arcs. Geological Bulletin of Turkey, 65(2), 93-116. https://doi.org/10.25288/tjb.1015537

  • Seyitoğlu, G., Aktuğ, B., Esat, K. & Kaypak, B. (2022b). Neotectonics of Turkey (Türkiye) and surrounding regions: a new perspective with block modelling. Geologica Acta, 20, 1-21. https://orcid. org/0000-0001-7993-898X

  • Seyitoğlu, G., Esat, K., Kaypak, B. & Koca, B. (2022c). Seismotectonics of the southern branch of North Anatolian Fault Zone along Bolu, Bursa, and İzmir cities and Değirmenlik (Milos) island in the Aegean Sea. Yerbilimleri-Bulletin for Earth Sciences, 43(2), 138-159. https://doi. org/10.17824/yerbilimleri.948130

  • Seyitoğlu, G. & Esat, K. (2023). Structural relationship between the Dead Sea Fault Zone and East Anatolian Fault Zone: The cross-basin Kadıncık Fault emerged by the 2023.02.06 Kahramanmaraş (M=7.8) earthquake’s surface rupture. In Bozkurt, E., Dumanlılar, Ö., Akyıldız, M., Yılmaz, K. K., Coşkun Tunaboylu, B., Cihan, Z. Ö., Yağbasan, Ö. & Şükran Açıkel (Eds.), 75th Geological Congress of Türkiye, Abstract Book (p.: 94). Chamber of Geological Engineers of Türkiye Publications. https://www.jmo.org.tr/resimler/ ekler/24f25904af8a59f_ek.pdf

  • Symeou, V., Homberg, C., Nader, F.H., Darnault, R., Lecomte, J-C., & Papadimitriou, N. (2018). Longitudinal and temporal evolution of the tectonic style along the Cyprus Arc system, assessed through 2-D reflection seismic interpretation. Tectonics, 37, 30-47. https://doi. org/10.1002/2017TC004667

  • Şaroğlu, F., Emre, Ö. & Kuşçu, İ. (1992). Active Fault Map of Turkey. Ankara, Turkey. General Directorate of Mineral Research and Exploration (MTA).

  • Şengör, A. M. C. (1979). The North Anatolian transform fault: its age, offset and tectonic significance. Journal of the Geological Society, 136, 269-282. https://doi.org/10.1144/gsjgs.136.3.0269

  • Şengör, A. M. C. & Kidd, W. S. F. (1979). Postcollisional tectonics of the Turkish-Iranian Plateau and a comparison with Tibet. Tectonophysics, 55, 361-376. https://doi.org/10.1016/0040- 1951(79)90184-7

  • Şengör, A. M. C. (1980). Türkiye’nin Neotektoniğinin Esasları [Fundamentals of the Neotectonics of Turkey]. Publication of Geological Society of Turkey, 1-40.

  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241. https://doi. org/10.1016/0040-1951(81)90275-4

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip deformation basin formation and sedimentation: Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Biddle, K.T., ChristieBlick, N., (Eds.), Strike-slip faulting and basin formation. Society of Economic Paleontologists and Mineralogists, 37, 227-264. https://doi. org/10.2110/pec.85.37

  • Şengör, A. M. C., Özeren, S., Genç, T. & Zor, E. (2003). East Anatolian high plateau as a mantlesupported, north-south shortened domal structure. Geophysical Research Letters, 30(24) Article 8045. https://doi.org/10.1029/2003GL017858

  • Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakınç, M., Özbakır, A. D. & Kayan, İ. (2008). Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews, 90(1), 1-48. https://doi.org/10.1016/j. earscirev.2008.05.002

  • Şengör, A. M. C. (2017). Diversion of River Courses Across Major Strike-Slip Faults and Keirogens. In Çemen, İ. & Yılmaz, Y. (Eds.), Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region (pp.: 93-101). Geophysical Monograph Series, 225. https://doi.org/10.1002/9781118944998.ch3

  • Şengör, A. M. C., Zabcı, C. & Natal’in, B. A. (2019). Continental Transform Faults: Congruence and Incongruence with normal plate kinematics. In Duarte, J. C, (Ed.), Transform Plate Boundaries and Fracture Zones (pp.: 169-247) Elsevier. https://doi.org/10.1016/B978-0-12-812064- 4.00009-8

  • Tatar, O., Piper, J. D. A. & Gürsoy, H. (2000). Palaeomagnetic study of the Erciyes sector of the Ecemiş Fault Zone: neotectonic deformation in the southeastern part of the Anatolian Block. In: Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London,Special Publications, 173, 423-440. https://doi. org/10.1144/gsl.sp.2000.173.01.20

  • Woodside, J.M., Mascle, J., Zitter, T.A.C., Limonov, A.F., Ergün, M., Volkonskaia, A. & shipboard scientist of the PRISMED II Expedition. (2002). The Florence Rise, the western bend of the Cyprus Arc. Marine Geology, 185, 177-194. https://doi. org/10.1016/S0025-3227(02)00194-9

  • Yetiş, C. (1978). Çamardı (Niğde ili) yakın ve uzak dolayının jeoloji incelemesi ve Ecemiş yarılım kuşağının Maden Boğazı – Kamışlı arasındaki özellikleri [Doktora Tezi]. İstanbul Üniversitesi Fen Fakültesi, 151s.

  • Yıldırım, C., Sarıkaya, M. A. & Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics, 35, 1446-1464. https://doi. org/10.1002/2015TC004038

  • Yılmaz, Y. (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2), 251-271. https://doi.org/10.1130/0016- 7606(1993)105<0251:NEAMOT>2.3.CO;2

  • Yusufoğlu, H. (2013). An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey. Journal of Geodynamics, 65, 308-329, https://doi. org/10.1016/j.jog.2012.05.012










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Sedimantolojik Proksilere Göre Potansiyel Toksik Element Kaynaklı Ekolojik Risk Seviyesinin Analizi: Gölyazı Litoral Zonu (Uluabat Gölü – Bursa) Örneği
    Buse Öğreten Ahmet Evren Erginal Şakir Fural Serkan Kükrer Erdal Öztura
    PDF Olarak Görüntüle

    Öz: Biyoçeşitlilik açısından oldukça önemli olan göl ekosistemlerinde son yıllarda hızla artan antropojenik faaliyetlerin yol açtığı degradasyonel değişimler dikkat çekmektedir. Göl ekosistemlerindeki ortam bozulmasında potansiyel toksik element (PTE) kontaminasyonunun rolü oldukça fazladır. Bu çalışma Türkiye`nin önemli sulak alanlarından biri olan Uluabat (Apolyont) Gölü`nde yer alan ve üzerinde Gölyazı yerleşmesinin yer aldığı tombolo kıyılarındaki ekolojik riske odaklanmıştır. Tombolo kıyısı boyunca göl tabanından alınan sediment örneklerinin organik karbon ve klorofil bozunma ürünleri analizleri yanı sıra ICP-MS ile belirlenen PTE değerlerinden zenginleşme faktörü (EF),kontaminasyon faktörü (CF), modifiye kontaminasyon faktörü (mCD), toksik risk indeksi (TRI), kirlilik yük indeksi(PLI), ekolojik risk indeksi (mER) ve potansiyel ekolojik risk indeksi (PER) hesaplamaları yapılmıştır. Elde edilen verilere göre; göl sedimentlerinde PTE konsantrasyonu açısından Fe (29.200) > Al (21.500) > Mn (962) > Ni (256)> Cr (101) > Zn (90)> As (39) > Pb (37) > Cu (31) > Co (20) şeklinde bir sıralanma söz konusudur. EF verilerine göre PTE`lerin zenginleşme düzeyi Ni (10,31) > As (8,24) > Pb (5.05) > Mn (3,12) > Cr (3,08) > Co (2,81) > Zn(2,58) > Fe (2,30) > Cu (1,88) şeklindedir. PTE kaynaklı ekolojik risk seviyesi Ni (51), Co (41), Pb (25), As (24), Cu(10) olup ortalama potansiyel ekolojik risk seviyesi 161`dir. Gölyazı yerleşmesi çevresindeki litoral zonda Cu hariç diğer tüm PTE`ler belirli miktarda zenginleşmiştir. Göldeki en riskli ekolojik risk kaynağı Ni olarak belirlenmiştir. Orta derecede ekolojik risk tespit edilen göldeki başlıca antropojenik risk kaynakları tarım, endüstri ve yerleşme atıklarıdır. 

  • Ekolojik risk

  • göl ekolojisi

  • potansiyel toksik element kontaminasyonu

  • sedimantoloji

  • limnoloji

  • Uluabat Gölü

  • Abrahim, G. & Parker, R. (2008). Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227-238. https:// doi.org/10.1007/s10661-007-9678-2

  • Arslan, N., Koç, B. & Çiçek, A. (2010). Metal Contents in Water, Sediment, andOligochaetaChironomidae of Lake Uluabat,a Ramsar Site of Turkey. The Scientific World Journal, 10, 1269– 1281. https://doi.org/10.1100/tsw.2010.117

  • Aykır, D, Fural, Ş., Kükrer, S., Mutlu, Y. E. (2023). Elementbased ecological and human health risk assessment in a lagoon system in a densely populated basin. Oceanological and Hydrobiological Studies, 52(1), 1–19. https://doi. org/10.26881/oahs-2023.1.01

  • Aykol, A., Budakoglu, M., Kumral, M., Gultekin, A. H., Turhan, M., Esenli, V., Yavuz, F. & Örgün, Y. (2003). Heavy metal pollution and acid drainage from the abandoned Balya Pb-Zn sulfide Mine, NW Anatolia. Environmental Geology, 45, 198– 208. https://doi.org/10.1007/s00254-003-0866-2

  • Barlas, N., Ahbab, M. A. & Aydoğan, M. (2005). Assessment of Heavy Metal Residues in the Sediment and Water Samples of Uluabat Lake, Turkey. Bulletin of Environmental Contamination and Toxicology, 74, 286-293. https://doi. org/10.1007/s00128-004-0582-y

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. Academic, London NY-Toronto.

  • Çelenli, A. (2000). Uluabat Gölü Çevre Jeokimyası. [Yayımlanmamış Doktora Tezi]. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.

  • Çelik, G. (2000). Çevre Yönetiminde Ekolojik Risk Değerlendirmesi ve Uluabat Ramsar Alanı İçin Problem Formülasyonu [Yayımlanmamış Yüksek Lisans Tezi]. Uludağ Üniversitesi, Fen Bilimleri Enstitüsü.

  • Fural, Ş., Kükrer, S. & Cürebal, İ. (2020). Geographical information systems based ecological risk analysis of metal accumulation in sediments of İkizcetepeler Dam Lake (Turkey). Ecological Indicators, 119, Article 106784. https://doi. org/10.1016/j.ecolind.2020.106784

  • Fural, Ş., Kükrer, S., Cürebal, İ. & Aykır, D. (2021). Spatial distribution, environmental risk assessment, and source identification of potentially toxic metals in Atikhisar dam, Turkey. Environmental Monitoring and Assessment, 193, Article 268. https://doi.org/10.1007/s10661-021- 09062-6 PMID:33860380 .

  • Gaudette, H. E., Flight, W. R., Toner, L. & Folger, W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentory Petrology, 44, 249–253. https://doi.org/10.1306/74D729D7- 2B21-11D7-8648000102C1865D

  • Hacısalihoğlu, S. & Karaer, F. (2004). Ecological Risk Assessment and Problem Formulation for Lake Uluabat, a Ramsar State in Turkey. Environmental Management, 33, 899–910.

  • Hacısalihoğlu, S. & Karaer, F. (2020). Uluabat Gölü Noktasal Kirletici Kaynaklar ve Kirlilik Yükleri. Doğal Afetler ve Çevre Dergisi, 2, 258-267.

  • Hakanson, L. (1980). An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Research, 14, 975-1001. https:// doi.org/10.1016/0043-1354(80)90143-8

  • Hoşgören, M. Y. (1994). Türkiye’nin Gölleri. Türk Coğrafya Dergisi, 29, 19-51.

  • Kandemir, Ö., Pehlivan Ş., Kanar, F.,Tok, T. (2013). 1/100.000 ölçekli Türkiye Jeoloji Haritaları serisi, Bursa-H21 paftası. No:191. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Kazancı, N., Leroy, S., İleri, Ö., Emre, Ö., Kibar, M. & Öncel, S. (2004). Late Holocene erosion in NW Anatolia from sediments of Lake Manyas, Lake Ulubat and the southern shelf of the Marmara Sea, Turkey. Catena, 57(3), 277-308. https://doi. org/10.1016/j.catena.2003.11.004

  • Kuşçu, İ. (2024). Uluabat Gölü (Bursa) alansal değişim analizi (1987-2023). Anadolu Orman Araştırmaları Dergisi, 10(2), 87-93.

  • Kükrer, S., Erginal, A. E., Şeker, S. & Karabıyıkoğlu, M. (2015). Distribution and Environmental Risk Evaluation of Heavy Metal in Core Sediments from Lake Çıldır (NE Turkey). Environmental MonitoringnAssessment, 180, Article 453. https:// doi.org/10.1007/s10661-015-4685-1

  • Kükrer, S., Çakır, Ç., Kaya, H., & Erginal, A. E. (2019). Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment. Environmental Forensics, 20(4), 385–401. https://doi.org/10.1080/15275922.2019 .1657985

  • Lorenzen, C. J. (1971). Chlorophyll-degradation products in sediments of Black Sea. Degens, E. T. & Ross, D. A. (Eds.), The Black Sea—Geology, Chemistry, and Biology, (426–428). American Association of Petroleum Geologists, Volume 20. https://doi.org/10.1306/M20377C9

  • Macdonald, D., Carr, R., Calder, F. & Long, E. (1996). Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters. Ecotoxicology, 5, 253-278. https://doi. org/10.1007/BF00118995

  • Özmen, H., Kulahcı, F., Cukurovalı, A. & Dogru M. (2004). Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elazığ, Turkey). Chemosphere, 55, 401–408. https://doi.org/10.1016/j. chemosphere.2003.11.003

  • Sanei, H., Outridge, P. M., Oguri, K., Stern, G. A., Thamdrup, B., Wenzhöfer, F., Wang, F., & Glud, R. N. (2021). High mercury accumulation in deepocean hadal sediments. Scientific Reports, 11(1), Article 10970. https://doi.org/10.1038/s41598- 021-90459-1 PMID:34040077.

  • Sarı, E. (2008) Sources and distribution of heavy metals in river sediments from the southern drainage basin of the sea of Marmara, Turkey. Fresenius Environmental Bulletin, 17, 2007-2019.

  • Sutherland, R. A. (2000). Bed Sediment-Associated Trace Metals in an Urban Stream, Oahu, Hawaii. Environmental Geology, 39, 611- 627. https://doi. org/10.1007/s002540050473

  • Taylor, S. R. & McLennan, S. M. (1995). The geochemical Evolution of the Continental Crust. Reviews of Geophysic, 33(2), 241-265. https://doi. org/10.1029/95RG00262

  • Tekiner, M., Tunçay, T. & Parlak, M. (2025). Environmental and Ecological Risks Posed by Sediment Heavy Metals in Reservoirs: A Preliminary Study from Northwest Türkiye. Journal of Agricultural Sciences, 31(1), 59 – 70. https://doi.org/10.15832/ankutbd.1486524

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R. & Jeffery, D. W. (1980). Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresuntersuchungen, 33, 566-575. https://doi. org/10.1007/BF02414780

  • Turekian, K. & Wedepohl, K. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bulletin, 72, 175-192. https://doi. org/10.1130/0016-7606(1961)72[175:DOTEIS]2. 0.CO;2

  • Uludağ, M., Kükrer, S. & Erginal, G. (2018). Anthropogenically-induced ecological risks in Lake Erikli, NW Turkey. International Journal of Environment and Geoinformatics, 5(3), 273-283. https://doi.org/10.30897/ijegeo.459496

  • USEPA, (2007). Method 3051a: Microwave Assisted Acid Dissolution of Sediments, Sludges, Soils, and Oils, Revision 1. United States Environmental Protection Agency, Washington, DC.

  • Ustaoğlu, F., Islam, M. S. & Tokatli, C. (2022). Ecological and probabilistic human health hazard assessment of heavy metals in Sera Lake Nature Park sediments (Trabzon, Turkey). Arabian Journal of Geosciences, 15(7), 1-15. https://doi. org/10.1007/s12517-022-09838-1

  • Walkley, A. & Black, I. (1934). An Examination of the Degthareff Method far Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694- 193401000-00003

  • Wedepohl, K. H. (1979). Handbook of geochemistry. Springer Verlag, Berlin, Heidelberg, NY.

  • Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J. & Wen, X. (2016). Heavy Metals in Wetland Soils Along a Wetland-Forming Chronose Quence in the Yellow River Delta of China: Levels, Sources and Toxic Risks. Ecol Indicator, 69, 331–340. https://doi. org/10.1016/j.ecolind.2016.04.042










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Yüzey Sedimentlerinde Mikroplastiklerin Mekansal Dağılımı ve Risk Değerlendirmesi: Marmara Denizi Gemlik Körfezi Örneği
    Tuğçe Nagihan Arslan Kaya
    PDF Olarak Görüntüle

    Öz: Mikroplastikler (MP`ler), yaygın dağılımları ve deniz ekosistemlerine potansiyel zararları nedeniyle giderek artan şekilde küresel bir kirletici olarak tanımlanmaktadır. Bu çalışmada, Gemlik Körfezi`ndeki beş istasyondan alınan yüzey sedimentlerinden mikroplastikler yoğunluk ayırma yöntemiyle ekstrakte edilmiş; ardından stereomikroskop ve floresan mikroskobu kullanılarak karakterize edilmiştir. Çalışma, Gemlik Körfezi sedimentlerindeki mikroplastik kirliliğine ilişkin bolluk, mekânsal dağılım ve potansiyel ekolojik risklere odaklanan ilk kapsamlı değerlendirmeyi sunmaktadır. Araştırma alanında MP miktarı, kuru ağırlık başına 2200 ile 6400 adet/kg arasında değişmektedir. Mikroplastiklerin baskın şekli lif (%58,4) ve baskın rengi siyah (%26) olarak belirlenmiştir. Kontaminasyon faktörü(CF) ve kirlilik yükü indeksi (PLI) esas alındığında, sedimentlerin orta düzeyde ila oldukça kirlenmiş olduğu saptanmıştır. Bu çalışma, Gemlik Körfezi yüzey sedimentlerinde mikroplastik varlığına dair yeni bulgular ortaya koymakta olup, gelecekte yapılacak araştırmalar ve mikroplastik kirliliğinin yönetimi ile azaltılmasına yönelikstratejiler için bir temel oluşturmaktadır.

  • Ekolojik risk

  • Gemlik Körfezi

  • mikroplastik

  • mikroskop incelemesi

  • Nil Red

  • Ahmed, Q., Öztekin, A., Ali, Q. M. & Bat, L. (2025). Microplastic Contamination of Holothuria (Thymiosycia) arenicola Semper, 1868, Holothuria pardalis Selenka, 1867, Sediments and Seawater From Karachi Coast, Northern Arabian Sea, Pakistan. Marine Science and Technology Bulletin, 14(1), 10-19. https://doi.org/10.33714/ masteb.1641715

  • Alomar, C., Estarellas, F. & Deudero, S. (2016). Microplastics in the Mediterranean Sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Marine Environmental Research, 115, 1-10. https://doi.org/10.1016/j. marenvres.2016.01.005

  • Arslan Kaya, T. N., Sari, E. & Kurt, M. A. (2022). Sedimentary records of trace elements contamination in sediment core from the Gulf of Gemlik, Marmara Sea, Turkey: history, contamination degree, and sources. Turkish Journal of Earth Sciences, 31(5), 452-466. https:// doi.org/10.55730/1300-0985.1813

  • Arslan Kaya, T. N., Sarı, E., Çağatay, M. N., Kurt, M. A., Kösesakal, T., Kılıç, Ö. & Acar, D. (2023). The effects of the 1999 Gölcük earthquake (Mw 7.4) on trace element contamination of core sediments from İzmit Gulf, Turkey. Natural Hazards, 116(1), 1189-1208. https://doi.org/10.1007/s11069-022- 05717-w

  • Baysal, A., Saygin, H. & Ustabasi, G. S. (2020). Microplastic occurrences in sediments collected from Marmara Sea-Istanbul, Turkey. Bulletin of Environmental Contamination and Toxicology, 105(4), 522-529. https://doi.org/10.1007/s00128- 020-02993-9

  • Belivermiş, M., Kılıç, Ö., Sezer, N., Sıkdokur, E., Güngör, N. D. & Altuğ, G. (2021). Microplastic inventory in sediment profile: A case study of Golden Horn Estuary, Sea of Marmara. Marine pollution bulletin, 173 Part B, Article 113117. https://doi.org/10.1016/j.marpolbul.2021.113117

  • Besiktepe, S. T., Sur, H. I., Ozsoy, E., Latif, M. A., Oguz, T. & Unluata, U. (1994). The circulation and hydrography of the Marmara Sea. Progress in Oceanography, 34(4), 285-334. https://doi. org/10.1016/0079-6611(94)90018-3

  • Besley, A., Vijver, M. G., Behrens, P. & Bosker, T. (2017). A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Marine Pollution Bulletin, 114(1), 77-83. https://doi.org/10.1016/j. marpolbul.2016.08.055

  • Blašković, A., Fastelli, P., Čižmek, H., Guerranti, C. & Renzi, M. (2017). Plastic litter in sediments from the Croatian marine protected area of the natural park of Telaščica bay (Adriatic Sea). Marine Pollution Bulletin, 114(1), 583-586. https://doi. org/10.1016/j.marpolbul.2016.09.018

  • Brandon, J. A., Jones, W. & Ohman, M. D. (2019). Multidecadal increase in plastic particles in coastal ocean sediments. Science Advances, 5(9), Article eaax0587. https://doi.org/10.1126/sciadv.aax0587

  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T. & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science & Technology, 45(21), 9175-9179. https:// dx.doi.org/10.1021/es201811s

  • Claessens, M., De Meester, S., Van Landuyt, L., De Clerck, K. & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 62(10), 2199-2204. https://doi. org/10.1016/j.marpolbul.2011.06.030

  • Çağatay, M. N., Görür, N., Polonia, A., Demirbağ, E., Sakınç, M., Cormier, M. H., ... & Eriş, K. (2003). Sea-level changes and depositional environments in the Izmit Gulf, eastern Marmara Sea, during the late glacial–Holocene period. Marine Geology, 202(3-4), 159-173. https://doi.org/10.1016/ S0025-3227(03)00259-7

  • Doğruyol, P., Şener, M. & Balkaya, N. (2019). Determination of microplastics and large plastics in the sediments of the Golden Horn Estuary (Halic), Istanbul, Turkey. Desalination and Water Treatment, 172, 344-350. https://doi.org/10.5004/ dwt.2019.25067

  • Enders, K., Käppler, A., Biniasch, O., Feldens, P., Stollberg, N., Lange, X., ... & Labrenz, M. (2019). Tracing microplastics in aquatic environments based on sediment analogies. Scientific Reports, 9(1), Article 15207. https://doi.org/10.1038/ s41598-019-50508-2

  • Ergin, M., Bodur, M. N. & Ediger, V. (1991). Distribution of surficial shelf sediments in the northeastern and southwestern parts of the Sea of Marmara: strait and canyon regimes of the Dardanelles and Bosporus. Marine Geology, 96(3-4), 313-340. https://doi.org/10.1016/0025- 3227(91)90154-V

  • Erkan, H. S., Turan, N. B., Albay, M. & Engin, G. O. (2021). Microplastic pollution in seabed sediments at different sites on the shores of Istanbul-Turkey: Preliminary results. Journal of Cleaner Production, 328, Article 129539. https:// doi.org/10.1016/j.jclepro.2021.129539

  • Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. (2017). Lost, but found with Nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environmental Science & Technology, 51(23), 13641-13648. https://doi. org/10.1021/acs.est.7b04512

  • Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellov, M., Verschoor, A., Daugaard, A. E., ... & Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology 53(3), 1039- 1047. http://dx.doi.org/10.1021/acs.est.8b05297

  • Horton, A. A. & Dixon, S. J. (2018). Microplastics: An introduction to environmental transport processes. Wiley Interdisciplinary Reviews: Water, 5(2), Article e1268. https://doi.org/10.1002/wat2.1268

  • Jafarabadi, A. R., Bakhtiyari, A. R., Toosi, A. S. & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185, 1090-1111. https://doi. org/10.1016/j.chemosphere.2017.07.110

  • Kershaw, P. J. (2016). Marine plastic debris and microplastics–Global lessons and research to inspire action and guide policy change. United Nations Environment Programme, Nairobi.

  • Kershaw, P. J., Turra, A. & Galgani, F. (2019). Guidelines for the monitoring and assessment of plastic litter and microplastics in the ocean. London, UK, GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 130pp. (GESAMP Reports and Studies, No. 99). http://dx.doi.org/10.25607/OBP-435

  • Loring, D. H. & Rantala, R. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. EarthScience Reviews, 32(4), 235-283. https://doi. org/10.1016/0012-8252(92)90001-A

  • Martins, J. & Sobral, P. (2011). Plastic marine debris on the Portuguese coastline: a matter of size?. Marine Pollution Bulletin, 62(12), 2649-2653. https://doi. org/10.1016/j.marpolbul.2011.09.028

  • Matsuguma, Y., Takada, H., Kumata, H., Kanke, H., Sakurai, S., Suzuki, T., ... & Newman, B. (2017). Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Archives of Environmental Contamination and Toxicology, 73(2), 230-239. https://doi.org/10.1007/s00244-017-0414-9

  • McManus, J. (1988). Grain size determination and interpretation. In M. Tucker (Ed.), Techniques in Sedimentology (pp. 63-85). Blackwell Scientific Publ.

  • Mendes, A. M., Golden, N., Bermejo, R. & Morrison, L. (2021). Distribution and abundance of microplastics in coastal sediments depends on grain size and distance from sources. Marine Pollution Bulletin, 172, Article 112802. https:// doi.org/10.1016/j.marpolbul.2021.112802

  • Mutlu, T., Minaz, M., Baytaşoğlu, H. & Gedik, K. (2024). Microplastic pollution in stream sediments discharging from Türkiye’s eastern Black sea basin. Chemosphere, 352, Article 141496. https:// doi.org/10.1016/j.chemosphere.2024.141496

  • Niu, L., Li, Y., Li, Y., Hu, Q., Wang, C., Hu, J., ... & Zhang, H. (2021). New insights in the vertical distribution and microbial degradation of microplastics in urban river sediments. Water Research, 188, Article 116449. https://doi. org/10.1016/j.watres.2020.116449

  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515. https://doi. org/10.1144/GSL.SP.1999.156.01.22

  • Okay, A. I., Satir, M., Maluski, H., Siyako, M., Monié, P., Metzger, R. & Akyüz, S. (1996). Paleo-and NeoTethyan events in northwestern Turkey: Geologic and geochronologic constraints. 420-441. In A. Yin & T.M. Harrison (Eds.), The Tectonic Evolution of Asia, (pp.: 420-441). Cambridge University Press

  • Sarı, E. (2008). Source and distribution of heavy metals in river sediments from the southern drainage basin of the sea of Marmara, Turkey. Fresenius Environmental Bulletin, 17(12), 2007-2019.

  • Sayed, A. E. D. H., Hamed, M., Badrey, A. E., Ismail, R. F., Osman, Y. A., Osman, A. G. & Soliman, H. A. (2021). Microplastic distribution, abundance, and composition in the sediments, water, and fishes of the Red and Mediterranean seas, Egypt. Marine Pollution Bulletin, 173 Part A, Article 112966. https://doi.org/10.1016/j.marpolbul.2021.112966

  • Sönmez, V. Z., Akarsu, C. & Sivri, N. (2023). Impact of coastal wastewater treatment plants on microplastic pollution in surface seawater and ecological risk assessment. Environmental Pollution, 318, Article 120922. https://doi. org/10.1016/j.envpol.2022.120922

  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Biddle, K. & Christie-Blick, N. (Eds.), Strike-Slip Deformation, Basin Formation and Sedimentation, Special Publications, SEPM Society for Sedimentary Geology, Tulsa, 37, 227- 264.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R. & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566-575.

  • Uddin, S., Fowler, S. W., Uddin, M. F., Behbehani, M. & Naji, A. (2021). A review of microplastic distribution in sediment profiles. Marine Pollution Bulletin, 163, Article 111973. https://doi. org/10.1016/j.marpolbul.2021.111973

  • Vardar, D., Öztürk, K., Yaltırak, C., Alpar, B. & Tur, H. (2014). Late Pleistocene–Holocene evolution of the southern Marmara shelf and sub-basins: middle strand of the North Anatolian fault, southern Marmara Sea, Turkey. Marine Geophysical Research, 35(1), 69-85. https://doi.org/10.1007/ s11001-013-9210-8

  • Wang, T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., ... & Yu, W. (2019). Emission of primary microplastics in mainland China: invisible but not negligible. Water Research, 162, 214-224. https://doi. org/10.1016/j.watres.2019.06.042

  • Xu, P., Peng, G., Su, L., Gao, Y., Gao, L. & Li, D. (2018). Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China. Marine Pollution Bulletin, 133, 647-654. https://doi.org/10.1016/j.marpolbul.2018.06.020

  • Xue, B., Zhang, L., Li, R., Wang, Y., Guo, J., Yu, K. & Wang, S. (2020). Underestimated microplastic pollution derived from fishery activities and “hidden” in deep sediment. Environmental Science & Technology, 54(4), 2210-2217. https:// doi.org/10.1021/acs.est.9b04850

  • Yaltırak, C. & Alpar, B. (2002). Evolution of the middle strand of North Anatolian Fault and shallow seismic investigation of the southeastern Marmara Sea (Gemlik Bay). Marine Geology, 190(1-2), 307-327. https://doi.org/10.1016/ S0025-3227(02)00352-3

  • Yaltirak, C., Yalcin, T., Bozkurtoğlu, E. & Yüce, G. (2005). Water-level changes in shallow wells before and after the 1999 Izmit and Düzce earthquakes and comparison with long-term water-level observations (1999–2004), NW Turkey. Turkish Journal of Earth Sciences, 14(3), 281-309.

  • Yilmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. & Şengör, A. M. C. (1997). Geology and tectonic evolution of the Pontides. In A. G. Robinson (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region, American Association of Petroleum Geologists Studies in Geology. https:// doi.org/10.1306/M68612C11

  • Yin, Z. (2023). The pollution of microplastics in sediments: The ecological risk assessment and pollution source analysis. Science of The Total Environment, 859 Part 2, Article 160323. https:// doi.org/10.1016/j.scitotenv.2022.160323

  • Yücedağ, E., Mülayim, A. & Gündüz, S. K. (2022). Investigation of Microplastic Pollution in the Sediment and Commercial Fish Species of Gemlik Bay (Marmara Sea) by Microscopic and Spectroscopic Methods. Research Square. https:// doi.org/10.21203/rs.3.rs-1802703/v1










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Gravite Verilerine Spektral Filtreleme ve Lokal Optimizasyon-Tabanlı Ters Çözüm Teknikleri Uygulayarak Isparta Baseninde Temel Kaya Topografyasının Tahmini
    Rezzan Pekcan Ekinci Çağlayan Balkaya
    PDF Olarak Görüntüle

    Öz: Isparta Havzası, Batı Anadolu genişleme bölgesi ile Toros orojenik kuşağının birleşim noktasında yer alan tektonik olarak karmaşık bir çöküntü alanıdır. Helen ve Kıbrıs yaylarının kesişimine yakın konumuyla Isparta Açısını oluşturmaktadır. Bu geçiş zonu, yoğun kabuksal deformasyon, karmaşık fay sistemleri ve aktif sismisite ile karakterize edilmekte olup, jeofiziksel araştırmalar açısından önemli bir çalışma sahasıdır. Bu kendine özgü tektonik ortamda sedimanter dolgu kalınlığını belirlemek amacıyla mikrogravite anomalileri analiz edilmiştir. Gravite verileri, 2-BFourier dönüşümüne dayalı bir yöntem kullanılarak bölgesel ve rezidüel bileşenlerine ayrıştırılmıştır. Bu spektral filtreleme aşaması, yüzeye yakın sinyalleri daha geniş tektonik etkilerden etkin bir şekilde ayırarak, genellikle daha derin yapılar tarafından maskelenen sığ özelliklerin çözünürlüğünü artırmış ve derinlik modellemesi için sağlam bir temel oluşturmuştur. Rezidüel gravite anomalileri, hem 2-B hem de 3-B lokal optimizasyon-tabanlı ters çözüm teknikleriyle incelenmiştir. Bu tamamlayıcı yöntemler, sonuçların matematiksel olarak doğrulanmasına olanak tanımış ve elde edilen yapısal yorumların güvenilirliğini arttırmıştır. Elde edilen temel kaya derinliği tahminleri, Isparta Havzası`nın bilinen jeolojik yapısıyla, özellikle fay geometrileri ve stratigrafik sınırlarla uyum göstermektedir ve ters çözüm sonuçları maksimum sedimanter dolgu kalınlığının yaklaşık 0,53 km olduğunu göstermektedir. Tahmin edilen sedimanter dolgu kalınlığı, afet yönetimi açısından pratik önem taşımaktadır. Özellikle havza ortamlarında, kalın sedimanter birikimler deprem sırasında yer hareketi özelliklerini önemli ölçüde etkileyebilir. Bu nedenle, sedimanter birikimin uzamsal dağılımının haritalandırılması, daha bilinçli bölgesel risk değerlendirmelerine katkıda bulunmakta ve hedefli azaltma stratejilerinin geliştirilmesini desteklemektedir. Bu bulguların, Isparta Havzası`nda arazi kullanım planlaması ve altyapı dayanıklılığı için değerli çıktılar oluşturacağı ve sismik tehlike azaltma çalışmalarına katılan yetkililer ve mühendisler için temel bilgi kaynağı sağlayacağı öngörülmektedir.

  • Isparta baseni

  • mikrogravite

  • spektral filtreleme

  • temel kaya topografyası

  • ters çözüm

  • Allen, P. A. & Allen, J. R. (2005). Basin analysis: principles and applications. 2nd edition. Blackwell, Oxford, 549 pp.

  • Barka, A. & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annals of Geophysics, 40(3), 587–610. https://doi.org/10.4401/ag-3892

  • Bektaş, Ö., Büyüksaraç, A., Sarıtepe, H. E., Önal, K. M., Canbaz, O., Eyisüren, O., Pamuk, E., Akın, Ö., Akar, F. & Koşaroğlu, S. (2025). Shear-wave velocity model of the Sivas City (inner eastern, Türkiye) using Rayleigh wave ellipticity inversion controlled by 2D microgravity modeling. Acta Geophysica, 1-19. https://doi.org/10.1007/s11600-025-01682-7

  • Beyhan, G., Kanbur, M.Z., Selim H.H., Utkucu, M., Silahtar, A. & Budakoğlu, E. (2017). Isparta havza yapısının jeofizik yöntemler ile modellenmesi ve senaryo deprem sismik tehlike haritalarının hazırlanması (Proje No: 114Y836). Project Report, TÜBİTAK.

  • Blakely, R.J. (1996). Potential theory in gravity and magnetic applications. Cambridge University press.

  • Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60, 29–61. https://doi.org/10.1785/BSSA0600010029

  • Bozkurt, E. (2001). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14(1–3), 3–30. https://doi.org/10.1016/S0985-3111(01)01066-X

  • Buttkus, B. (2000). Spectral Analysis and Filter Theory in Applied Geophysics. Springer, Berlin, Heidelberg.

  • Büyüksaraç, A., Eyisüren, O., Bektaş, Ö. & Karaca, Ö. (2023). Bedrock depth calculation of Çanakkale (Turkey) basin using Rayleigh ellipticity and microgravity survey. Geofísica Internacional, 62, 387–401. https://doi.org/10.22201/igeof.2954436xe.2023.62.1.1447

  • Catuneanu, O. (2006). Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375 pp.

  • Demer, S.A. (2008). Isparta ve yakın çevresi yeraltısularının hidrojeolojik, hidrojeokimyasal ve izotop jeokimyasal incelenmesi ve içme suyu kalitesinin izlenmesi [PhD Thesis]. Süleyman Demirel Üniversitesi.

  • Dolmaz, M. N. (2007). An aspect of the subsurface structure of the Burdur-Isparta area, SW Anatolia, based on gravity and aeromagnetic data, and some tectonic implications. Earth, Planets and Space, 59, 5–12. https://doi.org/10.1186/BF03352016

  • Ekinci, Y. L. & Yiğitbaş, E. (2012). Geophysical approach to the igneous rocks in the Biga Peninsula (NW Turkey) based on airborne magnetic anomalies: geological implications. Geodinamica Acta, 25, 267–285. https://doi.org/10.1080/09853111.2013.858945

  • Ekinci, Y.L., Ertekin, C. & Yiğitbaş, E. (2013). On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: synthetic simulations and a case study from the Aegean Graben System (Western Anatolia, Turkey). Journal of Geophysics and Engineering, 10(3), Article 035005. https://doi.org/10.1088/1742-2132/10/3/035005

  • Ekinci, Y. L. & Yiğitbaş, E. (2015). Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north–west Turkey). Geodinamica Acta, 27, 300–319. https://doi.org/10.1080/09853111.2015.1046354

  • Ekinci, Y. L., Büyüksaraç, A., Bektaş, Ö. & Ertekin, C. (2020). Geophysical investigation of Mount Nemrut Stratovolcano (Bitlis, Eastern Turkey) through aeromagnetic anomaly analyses. Pure and Applied Geophysics, 172, 3243–3264. https://doi.org/10.1007/s00024-020-02432-0

  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G. & Ai, H. (2023). 3-D gravity inversion for the basement relief reconstruction through modified successhistory-based adaptive differential evolution. Geophysical Journal International, 235(1), 377– 400. https://doi.org/10.1093/gji/ggad222

  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G. & Özyalın, Ş. (2021). Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, 224(2), 923–944. https://doi.org/10.1093/gji/ggaa492

  • Emre, O., Duman, T. Y., Doğan, A., Özalp, S., Tokay, F. & Kuşçu, I. (2003). Surface faulting associated with the Sultandağı earthquake (Mw 6.5) of 3 February 2002, Southwestern Turkey. Seismological Research Letters, 74(4), 382–392. https://doi.org/10.1785/gssrl.74.4.382

  • Ghose, R., Persaud, P. & Clayton, R.W. (2023). Basin structure for earthquake ground motion estimates in urban Los Angeles mapped with nodal receiver functions. Geosciences, 13, 320. https://doi.org/10.3390/geosciences13110320

  • Görmüş, M. & Özkul, M. (1995). Gönen-Atabey (Isparta) ve Ağlasun (Burdur) Arasındaki Bölgenin Stratigrafisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1, 43–64.

  • Hunt, J. D., Nascimento, A., Guzman, O. J. R., Furtado, G. C. d. A., ten Caten, C. S., Tomé, F. M. C., Leal Filho, W., Durin, B., Lopes, M. & Wada, Y. (2022). Sedimentary basin water and energy storage: a low environmental impact option for the Bananal Basin. Energies, 15, Article 4498. https://doi.org/10.3390/en15124498

  • Işık, M. & Şenel, H. (2009). 3D gravity modeling of Büyük Menderes basin in Western Anatolia using parabolic density function. Journal of Asian Earth Sciences, 34(3), 317–325. https://doi.org/10.1016/j.jseaes.2008.05.013

  • Karaman, M. E., Meriç, E. & Tansel, İ. (1988). Çünür (Isparta) dolaylarında Kretase-Tersiyer geçişi. Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 4, 80–100.

  • Kissel, C. & Poisson, A. (1986). Etude paléomagnétique préliminaire des formations néogènes du bassin d’Antalya (Taurides occidentales, Turquie). Comptes Rendus de l’Académie des Sciences Paris, 302, 711–716.

  • Koçyiğit, A. & Özacar, A. (2003). Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turkish Journal of Earth Sciences, 12(1), 67–90.

  • Lima, W.A. & Silva, J.B. (2014). Combined modeling and smooth inversion of gravity data from a faulted basement relief. Geophysics, 79(6), F1– F10. https://doi.org/10.1190/geo2013-0357.1

  • McKenzie, D.P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x

  • Murthy, I. R. & Rao, S. J. (1989). A Fortran 77 program for inverting gravity anomalies of twodimensional basement structures. Computers & Geosciences, 15(7), 1149-1156. https://doi.org/10.1016/0098-3004(89)90126-X

  • Okay, A.I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey, in The Mediterranean Basins: Tertiary extension within the Alpine Orogen. In Durand, B., Jolivet, L., Horvath, F. & Seranne, M.(Eds.), Geological Society of London, Special Publications, 156, pp. 475–515.

  • Onajite, E. (2014). Understanding seismic interpretation methodology. In Seismic Data Analysis Techniques in Hydrocarbon Exploration, pp. 177–211, Elsevier. https://doi.org/10.1016/B978-0-12-420023-4.00013-7

  • Pamuk, E., Akgün, M., Özdağ, Ö. C. & Gönenç, T. (2017). 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey. Journal of Applied Geophysics, 137, 104–117. https://doi.org/10.1016/j.jappgeo.2016.12.016

  • Piper, J. D. A., Gürsoy, H. & Tatar, O. (2002). Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta Angle, southern Turkey. Geological Journal, 37(4), 317–336. https://doi.org/10.1002/gj.920

  • Rao, B. S. R. & Murthy. I. V. R. (1978). Gravity and magnetic methods of prospecting: ArnoldHeinemann (India) Pvt. Ltd., AB, 9 Safdar jang Enclave. New Delhi, 390 p.

  • Rao, D. B., Prakash, M. J. & Babu, N. R. (1990). 3D and 2½ D modelling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38(4), 411–422. https://doi.org/10.1111/j.1365-2478.1990.tb01854.x

  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R. … & Karam, G. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5), Article B05411. https://doi.org/10.1029/2005JB004051

  • Robertson, F., Poisson A. H. A. & Akinci, Ö. (2003). Developments in research concerning Mesozoic– Tertiary Tethys and neotectonics in the Isparta Angle, SW Turkey. Geological Journal, 38(3-4), 195–234. https://doi.org/10.1002/gj.953

  • Roy, A., Ekinci, Y. L., Balkaya, Ç. & Ai, H. (2025). Deep learning-based inversion with discrete cosine transform discretization for two-dimensional basement relief imaging of sedimentary basins from observed gravity anomalies. Geophysical Prospecting, 73(1), 113–129. https://doi.org/10.1111/1365-2478.13647

  • Sari, C. & Şalk, M. (2006). Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data. Journal of Asian Earth Sciences, 26(1), 39–48. https://doi.org/10.1016/j.jseaes.2004.09.011

  • Seed, H. B. & Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, California, 243 pp.

  • Silahtar, A., Kanbur, M. Z. & Beyhan, G. (2020). Investigation of a sedimentary basin by using gravity and seismic reflection data in the Isparta basin, southwestern Turkey. Bulletin of Engineering Geology and the Environment, 79(8), 3971–3988. https://doi.org/10.1007/s10064-020-01804-z

  • Şenel, M. (2007a). 1:100.000 ölçekli Türkiye Jeoloji Haritası, Isparta M24 (J10). Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.

  • Şenel, M. (2007b). 1:100.000 ölçekli Türkiye Jeoloji Haritası, Isparta M25 (J11). Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3–4), 181–241. https://doi.org/10.1016/0040-1951(81)90275-4

  • Taymaz, T. & Price, S. (1992). The 1971 May 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophysical Journal International, 108(2), 589–603. https://doi.org/10.1111/j.1365-246X.1992.tb04638.x

  • Timur, E., Kaftan, I., Sari, C. & Şalk, M. (2019). Structure of the Büyük Menderes Graben systems from gravity anomalies. Turkish Journal of Earth Sciences, 28(4), 544–557. https://doi.org/10.3906/yer-1809-31

  • Todd, D. K. & Mays, L. W. (2004). Groundwater hydrology, third edition. Wiley, New York, 656 pp.

  • Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., Felicia A.L., Holland, F. & Anaya, F. M. L. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: a review. Geomorphology, 250, 187–219. https://doi.org/10.1016/j.geomorph.2015.09.005

  • Wessel, P. & Smith, W. H. (1995). New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33), 329–329.

  • Wright, T. J., Parsons, B. E., Jackson, J. A., Haynes, M., Fielding, E. J., England, P. C. & Clarke, P. J. (1999). Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. Earth and Planetary Science Letters, 172(1-2), 23–37. https://doi.org/10.1016/S0012-821X(99)00186-7

  • Wu, M., Liu, Z., Qin, Y., Su, K. & Yu, Z. (2025). Thermal property of reservoir rocks at thermal-mechanical coupled conditions and resultant impact on performance of geothermal systems. Rock Mechanics and Rock Engineering, 58, 8773–8798. https://doi.org/10.1007/s00603-025-04587-5

  • Yalçınkaya, S. (1989). Isparta-Ağlasun (Burdur) Dolaylarının Jeolojisi [PhD Thesis]. İstanbul Üniversitesi.

  • Yıldız, A. & Toker, V. (1991). Çünür Köyü yöresindeki (Isparta kuzeyi) Üst Kretase-Eosen yaşlı birimlerin planktik foraminiferler ile biyostratigrafik incelemesi. Türkiye Jeoloji Bülteni, 34(2), 43–58. https://www.jmo.org.tr/resimler/ekler/5409b2c82d5925a_ek.pdf

  • Yiğitbaş, E., Elmas, A., Sefunç, A. & Özer, N. (2004). Major neotectonic features of eastern Marmara region, Turkey: development of the Adapazari–Karasu corridor and its tectonic significance. Geological Journal, 39, 179–198. https://doi.org/10.1002/gj.962










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Geç Triyas Yaşlı Çakrazboz Formasyonu`nda Fasiyes Evrimi ve İklimsel Döngülere Bağlı Göl Tipi Değişkenliği, Batı Pontidler, Türkiye
    Gül Şen İsmail Ömer Yilmaz
    PDF Olarak Görüntüle

    Öz: Çakrazboz Formasyonu, Türkiye`de bilinen tek Triyas yaşlı kıtasal tortul istif olarak Batı Pontidler`in (KuzeybatıTürkiye) Amasra–Kastamonu yöresinde yüzeylenmektedir. Bu çalışmada, altı stratigrafik kesitten elde edilensedimantolojik, petrografik ve stratigrafik veriler birleştirilerek depolanma ortamları yeniden yapılandırılmış ve paleoiklimsel kontrol mekanizmaları değerlendirilmiştir. Saha ve ince kesit analizleri, üç ana litofasiyes grubundan oluşan karmaşık bir fasiyes mozaiğini ortaya koymaktadır: göl, bataklık (palustrin) ve akarsu (flüviyal). Gölsel istifler, çamurtaşı (mikrit), vaketaşı ve tanetaşı gibi karbonatça zengin fasiyeslerden oluşmakta ve düşük enerjili derin gölsublitoral (profundal–sublittoral) ortamlara işaret etmektedir. Palustrin fasiyesler, göl kenarı ortamlarında yaygın olup pedojenik alterasyon, fenestral dokular, kök izleri ve kuruma çatlakları ile karakterizedir; Bozköy ve Başköy-1kesitlerinde bu özellikler daha belirgin şekilde gelişmiştir. Başköy-2 ve Başköy-3 kesitleri, yukarıya doğru incelen kumtaşı-çamurtaşı ardalanmaları ve pedojeneze uğramış çamurtaşlarından oluşan menderesli akarsu sistemlerine ait nokta bar istiflerini içerir ve bu istifler, gölün aşırı dolduğu (overfilled) evrelerde çökelmiştir. Stratigrafik ve sedimantolojik veriler, havzanın tekrar eden şekilde yetersiz dolu (underfilled), dengeli dolu (balanced-fill) ve aşırı dolu (overfilled) göl evreleri arasında geçtiğini göstermektedir. Çakrazboz ve alt İncigez kesitlerindeki karbonatça zengin istifler, yetersiz dolu evrelere özgü düşük enerjili profundal göl koşullarını temsil eder. Üst İncigez ve Başköy-1kesitleri, üste doğru incelen transgresif istiflerin progradasyonlu litoral fasiyeslerle örtülmesiyle karakterize olan dengeli dolu koşulları yansıtır. Aşırı dolu koşullar, Bozköy ve Başköy-1`in üst seviyelerinde yer yer görülür ve bunlar, sürekli tatlı su girişiyle ilişkili yanal olarak genişleyen, üste doğru kalınlaşan ve tane boyu artan istiflerle tanımlanır. Dikey fasiyes geçişleri, istiflenme desenleri ve diyajenez izleri, yarı nemli ile yarı kurak iklim rejimleri altında yörüngesel zorlamalı göl seviyesi değişimlerini yansıtarak Geç Triyas kıtasal havza evrimi, fasiyes mimarisi ve iklim kontrollü sedimantasyon hakkında daha geniş bir anlayış sağlamaktadır. 

  • Batı Pontidler

  • Çakrazboz Formasyonu

  • fasiyes evrimi

  • göl tipi değişkenliği

  • paleoiklim

  • yörüngesel döngüler

  • Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B.,Hessen, D. O., Keller, W., ... & Winder, M. (2009).Lakes as sentinels of climate change. Limnologyand oceanography, 54(6 part 2), 2283-2297.https://doi.org/10.4319/lo.2009.54.6_part_2.2283

  • Akbaş, B., Altun, İ. T. & Bilgin, A. Z. (2002). 1:100,000scale geological map of Turkey, Zonguldak E28sheet. General Directorate of Mineral Researchand Exploration.

  • Akdoğan, R., Hu, X., Okay, A. I., Topuz, G. & Xue,W. (2021). Provenance of the Paleozoic toMesozoic siliciclastic rocks of the İstanbulZone constrains the timing of the RheicOcean closure in the Eastern Mediterraneanregion. Tectonics, 40(12), e2021TC006824.https://doi.org/10.1029/2021TC006824

  • Akman, Ü. (1992). Amasra-Arıt arasının jeolojisi[Yayımlanmamış Doktora Tezi]. PhD, AnkaraUniversity, Ankara, Turkey (in Turkish).

  • Alişan, C., Derman, A. S. (1995). The first palynologicalage, sedimentological and stratigraphic data forthe Çakraz Group (Triassic), Western Black Sea.Erler, In A., Ercan, T., Bingöl, E., & Örçen, S.(Eds.), Geology of the Black Sea region, 93-98.

  • Alonso-Zarza, A. M. (2003). Palaeoenvironmentalsignificance of palustrine carbonates andcalcretes in the geological record. EarthScience Reviews, 60(3-4), 261–298.https://doi.org/10.1016/S0012-8252(02)00106-X

  • Alonso-Zarza, A. M. & Tanner, L. H. (2009).Carbonates in continental settings: facies,environments, and processes. Developments inSedimentology, Volume 61. Elsevier.

  • Alonso-Zarza, A. M. & Wright, V. P. (2010).Palustrine carbonates. In A. M. Alonso-Zarza& L. H. Tanner (Eds.), Developments inSedimentology, 61, (pp. 103–131). Elsevier.https://doi.org/10.1016/S0070-4571(09)06102-0

  • Argyilan, E. P. & Forman, S. L. (2003). Lake levelresponse to seasonal climatic variability in the Lake Michigan-Huron system from 1920 to 1995.Journal of Great Lakes Research, 29(3), 488-500.https://doi.org/10.1016/S0380-1330(03)70453-5

  • Armenteros, I. (2010). Diagenesis of carbonatesin continental settings. In AlonsoZarza, A.M. & Tanner, L.H. (Eds.),Developments in Sedimentology, 62, 61-151.https://doi.org/10.1016/S0070-4571(09)06202-5

  • Bathurst, R. G. (1987). Diagenetically enhancedbedding in argillaceous platform limestones:stratified cementation and selective compaction.Sedimentology, 34(5), 749-778.https://doi.org/10.1111/j.1365-3091.1987.tb00801.x

  • Boggs Jr, S. (2014). Principles of Sedimentology andStratigraphy. Pearson Education.

  • Boggs, S. (2006). Principles of Sedimentology andStratigraphy (4th ed.). Pearson Prentice Hall.

  • Bohacs, K. M., Carroll, A. R., Neal, J. E., &Mankiewicz, P. J. (2000). Lake-basin type,source potential, and hydrocarbon character: Anintegrated sequence-stratigraphic–geochemicalframework. In E. H. Gierlowski-Kordesch & K.R. Kelts (Eds.), Lake Basins Through Space andTime. (Vol. 3, pp. 3–34). AAPG Studies in Geology.https://doi.org/10.1306/St46706C1

  • Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R.J. (2013). Phanerozoic Paleoclimate: an Atlasof Lithologic Indicators of Climate (vol. 11, pp.1-30). SEPM (Society for Sedimentary Geology).

  • Bustillo, M. A., Armenteros, I., & Huerta, P. (2017).Dolomitization, gypsum calcitization andsilicification in carbonate–evaporite shallowlacustrine deposits. Sedimentology, 64(4), 1147-1172. https://doi.org/10.1111/sed.12345

  • Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphicclassification of ancient lakes: Balancing tectonicand climatic controls. Geology, 27(2), 99–102.https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2

  • Cecil, C. B. (1990). Paleoclimate controls onstratigraphic repetition of chemical and siliciclastic rocks. Geology, 18(6), 533–536.https://doi.org/10.1130/0091-7613(1990)018%3C0533:PCOSRO%3E2.3.CO;2

  • De Wet, C. B., Yocum, D. A. & Mora, C. I. (1998).Carbonate lakes in closed basins: sensitiveindicators of climate and tectonics: anexample from the Gettysburg Basin (Triassic),Pennsylvania, USA. In G. Kocurek (Ed.), RelativeRole of Eustacy, Climate, and Tectonism inContinental Rocks. SEPM Society for SedimentaryGeology. https://doi.org/10.2110/pec.98.59.0191

  • Dickinson, W. R. (1985). Interpreting provenancerelations from detrital modes of sandstones.In: Zuffa, G. G. (Eds.), Provenance ofArenites, (Series C, 148, pp. 333-361).North Atlantic Treaty Organization -Advanced Study Institutes (NATO-ASI).https://doi.org/10.1007/978-94-017-2809-6_15

  • Dobkins, J. E. & Folk, R. L. (1970). Shapedevelopment on Tahiti-nui. Journal ofSedimentary Research, 40(4), 1167-1203.https://doi.org/10.1306/74D72162-2B21-11D7-8648000102C1865D

  • Dunham, R. J. (1962). Classification of carbonate rocksaccording to depositional texture. In W. E. Ham(Ed.), Classification of Carbonate Rocks, (pp.108–121). AAPG Memoir 1.

  • Fijałkowska-Mader, A., Heunisch, C. & Szulc, J.(2015). Palynostratigraphy and palynofacies ofthe Upper Silesian Keuper (southern Poland).Annales Societatis Geologorum Poloniae, 85(4),637-661. https://doi.org/10.14241/asgp.2015.025

  • Flügel, E. (2010). Microfacies of Carbonate Rocks:Analysis, Interpretation and Application (2nd ed.).Springer.

  • Folk, R. L. (1959). Practical petrographic classificationof limestones. AAPG Bulletin, 43(1), 1–38.https://doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D

  • Folk, R. L. & Ward, W. C. (1957). Brazos River bar[Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research,27(1), 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

  • Franke, W., Paul, J. (1980). Pelagic redbeds inthe Devonian of Germany – deposition anddiagenesis. Sedimentary Geology, 25(3), 231–256.https://doi.org/10.1016/0037-0738(80)90043-3

  • Freytet, P. (1973). Petrography and paleo-environmentof continental carbonate deposits withparticular reference to the Upper Cretaceousand Lower Eocene of Languedoc (SouthernFrance). Sedimentary Geology, 10(1), 25-60.https://doi.org/10.1016/0037-0738(73)90009-2

  • Freytet, P. & Verrecchia, E.P. (2002). Lacustrine andpalustrine carbonate petrography: an overview.Journal of Paleolimnology, 27, 221–237.https://doi.org/10.1023/A:1014263722766

  • Friedman, G. M. (1961). Distinction between dune, beachand river sands from their textural characteristics.Journal of Sedimentary Petrology, 31(4), 514-529. https://doi.org/10.1306/74D70BCD-2B21-11D7-8648000102C1865D

  • Gamero-Diaz, H., Miller, C. & Lewis, R. (2012). sCore:a classification scheme for organic mudstonesbased on bulk mineralogy. Search and Discovery,Article 40951.

  • Gand, G., Tüysüz, O., Steyer, J. S., Allain, R., Sakınç,M., Sanchez, S., Şengör, A. M. C, & Sen, S.(2011). New Permian tetrapod footprints andmacroflora from Turkey (Çakraz Formation,northwestern Anatolia): Biostratigraphicand palaeoenvironmental implications.Comptes Rendus Palevol, 10(8), 617-625.https://doi.org/10.1016/j.crpv.2011.09.002

  • Gedik, I. & Aksay, A. (2002). 1:100,000 scalegeological map of Turkey, Zonguldak E29 sheet.General Directorate of Mineral Research andExploration

  • Geological Society of America (GSA). (2009). RockColor Chart. Geological Society of America.

  • Gierlowski-Kordesch, E. H. (2010). Lacustrinecarbonates. In A. M. Alonso-Zarza & L. H.Tanner (Eds.), Carbonates in ContinentalSettings: Facies, Environments andProcesses, (Vol. 61, pp. 1–101). Elsevier.https://doi.org/10.1016/S0070-4571(09)06101-9

  • Glenn, C. R. & Kelts, K. (1991). Sedimentary rhythmsin lake deposits. Cycles and Events in Stratigraphy,(pp. 188–221). Springer.

  • Golonka, J. (2007). Late Triassic and Early Jurassicpalaeogeography of the world. Palaeogeography,Palaeoclimatology, Palaeoecology, 244(1-4), 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041

  • Gvirtzman, G. (2006). Groundwater hydrology andpaleohydrology of the Dead Sea rift valley,In Y. Enzel, A. Agnon, M. Stein (Eds.), NewFrontiers in Dead Sea PaleoenvironmentalResearch. Geological Society of America.https://doi.org/10.1130/2006.2401(06)

  • Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987).Chronology of fluctuating sea levels sincethe Triassic. Science, 235(4793), 1156-1167.https://doi.org/10.1126/science.235.4793.1156

  • Hedges, J. I., & Stern, J. H. (1984). Carbon and nitrogendeterminations of carbonate-containing solids.Limnology and Oceanography, 29(3), 657-663.https://doi.org/10.4319/lo.1984.29.3.0657

  • Immenhauser, A. (2022). On the delimitation of thecarbonate burial realm. The Depositional Record,8(2), 524-574. https://doi.org/10.1002/dep2.173

  • Kürschner, W. M. & Herngreen, G. W. (2010).Triassic palynology of central and northwesternEurope: a review of palynofloral diversitypatterns and biostratigraphic subdivisions. InS.G. Lucas (Ed.), The Triassic Timescale, (pp.263-283). The Geological Society of London.https://doi.org/10.1144/SP334.11

  • Kutzbach, J. E. (1994). Idealized Pangean climates:sensitivity to orbital change. In G. O. Klein(Ed.), Pangea: Paleoclimate, Tectonics, andSedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Societyof America. https://doi.org/10.1130/SPE288-p41

  • Mattes, B. W., & Mountjoy, E. W. (1980). Burialdolomitization of the Upper Devonian Miettebuildup, Jasper National Park, Alberta.The Society of Economic Paleontologistsand Mineralogists, 28, 259-297.https://archives.datapages.com/data/sepm_sp/SP28/Burial_Dolomitization.htm

  • Miall, A. D. (1996). The Geology of FluvialDeposits: Sedimentary Facies, Basin Analysis,and Petroleum Geology. Springer-Verlag.https://doi.org/10.1007/978-3-662-03237-4

  • Moiola, R. J. & Weiser, D. (1968). Textural parameters:An evaluation. Journal of Sedimentary Petrology,38, 45-53. https://doi.org/10.1306/74D718C5-2B21-11D7-8648000102C1865D

  • Montañez, I. P. & Crossey, L. J. (1998). Diagenesisof sedimentary rocks. In G. N. Hanson (Ed.),Encyclopedia of Earth Sciences, (pp. 145–160).Springer.

  • Moore, C. H. (1989). Carbonate Diagenesis andPorosity. Elsevier.

  • Moore, C. H. & Wade, W. J. (2013). CarbonateReservoirs: Porosity and Diagenesis in a SequenceStratigraphic Framework (2nd ed.). Elsevier.

  • Nikishin, A. M., Okay, A. I., Tüysüz, O., Demirer,A., Amelin, N. & Petrov, E. (2015a). TheBlack Sea basins structure and history: Newmodel based on new deep penetration regionalseismic data. Part 1: Basins structure and fill.Marine and Petroleum Geology, 59, 638-655.https://doi.org/10.1016/j.marpetgeo.2014.08.017

  • Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A.,Wannier, M., Amelin, N. & Petrov, E. (2015b). TheBlack Sea basins structure and history: New modelbased on new deep penetration regional seismicdata. Part 2: Tectonic history and paleogeography.Marine and Petroleum Geology, 59, 656-670.https://doi.org/10.1016/j.marpetgeo.2014.08.018

  • Okay, A. I. & Nikishin, A. M. (2015). Tectonicevolution of the southern margin of Laurasia k Sea region. InternationalGeology Review, 57(5-8), 1051-1076.https://doi.org/10.1080/00206814.2015.1010609

  • Okay, A. I. & Tüysüz, O. (1999). Tethyan suturesof northern Turkey. In B. Durand et al.(Eds.), The Mediterranean Basins: TertiaryExtension within the Alpine Orogen (pp.475–515). Geological Society of London.https://doi.org/10.1144/GSL.SP.1999.156.01.22

  • Passega, R. (1964). Grain size characteristicsby C-M pattern as a tool. Journal ofSedimentary Petrology, 34, 233-847.https://doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D

  • Pettijohn, F. J., Potter, P. E. & Siever, R. (1973). Sandand Sandstone. Springer.

  • Pettijohn, F. J., Potter, P. E. & Siever, R. (2012). Sandand Sandstone. Springer Science & BusinessMedia.

  • Pettijohn, F.J., Potter, P. E. & Siever, R. (1987). Sandand Sandstone (2nd ed.). Springer-Verlag.

  • Philcox, M. E. (1963). Banded calcite mudstonein the lower Carboniferous” reef” knollsof the Dublin Basin, Ireland. Journal ofSedimentary Research, 33(4), 904-913.https://doi.org/10.1306/74D70F6F-2B21-11D7-8648000102C1865D

  • Platt, N. H., & Wright, V. P. (1992). Palustrine carbonatesand the Florida Everglades; towards an exposureindex for the fresh-water environment?. Journalof Sedimentary Research, 62(6), 1058-1071.https://doi.org/10.1306/D4267A4B-2B26-11D7-8648000102C1865D

  • Powers, M. C. (1953). A new roundness scalefor sedimentary particles. Journal ofSedimentary Research, 23(2), 117-119.https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D

  • Rafferty, J. P. (Ed.). (2010). Climate and ClimateChange. Britannica Educational Publishing.

  • Raynaud, D., Jouzel, J., Barnola, J. M., Chappellaz,J., Delmas, R. J., & Lorius, C. (1993). The icerecord of greenhouse gases. Science, 926-934.https://doi.org/10.1126/science.259.5097.926

  • Reading, H. G. & Levell, B. K. (1996). Controls on thesedimentary rock record. In H. G. Reading (Ed.),Sedimentary Environments: Processes, Faciesand Stratigraphy, (3rd ed.). Blackwell Science.

  • Rech-Frollo, M. (1971). Les calcaires des couchesrouges des alpes: Leur composition et leur origine.Sedimentary Geology, 6(1), 53-72.https://doi.org/10.1016/0037-0738(71)90026-1

  • Reineck, H. E. & Singh, I. B., (1980). DepositionalSedimentary Environments. Springer.https://doi.org/10.1007/978-3-642-81498-3

  • Robertson, A. H. F., Parlak, O. & Ustaömer, T. (2016).Permian–Recent palaeogeographical and tectonicdevelopment of Anatolia: Some recent contributions.International Journal of Earth Sciences, 105, 1–5.https://doi.org/10.1007/s00531-015-1247-2

  • Robinson, A. G. (Ed.). (1997). Regional andPetroleum Geology of the Black Sea andSurrounding Region. AAPG Memoir, 68.https://doi.org/10.1306/M68612

  • Rutherford, M. M., Banks, C., Hirst, P. P. & Robinson,A. G. (1992). The Mesozoic biostratigraphy ofthe Pontides. Unpublished Internal Report, BPExploration, Middlesex, UK., 9 p.

  • Sames, B., Wagreich, M., Conrad, C. P. & Iqbal,S. (2020). Aquifer-eustasy as the main driverof short-term sea-level fluctuations duringCretaceous hothouse climate phases. GeologicalSociety of London Special Publications 498, 9-38.https://doi.org/10.1144/SP498-2019-105

  • Schettino, A., & Turco, E. (2011). Tectonichistory of the western Tethys since the LateTriassic. GSA Bulletin, 123(1–2), 89–105.https://doi.org/10.1130/B30064.1

  • Scotese, C. R. & Schettino, A. (2017). Late Permian–Early Jurassic paleogeography of western Tethysand the world. Permo-Triassic Salt Provinces ofEurope, North Africa and the Atlantic Margins,Tectonics and Hydrocarbon Potential. Elsevier.https://doi.org/10.1016/B978-0-12-809417-4.00004-5

  • Scotese, C. R. (2021). An atlas of Phanerozoicpaleogeographic maps: the seas come in and theseas go out. Annual Review of Earth and PlanetarySciences, 49(1), 679-728.https://doi.org/10.1146/annurev-earth-081320-064052

  • Scotese, C. R., Bambach, R. K., Barton, C., Van derVoo, R. & Ziegler, A. M. (1979). Paleozoic basemaps The Journal of Geology 87(3), 217-277.

  • Şen, G. (2021). Sedimentological and cyclostratigraphicanalysis of the Çakrazboz Formation (Triassic)in Amasra-Kastamonu Region [Published PhDDissertation]. Middle East Technical UniversityGraduate School of Natural and Applied Sciences.

  • Şengör, A. M. C. (1979). Mid-Mesozoicclosure of Permo–Triassic Tethys and itsimplications. Nature, 279(14), 590-593.https://doi.org/10.1038/279590a0

  • Şengör, A. M. C. (Ed.) (1989). Tectonic evolution of theTethyan region. Nato Science Series C, Springer.https://doi.org/10.1007/978-94-009-2253-2

  • Şengör, A. M. C. (1990). Plate tectonics and orogenicresearch after 25 years: A Tethyan perspective.Earth-Science Reviews, 27(1-2), 1-201.https://doi.org/10.1016/0012-8252(90)90002-D

  • Simmons, M. D., Tari, G. C. & Okay, A. I. (2018).Petroleum geology of the Black Sea: introduction.Geological Society, London, Special Publications,464(1), 1-18. https://doi.org/10.1144/SP464.15

  • Sneed, E. D. & Folk, R. L. (1958). Pebbles in thelower Colorado River, Texas a study in particlemorphogenesis. The Journal of Geology, 66(2),114-150. https://www.jstor.org/stable/30058239

  • Stewart, H. B. Jr. (1958). Sedimentary reflectionson depositional environments in SanMigue Lagoon, Baja California, Mexico.Bulletin of the American Association ofPetroleum Geologists, (42) 2567-2618.https://doi.org/10.1306/0BDA5BFA-16BD-11D7-8645000102C1865D

  • Stolle, E. (2016). Çakraz Formation, Çamdağ area,NW Turkey: Early/mid-Permian age, Rotliegend(Germany) and Southern Alps (Italy) equivalent- a stratigraphic re-assessment via palynological long-distance correlation. Geological Journal,51(2), 223-235. https://doi.org/10.1002/gj.2620

  • Stow, D. A. (2005). Sedimentary Rocks in the Field: Acolor guide. Gulf Professional Publishing.

  • Swart, P. K. (2015). The geochemistry ofcarbonate diagenesis: The past andfuture. Sedimentology, 62(6), 1233–1304.https://doi.org/10.1111/sed.12205

  • Tucker, M. E. (1990). Diagenetic processes, productsand environments. In M. E. Tucker & V. P.Wright (Eds.), Carbonate Sedimentology,(pp. 314–364). John Wiley & Sons.https://doi.org/10.1002/9781444314175.ch7

  • Tucker, M. E. & Bathurst, R. G. (Eds.). (1990).Carbonate Diagenesis. John Wiley & Sons.https://doi.org/10.1002/9781444304510

  • Tucker, M. E. & Sparks, R. S. J. (2024). Fluvial–lacustrine interactions in the MarginalTriassic, Clevedon, Bristol Channel Basin,UK: Deposition, dolomitization andsilicification. Geological Magazine, 161(e18).https://doi.org/10.1017/S0016756824000396

  • Tucker, M. E. & Wright, V. P. (1990).Carbonate Sedimentology. Blackwell.https://doi.org/10.1002/9781444314175

  • Tüysüz, O. (2022). Geology of the Kurucaşile-Cideregion, NW Türkiye. Bulletin of the MineralResearch and Exploration, 167(167), 149-178.

  • Van Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M.,Maţenco, L. C., Maffione, M., Vissers, R. L., ...& Spakman, W. (2020). Orogenic architectureof the Mediterranean region and kinematicreconstruction of its tectonic evolution sincethe Triassic. Gondwana Research, 81, 79-229.https://doi.org/10.1016/j.gr.2019.07.009

  • Varol, B. & Akman, N. (1988). Geological map of theAmasra–Çakraz area, (No. 42). MTA.

  • Verardo, D. J., Froelich, P. N. & McIntyre, A., (1990).Determination of organic carbon and nitrogenin marine sediments using the Carlo Erba NA1500 Analyzer. Deep Sea Research Part A. Oceanographic Research Papers, 37(1), 157-165.https://doi.org/10.1016/0198-0149(90)90034-S

  • Verrecchia, E. P. (2000). Fungi and sediments.In Riding, R. E. & Awramik, S.M. (Eds.)Microbial sediments. Springer Berlin Heidelberg.https://doi.org/10.1007/978-3-662-04036-2_9

  • Verrecchia, E. P. (2007). Lacustrine andpalustrine geochemical sediments. InGeochemical Sediments and Landscapes(pp. 298-329). Blackwell Publishing Oxford.https://doi.org/10.1002/9780470712917.ch9

  • Vollmer, T., Werner, R., Weber, M., Tougiannidis, N.,Röhling, H. G. & Hambach, U. (2008). Orbitalcontrol on Upper Triassic Playa cycles of theSteinmergel-Keuper (Norian): A new conceptfor ancient playa cycles. Palaeogeography,Palaeoclimatology, Palaeoecology, 267(1-2), 1-16.https://doi.org/10.1016/j.palaeo.2007.12.017

  • Wagreich, M., Lein, R. & Sames, B. (2014). Eustasy,its controlling factors, and the limno-eustatichypothesis–concepts inspired by Eduard Suess.Austrian Journal of Earth Sciences, 107(1), 115-131.

  • Wang, Y., Sheng, H. F., He, Y., Wu, J. Y., Jiang, Y. X.,Tam, N. F. Y. & Zhou, H. W. (2012). Comparisonof the levels of bacterial diversity in freshwater,intertidal wetland, and marine sediments byusing millions of illumina tags. Applied andEnvironmental Microbiology, 78(23), 8264-8271.https://doi.org/10.1128/aem.01821-12

  • Wright, V. P. (2009). Meteoric diagenesis. In M.E. Tucker & V. P. Wright (Eds.), CarbonateSedimentology, (pp. 336–348). John Wiley &Sons.

  • Wright, V. P., & Tucker, M. E. (1991). Calcretes.Blackwell Scientific Publications.https://doi.org/10.1002/9781444304497

  • Yilmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş. C. &Şengor, A. M. C. (1997). Geology and tectonicevolution of the Pontides. In A. G. Robinson(Ed.), Regional and Petroleum Geologyof the Black Sea and Surrounding Region.American Association of Petroleum Geologists.https://doi.org/10.1306/M68612C11

  • Yılmazer, S., Topuz, G., Guillong, M., Okay, A. I.,Demirkaya, İ. & Uzun, F. (2025). Revealing theearly geological history of the İstanbul Zone (FarEast Avalonia) through zircon U-Pb-Hf isotopicdata. Precambrian Research, 427, Article107855.https://doi.org/10.1016/j.precamres.2025.107855

  • Zavala, C., Liu, H.-Q., Li, X.-B., Trobbiani, V., Li,Y., Arcuri, M. & Zorzano, A. (2024). Highfrequency lacustrine sequence stratigraphy ofclastic lakes: Lessons from ancient successions.Journal of Palaeogeography, 13(4), 621–645.https://doi.org/10.1016/j.jop.2024.08.004.

  • Zielinski, G. A., Germani, M. S., Larsen, G., Baillie,M. G., Whitlow, S., Twickler, M. S. & Taylor, K.(1995). Evidence of the Eldgjá (Iceland) eruptionin the GISP2 Greenland ice core: relationship toeruption processes and climatic conditions inthe tenth century. The Holocene, 5(2), 129-140.https://doi.org/10.1177/095968369500500201










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • SAYI TAM DOSYASI
    PDF Olarak Görüntüle