Türkiye Jeoloji Bülteni
Türkiye Jeoloji Bülteni

Türkiye Jeoloji Bülteni

2025 AĞUSTOS Cilt 68 Sayı 3
KAPAK
PDF Olarak Görüntüle
KÜNYE
PDF Olarak Görüntüle
İÇİNDEKİLER
PDF Olarak Görüntüle
Perlitleşmemiş Obsidiyen Genleşmesi: Hidrasyon ve Oluşum Özellikleri
Lütfiye Akin Erkan Aydar
PDF Olarak Görüntüle

Öz: Magma ile su etkileşimi, volkanik patlamalarda patlamanın şiddetini belirleyen en önemli parametrelerden biri olarak tanımlanmaktadır. Bununla birlikte, patlama ile oluşan volkanik ürünlerde rastlanılan su içeriğinin volkanizma sırasında veya sonrasında gelişip gelişmediğinin belirlenmesinde çeşitli kısıtlamalar bulunmaktadır. Bu çalışma, Nevşehir Acıgöl Maar`ından örneklenen obsidiyenin, perlitik doku sahibi olmadan ısıl işlem ile genleşmesinin nedeni ve özellikleri ile termal ayrışma özelliklerinin belirlenmesi amacıyla gerçekleştirilmiştir. Bantlı obsidiyenin genleştirilmesi sırasında geçirmiş olduğu fiziksel ve kimyasal değişimler, çeşitli analitik yöntemler ile incelenmiştir. Bu kapsamda, su bileşenlerinde meydana gelen değişimler FT-IR analizi ile gözlemlenmiştir. Örnekte gerçekleşen kütle kaybının değeri TG-DTA yöntemi ile ölçülmüş olup genleştirme deneyi sonucunda oluşan üründe genleşmeye bağlı meydana gelen dokusal değişimler üç boyutlu tomografik görüntüleme tekniği ile belirlenmiştir. Sonuç olarak bir volkan camının termal olarak ayrışması, uçucu gazlar ile birincil ve ikincil su türlerinin farklı sıcaklıklarda çeşitli süreçler sonucunda salınması ile meydana gelmektedir. Bu çalışma ile su içeren riyolitik bileşime sahip obsidiyenin, su ve uçucu bileşenlerin kimyasal olarak gevşek bir şekilde bağlandığı yerlerde çeşitli oranlarda genişleyen gözenekler oluşturabildiği deneysel olarak gösterilmiştir.

  • Bilgisayarlı tomograf

  • FT-IR

  • genleşme

  • hidrasyon

  • obsidiyen

  • TG-DTA

  • Angelopoulos, P. M., Manic, N., Jankovic, B. &Taxiarchou, M. (2022). Thermal decomposition ofvolcanic glass (rhyolite): Kinetic deconvolutionof dehydration and dehydroxylation process.Thermochimica Acta, 707, Article 179082.https://doi.org/10.1016/j.tca.2021.179082

  • Angelopoulos, P. M., Manić, N., Tsakiridis, P.,Taxiarchou, M. & Janković, B. (2020). Dehydrationof rhyolite: activation energy, water speciationand morphological investigation. Journal ofThermal Analysis and Calorimetry, 142, 395–407.https://doi.org/10.1007/s10973-020-10105-2

  • Çubukçu, H. E. Aydar, E., Akın, L. & Şen, E. (2024).Temporal constraints on magmatic evolutionof Acıgöl Bimodal Volcanic Field (Nevşehir,Türkiye). Geochemistry, 84(4), Article 126129.https://doi.org/10.1016/j.chemer.2024.126129

  • Davis, B. K. & McPhie, J. (1996). Spherulites, quenchfractures and relict perlite in a Late Devonianrhyolite dyke, Queensland, Australia. Journal ofVolcanology and Geothermal Research, 71, 1–11.https://doi.org/10.1016/0377-0273(95)00063-1

  • Denton, J. S., Tuffen, H., Gilbert, J. S. & Odling,N. (2009). The hydration and alterationof perlite and rhyolite. Journal of theGeological Society, 166(5), 895–904.https://doi.org/10.1144/0016-76492008-007

  • Denton, J. S., Tuffen, H. & Gilbert, J. S. (2012). Variationsin hydration within perlitised rhyolitic lavas—evidence from Torfajökull, Iceland. Journal ofVolcanology and Geothermal Research, 223, 64–73.https://doi.org/10.1016/j.jvolgeores.2012.02.005

  • Eichelberger, J. (1995). Silicic volcanism: ascent ofviscous magmas from crustal reservoirs. AnnualReview of Earth and Planetary Sciences, 23, 41–64.

  • Ellerbrock, R., Stein, M. & Schaller, J. (2022).Comparing amorphous silica, short-rangeordered silicates and silicic acid species byFTIR. Scientific Reports, 12, Article 11708.https://doi.org/10.1038/s41598-022-15882-4

  • Friedman, I., Smith, R. L. & Long, W. D. (1966).Hydration of natural glass and formation ofperlite. Geological Society of America Bulletin, 77(3), 323–328. https://doi.org/10.1130/0016-7606(1966)77[323:HONGAF]2.0.CO;2

  • Friedman, I., Long, W. & Smith, R. L. (1963). Viscosityand water content of rhyolite glass. Journalof Geophysical Research, 68(24), 6523–6535.https://doi.org/10.1029/JZ068i024p06523

  • Friedman, I. & Long, W. (1984). Volcanic glasses,their origins and alteration processes. Journalof Non-Crystalline Solids, 67(1–3), 127–133.https://doi.org/10.1016/0022-3093(84)90144-3

  • Gardner, J. E. (2007). Heterogeneous bubblenucleation in highly viscous silicate melts duringinstantaneous decompression from high pressure.Chemical Geology, 236(1–2), 1–12.https://doi.org/10.1016/j.chemgeo.2006.08.006

  • Gardner, J.E., Hilton, M. & Carroll, M.R. (2000).Bubble growth in highly viscous silicatemelts during continuous decompressionfrom high pressure. Geochimica etCosmochimica Acta, 64(8), 1473–1483.https://doi.org/10.1016/S0016-7037(99)00436-6

  • Giachetti, T. & Gonnermann, H.M. (2013).Water in volcanic pyroclast: Rehydration orincomplete degassing? Earth and PlanetaryScience Letters, 369–370, 317–332.https://doi.org/10.1016/j.epsl.2013.03.041

  • Giachetti, T., Gonnermann, H. M., Gardner, J. E.,Shea, T. & Gouldstone, A. (2015). Discriminatingsecondary from magmatic water in rhyoliticmatrix-glass of volcanic pyroclasts usingthermogravimetric analysis. Geochimicaet Cosmochimica Acta, 148, 457–476.https://doi.org/10.1016/j.gca.2014.10.017

  • Giachetti, T., Hudak, M. R., Shea, T., Bindeman, I.N. & Hoxsie, E. C. (2020). D/H ratios and H2Ocontents record degassing and rehydration historyof rhyolitic magma and pyroclasts. Earth andPlanetary Science Letters, 530, Article 115909.https://doi.org/10.1016/j.epsl.2019.115909

  • Gonnermann, H. M. & Manga, M. (2007). The fluidmechanics inside a volcano. Annual Reviews ofFluid Mechanics, 39(1), 321–356. https://doi.org/10.1146/annurev.fluid.39.050905.110207

  • Hudak, M. R., Bindeman, I. N., Loewen, M. W. &Giachetti, T. (2021). Syn-eruptive hydrationof volcanic ash records pyroclast-waterinteraction in explosive eruptions. GeophysicalResearch Letters, 48, Article e2021GL094141.https://doi.org/10.1029/2021GL094141

  • Hudak, M. R., Bindeman, I. N., Watkins, J. M. &Lowenstern, J. B. (2022). Hydrogen isotopebehavior during rhyolite glass hydrationunder hydrothermal conditions. Geochimicaet Cosmochimica Acta, 337, 33–48.https://doi.org/10.1016/j.gca.2022.09.032

  • Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann,R., Grathoff, G. H., Warr, L. N., Halisch, M.,Müller, C., Schwarz-Schampera, U. & Ufer, K.(2014). Porosity and distribution of water in perlitefrom the island of Milos, Greece. SpringerPlus, 3,598. https://doi.org/10.1186/2193-1801-3-598

  • Lacy, E. (1959). Hydrated Glasses. Nature, 183, 178–179. https://doi.org/10.1038/183178b0

  • Lenhardt, K.R., Breitzke, H., Buntkowsky, G., Reimhult,E., Willinger, M. & Rennert, T. (2021). Synthesisof short-range ordered aluminosilicates at ambientconditions. Scientific Reports, 11, Article 4207.https://doi.org/10.1038/s41598-021-83643-w

  • Lexa, J., Varga, P., Uhlik, P., Koděra, P., Biroň,A. & Rajnoha, M. (2021). Perlite deposits ofthe Central Slovakia Volcanic Field (WesternCarpathians): Geology and properties.Geologica Carpathica, 72, 253–281.https://doi.org/10.31577/GeolCarp.72.3.5

  • Lofgren, G. (1971). Experimentally ProducedDevitrification Textures in Natural RhyoliticGlass. Geological Society of America Bulletin, 82,111–124.

  • McIntosh, I. M., Llewellin, E. W., Humphreys, M.C. S., Nichols, A. R. L., Burgisser, A., Schipper, C. I. & Larsen, J. F. (2014). Distribution ofdissolved water in magmatic glass recordsgrowth and resorption of bubbles. Earthand Planetary Science Letters, 401, 1–11.https://doi.org/10.1016/j.epsl.2014.05.037

  • Meier, V., Breitkreuz, C., Groß, D. & Ohser, J.(2023). Re‑evaluation of perlitic texturesand fracture behavior in silica‑rich volcanicrocks. Bulletin of Volcanology, 85, 50.https://doi.org/10.1007/s00445-023-01659-8

  • Pandya, N., Muenow, D. W. & Sharma, S. K. (1992).The effect of bulk composition on the speciation ofwater in submarine volcanic glasses. Geochimicaet Cosmochimica Acta, 56(5), 1875–1883.https://doi.org/10.1016/0016-7037(92)90317-C

  • Ross, C. S. & Smith, R. L. (1955). Water andother volatiles in volcanic glasses. AmericanMineralogist, 40(11–12), 1071–1089.

  • Schmitt, A. K., Danišík, M., Evans, N. J., Siebel, W.,Kiemele, E., Aydin, F. & Harvey, J. C. (2011).Acigöl rhyolite field, Central Anatolia (part1): high-resolution dating of eruption episodesand zircon growth rates. Contributions toMineralogy and Petrology, 162, 1215–1231.https://doi.org/10.1007/s00410-011-0648-x

  • Seligman, A.N., Bindeman, I.N., Watkins, J.M. &Ross, A.M. (2016). Water in volcanic glass:From volcanic degassing to secondary hydration.Geochimica et Cosmochimica Acta, 191, 216–238. https://doi.org/10.1016/j.gca.2016.07.010

  • Silver, L. A., Ihinger, P. D. & Stolper, E. (1990). Theinfluence of bulk composition on the speciationof water in silicate glasses. Contributions toMineralogy and Petrology, 104, 142–162.https://doi.org/10.1007/BF00306439

  • Sparks, R. S. J. (2003). Dynamics of magma degassing.Geological Society, London, Special Publications,213, 5–22.

  • Stolper, E. (1982). The speciation of water in silicatemelts. Geochimica et Cosmochimica Acta, 46(12),2609–2620.

  • Zhang, Y. (1999). H2O in rhyolitic glasses and melts:measurement, speciation, solubility, and diffusion.Reviews of Geophysics, 37, 493–516.

  • Zhang, Y. & Behrens, H. (2000). H2Odiffusion in rhyolitic melts and glasses.Chemical Geology, 169(1–2), 243–262.https://doi.org/10.1016/S0009-2541(99)00231-4










  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Alaşehir Grabeni`nin Güney Kenarındaki Neojen Tortul Kayaçlarının Evrimi: Alaşehir Sıyrılma Fayının Tektonik Aktivitesinin Geç Miyosen`de Sona Erdiğine Dair Kanıt
    Fatih Şen Serdal Karaağaç
    PDF Olarak Görüntüle

    Öz: Alaşehir Grabeni`nin güney kenarı, aynı gerilmeli rejim içinde sünek-kırılgan kataklastik kayaçlar içeren Alaşehir Sıyrılma Fayı (ASF) ile sınırlanmıştır. Bu sıyrılma fayı, Turgutlu`dan Alaşehir`e kadar yaklaşık 150 km boyunca yüzeylenmiş ve kuzeye düşük bir açıyla (100-300) eğimli olan yüzeydir. ASF` nin tektonik aktivitesinin sonlanmasını yorumlayan iki ana görüş vardır. Birincisi, fayın son hareketinin, Pliyo-Kuvaterner yüksek açılı normal faylar tarafından kesilmiş olması gerçeğine dayanarak Geç Miyosen`de sona erdiğidir. Diğer görüş ise, ASF`ye ait kataklastik kayaçlarından elde edilen yüzeylenme yaşlarına dayanarak tektonik aktivitesinin Pliyo-Kuvaterner`e kadar devam ettiğidir. Bu tartışmaya katkıda bulunmak için Salihli ve Alaşehir bölgelerindeki ASF`nin tavan bloğundaki Neojen istifinin ölçülmüş stratigrafik kayıtlarını bildiriyoruz. Alaşehir Grabeni`nin çökelme evrimi, Miyosen (Gerentaş, Kaypaktepe ve Acıdere Formasyonları), Üst Miyosen-Üst Pliyosen (Göbekli, Yenipazar ve Erendalı Formasyonları) ve Pliyo-Kuvaterner yaşlı tortul kayaçlar (Asartepe Formasyonu) olmak üzere üç pakette tanımlanabilir. Alaşehir Grabeni`nde Miyosen ve Pliyo-Kuvaterner paketleri göl, akarsu ve alüvyal yelpaze ortamları da dahil olmak üzere benzer sedimantasyon ortamları ile temsil edilmektedir. Bu iki dönem taşkın yatağı sedimantasyon ortamını temsil eden Geç Miyosen-Geç Pliyosen zamanıyla ayrılmıştır. Taşkın yatağı tortulları, ASF`ye ait kataklastik kayaçların yarı-yuvarlak-yuvarlak kırıntılarına dayanarak, stratigrafik tabandan itibaren ilk 140metreden sonra tektonik olarak hareketli olmayan ve kendini tekrarlayan monoton bir dizidir. Bunlar, Geç Miyosen Geç Pliyosen döneminde oluşan tektonik durgunluk dönemini temsil etmektedir ve ASF`deki tektonik aktivitenin Geç Miyosen döneminde sonlandığını gösterir. Ancak, Alaşehir Grabeni`ni kesen D-B yönlü normal fayların gösterdiği gibi, tektonik aktivite Plio-Kuvaterner`de yeniden canlanmış olabilir.

  • Alaşehir Sıyrılma Fayı

  • Alaşehir Grabeni

  • Neojen istif

  • kırıntıların küreselliği

  • taşkın yatağı tortuları










  • Ağırbaş, H. (2006). Alkan köyü (Alaşehir) ve yakın çevresinde Gediz grabeni‘ nin stratigrafisi ve yapısal özellikleri [B.Sc. thesis]. İstanbul, İstanbul University, (in Turkish), 115 pp.

  • Ağırbaş H. & Şen, F. (2012). Neogene-Quaternary stratigraphy and tectonics of Alaşehir graben, Western Anatolia. International Earth Science Colloquium on the Aegean Region, Proceedings (pp:38), 1-5 October 2012, İzmir, Turkey.

  • Akbayram, K., Şengör, A.M.C. & Özcan, E. (2016). The evolution of the Intra-Pontide suture: implications of the discovery of late Cretaceous–early Tertiary melanges. Geological Society of America Special Papers, 525, SPE525-18.

  • Altunkaynak, Ş., Ünal, A., Sunal, G., Kamacı, Ö. & Dunkl, I. (2021). Miocene uplift and exhumation history of northwestern Anatolia (Turkey): Implications from apatite (U-Th)/ He thermochronology of syn-extensional plutons. Journal of Asian Earth Sciences, 213, Article104770. https://doi.org/10.1016/j. jseaes.2021.104770

  • Arpat, E. & Bingöl, E. (1969). The rift system of western Turkey: Thoughts on its development. Bulletin of the Mineral Research and Exploration Institute, 75, 1-9.

  • Baes, M., Govers, R. & Wortel, R. (2011). Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from numerical models. Geophysical Journal International, 184(3), 991–1008. https://doi.org/10.1111/j.1365- 246X.2010.04896.x

  • Bentley, S. J., Blum, M. D., Maloney, J., Pond, L. & Paulsell, R. (2016). The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth-Science Reviews, 153, 139–174. https://doi.org/10.1016/j. earscirev.2015.11.001

  • Biryol, C. B., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184, 1037–1057. https://doi.org/10.1111/j.1365- 246X.2010.04910.x

  • Bozkurt, E. (2000). Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications. In E. Bozkurt, E., Winchester, J.A., Piper, J.D.A (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area, Geological Society, London, Special Publications 173, 385- 403.

  • Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodinamica Acta 14, 3-30. https://doi. org/10.1016/S0985-3111(01)01066-X

  • Bozkurt, E. (2003). Origin of NE-trending basins in western Turkey. Geodinamica Acta, 14, 61–81.

  • Bozkurt, E. & Park, R. G. (1994). Southern Menderes Massif: an incipient metamorphic core complex in western Anatolia, Turkey. Journal of the Geological Society, London, 151, 213–216.

  • Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two extension in western Turkey. Geological Magazine 141, 63–79. https://doi.org/10.1017/ S0016756803008379

  • Bozkurt, E. & Rojay, B. (2005). Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodinamica Acta 18, 299–316.

  • Bølviken, B., Bogen, J., Jartun, M., Langedal, M., Ottesen, R. T. & Volden, T. (2004). Overbank sediments: a natural bed blending sampling medium for large—scale geochemical mapping. Chemometrics and Intelligent Laboratory Systems 74 (2004), 183 – 199.

  • Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C. & Ratz, M. (2013). Quantifying rates of detachment faulting and erosion in the central Menderes massif (western Turkey) by thermochronology and cosmogenic 10Be. Journal of Geological Society London, 170, 669-683. https://doi.org/10.1144/ jgs2012-132

  • Candan, O., Dora, O., Oberhänsli, R., Çetinkaplan, M., Partzch, J., Warkus, F. & Dürr, S. (2001). Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. International Journal of Earth Sciences, 89, 793–811. https://doi. org/10.1007/s005310000097

  • Catlos, E. J. & Çemen, İ. (2005). Monazite ages and rapid exhumation of the Menderes Massif, western Turkey. International Journal of Earth Sciences, 94, 204 – 217. https://doi.org/10.1007/ s00531-005-0470-7

  • Catlos, E. J., Baker, C., Sorensen, S. S., Çemen, İ. & Hançer, M. (2010). Geochemistry, geochronology and cathodoluminescence imagery of the Salihli and Turgutlu granites (Central Menderes Massif, western Turkey): Implications for Aegean tectonics. Tectonophysics, 488(1-4), 110-130. https://doi.org/10.1016/j.tecto.2009.06.001

  • Cavazza, W., Okay, A. I. & Zattin, M. (2009). Rapid early middle Miocene exhumation of the Kazdağ Massif (western Anatolia): International Journal of Earth Sciences, 98, 1935–1947. https://doi. org/10.1007/s00531-008-0353-9

  • Cohen, H. A., Dart, C. J., Akyüz, H. S. & Barka, A. (1995). Syn-rift sedimentation and structural development of the Gediz and Büyük Menderes Graben, western Turkey. Journal of the Geological Society, 152, 629–638. https://doi.org/10.1144/ gsjgs.152.4.0629

  • Cox, R. T., van Arsdale, R. B., Harris, J. B., Forman, S. L., Beard, W. & Galluzzi, J., (2000). Quaternary faulting in the southern Mississippi embayment and implications for tectonics and seismicity in an intraplate setting. GSA Bulletin 112, 1724–1735. https://doi.org/10.1130/0016- 7606(2000)112%3C1724:QFITSM%3E2.0.CO;2

  • Çemen, İ., Göncüoğlu, M. C. & Dirik, K. (1999). Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. Journal of Geology, 107, 693–706, https://doi.org/10.1086/314379.

  • Çemen, İ., Tekeli, O., Seyitoğlu, G. & Işık, V. (2005). Are turtleback fault surfaces common tectono morphologic features of highly extended terranes?. Earth Science Reviews, 73, 139–148, https://doi. org/10.1016/j.earscirev.2005.07.001

  • Çemen, İ., Catlos, E. J., Göğüş, O. & Özerdem, C. (2006). Postcollisional extensional tectonics and exhumation of the Menderes massif in the Western Anatolia extended terrane. In Dilek, Y. & Pavlides, S. (Eds.) Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Paper, 409, 353–379. https://doi.org/10.1130/2006.2409(18)

  • Çiftçi, N. B. & Bozkurt, E. (2008). Folding of the Gediz Graben fill, SW Turkey: extensional and/or contractional origin?. Geodinamica Acta, 21, 145- 167. https://doi.org/10.3166/ga.21.145-167

  • Çiftçi, N. B. & Bozkurt, E. (2009). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216(3-4), 49- 79. https://doi.org/10.1016/j.sedgeo.2009.01.004

  • Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution of the Gediz Graben, SW Turkey temporal and spatial variation of the graben basin. Basin Research, 22, 846-873. https://doi.org/10.1111/ j.1365-2117.2009.00438.x

  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuous tectonics in a convergent zone. Geological Society of America Bulletin, 90, 84– 92.

  • Dora, O.Ö., Candan, O., Kaya, O., Koralay, E. & Dürr, S. (2001). Revision of "Leptite-gneisses" in the Menderes Massif: a supracrustal metasedimentary origin. International Journal of Earth Sciences, 89, 836-851. https://doi.org/10.1007/s005310000102

  • Dunbar, C. O. & Rodgers, J. (1957). Principles of Stratigraphy. John Wiley and Sons (Chapman and Hall), London, 1957.

  • Ediger, V., Batı, Z. & Yazman, M. (1996). Palynology of possible hydrocarbon source rocks of the Alaşehir- Turgutlu area in the Gediz graben (western Anatolia). Turkish Association of Petroleum Geologists Bulletin, 8, 94-112.

  • Edwards, M. A. & Grasemann, B. (2009). Mediterranean snapshots of accelerated slab retreat: subduction instability in stalled continental collision. In van Hinsbergen D. J. J., Edwards M. A. & Govers,R. (Eds.), Collision and collapse at the AfricaArabia-Eurasia subduction zone. The Geological Society, London, Special Publication, 311, 155– 192

  • Elitez, İ., Yaltırak, C. & Sunal, G. (2018). A new chronostratigraphy (40Ar-39Ar and U-Pb dating) for the middle section of the Burdur-Fethiye Shear Zone, SW Turkey (eastern Mediterranean). Turkish Journal of Earth Sciences, 27(5), Article 4. https://doi.org/10.3906/yer-1803-14

  • Elmas, A., Koralay, E., Duru, O. & Schmidt, A. (2016). Geochronology, geochemistry, and tectonic setting of the Oligocene magmatic rocks (Marmaros Magmatic Assemblage) in Gökçeada Island, northwest Turkey. Journal International Geology Review, 59(4), 420-447. https://doi.org/10.1080/0 0206814.2016.1227941

  • Emre, T. (1996). Geology and tectonics of Gediz Graben. Turkish Journal of Earth Sciences, 5, 171–185.

  • Emre, T. & Sözbilir, H. (2007). Tectonic evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift-related basin formation overprinted by extensional tectonics in West Anatolia. Turkish Journal of Earth Sciences 16, 441–470.

  • Erdoğan, B. & Güngör, T. (2004). The problem of the core-cover boundary of the Menderes massif and an emplacement mechanism for regionally extensive gneissic granites, western Anatolia (Turkey). Turkish Journal of Earth Sciences 13(1), 15-36. https://journals.tubitak.gov.tr/earth/ vol13/iss1/2

  • Ersoy, Y. E., Helvacı, C. & Palmer, M. R. (2012). Petrogenesis of the Neogene volcanic units in the NE–SW-trending basins in western Anatolia, Turkey. Contributions to Mineralogy and Petrology, 163, 379–401. https://doi.org/10.1007/ s00410-011-0679-3

  • Espurt, N., Hippolyte, J. C., Kaymakçı, N. & Sangu, E. (2014). Lithospheric structural control on inversion of the southern margin of the Black Sea Basin, Central Pontides, Turkey. Lithosphere, 6(1), 26-34. https://doi.org/10.1130/L316.1

  • Eyidoğan, H. & Jackson, J. (1985). A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969–70 in western Turkey: Implication for the nature and geometry of deformation in the continental crust. Geophysical Journal of the Royal Astronomical Society, 81, 569–607.

  • Faccenna, C., Jolivet, L., Piromallo, C. & Morelli, A. (2003). Subduction and the depth of convection of the Mediterranean mantle. Journal of Geophysical Research. 108(B2), 2099. http://dx.doi. org/10.1029/2001JB001690 .

  • Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. & Regard, V. (2006). Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian Fault. Earth and Planetary Science Letters, 242(1-2), 85–97. https://doi. org/10.1016/j.epsl.2005.11.046

  • Faccenna, C., Becker, T.W., Jolivet, L. & Keskin, M. (2013). Mantle convection in the middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters, 375, 254–269. https://doi. org/10.1016/j.epsl.2013.05.043

  • Farrell, K. M. (1987). Sedimentology and facies architecture of overbank deposits of Mississippi River, False River region, Louisiana. In Ethridge F. G, Flores R. M. & Harvey M. D. (Eds.), Recent developments in fluvial sedimentology, Soc Econ Paleontol Mineral Spec Publ, 39, 111-120. https:// doi.org/10.2110/pec.87.39.0111

  • Fisk, H. N. (1947). Fine-grained alluvial deposits and their effects on Mississippi River activity. Waterways Experiment Station (U.S.), and United States, Mississippi River Commission, Vicksburg, Mississippi, 82 p.

  • Flores, R. M. (1981). Coal deposition in fluvial paleoenvironments of the Paleocene Tongue River Member of the Fort Union Formation, Powder River area, Powder River Basin, Wyoming and Montana. In F.G. Ethridge & R.M. Flores (Eds.), Recent and Ancient Nonmarine Depositional Environments--Models for Exploration. Soc. Econ. Paleontol. Mineral. Spec. Publ., 31, 169- 190.

  • Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B. & Özacar, A. A. (2009). Detecting the limit of slab break-off in central Turkey: new high resolution Pn tomography results. Geophysical Journal International, 179(3), 1566–1577. https://doi. org/10.1111/j.1365-246X.2009.04389.x

  • Gerard, V. M. (2003). Encyclopedia of sediments and sedimentary rocks. Cornwall, Kluwer Academic Publishers.

  • Gessner, K. (2000). Eocene Nappe Tectonics and Late-Alpine Extension in the Central Anatolide Belt, Western Turkey-Structure, Kinematics and Deformation History [Ph.D thesis]. Johannes Gutenberg University Earth Sciences Department, Mainz, Germany.

  • Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C. W. & Güngör, T. (2001). An active bivergent rolling hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29, 611-614. https://doi. org/10.1130/0091-7613(2001)029<0611:AABRH D>2.0.CO;2

  • Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U. & Thomson, S.T. (2013). What caused the denudation of the Menderes massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research, 24(1), 243–274. http:// dx.doi.org/10.1016/j.gr.2013.1001.1005

  • Glodny, J. & Hetzel, R. (2007). Precise U–Pb ages of syn-extensional Miocene intrusions in the central Menderes Massif, western Turkey. Geological Magazine 144, 235-246. https://doi.org/10.1017/ S0016756806003025

  • Govers, R. & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1–2), 505–523. https://doi. org/10.1016/j.epsl.2005.03.022

  • Gürer, A., Gürer, Ö.F., Pinçe, A. & Ilkisik, O.M. (2001). Conductivity structure along the Gediz graben, west Anatolia, Turkey: Tectonic implications: International Geology Review, 43, 1129-1144. https://doi.org/10.1080/00206810109465065

  • Heineke, C., Hetzel, R., Nilius, N.P., Zwingmann, H., Todd, A., Mulch, A., Wölfler, A., Glotzbach, C., Akal, C., Dunkl, I. & Raven, M. (2019). Detachment faulting in a bivergent core complex constrained by fault gouge dating and lowtemperature thermochronology. Journal of Structural Geology, 127, Article 103865. https:// doi.org/10.1016/j.jsg.2019.103865

  • Helvacı, C., Ersoy, E.Y., Sözbilir, H., Erkül, F., Sümer, Ö. & Uzel, B. (2009). Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: implications for amphibole-bearing lithospheric mantle source, western Anatolia. Journal of Volcanology and Geothermal Research, 185(3), 181–202. https:// doi.org/10.1016/j.jvolgeores.2009.05.016

  • Hetzel, R., Passchier, C. W., Ring, U. & Dora, Ö. O. (1995). Bivergent extension in orogenic belts: the Menderes massif (southwestern Turkey). Geology 23, 455–458.

  • Hetzel, R., Zwigmann, H., Mulch, A., Gessner, K., Akal, C., Hampel, A., Güngör, T., Petschick, R., Mikes, T. & Wedin, F (2013). Spatiotemporal evolution of brittle normal faulting and fluid infiltration in detachment fault systems: a case study from Menderes massif, western Turkey. Tectonics, 32(3) 364-376. https://doi.org/10.1002/ tect.20031

  • Hippolyte, J.C., Müller, C., Kaymakçı, N. &Sangu, E. (2010). Dating of the Black Sea Basin: new nannoplankton ages from its inverted margin in the Central Pontides (Turkey). In Stephenson, R.A., Kaymakçı, N., Sosson, M., Starostenko, V., Bergerat, F. (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. London, UK: Geological Society London Special Publications, 113-136.

  • Işık, V., Seyitoğlu, G. & Çemen, İ. (2003). Ductilebrittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes Massif, western Turkey. Tectonophysics 374, 1-18. https://doi. org/10.1016/S0040-1951(03)00275-0

  • İztan, H. & Yazman, M. (1990). Geology and hydrocarbon potential of the Alaşehir (Manisa) area, western Turkey. In Savaşçın, M. Y. & Eronat, A. H. (Eds.), Proceedings Internatioanl Earth Sciences Congress Aegean Region 1990, Izmir, pp. 327– 333.

  • Jackson, J. A. & McKenzie, D. P. (1988). The relationship between plate motions and seismic tensors, and the rate of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93, 45-73. https://doi. org/10.1111/j.1365-246X.1988.tb01387.x

  • Jolivet, L. & Patriat, M. (1999). Ductile extension and the formation of the Aegean Sea. In Durand, B., Jolivet, L., Seranne, M. (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen. Geological Society, London, Special Publications, 156, 356–427.

  • Jolivet, L. & Faccenna, C. (2000). Mediterranean extension and the Africa–Eurasia collision. Tectonics, 19, 1095–1106. https://doi. org/10.1029/2000TC900018 .

  • Jolivet, L. & Brun, J. P. (2010). Cenozoic Geodynamic Evolution of the Aegean. International Journal of Earth Sciences, 99(1), 109–138. https://doi. org/10.1007/s00531-008-0366-4

  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denele, Y., Brun, J.P., Philippon, M., Paul, A., Salaun, G., Karabulut, H., Piromallo, C., Monie, P., Gueydan, F., Okay, A.I., Oberhansli, R., Pourteau, A., Augier, R., Gadenne, L. & Driussi, O. (2013). Aegean tectonics: strain localization, slab tearing and trench retreat. Tectonophysics, 597–598, 1–33. https://doi.org/10.1016/j.tecto.2012.06.011

  • Kissel, C. & Laj, C. (1988). Tertiary geodynamical evolution of the Aegean arc: a palaeomagnetic reconstruction. Tectonophysics, 146, 183–201.

  • Koçyiğit, A. &Yusufoğlu, H., Bozkurt, E. (1999). Evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society 156, 605-616. https://doi. org/10.1144/gsjgs.156.3.0605

  • Konak, N. (2002). Geological map of Turkey in 1/500,000 scale. İzmir Area Map (Şenel, M. (Ed.). General Directorate of Mineral Research and Exploration, Publication of Mineral Research and Exploration Directorate of Turkey

  • Kounov, A., Wüthrich, E., Seward, D., Burg, J. P. & Stockli, D. (2015). Low-temperature constraints on the Cenozoic thermal evolution of the Southern Rhodope Core Complex (Northern Greece). International Journal Earth Sciences, 104, Article 1337e1352. https://doi.org/10.1007/s00531-015- 1158-2

  • Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth Science Reviews, 47, 41-70.

  • Lamont, T. N., Smye, A. J., Roberts, N. M. W., Searle, M. P., Waters, D. J. & White, R. W. (2023). Constraints on the thermal evolution of metamorphic core complexes from the timing of high-pressure metamorphism on Naxos, Greece. Geological Society of America Bulletin, 135(11– 12), 2767–2796. https://doi.org/10.1130/B36332.1

  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60, 1–42.

  • Le Pichon, X. & Angelier, J. (1981). The Aegean Sea. Philosophical Transactions of Royal Society, London, Seri A 300, 357–372.

  • Lips, A. L. W., Cassard, D., Sözbilir, H., Yılmaz, Y. & Wijbrans, J. R. (2001). Multistage exhumation of the Menderes Massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89, 781- 792.

  • Mack, G. H., Leeder, M. R. & Salyards, S. L. (2002). Temporal and spatial variability of alluvial-fan and axial-fluvial sedimentation in the Plio-Pleistocene Palomas half graben, southern Rio Grande rift, New Mexico, USA. In Renault, R. W. & Ashley, G. M. (Eds.), Sedimentation in Continental Rifts. SEPM Special Publications, 73, 165–177.

  • McKenzie, D. (1978). Active tectonics of the AlpineHimalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal of Astronomical Society, 55, 217–254.

  • Menant, A., Sternai, P., Jolivet, L., Guillou-Frottier, L. & Gerya, T. (2016). 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case. Earth and Planetary Science Letters, 442, 93-107. https:// doi.org/10.1016/j.epsl.2016.03.002

  • Mercier, J. L. (1981). Extensional-compressional tectonics associated with the Aegean arc: comparison with the Andean Cordillera of south Peru–north Bolivia. Philosophical Transactions of Royal Society, London, Seri A 300, 337–355.

  • Meulenkamp, J. E., Wortel, W. J. R., Van Wamel, W. A., Spakman, W. & Hoogerduyn-Strating, E. (1988). On the Hellenic subduction zone and geodynamic evolution of Crete in the late Middle Miocene. Tectonophysics, 146, 203–215.

  • Meulenkamp, J. E., Van Der Zwaan, G. J. & Van Wamel, W. A. (1994). On Late Miocene to recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics, 234, 53–72.

  • Nijholt, N., & Govers, R. (2015). The role of passive margins on the evolution of SubductionTransform Edge Propagators (STEPs). Journal of Geophysical Research: Solid Earth, 120, 7203– 7230. https://doi.org/10.1002/2015JB012202

  • Oertel, G. (1965). The mechanism of faulting in clay experiments. Tectonophysics 2, 343-393.

  • Oberhänsli, R., Candan, O., Dora, O. Ö. & Dürr, S. (1997). Eclogites within the Menderes Massif/ western Turkey. Lithos 41, 135-150. https://doi. org/10.1016/S0024-4937(97)82009-9

  • Okay, A. I. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. In Durand, B., Jolivet, L., Horvath, F., Séranne, M. (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen: Special Publications. Geological Society, London, pp. 475–515.

  • Okay, A. İ & Satır, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137, 495–516.

  • Okay, A. I, Satır, M., Zattin, M., Cavazza, W. & Topuz, G. (2008). An Oligocene ductile strike-slip shear zone: the Uludağ Massif, northwestern TurkeyImplications for the westward translation of Anatolia. Bulletin of the Geological Society of America, 120, 893-911.

  • Önalan, M. (1997). Çökelmenin Fiziksel ilkeleri Fasiyes Analizleri ve Karasal Çökelme Ortamları, İkinci baskı. İstanbul Üniversitesi Basımevi ve Film Merkezi, , İstanbul/Türkiye

  • Öner, Z. & Dilek, Y. (2011). Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. GSA Bulletin 123, 2115-2141. https://doi.org/10.1130/ B30468.1

  • Öner, Z. & Dilek, Y. (2013). Fault kinematics in Supradetachment basin formation, Menderes core complex of western Turkey. Tectonophysics 608, 1394–1412. https://doi.org/10.1016/j. tecto.2013.06.003

  • Özsayın, E. & Dirik, K. (2007). Quaternary activity of the Cihanbeyli and Yeniceoba fault zones: İnönüEskişehir fault system, Central Anatolia. Turkish Journal of Earth Sciences, 16, 471-492.

  • Paton, S. (1992). The relationship between extension and volcanism in western Turkey, the Aegean Sea and central Greece [PhD Thesis]. Cambridge University, Cambridge, UK.

  • Philippon, M., Brun, J.P. & Gueydan, F. (2012). Deciphering subduction from exhumation in the segmented Cycladic Blueschist Unit (Central Aegean, Greece). Tectonophysics, 524–525, 116– 134. https://doi.org/10.1016/j.tecto.2011.12.025

  • Platevoet, B., Scaillet, S., Guillou, H., Blamart, D., Nomade, S., Massault, M., Poisson, A., Elitok, O., Özgür, N., Yağmurlu, F. & Yılmaz, K. (2008). Pleistocene eruptive chronology of the Gölcük volcano, Isparta Angle, Turkey. Quaternaire 19, 147–156.

  • Purvis, M. & Robertson, A. (2005). Sedimentation of the Neogene-Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology, 173, 373–408. https://doi.org/10.1016/j. sedgeo.2003.08.005

  • Renaut, R.W. & Ashley, G.M. (2002). Sedimentation in Continental Rifts. SEPM (Society for Sedimentary Geology) Special Publication, 73, Tulsa, Oklahoma, U.S.A.

  • Ring, U., Laws, S. & Bernet, M. (1999). Structural analysis of a complex nappe sequence and late orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology, 21, 1575-1601. https://doi.org/10.1016/S0191- 8141(99)00108-X

  • Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140, 421-441. https://doi.org/10.1017/ S0016756803007878

  • Rojay, B., Toprak, V., Demirci, C. & Süzen, L. (2005). Plio–Quaternary evolution of the Küçük Menderes Graben (Southwestern Anatolia, Turkey). Geodinamica Acta, 18, 317–331.

  • Sarıca, N. (2000). The Plio-Pleistocene age of Büyük Menderes and Gediz grabens and their tectonic significance on N-S extensional tectonics in West Anatolia: mammalian evidence from the continental deposits. Geological Journal, 35, 1-24. https://doi.org/10.1002/ (SICI)1099-1034(200001/03)35:1<1::AIDGJ834>3.0.CO;2-A

  • Seyitoğlu, G. (1999). Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society London, 156, 1240-1242. https://doi.org/10.1144/ gsjgs.156.6.1240

  • Seyitoğlu, G. & Scott, B. C. (1996). Age of the Alaşehir graben (west Turkey) and its tectonic implications. Geological Journal, 31(1), 1–11. https://doi.org/10.1002/ (SICI)1099-1034(199603)31:1%3C1::AIDGJ688%3E3.0.CO;2-S

  • Seyitoğlu, G., Çemen, İ. & Tekeli, O. (2000). Extensional folding in the Alaşehir (Gediz) graben, western Turkey. Journal of the Geological Society London, 157, 1097-1100. https://doi.org/10.1144/ jgs.157.6.1097

  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık, V. (2002). The role of flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir Graben, western Turkey. Geology Magazine 139, 15-26. https://doi.org/10.1017/ S0016756801005969

  • Seyitoğlu, G., Işık, V. & Çemen, İ. (2004). Complete Tertiary exhumation history of the Menderes Massif, western Turkey: an alternative working hypothesis. Terra Nova 16, 358–363.

  • Seyitoğlu, G., Işık, V. & Esat, K. (2014). A 3D model for the formation of Turtleback surfaces: The Horzum Turtleback of Western Turkey as a case study. Turkish Journal of Earth Sciences, 23, 479- 494. https://doi.org/10.3906/yer-1401-23

  • Seyitoğlu, G. & Işık, V. (2015). Late Cenozoic extensional tectonics in western Anatolia: Exhumation of the Menderes core complex and formation of related basins. Bulletin of the Mineral Research and Exploration, 151, 49-109 https:// doi.org/10.19111/bmre.49951

  • Smith, N.D. & Perez-Arlucea, M. (1994). Fine-grained splay deposition in the avulsion belt of the lower Saskatchewan River, Canada. Journal of Sedimentary Research, B64, 159-168.

  • Soder, C., Altherr, R. & Romer, R. L. (2016). Mantle metasomatism at the edge of a retreating subduction zone: Late Miocene lamprophyres from the island of Kos, Greece. Journal of Petrology 57(9), 1705– 1728. https://doi.org/10.1093/petrology/egw054

  • Şen, F. (2004). Karadut ve çevresinde Gediz grabeni’ nin stratigrafisi ve yapısı [B.Sc. thesis]. İstanbul, İstanbul University, (in Turkish), 110 pp.

  • Şen, F. (2016). Late Miocene termination of tectonic activity on the detachment in the Alaşehir Rift, Western Anatolia: Depositional records of the Göbekli Formation and high-angle cross-cutting faults. EGU General Assembly, 18, 3541

  • Şen, F. (2020). Middle Eocene high-K acidic volcanism in the Princes’ Islands (İstanbul) and its geodynamic implications. Turkish Journal of Earth Sciences, 29(SI-1), Article 9, 208-219. https://doi.org/10.3906/yer-1905-19

  • Şen, Ş. & Seyitoğlu, G. (2009). Magnetostratigraphy of early–middle Miocene deposits from east–west trending Alaşehir and Büyük Menderes grabens in western Turkey, and its tectonic implications. Geological Society of London Special Publication, 311, 321–342. https://doi.org/10.1144/SP311.13

  • Şen, F. & Ağırbaş, H. (2012). Fold geometry in Karadut fault, Alaşehir graben, Western Anatolia. International Earth Science Colloquium on the Aegean Region, Proceedings, İzmir, Turkey, pp: 31.

  • Şen, F., Karaağaç, S. & Erbil, Ü. (2024). Evidence for High-Angle Origin of the Alaşehir Detachment Fault and Layer-Parallel Shortening During Miocene Time in Alaşehir Graben, Western Anatolia. Türkiye Jeoloji Bülteni, 67(1), 17-50. https://doi.org/10.25288/tjb.1318465

  • Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. & Rangin, C. (2005). The North Anatolian Fault: a new look. Annual Review of Earth and Planetary Sciences 33, 37–112. http://dx.doi.org/10.1146/annurev. earth.32.101802.120415

  • Şengör, A. M. C. & Bozkurt, E. (2012). Layerparallel shortening and related structures in zones undergoing active regional horizontal extension. International Journal of Earth Sciences, 102, 101- 119. https://doi.org/10.1007/s00531-012-0777-0

  • Thomson, S.N. & Ring, U. (2006). Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics, 25(3), Article TC3005. https://doi. org/10.1029/2005TC001833

  • Uzel, B., Langereis, C. G., Kaymakçı, N., Sözbilir, H., Özkaymak, Ç. & Özkaptan, M. (2015). Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex. Earth and Planetary Science Letters, 414, 108-125. https://doi. org/10.1016/j.epsl.2015.01.008

  • van Hinsbergen, D. J. J., Langereis, C. G. & Meulenkamp, J. E. (2005). Revision of the timing, magnitude and distribution of Neogene rotations in the western Aegean region. Tectonophysics 396, 1–34.

  • van Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E. & Koopman, M. (2010). Exhumation with a twist: Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey: Tectonics, 29, Article TC3009. https://doi. org/10.1029/2009TC002596

  • Wawrzenitz, N. & Krohe, A. (1998). Exhumation and doming of the Thasos metamorphic core complex (S Rhodope, Greece): structural and geochronological constraints. Tectonophysics 285, 301–332.

  • Willis, B. J. & Behrensmeyer, A. K. (1994). Architecture of Miocene overbank deposits in northern Pakistan. Journal of Sedimentary Research, B64, 60-67.

  • Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I. & Christl, M. (2017). Late Cenozoic cooling history of the central Menderes Massif: Timing of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhDumation. Tectonophysics 717, 585–598. https://doi.org/10.1016/J.TECTO.2017.07.004

  • Wright, D.T. (1999). The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126(1– 4), 147–157. https://doi.org/10.1016/S0037- 0738(99)00037-8

  • Yang, X. B., Wang, H. Y., Li, Z. Y., Guan, C. & Wang, X. (2021). Tectonic-sedimentary evolution of a continental rift basin: A case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China. Marine and Petroleum Geology, 128, Article 105068. https:// doi.org/10.1016/j.marpetgeo.2021.105068

  • Yılmaz, Y., Genç, Ş.C., Gürer, Ö.F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş. & Elmas, A. (2000). When did western Anatolian grabens begin to develop?. Geological Society of London Special Publication, 173, 353-384. https://doi. org/10.1144/GSL.SP.2000.173.01.17

  • Yılmaz, Y. (2017). Major Problems of Western Anatolian Geology. Çemen, İ. & Yılmaz, Y. (Eds.), Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region, Book Series, Geophysical Monograph Book Series, 225, 141-187. https:// doi.org/10.1002/9781118944998.ch6

  • Yuretich, R.F. & Ervin, C.R. (2002). Clay minerals as palaeoenvironmental indicators in two large lakes of the African Rift Valleys: Lake Malawi and Lake Turkana. In Renaut, R. W. & Ashley, G.M. (Eds.), Sedimentation in Continental Rifts: SEPM (Society for Sedimentary Geology) Special Publication 73, 221–232, https://doi.org/10.2110/ pec.02.73.0221

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Salda Gölü Mikrobiyalitlerine Dair Yeni Bulgular ve Astrojeolojik Önemleri (Burdur, GB-Türkiye)
    Nurgül Balci
    PDF Olarak Görüntüle

    Öz: Salda Gölü`nde (Güney Batı Anadolu) sulu magnezyum karbonat (SMK) içerikli güncel mikrobiyalitler, kıyı şeridi boyunca ve 15 m su derinliğine kadar uzanan, birkaç cm büyüklüğünden yaklaşık 10 m yüksekliğe ve 3-4m genişliğe kadar varan e yapılar şeklinde oluşmaya devam etmektedir. Sunulan çalışma kapsamında, ilk defa buorgano-sedimanter yapıların, morfotipleri, sedimentolojik ve dokusal özellikleri ortaya konulmuş; türlerine göre sınıflandırılmış ve göldeki mekansal dağılımları haritalanmıştır. Bu kapsamda gölün litoral kısmında 5 farklı mikrobiyalit zonu belirlenmiştir. Göldeki, stromatolitik-trombolitler en baskın mikrobiyalit türüdür ve gölün belirli kısımlarında tayin edilmişlerdir. Stromatolitik-trombolitler, genellikle kubbemsi ve karnabahar; nadiren tabular(yassı) olmak üzere çok çeşitli makro morfolojiye sahiptir. Orta ölçekte (cm), stromatolitik-trombolitler parmak şekilli (2-5 cm) laminalı mini sütunlar, yumru şekilli dendritik ve soğanımsı büyüme yapıları sergiler. Karnabahar morfolojisine sahip trombolitler birleşerek derinlerde (10-20 m) resif benzeri geniş bir yapı oluşturmaktadırlar. Stromatolitik ve dendritik iç yapılı mikrobiyalitler gölün belirli zonları ile sınırlıdır (Zon 2, 3). Mikrobiyalitlerin, makro boyuttaki dış morfolojisi, öncelikle hakim çevresel koşulların etkisi altında şekillenmektedir. Gölün su seviyesindeki mevsimsel dalgalanmalar, sedimantasyon oranlarındaki bölgesel farklılıklar, hakim rüzgar ve akıntılar depolanma ortamını kontrol eden başlıca faktörlerdir. Mikrobiyalitlerin iç büyüme yapısı, mikrobiyal topluluk yapısı ile çökelme ortamının koşullarına bağlıdır. Mikrobiyal tabakada yapılan mineralojik çalışma ile, ilk defa hücre dışı polimerik madde (HPM) ile yakından ilişkili farklı bir SMK minerali olan dipinjit minerali (Mg5(CO3)4.OH2.5H2O) tespit edilmiştir. Mikrobiyalitlerin petrografik incelemeleri, karbonatlar içinde bol miktarda dikey ve dikeye yakın konuma sahip filament (mineralize`) benzeri yapıların varlığını ortaya koymuştur. Nodüler aragonitler genellikle mikrobiyal tabakalarla ilişkili iken, boşluklarda gelişen lifler ve bunların bir araya gelmesi ile oluşan aragonit yelpazeleri, izopak saçaklar göldeki ikincil ve abiyotik karbonat çökelmesine işaret etmektedir. Morfolojik, mineralojik ve dokusal çeşitlilikleri nedeniyle Salda Gölü mikrobiyalitleri hem jeolojik kayıtlardaki Mg-karbonatların hem de Mars kraterlerinden biri olan Jezero Krateri`ndeki paleo gölde tespit edilen SMK`ların kökeni ve oluşum süreçlerini ortaya koymak için potansiyel modern bir analogdur. Bu çalışmada, Salda Gölü mikrobiyalitlerinin kökenleri, oluşum mekanizmaları ve biyoiz koruma potansiyeli elde edilen yeni veriler ışığında, değerlendirilmiştir. 

  • Biyoiz

  • Dipinjit

  • GB-Türkiye

  • Mars

  • Salda Gölü

  • sulu magnezyum karbonat










  • Allwood, A. C, Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714–718. https://doi.org/10.1038/nature04764

  • Aloisi, G. (2008). The calcium carbonate saturation state in cyanobacterial mats throughout Earth’s history. Geochimica et Cosmochimica Acta, 72(24), 6037–6060. https://doi.org/10.1016/j. gca.2008.10.007

  • Andersen, D.T., Sumner, D.Y., Hawes, I., WebsterBrown, J. & McKay, C.P. (2011). Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology, 9, 280–293. https://doi. org/10.1111/j.1472-4669.2011.00279.x

  • Arp, G., Reimer, A. & Reitner, J. (2001). Photosynthesis induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.

  • Arp, G., Reimer, A. & Reitner, J. (2003). Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research 73, 105–127. https://doi. org/10.1306/071002730105

  • Awramik, S. M. & Buchheim, H. P. (2009). A giant, Late Archean lake system: The Meentheena Member (Tumbiana Formation, Fortescue Group), Western Australia. Precambrian Research, 174, 215–240. https://doi.org/10.1016/j.precamres.2009.07.005

  • Awramik, S. M. & Margulhis, L. (1974) Definition of stromatolite, In E. Walter (Ed.), Stromatolite Newsletter, 2(5).

  • Balcı, N. (2022) Mars Yolculuğunda Yeni Keşifler ve Biyoiz Bulmacası. Herkese Bilim ve Teknoloji Dergisi, 324.

  • Balcı, N. ve Demirel, C. (2018). Salda Gölü’nün jeomikrobiyolojisi ve güncel stromatolit oluşumunda mikrobiyal etkiler. Hacettepe Üniversitesi, Yerbilimleri Uygulama ve Araştırma Merkezi Yerbilimleri Bülteni, 39(1), 19-40. 2018.

  • Balcı, N. & Güneş, Y. (2025). Tracking organomineralization from modern microbial layers of Lake Salda (hazırlık aşamasında).

  • Balcı, N., Güneş, Y., Kaiser J., Ön, S. A., Eris, K., Garczynski, B. & Horgan, B. H. (2020). Biotic and abiotic imprints on Mg-Rich stromatolites: Lessons from Lake Salda, SW Turkey. Geomicrobiology Journal, 37, 401–425. htt ps://10.1080/01490451.2019.1710784

  • Baldes, M. J. Gong, J., Trejo, D., Balcı, N., Güneş, Y., Tamura, N. & Bosak, T. (2025, inceleme de). Microbial polymers influence the mineralogy and organic preservation potential of hydrated magnesium carbonate minerals (İnceleme de).

  • Braithwaite, C. J. R. & Zedef, V. (1994). Living hydromagnesite stromatolites from Turkey. Sedimentary Geology, 92, 1–5.

  • Braithwaite, C. J. R. & Zedef, V. (1996). Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Gölü, Turkey. Journal of Sedimentary Research, 66, 91–1002. https://doi.org/10.1306/ D426845F-2B26-11D7-8648000102C1865D

  • Brasier, A. T., Rogerson, M. R., Mercedes-Martin, R., Vonhof, H. B. & Reijmer, J. J. G. (2015). A test of the biogenicity criteria established for microfossils and stromatolites on Quaternary Tufa and Speleothem materials formed in the "Twilight Zone" at Caerwys, UK. Astrobiology, 15, 883– 900. https://doi.org/10.1089/ast.2015.1293

  • Brasier, A., Wacey, D., Rogerson, M., Guagliardo, P., Saunders, M., Kellner, S., Mercedes-Martin, R., Prior, T., Taylor, C., Matthews, A. & Reijmer, J. (2018). A microbial role in the construction of Mono Lake carbonate chimneys?. Geobiology, 16, 540–555. https://doi.org/10.1111/gbi.12292

  • Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia, E. P. (2003). Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73, 485– 490. https://doi.org/10.1306/111302730485

  • Burne, R. V., Moore, L. S., Christy, A.G., Troitzsch, U., King, P.L., Carnerup, A. M. & Hamilton, P.J. (2014). Stevensite in the modern thrombolites of Lake Clifton, Western Australia: a missing link in microbialite mineralization?. Geology, 42, 575– 578. https://doi.org/10.1130/G35484.1

  • Chagas, A. P., Webb, G. E., Burne, R. V. & Southam, G. (2016). Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth-Science. Reviews, 162, 338–363. https://doi.org/10.1016/j. earscirev.2016.09.012

  • Corsetti, F. A. & Storrie-Lombardi, M.C. (2003). Lossless compression of stromatolite images: a biogenicity index?. Astrobiology, 3, 649–655. https://doi.org/10.1089/153110703322735980

  • De Boever, E., Foubert, A., Lopez, B., Swennen, R., Jaworowski, C., Özkul, M. & Virgone, A. (2017a). Comparative study of the Pleistocene Cakmak quarry (Denizli Basin, Turkey) and modern Mammoth Hot Springs deposits (Yellowstone National Park, USA). Quaternary. International, 437, 129–146. https://doi.org/10.1016/j. quaint.2016.09.011

  • De Boever, E., Brasier, A.T., Foubert, A. ve Kele, S. (2017b). What do we really know about early diagenesis of non-marine carbonates?. Sedimentary Geology, 361, 25–51. https://doi. org/10.1016/j.sedgeo.2017.09.011

  • Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S. & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005

  • Ferris, F. G., Thompson, J. B. & Beveridge, T. J. (1997). Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios, 12, 213–219. https://doi.org/10.2307/3515423

  • Frantz, C. M. (2015) They might be giants: colossal lacustrine stromatolites. Geology, 43 (8), 751– 752. https://doi.org/10.1130/focus082015.1

  • Garczynski, B. J., Horgan, B., Kah, L. C., Balcı, N. & Güneş, Y. (2019). Searching for potential biosignatures in Jezero Crater with Mars 2020. A spectral investigation of terrestrial lacustrine carbonate analogs. Lunar Planetary Contributions, 2089.

  • Garczynski, B. J., Horgan, B., Kah, L.C., Balcı, N., Güneş, Y., Williford, K. H. & Cloutis, E. A. (2020) Investigating the origin of carbonate deposits in Jezero Crater: Mineralogy of a fluviolacustrine analog at Lake Salda, Turkey. Lunar Planetary Contributions, 2326, 2128.

  • Gérard, E., Ménez, B., Couradeau, E., Moreira, D., Benzerara, K., Tavera, R. & López-García, P. (2013). Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). The ISME Journal, 7, 1997–2009. https://doi.org/10.1038/ismej.2013.81

  • Ginsburg, R.N. (1991). Controversies about stromatolites: vices and virtues. In D. W. Müller, J. A. McKenzie, & H. Weissert (Eds.), Controversies in Modern Geology, London, UK, Harcourt Brace Jovanovich (Academic Press), 25–36.

  • González-López, J., Rodelas, B., Pozo, C., SalmerónLópez, V., Martínez-Toledo, M. V. & Salmerón, V. (2005). Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids, 28(4), 363- 7.

  • Gomez, F. J., Kah, L. C., Bartley, J. K. & Astini, R. A. (2014). Microbialites in a high- altitude Andean lake: Multiple controls on carbonate precipitation and lamina accretion. Palaios, 29, 233–249.

  • Grotzinger, J. P. & Knoll, A. H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annual Review of Earth Planetary Sciences, 27, 313–358. https:// doi.org/10.1146/annurev.earth.27.1.313

  • Grotzinger, J. P. & Rothman, D. H. (1996). An abiotic model for stromatolite morphogenesis. Nature, 383, 423–425. https://doi.org/10.1038/383423a0

  • Güneş, Y. & Balcı, N. (2021). The Catalytic Effect of the Heterotrophic Bacterium Virgibacillusmarismortui on Basaltic Rock Dissolution Under Excess Nutrient Conditions, Geomicrobiology Journal, 38, 4, 315-328. https://doi.org/10.1080/01490451 .2020.1852453

  • Güneş, Y., Baldes, M. J., Gong, J., Bosak, T. & Balcı, N. (2022) Morphospace, composition and texture of Lake Salda microbialites. EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22- 395.

  • Güneş, Y., Sekerci, F., Avcı, B., Ettema, T. & Balcı, N. (2024). Morphological and Microbial Diversity of Hydromagnesite Microbialites in Lake Salda: A Mars Analog Alkaline Lake. Geobiology, 22, Article e12619. https://doi.org/10.1111/gbi.12619

  • Horgan, B., Anderson, R., Dromart, G., Amador, E. & Rice, M. (2020) The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates. Icarus, 339, Article113526.

  • Kazanci, N., Girgin, S. & Dügel, M. (2004). On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: future management proposals, aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 14(2), 151–162. https://doi. org/10.1002/aqc.609

  • Kempe, S. & Kaźmierczak, J. (1993). Satonda Crater Lake, Indonesia: Hydrogeochemistry and bicarbonates. Facies, 28, 1–31.

  • Meister, P. (2013) Two opposing effects of sulfate reduction on calcite and dolomite precipitation in marine, hypersaline and alkaline environments. Geology, 41, 499–502. https://doi.org/10.1130/ G34639C.1

  • Meister, P. (2014) Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments: REPLY. Geology, 42, 315. https://doi.org/10.1130/ G35240Y.1

  • Petryshyn V. A., Junkins E. N., Stamps B. W., Bailey J. V., Stevenson, B. S., Spear J. R. & Corsetti F. A. (2021). Builders, tenants, and squatters: The origins of genetic material in modern stromatolites. Geobiology, 19, 261– 277. https://doi.org/10.1111/ gbi.12429

  • Reid, R. P., Macintyre, I. G., Browne, K. M., Steneck, R. S. & Miller, T. (1995) Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies, 33, 1–18. https:// doi.org/10.1007/BF02537442

  • Riding, R. (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4, 299–316. https://doi. org/10.1111/j.1472-4669.2006.00087.x

  • Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 27, 179–214. https://doi. org/10.1046/j.1365-3091.2000.00003.x

  • Rivadeneyra, M. A., Paraga, J., Delgado, G., RamosCoemenzana, A. & Delgado, G. (2004). Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecology, 48, 39–46. https://doi.org/10.1016/j.femsec.2003.12.008

  • Rivadeneyra, M-A., Delgado, G., Soriano, M., Ramos-Cormenzana, A. & Delgado, R. (1999). Biomineralization of carbonates by Marinococcus albus and Marinococcus halophilus isolated from Salar de Atacame (Chili). Current Microbiology, 39, 53–57. https://doi.org/10.1007/PL00006827

  • Russell, M. J., Ingham, J.K., Zedef, V., Maktav, D., Sunar, F., Hall, A. J. & Fallick, A.E. (1999). Search for signs of ancient life on Mars: Expectations from hydromagnesite microbialites, Salda Lake, Turkey. Journal of the Geological Society, 156, 869–888. https://doi.org/10.1144/ gsjgs.156.5.0869

  • Sánchez-Román, M., Romanek, C.S., FernándezRemolar, D. C., Sánchez-Navas, A., McKenzie, J. A., Pibernat, R. A. & Vásconcelos, C. (2011). Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments. Chemical Geology, 281, 143–150. https://doi.org/10.1016/j. chemgeo.2010.11.020

  • Sanz-Montero, M. E., Cabestrero, O. & SánchezRomán, M. (2019). Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain) Frontiers in Microbiology, 10, 148. https:// doi.org/10.3389/fmicb.2019.00148

  • Şenel, M., Akyürek, B., Can, N., Aksay, A., Pehlivan, N., Bulut, V. ve Aydal, N. (1997). 1:100.000 ölçekli Türkiye Jeoloji Haritası, Denizli M23 (J9). Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.

  • Schmid, H. (1987). Turkey’s Salda Lake: A genetic model for Australia’s newly discovered magnesite deposits. Industrial Minerals, 239, 19–31.

  • Schopf, J. W. (2006). Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B 361, 869–885. https://doi.org/10.1098/ rstb.2006.1834

  • Shirokova, L.S., Mavromatis, V., Bundeleva, I.A., Pokrovsky, O. S., Bénézeth, P., Gérard, E., Pearce, C. R. & Oelkers, E. H. (2013). Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquatic Geochemistry 19, 1–24. https://doi.org/10.1007/ s10498-012-9174-3

  • Van Kranendonk, M. J., Philipot, P., Lepot, K., Bodorkos, S. & Pirajno, F. (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Research, 167, 93–124. https://doi.org/10.1016/j.precamres.2008.07.003

  • Varol, S., Davraz, A., Şener, Ş., Şener, E., Aksever, F., Kırkan, B. & Tokgözlü, A. (2021). Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution. Journal of Environmental Health Science. Engineering, 19, 681–706. https:// doi.org/10.1007/s40201-021-00638-5

  • Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D. (2011). Microfossils of sulphurmetabolizing cells in ~3.4 billion-year-old rocks of Western Australia. Nature Geosciences, 4, 698– 70. https://doi.org/10.1038/ngeo1238

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Paleosismolojik Veriler Işığında Eskişehir Fayı`nın Batı Segmentinin Deprem Davranışı
    İsmet Elma Mirza Agha Safarov Volkan Karabacak Çağlar Özkaymak Ökmen Sümer
    PDF Olarak Görüntüle

    Öz: Bu makale, Eskişehir Fayı batı segmenti boyunca detaylı fay haritalamalarını, paleosismolojik gözlem ve analitik yaş verileri ışığında elde edilen eski deprem davranışına ilişkin çıkarımları sunmaktadır. Fayın en batı segmentini temsil eden uzanımı ile uyumlu olarak birkaç metreden birkaç yüz metreye kadar sağ yanal ötelenmeler Eskişehir Fayı`nın bu kesiminde güncel hareketin baskın olarak sağ yönlü doğrultu atımlı karakterde olduğunu göstermektedir. Erikli (Bilecik) ve Kandilli (Eskişehir) Mahallelerinde gerçekleştirilen paleosismolojik fay kazılarından elde edilen bulgulara göre, Eskişehir Fayı batı segmentinde Holosen döneminde tekrarlanan yüzey kırıkları gerçekleştiği görülmektedir. 1956 Eskişehir depreminin (M=6,5) Eskişehir Fayı orta kesimlerinden kaynaklanmış olma olasılığı ve komşu segmentlere gerilim transferi yapabileceği hususu da göz önünde bulundurulduğunda, batı segment üzerinde ortaya konulan sismik suskunluk dönemi (~1500 yıl) ardından her an yüzey kırığı meydana getirebilecek bir deprem(M=~6,59) olma olasılığının yüksek olduğu değerlendirilmektedir. 

  • Eskişehir fayı

  • paleosismoloji

  • sismik tehlike










  • Altunel, E. ve Barka, A. (1998). Eskişehir Fay Zonunun İnönü ve Sultandere arasında neotektonik aktivitesi. Türkiye Jeoloji Bülteni, 41(2), 41-52. https://www.jmo.org.tr/resimler/ ekler/1e7637e7b6a9f27_ek.pdf

  • Altunel, E., Karabacak, V., Yalçıner, C. Ç., Altınok, S., Tunçel, E. ve Kurban, Y. C. (2015). Eskişehir Fayı’nın Paleosismolojisi. UDAP G-13-17 proje sonuç raporu, 126 s.

  • Ambraseys, N. N. (2009). Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press.

  • Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodinamica Acta, 14(1–3), 3–30. https://doi.org/ 10.1080/09853111.2001.11432432

  • Canıtez, N. & Üçer, B. (1967). Computer determinations for the fault-plane solutions in and near Anatolia. Tectonophysics, 4, 235-244.

  • Dirik, E. & Erol, O. (2003). Tectonomorphologic evolution of Tuzgölü and surrounding area, central AnatoliaTurkey. Turkish Association of Petroleum Goelogists Special Publication, 5, 27-46.

  • Duman, T. Y., Emre, Ö., Özalp, S., Çan, T., Olgun, Ş., Elmacı, H. ve Şaroğlu, F. (2017). Türkiye ve Yakın Çevresindeki Diri Faylar ve Özellikleri. Türkiye Sismotektonik Haritası Açıklama Kitabı, (Ed. T.Y. Duman). Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi-34, AnkaraTürkiye.

  • Elma, İ., Özçelik, B., Karabacak, V., Özkaymak, Ç. ve Sümer, Ö. (2024). Eskişehir Fayının İnönüOklubalı Segmentine Ait İlk Paleosismolojik Bulgular. Türk Deprem Araştırma Dergisi, 6(2), 349-368. https://doi.org/10.46464/tdad.1465558

  • Elma, İ., Safarov, M. A., Karabacak, V., Özkaymak, Ç. ve Sümer, Ö. (2025). Eskişehir fayı’nın Uzun Dönem Kayma Hızı ve Paleosismolojisi. 77. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı, 14-18 Nisan 2025, MTA, Ankara.

  • Emre, Ö., Duman, T.Y. ve Özalp, S. (2011). 1:250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Eskişehir (NJ 36-1) Paftası, Seri No: 15.Maden Tetkik ve Arama Genel Müdürlüğü, Ankara-Türkiye.

  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu F. (2013). 1/250.000 ölçekli Türkiye Diri Fay Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi, Ankara, Türkiye.

  • Emre, Ö., Duman, T.Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Çan, T. (2018). Active Fault Database of Turkey. Bulletin of Earthquake Engineering, 16, 3229–3275 https://doi.org/10.1007/s10518- 016-0041-2.

  • Ergin, K. Güçlü, U. ve Uz, Z. (1967). Türkiye ve Civarının Deprem Kataloğu Milattan Sonra 11- 1964. İTÜ Maden Fakültesi Arz Fiziği Enstitüsü Yayınları, No:24, İstanbul, Türkiye

  • Gözler, M. Z., Cevher, F. ve Küçükayman, A. (1985). Eskişehir civarının jeolojisi ve sıcak su kaynakları. Türkiye Jeoloji Kurumu Bülteni, 103-104, 39-54. https://dergi.mta.gov.tr/dosyalar/images/mtadergi/ makaleler/tr/20150701102227_509_22794d06. pdf

  • Heidbach, O., Custodio, S., Kingdon, A., Mariucci, M.T., Montone, P., Müller, B., Pierdominici, S., Rajabi, M., Reinecker, J., Reiter, K., Tingay, M., Williams, J. & Ziegler, M. (2016). Stress Map of the Mediterranean and Central Europe 2016. GFZ Data Services, https://doi.org/10.5880/ WSM.Europe2016

  • Karabacak, V., Özkaymak, Ç. ve Sümer, Ö. (2024). Eskişehir Fayı ve Dodurga Fayının Paleosismolojik Özelliklerinin Belirlenmesi, 1. Gelişme Raporu (123G010 nolu Proje). TÜBİTAK.

  • Koçyiğit, A. (2005). The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta, 18(3-4), 167-208. https://doi.org/10.3166/ ga.18.167-208.

  • Kürçer, A., Pekkan, E., Tün, M. & Kahraman, S. (2014). The first paleoseismic and new neotectonic data from Eskişehir fault, major Anatolian neotectonic structure, Central Anatolia, Turkey. Geophysical Research Abstracts, 16, EGU2014-11937.

  • McKenzie, D. (1972). Active Tectonics of Mediterranean Region. Geophysical Journal International, 30(2), 109-185. https://doi.org/10.1111/j.1365- 246X.1972.tb02351.x

  • Ocakoğlu, F., (2007). A re-evaluation of the Eskişehir Fault Zone as a recent extensional structure in NW Turkey. Journal of Asian Earth Science, 31, 91- 103.

  • Ocakoğlu, F. & Açıkalın, S. (2010). Field evidences of secondary surface ruptures occurred during the 20 February 1956 Eskişehir earthquake in the NW Anatolia. Journal of Earth System Science, 119(6), 841-851. https://doi.org/10.1007/s12040- 010-0057-y

  • Ocakoğlu, F., Açıkalın, S., Gökçeoğlu, C., Karabacak, V. & Cherkinsky, A. (2009). A multistory gigantic subaerial debris flow in an active fault scarp in NW Anatolia, Turkey: anatomy, mechanism and timing. The Holocene, 19(6), 955-965. https://doi. org/10.1177/0959683609336566

  • Ocakoğlu F., Açıkalın S., Gökçeoğlu, C., Nefeslioğlu, H. A. & Sönmez, H. (2007). Back-analysis of the source of the 1956 Eskisehir Earthquake using attenuation equation and damage data. Bulletin of Engineering Geology and the Environment, 66, 353-360. https://doi.org/10.1007/s10064-006- 0066-x

  • Ocakoğlu, F., Altunel, E. ve Yalçıner, C. Ç. (2005). Eskişehir bölgesinin neotektonik dönemdeki tektono-stratigrafik ve sedimantolojik gelişimi, Eskişehir, Türkiye, Proje Final Raporu. Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Komisyonu (in Turkish).

  • Öcal, N. (1959). 20 Şubat 1956 Eskişehir Zelzelesinin Makro ve Mikrosismik Etüdü. İstanbul, Turkey. İTÜ Sismoloji Enstitüsü (in Turkish).

  • Özsayın, E. & Dirik, K., (2007). Quaternary Activity of the Cihanbeyli and Yeniceoba Fault Zones: İnönüEskişehir Fault System, Central Anatolia. Turkish Journal of Earth Sciences, 16(4), 471-492.

  • Pınar, N. ve Lahn, E. (1952). Türkiye Depremleri İzahlı Kataloğu. Bayındırlık Bakanlığı, Yapı ve İmar İşleri Reisliği, 36, No:6, Ankara, Türkiye.

  • Ramsey, B. C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

  • Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, B.C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheller, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reining, F., Sakamoto, M., Sookdeo, A. & Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4),725-757. https://doi. org/10.1017/RDC.2020.41.

  • Selçuk, A. S. & Gökten, E. (2012). Neotectonic characteristics of the İnönü-Eskişehir Fault System in the Kaymaz (Eskişehir) Region: influence on the development of the MahmudiyeÇifteler-Emirdağ Basin. Turkish Journal of Earth Sciences, 21(4), 521-545.

  • Seyitoğlu, G., Esat, K., Temel, A. & Telsiz, S. (2010). Determination of main strand of a strike-slip fault by using subsidiary structures: Eskişehir Fault Zone as a case study. In Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia, Abstracts with Programs (8-1). Ankara, Turkey: METU, p. 38.

  • Seyitoğlu, G., Ecevitoğlu, G.B., Kaypak, B., Güney, Y., Tün, M., Esat, K., Avdan, U., Temel, A., Çabuk, A., Telsiz, S. & Uyar Aldaş, G. G. (2015). Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies. Turkish Journal of Earth Sciences, 24(1), 1-20. https://doi.org/10.3906/yer-1406-5

  • Soysal, H., Sipahioğlu, S., Kolçak, D. ve Altınok, Y. (1981). Türkiye ve Çevresinin Tarihsel Deprem Kataloğu (MÖ 2100 - MS 1900), (Proje No: TBGA-341). TÜBİTAK.

  • Şaroğlu, F., Emre, Ö. ve Boray, A., (1987). Türkiye’nin Diri Fayları ve Depremsellikleri (Rapor no: 8174). MTA derleme rapor. Ankara

  • Şaroğlu, F., Emre, Ö., Doğan, A. ve Yıldırım, C. Ç. (2005). Eskişehir Fay Zonu ve Deprem Potansiyeli. Eskişehir Fay Zonu ve İlişkili Sistemlerin Depremselliği Çalıştayı, Osmangazİ Üniversitesi, 28-30 Nisan 2005, Eskişehir, Bildiri Özleri Kitapçığı.

  • Şengör, A. M. C., Görür, N. & Şaroglu, F. (1985). Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a case Study: Strike-Slip Deformation, Basin Formation, and Sedimentation. In Biddle, K. T., ChristieBlick, N. (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation, Society of Economic Paleontologists and Mineralogists, 37, 227-264. https://doi.org/10.2110/pec.85.37.0211

  • Şengör, A. M. C., Tüysüz, O., İmren, C., Sakinç, M., Eyidoğan H., Görür, N., Le Pichon, X. & Rangin, C. (2005). The North Anatolian fault: A new look. Annual Review of Earth and Planetary Sciences, 33, 37-112. https://doi.org/10.1146/annurev. earth.32.101802.120415

  • Tün, M., Avdan, U., Kaplan, O., Güney, Y., Çabuk, A., Kaypak, B., Uyar Aldaş, G., Ecevitoğlu, B., Esat, K. & Seyitoğlu, G. (2010). A new look to the Eskişehir Fault. Seismic Interpretation Session 2, No: 43. 19th International Geophysical Congress & Exhibition, Ankara, Turkey.

  • Yaltırak, C. (2002). Tectonic evolution of the Marmara Sea and its surroundings, Marine Geology, 190, 493-529.

  • Yaltırak, C., Alpar, B. & Yüce, H. (1998). Tectonic elements controlling the evolution of the Gulf of Saros (northeastern Aegean Sea, Turkey). Tectonophysics, 300, 227-248.

  • Yaltırak, C., Mehmet, S., Tapırdamaz, C., Ocakoğlu, F., Demiroğlu, M., Özsayın, E. ve Açıkalın, S. (2010), Batı Anadolu ve Ege’de Miyosen tektonik bulmacasının kayıp parçası Trakya Eskişehir Fay Zonu TEFZ. 63. Türkiye Jeoloji Kurultayı, Ankara, Turkey.

  • Wesnousky, S. G., (2008). Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismichazard analysis and the process of eathquake rüptüre. Bulletin of the Seismological Society of America, 98(4), 1609-1632.

  • Wells, D. L. & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84(4), 974-1002.

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Gölcük (Koyulhisar-Sivas) Manto-Tipi Cu (±Ag) Cevherleşmesinin Jeolojisi, Jeokimyası ve İzotop (𝛿65Cu - 𝛿34S ‰) Oranları
    İsmail Erdem Kizilgöz Çiğdem Şahin Demir Ali Uçurum Nazmi Otlu Ahmet Efe Ryan Mathur
    PDF Olarak Görüntüle

    Öz: Gölcük (Koyulhisar-Sivas) Cu (Ag) cevherleşmesi, Eosen yaşlı bazalt ve andezit ile bunların piroklastiklerini içeren volkanik-volkanosedimanter yan kayaçlıdır. Cevher mineralleri bornit, kalkopirit, kovellit, kalkosit, malakit, manyetit ve hematittir. Yan kayaçlarda alterasyonlar serizitleşme, killeşme, karbonatlaşma, iddingsitleşme ve epidotlaşmadır. Gang mineraller kuvars ve kalsit ile sınırlıdır. Sondaj karot örneklerinin analiz sonuçlarına göre, yüzeyden ortalama 9,7 m derinlikte %2,97 Cu ve 37 g/t Ag tenör olarak belirlenmiştir. Kükürt izotop değerleri(δ34S ‰) yüzey örneklerinde -20,0`dan +2,8`e, karot örneklerinde -6,3`ten +0,6`ya değişim aralığındadır. Bakır izotop değerleri (δ65Cu ‰) yüzey örneklerinde -0,86`dan +1,38`e, karot örneklerinde -1,41`den +2,69`a değişim göstermektedir. Gölcük Cu (Ag) cevherleşmesi; cevher mineral parajenezi, alterasyon mineralojisi, yataklanma tipi ve izotop jeokimya değerlerine göre Manto-tipi olabileceği öngörülmektedir.

  • Gölcük Cu (±Ag)

  • Manto-tipi Cevherleşme

  • S-Cu İzotopu










  • Abolipour, M., Rastad, E. & Rashidnejad Omran, N. (2015). Manto-type copper mineralization in pyrobitumen-bearing porphyritic andesite, Koshkoiye district of Rafsanjan, DehajSardoiye subzone. Scientific Quarterly Journal of Geosciences, 24 (95), 123–144. https://doi. org/10.22071/gsj.2015.42418

  • Adams, A. E., MacKenzie, S. & Guilford, C. (1984) Atlas Of Sedimentary Rocks Under The Microscope. John Wiley & Sons, New York, 104.

  • Atakay, E. (2009) Çorum güney batısındaki volkanik kayaçların jeolojik ve petrolojik özellikleri ve Alacahöyük kazısında arkeolojik çalışmalar, [Yayımlanmamış doktora tezi]. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 194 s.

  • Augustithis, S. (1995). Atlas Of The Textural Patterns Of Ore Minerals and Metallogenic Processes. Walter de Gruyter & Co, Berlin, 659 p.

  • Barker, A. J., (2014). A Key for Identification of Rockforming Minerals in Thin-Section. CRC Press, Boca Baton, 70.

  • Benavides, J., Kyser, T. K., Clark, A. H., Oates, C., Zamora, R., Tarnovschi, R. & Castillo, B., (2007). The Mantoverde iron oxide-copper-gold district, III Región, Chile: The role of regionally-derived, non-magmatic fluid contributions to chalcopyrite mineralization. Economic Geology, 102, 415–440.

  • Boric, R., Holmgren, C., Wilson, N. S. F. & Zentilli, M. (2002) The geology of the El Soldado manto type Cu (Ag) deposit, central Chile. In Porter, T. M. (ed.) Hydrothermal iron oxide copper-gold and related deposits: A global perspective (p. 1-22). Vol. 2. PGC Publications, Adelaide.

  • Boveiri, M., Rstad, E., Kojima, S. & Rashidnejad, N. (2013). Volcanic redbed-type copper mineralization in the Lower Cretaceous volcanosedimentary sequence of the Keshtmahaki deposit, southern Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch für Mineralogie – Abhandlungen, 190(2), 107 – 121. https://doi.org/10.1127/0077- 7757/2013/0236

  • Boztuğ, D. (2008). Petrogenesis of the Kösedağ Pluton, Suşehri-NE Sivas, East-Central Pontides, Turkey. Turkish Journal of Earth Sciences, 17, 241-262.

  • Boztuğ D. & Jonckheere, R. C. (2007). Apatite fissiontrack data from central-Anatolian granitoids (Turkey): constraints on Neo-Tethyan closure. Tectonics, 26, Article TC3011. https://doi. org/10.1029/2006TC001988

  • Braxton, D. & Mathur, R. (2011) Exploration applications of copper isotopes in the supergene environment: a case study of the Bayugo Porphyry Copper-Gold Deposit, Southern Philippines. Economic Geology, 106(8), 1447–1463. https:// doi.org/10.2113/econgeo.106.8.1447

  • Braxton, D. & Mathur R. (2014) Copper isotopic vectors to supergene enrichment: leaches cap iostopic footprint of the Quellaveco porphyry copper deposit, southern Peru. In SEG conference proceedings: SEG 2014: Building exploration capability for the 21st century

  • Cabral, A. R. & Beaudoin, G. (2007) Volcanic red-bed copper mineralization related to submarine basalt alteration Mont Alexandre Quebec Appalachians Canada. Mineral Deposita, 42, 901–912.

  • Cai, Y. T., Ni, P., Wang, G. G., Pan, J. Y., Zhu, X. T., Chen, H. & Ding, J. Y. (2016), Fluid inclusion and H-O–S–Pb isotopic evidence for the Dongxiang Manto-type copper deposit, South China. Journal of Geochemical Exploration, 171, 71–82. https:// doi.org/10.1016/j.gexplo.2016.01.019

  • Camus, F., (1980). Posible modelo genético para los yacimientos de cobre del distrito minero punta del cobre. Revista Geológica de Chile, 11, 51-76.

  • Carrillo-Rosúa, F. J., Molares-Ruano, S., Morata, D., Boyce, A. J., Fallick, A. E., Belmar, M., Munizaga, F. & Fenoll Hach-Alí, P. (2006). Sulfur isotope studies in Chilean Manto-type Cu-(Ag) deposits in the coastal range of central Chile (´area de La Serena y Melipilla) v. 2. 199–202.

  • Carrillo-Rosúa, J., Boyce, A., Morales-Ruano, S., Morata, D., Roberts, S., Munizaga, F. & MorenoRodríguez, V. (2014). Extremely negative and inhomogeneous sulfur isotope signatures in Cretaceous Chilean manto-type Cu-(Ag) deposits, Coastal Range of central Chile. Ore Geology Reviews, 56, 3–24. https://doi.org/10.1016/j. oregeorev.2013.06.013

  • Carter, W. D. (1961). Yacimientos de Cobre Tipo Manto, su distribución en franjas mineralizadas. Provincia de Aconcagua. Boletín Nº 10, Instituto de Investigaciones Geológicas, Chile, 30. Chem. Geol. 197, 161–176.

  • Craig, J. R. & Vaughan, D. J. (1994). Ore Microscopy & Ore Petrography. John Wiley & Sons. Inc., Canada, 434 p.

  • Deer, W. A., Howie, R. A. & Zussman, J. (1992). An Introduction to The Rock Forming Minerals 2nd Edition. Logman Scientific & Technical, 696 p.

  • Delvigne, J. E. (1998). Atlas of Micromorphology of Mineral Alteration and Weathering: The Canadian Mineralogist, SP# 3, Mineralogical Association of Canada, Canada, 495 p.

  • Erdoğan, B., Akay, E. & Uğur, M.S. (1996). Geology of the Yozgat Region and Evolution of the Collisional Çankırı Basin. International Geology Review, 38, 788-806.

  • Eyuboglu, Y., Santhos, M., Dudas, F. O., Akaryalı, E., Chung, S. L., Akdağ, K. & Bektaş, O. (2013). The nature of transition from adakitic ton on-adakitic magmatism in slab window setting: A synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4(4), 353-375. https://doi.org/10.1016/j. gsf.2012.10.001

  • Fontboté, L. (1990). Stratabound Ore Deposits in the Andes: A Review and a Classification According to their Geotectonic Setting. In Fonbote, L., Amstutz, G.C., Cardozo, M., Cedillo, E. & Frutos, J. (eds.), Stratabound ore deposits in the Andes, SP#8 Society for Geology Applied to Mineral Deposits, 79-110.

  • Geneli, F. (2011). Petrology of Eocene Volcanism in Central Anatolia: Implications for the Early Tertiary Evolution of the Central Anatolian Crystalline Complex [Ph.D. Dissertation]. METU Graduate School of Natural and Apllied Sciences, 252 p.

  • Giesemann, A., Jager, H. A., Norman, A. L., Jrouse, H. L. & Brand W. A. (1994). Online sulphur-isotope determination using an elemental analzer coupled to a mass spectrometer. Analytical Chemistry, 66(18), 2816-2819. https://doi.org/10.1021/ ac00090a005

  • Göncüoğlu, M. C. & Türeli, T. K. (1994). Alpine collisional-type granitoids from western Central Anatolian Crystalline Complex. Journal of Kocaeli University, 1, 39-46.

  • Göncüoğlu, M. C., Erler, A., Toprak, V., Olgun, E., Yalınız, K., Kuşcu, İ., Köksal, S. & Dirik, K., (1993). Orta Anadolu Masifinin Orta Bölümünün Jeolojisi, Bölüm III, Orta Kızılırmak Tersiyer Baseninin Jeolojik Evrimi (Proje Rapor No: 3313). TPAO, 104 s.

  • Göncüoğlu, M. C., Dirik, K., Erler, A. & Yalınız, K. (1994). Orta Anadolu Masifinin Doğu Bölümünün Jeolojisi Bölüm IV, Orta Anadolu Masifinin Sivas Baseni ile İlişkisi (Proje Rapor no: 3535). TPAO, 135 s.

  • Hoefs, J. (2021). Stable Isotope Geochemistry, 9th Edition: Springer, 528 p.

  • Ixer, R. A. (1990). Atlas Of Opaque and Ore Minerals In Their Associations. Van Nostrand Reinhold., New York, 208 p.

  • Jambor, J. L. & Vaughan, D. J. (1990). Mineralogical Association of Canada: Advanced Microscopic Studies of Ore Minerals, Short Course Handbook, Ottowa, Vol.17, 426 p.

  • Kalkancı, Ş. (1974). Etude geologique et p.trochimique du sud de la region de Suşlehri: Geochronologie du massif syenitique de Kösedağ (NE de SivasTurquie) (These de doctorat de 3eme cycle). L’Universite de Grenoble, 84 p.

  • Kızılgöz, E. İ. (2019). Gölcük (Koyulhisar-Sivas) Cu (Ag) Cevherleşmesinin Ana-Eser Element, Duraylı İzotop (S, Cu) Jeokimyasi ve Sıvı Kapanim İncelemeleri [Yayımlanmamış yüksek lisans tezi]. S.C.Ü. Fen Bilimleri Enstitüsü, 73 p.

  • King, B. H. (2013). N143-101 Technical report on the Golcuk licence, Sivas province, Turkey. Pasinex Research Limited, Toronto, 101 p.

  • Kirkham, R. V. (1996). Volcanic redbed copper. In Eckstrand, O. R., Sinclair, W. D. & Thorpe, R. I. (eds.). Geology of Canadian mineral deposit types. Geol. Surv. Canada (Geology of Canada), 8, 241–252.

  • Klohn, E., Holmgren, C. & Ruge, H. (1990). El Soldado, a stratabound copper deposit associated with alkaline volcanism in the central Chilean coastal range. In Fontboté, L., Amstutz, G. C., Cardozo, M., Cedillo, E. & Frutos, J. (eds), Stratabound Ore Deposits in Andes._ Special Publication No. 8 of the Society for Geology Applied to Mineral Deposits, vol 8, (pp: 435-448.). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642- 88282-1-33

  • Kojima, S., Trista-Aguilera, D. & Hayashi, K.İ. (2009). Genetic Aspects of the Manto-type Copper Deposits Based on Geochemical Studies of North Chilean Deposit. Resource Geology, 59(1), 87-98.

  • Kuşçu, İ. & Erler, A. (1998). Mineralization events in a collision related setting: The Central Anatolian Crystalline Complex, Turkey. International Geological Review, 40, 552–565.

  • Kuşçu, İ., Gençalioğlu-Kuşçu, G., Tosdal, R. M., Ullrich, T. & Friedman, R. (2010), Magmatism in the Southeastern Anatolian orogenic belt: Transition from arc to post-collisional setting in an evolving orogen. Geological Society of London, Special Publication, 340, 437–460.

  • Lefebvre, C., Barnhoorn, A., van Hinsbergen, D. J. J., Kaymakci, N. & Vissers, R. L. M. (2011). Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, Central Turkey. Journal of Structural Geology, 33(8), 1220-1236. https://doi. org/10.1016/j.jsg.2011.06.002

  • Lefebvre, C., Meijers, M. J. M., Kaymakci, N., Peynircioğlu, A., Langereis, C.G. & van Hinsbergen, D. J. J. (2013). Reconstructing the geometry of central Anatolia during the late Cretaceous: large-scale Cenozoic rotations and deformation between the Pontides and Taurides. Earth Planet. Sci. Lett. 366, 83–98. https://doi. org/10.1016/j.epsl.2013.01.003

  • Lufkin, J. L. (2012). Ore Mineralogy & Microscopy. Golden Publisher, CO, USA, 192 p.

  • MacKenzie, W. S., Donaldson, C. H. & Guilford, C. (1982). Atlas Of Igneous Rocks And Their Textures. John Wiley & Sons, New York, 148.

  • Maghfouri, S., Hosseinzadeh, M.R., Moayyed, M., Movahednia, M. & Choulet, F. (2017). Geology, mineralization and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto-type deposit, northern Zanjan, Iran. Ore Geology Reviews, 81, 10–22. https://doi.org/10.1016/j.oregeorev.2016.10.025

  • Maksaev, V. & Zentilli, M. (2002). Chiliean Stratabound Cu (Ag) Deposits: An Overview: In Porter, T. M. (ed.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective, Vol. 2, (p: 185–205). PGC Publications, Adelaide.

  • Marshall, D., Anglin C.D (‘Lyn). & Mumin, H. (2004). Ore Mineral Atlas. GAC, Canada, 112.

  • Mathur, R. & Zhao, Y. (2023). Copper Isotopes Used in Mineral Exploration. In D. Huston and J. Gutzmer (Eds.), Isotopes In Economic Geology, Metallogenesis and Exploration, Mineral Resource Reviews, 433-450.

  • Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J. & Hart, G. (2009). Exploration Potential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1), 1-6. https://doi.org/10.1016/j. gexplo.2008.09.004

  • Mathur R., Falck, H., Belogub E., Milton J., Wilson M., Rose A. & Powell, W. (2018). Origins of chalcocite defined by copper isotope values. Geofluids, Article 854829. https://doi.org/10.1155/2018/5854829

  • Megaw, P. K. M., Ruiz, J. & Titley, S. R. (1988). Hightemperature, carbonate-hosted Ag–Pb–Zn (Cu) deposits of northern Mexico. Economic Geology, 83(8), 1856–1885. https://doi.org/10.2113/ gsecongeo.83.8.1856

  • Melgarejo, J. C. & Martin, R. B. (2011). Atlas Of NonSilicate Minerals In Thin Section. The Canadian Mineralogist SP 7, Canada, 522 p.

  • Moix, P., Beccaletto, L., Kozur, H. W., Hochard, C., Rosselet, F. & Stampfli, G. M. (2008). A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451, 7–39.

  • Movahednia, M., Maghfouri, S., Fazli, N., Rastad, E., & Ghaderi, M., (2022). Metallogeny of Mantotype stratabound Cu-(Ag) mineralization in Iran: Relationship with NeoTethyan evolution and implications for future exploration. Ore Geology Reviews, 149, Article 105064. https://doi. org/10.1016/j.oregeorev.2022.105064

  • Munizaga, F. & Zentilli, M. (1994) Sulphur isotope characterization of stratabound copper deposits in Chile Comucicaciones, Universidad de Chile, Santiago, 45, 127–134.

  • Oliveros, V., Feraud, G., Aguirre, L., Ramirez, L., Fornary, M. & Palacios, C. (2008). Detailed 40Ar/39Ar dating of geologic events associated with the Mantos Blancos copper deposit, northern Chile. Mineralium Deposita, 43, 281–293.

  • Paar, W.H., de Brodtkorb, M. K., Putz, H.& Martin, R. F. (2016) Atlas Of Ore Minerals: Focus On Epithemal Deposits Of Argentina. The Canadian Mineralogist, SP#11, Mineralogical Association of Canada, Canada, 402.

  • Palacios, C. (1986). Subvolcanic Copper deposits in the Coastal Range of Northern Chile. Zentralblatt für Geologie und Paläontologie, Teil I, 1985, H.9/10, Stuttgart, 1605-1615.

  • Picot, P. & Johan, Z. (1982). Atlas Of Ore Minerals. Elsevier, Amsterdam, 458.

  • Pollard, P. J. (2006), An intrusion -related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineralium Deposita, 41, 179- 187. https://doi.org/10.1007/s00126-006-0054-x

  • Pracejus, B. (2015). The Ore Minerals Under The Microscope An Optical Guide, 2ndEdition. Atlases In Geoscience 3, Elsevier, 1098 p.

  • Ramdohr, P. (1980). The Ore Minerals and Their Intergrowths, International Series of Monographs on Earth Sciences. V. 35: volume 1+2, Pergamon Press., Germany, 1207 p.

  • Ruiz, C. & Peebles, F. (1988). Geología, distribución y génesis de los yacimientos metalíferos chilenos. Editorial Universitaria, Santiago, Chile, 305.

  • Ruiz, C., Aguirre, L., Corvalan, J., Klohn, C., Klohn, E. & Levi, B. (1965). Geología y yacimientos metalíferos de Chile. Instituto de Investigaciones Geológicas , Santiago , 305 p.

  • Salehi, L. & Rasa, I. (2016). Sulfur Isotopic Characteristics of the Chalcocite in Madan Bozorg Cu Deposits, Abbas Abad, NE Iran. 34th National and the 2nd International Geosciences Congress, Tehran, Iran.

  • Sato, T. (1984). Manto ype copper deposits in Chile: a review. Bulletin of the Geological Survey of Japan, 35, 565-582.

  • Shen, P., Pan, H., Li, Z., Sun, J., Shen, Y., Li, C., Feng, H. & Cao, C, (2020). A Manto-type Cu deposit in the Central Asian Orogenic Belt: The Hongguleleng example (Xinjiang, China). Ore Geology Reviews, 124, Article 103656. https://doi. org/10.1016/j.oregeorev.2020.103656

  • Sillitoe, R. H. (1992). Gold and copper Metallogeny of the central Andes: Past, present and future exploration objectives. Economic Geology, 87(8), 2205-2216.

  • Smyth, C. P. (2013). Golcuk Property Exploration Status Report as of 17 August, 2013. Pasinex Resources Limited, 41 s.

  • Smyth, C. P. (2014). Golcuk Property Exploration Status Report as of 31 December, 2013. Pasinex Resources Limited, 52 s.

  • Sun, J., Shen, P., Pan, H., Li, C., Ma, G. & Li, W. (2021), Geochemistry and genesis of the Hongguleleng Manto-type Cu deposit, West Junggar, Xinjiang, China. Journal of Asian Earth Sciences: X, 5, Article 100057. https://doi.org/10.1016/j. jaesx.2021.100057

  • Şengör, A. M. C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

  • Taylor, R. (2009). Ore Textures: Recognition And Interpretation. Springer, Berlin, 288 p.

  • Terlemez, İ. ve Yılmaz, A. (1980). Ünye-OrduReşadiye-Koyulhisar arasının stratigrafisi: Türkiye Jeoloji Kurumu Bülteni, 23(2), 179- 191. https://www.jmo.org.tr/resimler/ekler/ eacf7a18a32812d_ek.pdf .

  • Thompson, A. J. B. & Thompson, J. F. H. (1996) Atlas of Alteration: A Field And Petrographic Guide To Hydrothermal Alteration Minerals. GAC, Canada, 119.

  • Trist´a-Aguilera, D., Barra, F., Ruiz, J., Morata, D., Talavera-Mendoza, O., Kojima, S., Ferraris, F. (2006). Re–Os isotope systematics for the LinceEstefanía deposit: Constraints on the timing and source of copper mineralization in a stratabound copper deposit, Coastal Cordillera of northern Chile. Mineralium Deposita, 41, 99–105. https:// doi.org/10.1007/s00126-006-0048-8

  • Uçurum, A. (2000). Listwaenites in Turkey: Perspectives on Formation and Precious Metal Concentration with Reference to Occurences in East-Central Anatolia. Ofioliti, 25(1), 15-29.

  • Uçurum, A. & Larson, L.T. (1999). Geology, BasePrecious Metal Concentration and Genesis of the Silica-Carbonate Alteration (Listwaenites) from Late Cretaceous Ophiolitic Melanges at Central East Turkey. Chemie Der Erde-Geochemistry, 59, 77-104.

  • Ucurum, A., Şahin Demir C., Efe, A., Hofstra, A. H., Arehart, G. B., Pernicka, E., Molnar, F., Bakker, R. J. (2017). Sr, S, O, and H Isotopic Compositions of Celestine Deposits from the Tertiary Sivas Basin, Turkey. SEG-2017, September 17-20, 2017, Beijing, China, Abstract.

  • Uysal, Ş., Bedi, Y., Kurt, İ. ve Kılınç, F. (1995). Koyulhisar (Sivas) dolayının jeolojisi (Yayınlanmamış Rapor No: 9838). MTA, 120 s.

  • Vila, T. Lindsay, N. & Zamora, R. (1996). Geology of the Manto Verde copper deposit, northern Chile: A specularite-rich hydrothermal tectonic breccia related to the Atacama Fault Zone. In Camus, F., Sillitoe, R. M. & Petersen, R. (Eds.), Andean copper Deposits: New Discoveries, Mineralization, Styles and Metallogeny. Special Publications of the Society of Economic Geologists. https://doi. org/10.5382/SP.05.11

  • Westra, G., (1988). La importancia del metamorfismo de carga en la formación de yacimientos de cobre de tipo manto: preprint, Keynote Address, V Cong. Geol. Chileno, Santiago, 18.

  • Wilson, N. S. F. & Zentilli, M. (1999). The role of organic matter in the genesis of the El Soldado volcanic-hosted manto-type Cu deposit, Chile. Economic Geology, 94(7), 1115–1136. https://doi. org/10.2113/gsecongeo.94.7.1115

  • Wilson, N. S. F., Zentilli, M. & Spiro, B. (2003a). A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado mantotype copper district, Chile: The essential role of bacteria and petroleum. Economic Geology, 98(1), 163–174. https://doi.org/10.2113/ gsecongeo.98.1.163

  • Wilson, N. S. F., Zentilli, M., Reynolds, P. H. & Boric, R. (2003b). Age of mineralization by basinal fluids at the El Soldado manto-type Cu deposit, Chile: 40Ar/39Ar Geochronology of K-feldspar. Chemical Geology, 197(1-4), 161-176. https://doi. org/10.1016/S0009-2541(02)00350-9

  • Wilton, D. H. C. & Sinclair, A. J. (1988). Ore geology and genesis of a stratabound disseminated copper deposit at Sustut, British Columbia. Economic Geology, 83, 30–45. https://doi.org/10.2113/ gsecongeo.83.1.30

  • Yılmaz, A. (1985). Yukarı Kelkit Çayı ile Munzur Dağları arasının temel jeoloji özellikleri ve yapısal evrimi. Türkiye Jeoloji Kurumu Bülteni, 28(2), 79-82. https://www.jmo.org.tr/resimler/ ekler/9490244a7cabc1f_ek.pdf

  • Yiğit, Ö. (2006). Gold in Turkey-a missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2), 147–179. https://doi.org/10.1016/j. oregeorev.2005.04.003

  • Yiğit, Ö. (2009). Mineral Deposits of Turkey in Relation to Tethyan Metallogeny: Implications for Future Mineral Exploration. Economic Geology, 104(1), 19–51. https://doi.org/10.2113/ gsecongeo.104.1.19

  • Zhao, L., Han, J., Lu, W., Liang, P. & Jourdan, F. (2020). The Middle Permian Hongshanliang Manto-type copper deposit in the East Tianshan: Constraints from geology, geochronology, fluid inclusions and H–O–S isotopes. Ore Geology Reviews, 124, Article 103601. https://doi.org/10.1016/j. oregeorev.2020.103601

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Geyik Dağı Üzerinde Yer Alan Glasiyal Sirkler ile Glasiyo-Karstik Dolinlerin Morfometrik Özellikleri ve Bunların Kuvaterner Kalıcı Kar Sınırı ile İlişkileri
    Muhammed Zeynel Öztürk Mesut Şimşek Mustafa Utlu
    PDF Olarak Görüntüle

    Öz: Türkiye`deki dağlık alanların yüksek kesimleri Kuvaterner`in buzul dönemlerinde buzullaşmaya uğradığı için bu alanlarda buzul yer şekillerini yoğun olarak görülmektedir ve bu yer şekilleri, dağlık alanlardaki eski buzullaşma koşullarını anlamamızı sağlar. Bu çalışmada, Orta Toroslar önemli karstik platolarından biri olan Geyik Dağı`ndaki sirklerin ve glasiyo-karstik dolinlerin özellikleri incelenmiş ve bu özellikler yardımıyla Kuvaterner buzullaşma dönemlerindeki eski kalıcı kar sınırının (pELA) dağılışı ortaya konmuştur. Haritalama çalışmalarına göre çalışma alanında 142 sirk ve 31 glasiyo-karstik dolin tespit edilmiştir. Bu yer şekillerinin taban yüksekliklerine göre çalışma alanındaki ortalama pELA 2185 m`dir. Ancak bu sınır tek bir seviyede olmayıp; kütlenin uzanımı, yükseklik, denize göre konum ve toplam yağış gibi faktörlere bağlı olarak değişmektedir. pELA yüksek karstik platonun kuzeye bakan kesimlerinde 2400 m`ye kadar çıkarken, batı ve güneybatıya doğru 2000 m ve altına düşmektedir. Elde edilen sonuçlara göre Doğu Karadeniz ve Akdeniz kıyılarındaki dağlık alanların pELA sınırları arasında 630 m`lik bir yükseklik farkı bulunmaktadır. Sirk morfometrisi açısından ise, Doğu Karadeniz`deki sirkler Geyik Dağı`ndaki sirklerden iki kat daha geniş alana sahip olup ve derinlikleri 75 m daha fazladır. Bu sonuçlar ülkemiz kıyılarındaki dağlık alanların topografik ve iklimsel koşullarının pELA seviyeleri ve sirk morfometrileri üzerinde büyük bir etki yaptığını göstermektedir

  • Buzul sirki

  • glasiyo-karstik dolin

  • pELA

  • Kuvaterner buzullaşması

  • Geyik Dağı










  • Altınay, O., Sarıkaya, M. A. & Çiner, A. (2020). Late-glacial to Holocene glaciers in the Turkish mountains. Mediterranean Geoscience Reviews, 2, 119–133. https://doi.org/10.1007/s42990-020- 00024-7

  • Arpat, E. ve Özgül., N. (1972). Orta Toroslar’da Geyik Dağı yöresinde kaya buzulları. Maden Tetkik Arama Dergisi, 78, 30-35.

  • Barr, I. D. & Spagnolo, M. (2015). Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth-Science Reviews, 151, 48–78. https://doi.org/10.1016/J. EARSCIREV.2015.10.004

  • Bayer Altın, T. (2003). Aladağlar üzerinde (Ecemiş Çayı Aklanı) buzul ve karst jeomorfolojisi [Doktora Tezi]. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü. İstanbul.

  • Benn, D. I. & Lehmkuhl, F. (2000). Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65, 15-29. https://doi.org/10.1016/ S1040-6182(99)00034-8

  • Benn, D. & Evans, D. J. (2014). Glaciers and glaciation. Routledge.

  • Bennet, M. & Glasser, N. (2009). Glacial Geology, Ice Sheets and Landforms. UK, Wiley-Blackwell.

  • Braithwaite, R. J. & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127-132. https://doi. org/10.3189/172756410790595930

  • Çılğın, Z. (2020). 3D Surface Modeling of Late Pleistocene Glaciers in the Munzur Mountains (Eastern Turkey) and its paleoclimatic implications. Turkish Journal of Earth Sciences 29: 714-732. https://doi.org/10.3906/yer-1905-18

  • Çılğın, Z. & Bayrakdar, C. (2018). Morphometric characteristics of the glacial cirques on Mount Dedegöl. Journal of Geography 36: 27-48. https:// doi.org/10.26650/JGEOG411356

  • Çılğın, Z. & Bayrakdar, C. (2020). Morphometric characteristcs of the glacial cirques in the Teke Peninsula, Southwestern Anatolia. Turkish Geographical Review, 74, 107-121. https://doi. org/10.17211/tcd.729978

  • Çılğın, Z., Evans, I.S., Keserci, F., Canpolat, E. & Bayrakdar, C. (2024). Morphometric characteristics of glacial cirques and former glaciers in the Geyik Mountains, Western Taurus, Türkiye. Geomorphology 467, 1-21. https://doi. org/10.1016/j.geomorph.2024.109474

  • Çiner, A, Deynoux, M. & Çörekçioğlu, E. (1999). Hummocky moraines in the Namaras and Susam valleys, Central Taurids, SW Turkey. Quaternary Science Reviews, 18, 4-5, 659-669.

  • Çiner, A. (2003a). Türkiye’nin güncel buzulları ve geç Kuvaterner buzul çökelleri. Türkiye Jeoloji Bülteni, 46(1), 55-78. https://dergipark.org.tr/tr/ pub/tjb/issue/28630/590866

  • Çiner, A. (2003b). Geyikdağ’da (Orta Toroslar) Geç Kuavaterner buzullaşmasına ait morenlerin sedimanter fasiyes analizi ve ortamsal yorumu. Türkiye Jeoloji Bülteni, 46(1), 35-54. https:// dergipark.org.tr/tr/pub/tjb/issue/28630/590852

  • Çiner, A. (2004). Turkish glaciers and glacial deposits. In Ehlers, J. & Gibbard, P.L. (Eds.), Developments in Quaternary Sciences, Elsevier, Volume 2, Part 1, 419-429

  • Çiner, A., Sarıkaya, M. A. & Yıldırım, C. (2015). Late Pleistocene piedmont glaciations in the Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey. Quaternary Science Reviews, 116, 44–56. https:// doi.org/10.1016/j.quascirev.2015.03.017

  • Çiner, A., Sarıkaya, M. A. & Yıldırım, C. (2017). Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: moraines vs. rock glaciers. Quaternary Geochronology, 42, 76–88. https:// doi.org/10.1016/j.quageo.2017.07.003

  • Derbyshire, E. & Peterson, J. A. (1977). Nivation cirque. Australian Geographer, 13(6), 416-419. http://dx.doi.org/10.1080/00049187708702721

  • Evans, I. S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler: Series A, Physical Geography, 59(3-4), 151-175.

  • Evans, I. S., Çılğın, Z., Bayrakdar, C. & Canpolat, E. (2021). The form, distribution and palaeoclimatic implications of cirques in southwest Turkey (Western Taurus). Geomorphology, 391, Article 107885. https://doi.org/10.1016/J. GEOMORPH.2021.107885

  • Evans, I. S. (2006). Geomorphometry. In Goudie, A. S. (Ed.), Encyclopedia of Geomorphology Volume-1, 435-439.

  • Evans, I. S. & Cox, N. J. (2015). Size and shape of glacial cirques: comparative data in specific geomorphometry. In Jasiewicz J., Zwoliński Zb., Mitasova H., Hengl T. (Eds.), Geomorphometry for Geosciences. Adam Mickiewicz University in Poznań.

  • Evans, I. S. & Cox, N. J. (1995). The form of glacial cirques in the English Lake District, Cumbria. Zeitschrift für Geomorphologie, 39(2), 175-202. https://doi.org/10.1127/zfg/39/1995/175

  • González-Gutiérrez, R. B., Santos-González, J., Gómez-Villar, A., Alonso-Herrero, E., Garcíade Celis, A., Cano, M. & Redondo-Vega, J. M. (2017). Glaciokarst landforms in the Siera de los Grajos, Babia and Luna natural park (Cantabrian Mountains, NW Spain). Acta Carsologica, 46(2- 3). https://doi.org/10.3986/ac.v46i2-3.5001

  • Hashemi, A., Sarıkaya, M. A., Görüm, T., Wilcken, K. M., Çiner, A., Žebre, M., Stepišnik, U. & Yıldırım, C. (2022). The Namaras rock avalanche: Evidence of mid-to-late Holocene paraglacial activity in the Central Taurus Mountains, SW Turkey. Geomorphology, 408, Article 108261. https://doi. org/10.1016/j.geomorph.2022.108261

  • Hughes, P. D. & Woodward, J. C. (2017). Quaternary Glaciation in the Mediterranean Mountains. Geological Society, London, Special Publications, 433, 1-23. http://doi.org/10.1144/SP433.14

  • Hughes, P. D., Gibbard, P. L. & Woodward, J. C. (2007). Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology, 88(3), 242–253. https://doi.org/10.1016/j. geomorph.2006.11.008

  • Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., ... & Dineen, A. A. (2012). Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22(1), 1-19. https://doi.org/10.1016/j. gr.2011.11.005

  • Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P. Kessler, M. (2021). Climatologies at high resolution for the earth’s land surface areas. EnviDat https://www.doi.org/10.16904/ envidat.228

  • Keserci, F., Güngör, G., Bozdoğan, M., Canpolat, E., Çılğın, Z. ve Bayrakdar, C. (2023). Geyik Dağı güncel buzulları ve morfometrik özellikleri. Türk Coğrafya Dergisi, 84, 199-217. https://doi. org/10.17211/tcd.1395806

  • Křížek, M. & Mida, P. (2013). The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology, 198, 57-68. https://doi.org/10.1016/j.geomorph.2013.05.012

  • Meierding, T. C. (1982). Late Pleistocene glacial equilibrium-line altitudes in the Colorado Front Range: a comparison of methods. Quaternary research, 18(3), 289-310.

  • Messerli, B. (1967). Die Eiszeitliche und die Gegenwärtige Vergletscherung in Mittelmeerraum. Geographica Helvetica, 22, 105-228.

  • Mîndrescu, M., Evans, I. S. & Cox, N. J. (2010). Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods. Journal of Quaternary Science, 25(6), 875-888. https://doi.org/10.1002/ jqs.1363

  • Monod, O. (1977). Recherches geologiques dans le Taurus occidental au sud de Beyşehir (Turquie). These Universite Paris Sud, Orsay, 442 pp.

  • Nazik, L., Poyraz, M. & Karabıyıkoğlu, M. (2019). Karstic Landscapes and Landforms in Turkey. In Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (Eds.), Landscapes and Landforms of Turkey. Springer International Publishing, Switzerland.

  • Oien, R. P, Rea, B. R, Spagnolo, M., Barr, I. D. & Bingham, R. G. (2022). Testing the area–altitude balance ratio (AABR) and accumulation–area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. Journal of Glaciology, 68(268). 357-368. https://doi.org/10.1017/ jog.2021.100

  • Öztürk M. Z., Şimşek M., Şener M. F. & Utlu M. (2018). GIS based analysis of doline density on Taurus Mountains, Turkey. Environmental Earth Sciences, 77, Article 536. https://doi.org/10.1007/ s12665-018-7717-7

  • Öztürk, M. Z., Şimşek, M. ve Utlu, M. (2021). Anadolu’nun sirk gölleri. Türk Coğrafya Dergisi (78), 49-60. https://doi.org/10.17211/tcd.998089

  • Öztürk, M. Z. & Taşoğlu, E. (2024). Alpine periglacial zones in Anatolia: spatial distribution and main characteristics. Mediterranean Geoscience Reviews, https://doi.org/10.1007/s42990-024- 00115-9

  • Porter, S. C. (2000). Snowline depression in the tropics during the Last Glaciation. Quaternary science reviews, 20(10), 1067-1091. https://doi. org/10.1016/S0277-3791(00)00178-5

  • Reber, R., Akçar, N., Tikhomirov, D., Yesilyurt, S., Vockenhuber, C., Yavuz , V., Ivy-Ochs, S. & Schlüchter, C. (2022). LGM Glaciations in the Northeastern Anatolian Mountains: New Insights. Geosciences, 12, 257. https://doi.org/10.3390/ geosciences12070257

  • Sarıkaya, M. A. & Çiner, A. (2017). The late quaternary glaciation in the Eastern Mediterranean. In Huges, P., Woodward, J. (Eds.), Quaternary Glaciation in the Mediterranean Mountains, Geological Society of London Special Publication, 433, 289-305. http://doi.org/10.1144/SP433.4

  • Sarıkaya, M. A. ve Çiner, A. (2015). Türkiye Geç Pleyistosen buzullaşması ve paleoiklimi. MTA Dergisi, 151, 111-132.

  • Sarıkaya, M. A., Çiner, A. & Yıldırım, C. (2017). Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quaternary Geochronology, 39, 189-204. https://doi. org/10.1016/j.quageo.2017.03.003

  • Sarıkaya, M. A., Çiner, A. & Zreda, M. (2011). Quaternary glaciations of Turkey. In Ehlers, J., Gibbard, P.L., Hughes, P. D. (Eds.), Quaternary Glaciations e Extent and Chronology; a Closer Look (p.: 393-403). Elsevier, Amsterdam,.

  • Sariş, F., Hannah, D. M. & Eastwood, W. J. (2010). Spatial variability of precipitation regimes over Turkey. Hydrological Sciences Jounal, 55(2), 234– 249. https://doi.org/10.1080/02626660903546142

  • Seven, M., Öztürk, Y., Gürgöze, S., Ege, İ. ve Tonbul, S. (2025). Engizek Dağı’nda karstik depresyonların jeomorfik özellikleri ve morfotektonik gelişimleri (Kahramanmaraş, Doğu Toroslar). Türkiye Jeoloji Bülteni, 68(2), 259-286. https://doi.org/10.25288/ tjb.1647807

  • Smart, P. L. (1987). Origin and development of glaciokarst closed depressions in the Picos de Europa, Spain. Zeitschrift für Geomorphologie, 30(4), 423-443.

  • Soteres, R. L., Cabrera, D. A., Martini, M. A., Sagredo, E. A., Pedraza, J., Carrasco, R. M., ... & Araos, J. M. (2025). Paleoglacial and paleoclimate inferences from cirque morphometry and spatial distribution across northern Patagonia (40°– 45° S). Palaeogeography, Palaeoclimatology, Palaeoecology, Article 112939. https://doi. org/10.1016/j.palaeo.2025.112939

  • Şenel, M., Dalkılıç, H., Gedik, İ., Serdaroğlu, M., Metin, S., Esentürk, K., Bölükbaşı, S. ve Özgül, N. (1998). Orta Toroslar’da Güzelsu Koridoru ve kuzeyinin jeolojisi. MTA Dergisi, 120, 171-197.

  • Şener, M. F. & Öztürk, M. Z. (2019). Relict drainage effects on distribution and morphometry of karst depressions: A case study from Central Taurus (Turkey). Journal of Cave and Karst Studies, 81, 33-43. https://dx.doi.org/10.4311/2018ES0111

  • Şimşek, M., Öztürk, M. Z., Yeşilyurt, S. & Utlu, M. (2023). Morphometric characteristics and paleogeographic implication of glacial cirques in Eastern Black Sea Mountains (Türkiye). Geomorphology 441, Article 108889. https://doi. org/10.1016/j.geomorph.2023.108889

  • Şimşek, M., Utlu, M., Poyraz, M. ve Öztürk, M. Z. (2019a). Geyik Dağı kütlesinin yüzey karstı jeomorfolojisi ve kütle üzerindeki karst-buzul jeomorfolojisi ilişkisi. Ege Coğrafya Dergisi, 29(2), 97–110.

  • Şimşek, M., Öztürk, M. Z. ve Turoğlu, H. (2019b). Geyik Dağı üzerindeki dolin ve uvalaların morfotektonik önemi. Türk Coğrafya Dergisi, 72, 13-20. https://doi.org/10.17211/tcd.501724

  • Taşoğlu, E., Öztürk, M. Z. & Yazıcı, Ö. (2024). High Resolution Köppen-Geiger Climate Zones of Türkiye. International Journal of Climatology, 44(14), 5248-5265. https://doi.org/10.1002/ joc.8635

  • Telbisz, T., Krasznai, M., Gachev, E., Gikov, A. & Ruszkiczay-Rüdiger, Z. (2025). Cirque morphometry of Rila and Pirin Mountains (Bulgaria). Geomorphology, 483, Article 109819. https://doi.org/10.1016/j.geomorph.2025.109819

  • Veress, M. & Lóczy, D. (2019). General Description of Glaciokarsts. In Glaciokarsts (pp.: 23-69). Springer Geography. Springer, Cham. https://doi. org/10.1007/978-3-319-97292-3_2

  • Veress, M. (2017). Solution DOLINE development on GLACIOKARST in alpine and Dinaric areas. Earth-Science Reviews, 173, 31-48. https://doi. org/10.1016/j.earscirev.2017.08.006

  • Veress, M. (2023). Landscape Evolution in Glacier Valleys of Glaciokarsts. Geosciences, 13, 308. https://doi.org/10.3390/geosciences13100308

  • Žebre, M. & Stepišnik, U. (2015). Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surface Processes and Landforms, 40(11), 1493– 1505. https://doi.org/10.1002/esp.3731

  • Žebre, M. & Stepišnik, U. (2016). Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). Journal of Maps, 12(5), 873–881. http://dx.doi.or g/10.1080/17445647.2015.1095133

  • Žebre, M., Sarıkaya, M.A., Stepišnik, U., Yıldırım, C. & Çiner, A. (2019). First 36Cl cosmogenic moraine geochronology of the Dinaric Mountain karst: Velež and Crvanj Mountains of Bosnia and Herzegovina. Quaternary Science Reviews, 208, 54-75. http://dx.doi.org/10.1016/j. quascirev.2019.02.002

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • Türkiye`de Süstaşlarının (Mücevher Taşlarının) Yasal Durumu ve Yeni Düzenleme Yapılmasının Önemi
    Murat Hatipoğlu
    PDF Olarak Görüntüle

    Öz: Süstaşları (mücevher taşları) olarak gruplandırılan madenleri diğer metalik ve endüstriyel madenlerden ve yapıtaşlarından ayırabilen, hacimli rezervlere ve üretim miktarlarına ihtiyaç duyulmamasının yanında düşük rezervli dahi olsalar eğer iyi kalitede çıkartılırlarsa mücevher sektöründe kullanılabilmeleri açısından aranır olduklarından, diğer gruplarla kıyaslandıklarında, bu malzemeler çok yüksek ekonomik değerlere sahiptirler. Türkiye`de süstaşı-mücevhertaşı bilimi (gemoloji) ve süstaşı-mücevher taşı işleme sanayii çok gelişmemiş ve ülkemiz süstaşları potansiyeli henüz tam anlamıyla ortaya konulmamış olmasına rağmen, süstaşları-mücevher taşları, maden sektörü bilinçli yapıldığında ve iyi pazarlandığında Türkiye için yüksek bir ekonomik değeri temsil eder. Bunların ham ve işlenmiş hallerindeki ulusal madenciliği, analizi ve ticaretinin bir eş güdüm ve disiplin içinde olması, ekonomik çıkarlar açısından Türkiye için önem arz eder. Enerji ve Tabii Kaynaklar Bakanlığı ile Hazine ve Maliye Bakanlığına bağlı kurumların süstaşları-mücevher taşları söz konusu olduğunda mevzuat ve uygulama itibariyle bir düzensizlik içerisinde olduğu görülmektedir. Bunların tek bir çatı altında yönlendirilmesi aklın ve bilimin gereği bir zorunluluk doğurmuştur. Sadece süstaşları madenciliğine, analizine, borsasına ve ticaretine yönelik yeni bir hukuksal düzenlemeye ihtiyaç olduğu aşikardır. Bu kanun içeriği Dünyadaki diğer ülkelerin çıkardığı eşdeğerlerine uygun olarak özel olarak hazırlanmalıdır. MAPEG (Maden ve Petrol İşleri Genel Müdürlüğü) veya MTA (Maden Tetkik ve Arama Enstitüsü)bünyesinde "Türkiye Süstaşları (Mücevher Taşları (Gemoloji) Uygulama ve Araştırma Merkezi" kurulmalıdır. Bu merkez ülkemizde halen büyük kısmı atıl halde duran süstaşları madenciliğini, işlemeciliğini ve pazarlaması ile ARGE faaliyetlerini organize edebilecek kapsam ve yeterlilikte olmalıdır. Süstaşları ticaretinin bugün Dünyadaki başlıca merkezleri Asya kıtasına kaymış ve Tayland (Bangkok), Çin (Hong Kong), Hindistan (Jaipur, Bombay) gibi yerlerön plana çıkmıştır. Türkiye Kambiyo mevzuatında (32 sayılı Türk Parası Koruma Mevzuatında) 2/K maddesindeki kıymetli taşlar tanımı revize edilerek, eksik düzenlemenin güncellenmesi gerekmektedir. Benzer bir revizyonun da Türk Standartları Enstitüsü (TSE) tarafından halen yürürlükte olan süstaşları-mücevher taşları ile ilgili standartlar olanTS-6173 ve TS-6174 üzerine de yapılması gerekir. Türkiye`de kuyum sektörünün ana paydaşlarından olan tüketici açısından yürürlükte olan "6502 Sayılı Tüketicinin Korunması Hakkında Kanun" çerçevesinde incelendiğinde, mevcut düzenlemelerin ve yaklaşımların süstaşları açısından karşılaşılan ve olası sorunlara gereken cezai etkinlikte karşılık bulmadığı görülmektedir. Bu kanunun ve ilgili yönetmelikleri ve de ilişkili mevzuatı süstaşları açısından tüketici mağduriyetlerinin önlenmesi bakımından yeniden düzenlenmesi gerekmektedir.

  • Gemoloji

  • süstaşları (mücevher taşları)

  • süstaşları hukuku

  • süstaşları madenciliği

  • süstaşları borsası-ticareti










  • Altingöz, M., Smith, N. M., Şebnem, D., Syvrud, P.F. & Ali, S. H. (2019). Color and local heritage in gemstone branding: A comparative study of blue zoisite (tanzanite) and color-change diaspore (zultanite/csarite). The Extractive Industries and Society, 6(4), 1030-1039.

  • Arem, J. E. (1987). Color Encyclopaedia of Gemstones. 2nd Ed., Van Nostrand Reinhold Co., New York, A.B.D., 248s.

  • Ay, A. M., Hatipoğlu, M., Günel, H., Kılınçarslan, S. ve Velioğlu, T. (2013). Doğanşehir (Malatya) yakut oluşumlarının yayılımının tespiti ve oluşum kökenine ait yaklaşımlar [Determination of ruby formation and approaches to the origin in Doğanşehir (Malatya)]. Özmen, B. (Ed.), 66. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı (s.: 222-223), 1-5 Nisan 2013, Ankara. Jeoloji Mühendisleri Odası Yayınları. https://www.jmo. org.tr/resimler/ekler/08dd28f402b112b_ek.pdf

  • Back, M. & Mandarino, J. (2008). Fleischer’s Glossary of Mineral Species. 10th Ed., The Mineral Record Inc., Tucson, A.B.D., 187 s.

  • Blackburn, W. H. (1924). Encyclopedia of Mineral Names. Mineralogical Association of Canada, Ottowa, Kanada, 378 s.

  • Bonewitz, R. L. (2005). Rock and Gem. DK Adult. Smithsonian Institute, Washington, A.B.D., 287 s.

  • Esenli, F., Kumbasar, I., Eren, R. H. & Uz, B. (2001). Characteristics of opals from Simav, Turkey. Neues Jahrbuch Fur Mineralogie Mh., 3, 97-113.

  • Gübelin, E. (1969). Pierres Précieuses. Editions Silva, Zurich, İsviçre, 614 s.

  • Hatipoğlu, M. (2007). Türkiye’de süstaşı-mücevher taşı potansiyeli, rezervleri, madenciliği ve ekonomisi [Gemstone potential, reserves, mining, and economics in Turkey]. 6. Uluslararası Endüstriyel Hammaddeler Sempozyumu (s.: 201-212). 1-3 Şubat, İzmir.

  • Newman, R. (2003). Gemstone Buying Guide: How to Evaluate, Identify, Select&Care for Colored Gems, 2nd Ed. International Jewelry Publications. New York, A.B.D., 567s.

  • Hatipoğlu, M. (2011a). Unique gemstones of Turkey. International Gemological Symposium-2011 Advancing the Science and Business of Gems (p.: 45). 29-31 May 2011, Carslbad, California, USA.

  • Hatipoğlu, M. (2011b). Renkli Kıymetli Taşlar [Colored Precious Stones]. Zeus Kitabevi Yayınları, İzmir, 334s.

  • Hatipoğlu, M. (2015). Türkiye’de mücevheratın standardizasyonu için metalurjik ve gemolojik kontrolün (sertifikasyonun) önemi [Importance of metallurgical and gemological control (certification) for jewelry standardization in Türkiye] (Çağrılı konuşmacı-özel sunum). Değerli ve Yarı Değerli Taşlar Çalıştayı (s.: 6-17). 09-10 Aralık 2015, İstanbul.

  • Hatipoğlu, M. (2017). Arkeo-gemolojinin başlangıcı ve süreçsel gelişimi [Initial and processing development of archaeo-gemmology]. Geçmişten Günümüze Gemoloji Sempozyumu GÖNKUYSAN-2017 (3-8). 10-13 Mayıs, Gönen Meslek Yüksekokulu Konferans Salonu, GönenIsparta.

  • Hatipoğlu, M. (2020). Süstaşları Mineralojisi [Mineralogy of The Gemstones]. Talebe Yayın Dağıtım, Kırtasiye, Ar-Ge San. ve Tic.Ltd.Şti. Niğde, 3. Baskı, 195s.

  • Hatipoğlu, M. (2023). Türkiye’de süstaşlarının (mücevher taşlarının) borsası ve ticaretinin durumu [The status of the exchange and trade of gemstones (jewelry stones) in Turkiye]. Bozkurt, E., Dumanlılar, Ö., Akyıldız, M., Yılmaz, K. K., Coşkun Tunaboylu, B., Cihan, Z. Ö., Yağbasan, Ö ve Açıkel, Ş. (Ed.ler), Uluslararası Katılımlı 75. Türkiye Jeoloji Kurultayı (10-14/ Nisan/2023) Bildiri özleri Kitabı [Abstract Book of 75th Geological Congress of Türkiye with International Participation (April 10-14, 2023], (s.: 61). MTA, Ankara, Türkiye. https://www.jmo.org.tr/resimler/ ekler/24f25904af8a59f_ek.pdf

  • Hatipoğlu, M. ve Gökçen, N. (1999). Batı Anadolu‘nun yarı kıymetli süstaşlarının başlıca mineralojik, jeolojik ve ekonomik nitelikleri [Main mineralogical, geological, and economics of semi-precious stones in western Anatolia]. 1. Batı Anadolu Hammadde Kaynakları Sempozyumu (s.: 438-450). 8-14 Mart, İzmir

  • Hatipoğlu, M. ve Kırıkoğlu, S. (2005). Türkiye’de elmas ve kıymetli taşlar borsasının kurulmasının önemi ve gerekliliği [Importance and necessity the construction of the diamond and precious stone bourse in Turkey]. International Gems and Novel Metals Symposium (s.: 56-88). 29-30 Nisan 2005, İstanbul, 56-88.

  • Hatipoğlu, M. & Babalık, H. (2008). Gem minerals and materials in the Anatolian land (Turkey). 35th Rochester Mineralogical Symposium (p.: 25). 10- 13 April, Rochester-New York, U.S.A.

  • Hatipoğlu, M. & Çoban, E. (2021). Gem-quality blue sapphires (Al2 O3 -corundum variety) from the Milas-Yatağan region, Muğla, Türkiye. Academia Letters, Article 4085, 1-5. https://doi. org/10.20935/AL4085

  • Hatipoğlu, M., Babalık, H. & Chamberlain, S. C. (2010a). Gemstone deposits in Turkey. Rocks & Minerals, 85(2), 124-132. https://doi. org/10.1080/10511970903455868

  • Hatipoğlu, M., Türk, N., Chamberlain, S. C. & Akgün, A. M., (2010b). Gem-quality transparent diaspore (zultanite) in bauxite deposits of the İlbir Mountains, Menderes Massif, SW Türkiye. Mineralium Deposita, 45(2), 201-205. https://doi. org/10.1007/s00126-009-0262-2

  • Hatipoğlu, M., Helvacı, C., Kibar, R., Çetin, A., Karabulut, Y. & Can, N., (2010c). Amethyst and morion quartz gemstone raw materials from Türkiye: Colour saturation and enhancement by gamma, neutron and beta irradiation. Radiation Effects and Defects in Solids, 165(11), 876–888. https://doi.org/10.1080/10420150.2010.489611

  • Hatipoğlu, M., Kırıkoğlu, M.S., Buzlu, H.B., Kibici, Y. ve Helvacı, C. (2011). Türkiye’deki süstaşlarının endüstriyel hammaddeler içerisindeki önemi [Importance of gemstones within the industrial minerals in Türkiye]. 64. Türkiye Jeoloji Kurultayı, Bildiri Özleri Kitabı (s.: 203-204). 25- 29 Nisan 2011, Ankara. https://www.jmo.org.tr/ resimler/ekler/385b1ca1d272c38_ek.pdf

  • Hatipoğlu, M., Chamberlain, S., Kibici, Y. (2013b). Characterization of the Sündikendağı deposit of moganite-rich, blue chalcedony nodules, Mayıslar-Sarıcakaya (Eskişehir), Türkiye. Ore Geology Reviews, 54, 127-137.

  • Hatipoğlu, M., Çoban, E., Çil, V., Babalık, H. ve Güney, H. (2022). Türkiye’nin süstaşı-mücevher taşı kalitesindeki korundum (Al2 O3 ) mineral (mavi safir) yatağı; Oluşumları ve gemolojiksel özellikleri [Gem quality corundum (Al2 O3 ) mineral (blue sapphire) deposit from Türkiye; Their formation and gemological characteristics]. International Black Sea Modern Scientific Research Congress Full Text Book (s.:46-56). September 29,-October 02, 2022. Rize-Türkiye.

  • Hatipoğlu, M., Gürbüz, M., Gürsoy, B. & Çil, V. (2023). Adli gemoloji açısından tüketicinin korunması hakkında bir örnek; Mücevher sektöründe yaygınca kullanılan beril (Be3 Al2 Si6 O18) mineralinin yeşil renkli iki türünün (yeşil beril ve zümrüt) arasındaki farklar ve tüketicilerin bilinçlendirilmesi [An example of consumer protection in forensic-gemology; The differences between two green types of beryl (Be3 Al2 Si6 O18) mineral widely used in the jewelry industry (green beryl and emerald) and raising consumer awareness]. International Eurosia Congress on Scientific Researches and Recent Trends 10 abstract Book (p.: 26-28). February 16-17, BakuAzerbaijan, 26-28.

  • Hatipoğlu, M., Yanık, G. ve Çoban, E. (2024). Dünya’nın en değerli süstaşlarından biri olan painit mineralinin, jeolojik ve mineralojik olarak bulunabilirliğinin irdelenmesi; Türkiye’de painit var mıdır? [Examining the geological and mineralogical availability of the mineral painite, one of the most valuable gemstones in the world; is there painite in Türkiye?]. Türkiye Jeoloji Bülteni, 67(2), 253-266. https://doi.org/10.25288/ tjb.1399633

  • Helvacı, C., Hatipoğlu, M., Passeri, D., Konak, N. & Kınacı, E.H., (2025). The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye). Türkiye Jeoloji Bülteni, 68(4), 85-108. https://doi.org/10.25288/tjb.1491493

  • Kaydu Akbudak, İ., Gürbüz, M., Başıbüyük, Z., Hatipoğlu, M., Öztüfekçi Önal, A. & İşler, F. (2021). Mineralogical and gemological characteristics of metaophiolite hosted corundum (Malatya-Türkiye). Sakarya University Journal of Science, 25(2), 1-9.

  • Keller, P. C. (1990). Gemstones and Their Origins. Van Nostrand-Reinhold. New York, A.B.D., 674s.

  • Krauskopf, K. B. (1982). Introduction to Geochemistry.,2nd Ed. McGraw-Hill Book Co., Sydney, Avustralya, 617s.

  • Manutchehr-Danai, M. (2005). Dictionary of Gems and Gemology, 2nd extended and revised. Ed.. Springer, New York, A.B.D., 203s.

  • Mitchell, R.S. (1979). Mineral Names What do They Mean. N.A.G. Press Ltd., New York, A.B.D., 267 s.

  • Rapp, G. (2009). Archaeomineralogy. 2nd Ed., (Herrmann, B., Wagner, G. A. (Eds.)), SpringerVerlag Berlin Heidelberg, Berlin, Germany, 465 s.

  • Read, P. G. (2005). Gemmology, 3rd Ed.. Elsevier, London, GB, 253s.

  • Roberts, W. L., Campbell, T. J. & Rapp, G. R. (1989). Encyclopedia of Minerals, 2nd Ed.. Van Nostrand Reinhold Co. New York, A.B.D., 892s.

  • Rose, A. W., Hawkes, H. E. &Webb, J. S. (1979). Geochemistry in Mineral Exploration, 2nd Ed.. Academic Press, Sydney, Avustralya, 657s.

  • Savaşçın, M. Y., Hatipoğlu, M. ve Akdağ, İ. (1988a). TS-6173 Kıymetli ve Yarı Kıymetli SüstaşlarıSınıflandırma [Precious and Semi Precious Gemstones-Classification]. Türk Standartları Enstitüsü (TSE), Ankara, TS6173.

  • Savaşçın, M. Y., Hatipoğlu, M. ve Akdağ, İ. (1988b). TS-6174 Kıymetli ve Yarı Kıymetli SüstaşlarıTerimler [Precious and Semi Precious GemstonesTerms]. Türk Standartları Enstitüsü (TSE), Ankara, TS6174.

  • Sayılı, S. Türeli, K., Lüle, Ç., Kadiroglu, T. ve Atakay, E. (1999). Yozgat-Sarıkaya Kargılık Koyu pembe turmalin oluşumlarının jeolojisi, mineralojisi ve gemolojik özellikleri hakkında ön bulgular. 1. Batı Anadolu Rough Hammadde Kaynakları Sempozyumu, (s.: 448-453), İzmir.

  • Schumann, W. (2000). Gemstone of the World, Revised & Expanded Ed.. Sterling Publishing Co., N.A.G. Press Ltd., New York, A.B.D., 254 s.

  • Sinkankas, J. (1986). Mineralogy. Van Nostrand Reinhold Co. New York, A.B.D., 457 s.

  • Şengör, A. M. C. & Yazıcı, M. (2020). The aetiology of neotectonic evolution of Turkey. Mediterranean Geoscience Reviews, 2(3), 327-339. https://doi. org/10.1007/s42990-020-00039-0

  • Webmineral (2025). Minerals http://webmineral.com/ MySQL/xray.php.

  • Webster, R. (1979). Gemmologist’ Compendium, 6th Ed.. Van Nostrand Reinhold Co. London. İngiltere, 167 s.

  • Webster, R., Read, P.G. & Webster, R. (1994). Gems: Their Sources, Descriptions and Identification. 5th Ed., Butterworth-Heinemann, London, İngiltere, 546 s.

  • Wise, R.W. (2003). Secrets of the Gem Trade: The Connoiseseur’s Guide to Precious Gemstones. Brunswick House Press, London, İngiltere, 178s.

  • Wright, W. (1996). Check-list for rare gemstones— Kammererite. Canadian Gemmologist, 17, 14–17.

  • APA

  • AMA

  • Chicago

  • EndNote

  • IEEE

  • ISNAD

  • JAMA

  • MLA

  • Vancouver

  • SAYI TAM DOSYASI
    PDF Olarak Görüntüle